1
|
Mochizuki Y, Joji-Nishino A, Emoto K, Uematsu A. Distinct neural responses of ventromedial prefrontal cortex-projecting nucleus reuniens neurons during aversive memory extinction. Mol Brain 2025; 18:18. [PMID: 40045388 PMCID: PMC11881366 DOI: 10.1186/s13041-025-01185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 03/09/2025] Open
Abstract
Animals adaptively regulate aversive memories in safe environments through extinction, a process central to exposure therapy for anxiety disorders. The limbic thalamus controls cognitive function in concert with interconnected cortical and limbic structures. Though medial prefrontal (mPFC) afferents to the limbic thalamus regulate aversive memory, the functional role of limbic thalamus efferents to mPFC is unclear. Here, we investigated the roles of thalamic nuclei, the reuniens (RE) and mediodorsal (MD) thalamus, projecting to the medial prefrontal cortex (mPFC) in aversive memory conditioning and extinction in male mice. Using retrograde tracing, we demonstrated that ventromedial PFC (vmPFC)- and dorsomedial PFC (dmPFC)-projecting neurons are topologically segregated within the RE and MD. Fiber photometry revealed that both RE→vmPFC and MD→vmPFC neurons respond to aversive stimuli. Notably, RE→vmPFC neurons develop shock-associated cue (CS+) response during aversive conditioning. During extinction, RE→vmPFC neurons exhibited a biphasic response to CS+, while MD→vmPFC neurons showed no cue-evoked activity. Neither optogenetic activation nor inactivation of these populations altered freezing behavior during extinction compared to controls. Collectively, these findings indicate that RE→vmPFC neurons encode aversive cue information during extinction but are dispensable for behavioral modulation. This study highlights the distinct contributions of limbic thalamus-PFC circuits to aversive memory processing.
Collapse
Affiliation(s)
- Yuki Mochizuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Human Informatics and Interaction Research Institute, National Institute for Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Asuka Joji-Nishino
- Human Informatics and Interaction Research Institute, National Institute for Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| | - Akira Uematsu
- Human Informatics and Interaction Research Institute, National Institute for Advanced Industrial Science and Technology, Tsukuba, Japan.
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Gabriel CJ, Gupta TA, Sánchez-Fuentes A, Zeidler Z, Wilke SA, DeNardo LA. Transformations in prefrontal ensemble activity underlying rapid threat avoidance learning. Curr Biol 2025:S0960-9822(25)00010-7. [PMID: 39938512 DOI: 10.1016/j.cub.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 01/07/2025] [Indexed: 02/14/2025]
Abstract
To survive, animals must rapidly learn to avoid aversive outcomes by predicting threats and taking preemptive actions to avoid them. Often, this involves identifying locations that are safe in the context of specific, impending threats and remaining in those locations until the threat passes. Thus, animals quickly learn how threat-predicting cues alter the implications of entering or leaving a safe location. The prelimbic subregion (PL) of the medial prefrontal cortex (mPFC) integrates learned associations to influence threat avoidance strategies.1,2,3,4,5,6,7,8,9,10,11,12 These processes become dysfunctional in mood and anxiety disorders, which are characterized by excessive avoidance.13,14 Prior work largely focused on the role of PL activity in avoidance behaviors that are fully established,12,15,16,17 leaving the prefrontal mechanisms driving avoidance learning poorly understood. To determine when and how learning-related changes emerge, we recorded PL neural activity using miniscope Ca2+ imaging18,19 as mice rapidly learned to avoid a cued threat by accessing a safe location. Early in learning, PL population dynamics accurately predicted trial outcomes and tracked individual learning rates. Once behavioral performance stabilized, neurons that encoded avoidance behaviors or risky exploration were strongly modulated by the conditioned tone. Our findings reveal that, during avoidance learning, the PL rapidly generates novel representations of whether mice will take avoidance or exploratory actions during an impending threat. We reveal the sequence of transformations that unfold in the PL and how they relate to individual learning rates.
Collapse
Affiliation(s)
- Christopher J Gabriel
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tanya A Gupta
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Asai Sánchez-Fuentes
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Zachary Zeidler
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott A Wilke
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA.
| | - Laura A DeNardo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Lesas J, Bienvenu TC, Kurek E, Verlhac J, Grivet Z, Têtu M, Girard D, Lanore F, Blanchard‐Desce M, Herry C, Daniel J, Dejean C. Dye-Based Fluorescent Organic Nanoparticles, New Promising Tools for Optogenetics. Adv Healthc Mater 2025; 14:e2402132. [PMID: 39263839 PMCID: PMC11730699 DOI: 10.1002/adhm.202402132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Dye-based fluorescent organic nanoparticles are a specific class of nanoparticles obtained by nanoprecipitation in water of pure dyes only. While the photophysical and colloidal properties of the nanoparticles strongly depend on the nature of the aggregated dyes, their excellent brightness in the visible and in the near infrared make these nanoparticles a unique and versatile platform for in vivo application. This article examines the promising utilization of these nanoparticles for in vivo optogenetics applications. Their photophysical properties as well as their biocompatibility and their capacity to activate Chrimson opsin in vivo through the fluorescence reabsorption process are demonstrated. Additionally, an illustrative example of employing these nanoparticles in fear reduction in mice through closed-loop stimulation is presented. Through an optogenetic methodology, the nanoparticles demonstrate an ability to selectively manipulate neurons implicated in the fear response and diminish the latter. Dye-based fluorescent organic nanoparticles represent a promising and innovative strategy for optogenetic applications, holding substantial potential in the domain of translational neuroscience. This work paves the way for novel therapeutic modalities for neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jérémy Lesas
- Neurocentre Magendie, INSERM U1215Université de BordeauxBordeaux33000France
| | - Thomas C.M. Bienvenu
- Centre Hospitalier Charles PerrensPôle de Psychiatrie Générale et Universitaire121 rue de la BéchadeBordeaux33076France
| | - Eleonore Kurek
- Institut des Sciences Moléculaires, UMR CNRS 5255Université de BordeauxTalence33400France
| | - Jean‐Baptiste Verlhac
- Institut des Sciences Moléculaires, UMR CNRS 5255Université de BordeauxTalence33400France
| | - Zoé Grivet
- Neurocentre Magendie, INSERM U1215Université de BordeauxBordeaux33000France
| | - Maude Têtu
- Neurocentre Magendie, INSERM U1215Université de BordeauxBordeaux33000France
| | - Delphine Girard
- Neurocentre Magendie, INSERM U1215Université de BordeauxBordeaux33000France
| | - Frédéric Lanore
- Institut Interdisciplinaire de NeuroSciences, UMR CNRS 5297Université de BordeauxBordeaux33000France
| | | | - Cyril Herry
- Neurocentre Magendie, INSERM U1215Université de BordeauxBordeaux33000France
| | - Jonathan Daniel
- Institut des Sciences Moléculaires, UMR CNRS 5255Université de BordeauxTalence33400France
| | - Cyril Dejean
- Neurocentre Magendie, INSERM U1215Université de BordeauxBordeaux33000France
| |
Collapse
|
4
|
Wischnewski M, Shirinpour S, Alekseichuk I, Lapid MI, Nahas Z, Lim KO, Croarkin PE, Opitz A. Real-time TMS-EEG for brain state-controlled research and precision treatment: a narrative review and guide. J Neural Eng 2024; 21:061001. [PMID: 39442548 PMCID: PMC11528152 DOI: 10.1088/1741-2552/ad8a8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Transcranial magnetic stimulation (TMS) modulates neuronal activity, but the efficacy of an open-loop approach is limited due to the brain state's dynamic nature. Real-time integration with electroencephalography (EEG) increases experimental reliability and offers personalized neuromodulation therapy by using immediate brain states as biomarkers. Here, we review brain state-controlled TMS-EEG studies since the first publication several years ago. A summary of experiments on the sensorimotor mu rhythm (8-13 Hz) shows increased cortical excitability due to TMS pulse at the trough and decreased excitability at the peak of the oscillation. Pre-TMS pulse mu power also affects excitability. Further, there is emerging evidence that the oscillation phase in theta and beta frequency bands modulates neural excitability. Here, we provide a guide for real-time TMS-EEG application and discuss experimental and technical considerations. We consider the effects of hardware choice, signal quality, spatial and temporal filtering, and neural characteristics of the targeted brain oscillation. Finally, we speculate on how closed-loop TMS-EEG potentially could improve the treatment of neurological and mental disorders such as depression, Alzheimer's, Parkinson's, schizophrenia, and stroke.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Psychology, Experimental Psychology, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States of America
| | - Maria I Lapid
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Paul E Croarkin
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
5
|
Altafi M, Chen C, Korotkova T, Ponomarenko A. Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations. J Neurosci 2024; 44:e0518242024. [PMID: 39256049 PMCID: PMC11502232 DOI: 10.1523/jneurosci.0518-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/12/2024] Open
Abstract
Neural circuits supporting innate behaviors, such as feeding, exploration, and social interaction, intermingle in the lateral hypothalamus (LH). Although previous studies have shown that individual LH neurons change their firing relative to the baseline during one or more behaviors, the firing rate dynamics of LH populations within behavioral episodes and the coordination of behavior-related LH populations remain largely unknown. Here, using unsupervised graph-based clustering of LH neurons firing rate dynamics in freely behaving male mice, we identified distinct populations of cells whose activity corresponds to feeding, specific times during feeding bouts, or other innate behaviors-social interaction and novel object exploration. Feeding-related cells fired together with a higher probability during slow and fast gamma oscillations (30-60 and 60-90 Hz) than during nonrhythmic epochs. In contrast, the cofiring of neurons signaling other behaviors than feeding was overall similar between slow gamma and nonrhythmic epochs but increased during fast gamma oscillations. These results reveal a neural organization of ethological hierarchies in the LH and point to behavior-specific motivational systems, the dysfunction of which may contribute to mental disorders.
Collapse
Affiliation(s)
- Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Changwan Chen
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne 50931, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne 50931, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), Cologne 50931, Germany
| | - Alexey Ponomarenko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| |
Collapse
|
6
|
Hartsock MJ, Levy CT, Navarro MJ, Saddoris MP, Spencer RL. Circadian Rhythms in Conditioned Threat Extinction Reflect Time-of-Day Differences in Ventromedial Prefrontal Cortex Neural Processing. J Neurosci 2024; 44:e0878242024. [PMID: 39251355 PMCID: PMC11426375 DOI: 10.1523/jneurosci.0878-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Circadian rhythms in conditioned threat extinction emerge from a tissue-level circadian timekeeper, or local clock, in the ventromedial prefrontal cortex (vmPFC). Yet it remains unclear how this local clock contributes to extinction-dependent adaptations. Here we used single-unit and local field potential analyses to interrogate neural activity in the male rat vmPFC during repeated extinction sessions at different times of day. In association with superior recall of a remote extinction memory during the circadian active phase, vmPFC putative principal neurons exhibited phasic firing that was amplified for cue presentations and diminished at transitions in freezing behavior. Coupling of vmPFC gamma amplitude to the phase of low-frequency oscillations was greater during freezing than mobility, and this difference was augmented during the active phase, highlighting a time-of-day dependence in the organization of freezing- versus mobility-associated cell assemblies. Additionally, a greater proportion of vmPFC neurons were phase-locked to low-frequency oscillations during the active phase, consistent with heightened neural excitability at this time of day. Our results suggest that daily fluctuations in vmPFC excitability precipitate enhanced neural recruitment into extinction-based cell assemblies during the active phase, providing a potential mechanism by which the vmPFC local clock modulates circuit and behavioral plasticity during conditioned threat extinction.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Catherine T Levy
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Maria J Navarro
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Michael P Saddoris
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80301
| |
Collapse
|
7
|
Kim NH, Choo HI, Lee YA. Effect of nanoplastic intake on the dopamine system during the development of male mice. Neuroscience 2024; 555:11-22. [PMID: 39033990 DOI: 10.1016/j.neuroscience.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Exposure to environmental microplastics has been demonstrated to impact health. However, its effect on development remains unclear. This study investigated whether consumption of nanoplastics (NPx) during development affects social and cognitive functions in rodents. In this study, we utilized male Institute of Cancer Research mice; they were divided into five subgroups based on the duration of NPx administration. NPx (100 nm) was orally administered via gavage for 6 days from gestational day (GTD) 7, representing the mid-gestation period, and for 5-6 days from GTD13 to birth, representing the late-gestation period; the male offspring were used for experiments. NPx was orally administered for 15 days starting at postnatal day (PND) 21 as the juvenile, PND38 as the adolescent, and PND56 as adulthood. On PND77, offspring were assessed for locomotion, social behavior, and nest-building tests. We observed that NPx administration altered dopamine system responses in GTD13 and PND56 groups. Social behavior was similarly affected by NPx treatment, with GTD13 and PND56 groups displaying decreased familiarity. Additionally, NPx treatment enhanced local field potentials in the prefrontal cortex, nucleus accumbens, and amygdala of GTD7 group and in the striatum of GTD13 group, while amphetamine treatment induced changes of local field potentials compared to saline treatment in the prefrontal cortex and the ventral tegmental area of CTR, GTD7, PND21, and PND56 groups. Taken together, these results showed that NPx treatment induced changes in social behavior partly depending on developmental stage, and these changes are associated with neural circuits innervated by the dopamine system.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea
| | - Hye-In Choo
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk 38430, South Korea.
| |
Collapse
|
8
|
Ehret B, Boehringer R, Amadei EA, Cervera MR, Henning C, Galgali AR, Mante V, Grewe BF. Population-level coding of avoidance learning in medial prefrontal cortex. Nat Neurosci 2024; 27:1805-1815. [PMID: 39075325 PMCID: PMC11374698 DOI: 10.1038/s41593-024-01704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/14/2024] [Indexed: 07/31/2024]
Abstract
The medial prefrontal cortex (mPFC) has been proposed to link sensory inputs and behavioral outputs to mediate the execution of learned behaviors. However, how such a link is implemented has remained unclear. To measure prefrontal neural correlates of sensory stimuli and learned behaviors, we performed population calcium imaging during a new tone-signaled active avoidance paradigm in mice. We developed an analysis approach based on dimensionality reduction and decoding that allowed us to identify interpretable task-related population activity patterns. While a large fraction of tone-evoked activity was not informative about behavior execution, we identified an activity pattern that was predictive of tone-induced avoidance actions and did not occur for spontaneous actions with similar motion kinematics. Moreover, this avoidance-specific activity differed between distinct avoidance actions learned in two consecutive tasks. Overall, our results are consistent with a model in which mPFC contributes to the selection of goal-directed actions by transforming sensory inputs into specific behavioral outputs through distributed population-level computations.
Collapse
Affiliation(s)
- Benjamin Ehret
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Roman Boehringer
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Elizabeth A Amadei
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Maria R Cervera
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Henning
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Aniruddh R Galgali
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Valerio Mante
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
- ETH AI Center, ETH Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Shahsavar P, Ghazvineh S, Raoufy MR. From nasal respiration to brain dynamic. Rev Neurosci 2024; 35:639-650. [PMID: 38579456 DOI: 10.1515/revneuro-2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
While breathing is a vital, involuntary physiological function, the mode of respiration, particularly nasal breathing, exerts a profound influence on brain activity and cognitive processes. This review synthesizes existing research on the interactions between nasal respiration and the entrainment of oscillations across brain regions involved in cognition. The rhythmic activation of olfactory sensory neurons during nasal respiration is linked to oscillations in widespread brain regions, including the prefrontal cortex, entorhinal cortex, hippocampus, amygdala, and parietal cortex, as well as the piriform cortex. The phase-locking of neural oscillations to the respiratory cycle, through nasal breathing, enhances brain inter-regional communication and is associated with cognitive abilities like memory. Understanding the nasal breathing impact on brain networks offers opportunities to explore novel methods for targeting the olfactory pathway as a means to enhance emotional and cognitive functions.
Collapse
Affiliation(s)
- Payam Shahsavar
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, 41616 Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
- Faculty of Medical Sciences, 41616 Institute for Brain Sciences and Cognition, Tarbiat Modares University , Jalal AleAhmad, Nasr, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
10
|
Casanova JP, Pouget C, Treiber N, Agarwal I, Brimble MA, Vetere G. Threat-dependent scaling of prelimbic dynamics to enhance fear representation. Neuron 2024; 112:2304-2314.e6. [PMID: 38772375 DOI: 10.1016/j.neuron.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/23/2024]
Abstract
Promptly identifying threatening stimuli is crucial for survival. Freezing is a natural behavior displayed by rodents toward potential or actual threats. Although it is known that the prelimbic cortex (PL) is involved in both risk evaluation and in fear and anxiety-like behavior expression, here we explored whether PL neuronal activity can dynamically represent different internal states of the same behavioral output (i.e., freezing). We found that freezing can always be decoded from PL activity at a population level. However, the sudden presentation of a fearful stimulus quickly reshaped the PL to a new neuronal activity state, an effect not observed in other cortical or subcortical regions examined. This shift changed PL freezing representation and is necessary for fear memory expression. Our data reveal the unique role of the PL in detecting threats and internally adjusting to distinguish between different freezing-related states in both unconditioned and conditioned fear representations.
Collapse
Affiliation(s)
- José Patricio Casanova
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Clément Pouget
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Nadja Treiber
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Ishaant Agarwal
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Mark Allen Brimble
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gisella Vetere
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
11
|
Zhang SR, Wu DY, Luo R, Wu JL, Chen H, Li ZM, Zhuang JP, Hu NY, Li XW, Yang JM, Gao TM, Chen YH. A Prelimbic Cortex-Thalamus Circuit Bidirectionally Regulates Innate and Stress-Induced Anxiety-Like Behavior. J Neurosci 2024; 44:e2103232024. [PMID: 38886059 PMCID: PMC11255430 DOI: 10.1523/jneurosci.2103-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Anxiety-related disorders respond to cognitive behavioral therapies, which involved the medial prefrontal cortex (mPFC). Previous studies have suggested that subregions of the mPFC have different and even opposite roles in regulating innate anxiety. However, the specific causal targets of their descending projections in modulating innate anxiety and stress-induced anxiety have yet to be fully elucidated. Here, we found that among the various downstream pathways of the prelimbic cortex (PL), a subregion of the mPFC, PL-mediodorsal thalamic nucleus (MD) projection, and PL-ventral tegmental area (VTA) projection exhibited antagonistic effects on anxiety-like behavior, while the PL-MD projection but not PL-VTA projection was necessary for the animal to guide anxiety-related behavior. In addition, MD-projecting PL neurons bidirectionally regulated remote but not recent fear memory retrieval. Notably, restraint stress induced high-anxiety state accompanied by strengthening the excitatory inputs onto MD-projecting PL neurons, and inhibiting PL-MD pathway rescued the stress-induced anxiety. Our findings reveal that the activity of PL-MD pathway may be an essential factor to maintain certain level of anxiety, and stress increased the excitability of this pathway, leading to inappropriate emotional expression, and suggests that targeting specific PL circuits may aid the development of therapies for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Sheng-Rong Zhang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ding-Yu Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rong Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Lin Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zi-Ming Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia-Pai Zhuang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Bienvenu T, Dejean C, Herry C. Tracking defensive states with prefrontal dynorphin-expressing neurons. Neuron 2024; 112:1899-1901. [PMID: 38901400 DOI: 10.1016/j.neuron.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
The dynamic suppression of threat-related behavior as a function of environmental constraint is critical for survival in mammals, yet the neurobiological underpinnings remain largely unknown. In this issue of Neuron, Wang et al.1 identified prefrontal dynorphin-expressing neurons as key elements for tracking threat-related behavioral states and regulating fear suppression.
Collapse
Affiliation(s)
- Thomas Bienvenu
- University Bordeaux, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France; INSERM, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Centre de Référence Régional des Pathologies Anxieuses et de la Dépression, Pôle de Psychiatrie Générale et Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France.
| | - Cyril Dejean
- University Bordeaux, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France; INSERM, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France
| | - Cyril Herry
- University Bordeaux, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France; INSERM, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France.
| |
Collapse
|
13
|
Mondragón-González SL, Schreiweis C, Burguière E. Closed-loop recruitment of striatal interneurons prevents compulsive-like grooming behaviors. Nat Neurosci 2024; 27:1148-1156. [PMID: 38693349 PMCID: PMC11156588 DOI: 10.1038/s41593-024-01633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Compulsive behaviors have been associated with striatal hyperactivity. Parvalbumin-positive striatal interneurons (PVIs) in the striatum play a crucial role in regulating striatal activity and suppressing prepotent inappropriate actions. To investigate the potential role of striatal PVIs in regulating compulsive behaviors, we assessed excessive self-grooming-a behavioral metric of compulsive-like behavior-in male Sapap3 knockout mice (Sapap3-KO). Continuous optogenetic activation of PVIs in striatal areas receiving input from the lateral orbitofrontal cortex reduced self-grooming events in Sapap3-KO mice to wild-type levels. Aiming to shorten the critical time window for PVI recruitment, we then provided real-time closed-loop optogenetic stimulation of striatal PVIs, using a transient power increase in the 1-4 Hz frequency band in the orbitofrontal cortex as a predictive biomarker of grooming onsets. Targeted closed-loop stimulation at grooming onsets was as effective as continuous stimulation in reducing grooming events but required 87% less stimulation time, paving the way for adaptive stimulation therapeutic protocols.
Collapse
Affiliation(s)
- Sirenia Lizbeth Mondragón-González
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, AP-HP Hôpital de la Pitié Salpêtrière, Paris, France
| | - Christiane Schreiweis
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, AP-HP Hôpital de la Pitié Salpêtrière, Paris, France
| | - Eric Burguière
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, Inserm, CNRS, AP-HP Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
14
|
Chen C, Altafi M, Corbu MA, Trenk A, van den Munkhof H, Weineck K, Bender F, Carus-Cadavieco M, Bakhareva A, Korotkova T, Ponomarenko A. The dynamic state of a prefrontal-hypothalamic-midbrain circuit commands behavioral transitions. Nat Neurosci 2024; 27:952-963. [PMID: 38499854 PMCID: PMC11089001 DOI: 10.1038/s41593-024-01598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Innate behaviors meet multiple needs adaptively and in a serial order, suggesting the existence of a hitherto elusive brain dynamics that brings together representations of upcoming behaviors during their selection. Here we show that during behavioral transitions, possible upcoming behaviors are encoded by specific signatures of neuronal populations in the lateral hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic recruitment of intrahypothalamic inhibition at this phase eliminates behavioral transitions. We show that transitions are elicited by beta-rhythmic inputs from the prefrontal cortex that spontaneously synchronize with LH 'transition cells' encoding multiple behaviors. Downstream of the LH, dopamine neurons increase firing during beta oscillations and also encode behavioral transitions. Thus, a hypothalamic transition state signals alternative future behaviors, encodes the one most likely to be selected and enables rapid coordination with cognitive and reward-processing circuitries, commanding adaptive social contact and eating behaviors.
Collapse
Affiliation(s)
- Changwan Chen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mihaela-Anca Corbu
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Aleksandra Trenk
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Hanna van den Munkhof
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Kristin Weineck
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Franziska Bender
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Marta Carus-Cadavieco
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Alisa Bakhareva
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Tatiana Korotkova
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | - Alexey Ponomarenko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany.
| |
Collapse
|
15
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
16
|
Clarke-Williams CJ, Lopes-Dos-Santos V, Lefèvre L, Brizee D, Causse AA, Rothaermel R, Hartwich K, Perestenko PV, Toth R, McNamara CG, Sharott A, Dupret D. Coordinating brain-distributed network activities in memory resistant to extinction. Cell 2024; 187:409-427.e19. [PMID: 38242086 PMCID: PMC7615560 DOI: 10.1016/j.cell.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/13/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024]
Abstract
Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15-25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression.
Collapse
Affiliation(s)
- Charlie J Clarke-Williams
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Adrien A Causse
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Roman Rothaermel
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
17
|
Okonogi T, Kuga N, Yamakawa M, Kayama T, Ikegaya Y, Sasaki T. Stress-induced vagal activity influences anxiety-relevant prefrontal and amygdala neuronal oscillations in male mice. Nat Commun 2024; 15:183. [PMID: 38195621 PMCID: PMC10776769 DOI: 10.1038/s41467-023-44205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The vagus nerve crucially affects emotions and psychiatric disorders. However, the detailed neurophysiological dynamics of the vagus nerve in response to emotions and its associated pathological changes remain unclear. In this study, we demonstrated that the spike rates of the cervical vagus nerve change depending on anxiety behavior in an elevated plus maze test, and these changes were eradicated in stress-susceptible male mice. Furthermore, instantaneous spike rates of the vagus nerve were negatively and positively correlated with the power of 2-4 Hz and 20-30 Hz oscillations, respectively, in the prefrontal cortex and amygdala. The oscillations also underwent dynamic changes depending on the behavioral state in the elevated plus maze, and these changes were no longer observed in stress-susceptible and vagotomized mice. Chronic vagus nerve stimulation restored behavior-relevant neuronal oscillations with the recovery of altered behavioral states in stress-susceptible mice. These results suggested that physiological vagal-brain communication underlies anxiety and mood disorders.
Collapse
Affiliation(s)
- Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Musashi Yamakawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
18
|
Jarovi J, Pilkiw M, Takehara-Nishiuchi K. Prefrontal neuronal ensembles link prior knowledge with novel actions during flexible action selection. Cell Rep 2023; 42:113492. [PMID: 37999978 DOI: 10.1016/j.celrep.2023.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
We make decisions based on currently perceivable information or an internal model of the environment. The medial prefrontal cortex (mPFC) and its interaction with the hippocampus have been implicated in the latter, model-based decision-making; however, the underlying computational properties remain incompletely understood. We have examined mPFC spiking and hippocampal oscillatory activity while rats flexibly select new actions using a known associative structure of environmental cues and outcomes. During action selection, the mPFC reinstates representations of the associative structure. These awake reactivation events are accompanied by synchronous firings among neurons coding the associative structure and those coding actions. Moreover, their functional coupling is strengthened upon the reactivation events leading to adaptive actions. In contrast, only cue-coding neurons improve functional coupling during hippocampal sharp wave ripples. Thus, the lack of direct experience disconnects the mPFC from the hippocampus to independently form self-organized neuronal ensemble dynamics linking prior knowledge with novel actions.
Collapse
Affiliation(s)
- Justin Jarovi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Maryna Pilkiw
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Collaborative Program in Neuroscience, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Martin-Fernandez M, Menegolla AP, Lopez-Fernandez G, Winke N, Jercog D, Kim HR, Girard D, Dejean C, Herry C. Prefrontal circuits encode both general danger and specific threat representations. Nat Neurosci 2023; 26:2147-2157. [PMID: 37904042 DOI: 10.1038/s41593-023-01472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/25/2023] [Indexed: 11/01/2023]
Abstract
Behavioral adaptation to potential threats requires both a global representation of danger to prepare the organism to react in a timely manner but also the identification of specific threatening situations to select the appropriate behavioral responses. The prefrontal cortex is known to control threat-related behaviors, yet it is unknown whether it encodes global defensive states and/or the identity of specific threatening encounters. Using a new behavioral paradigm that exposes mice to different threatening situations, we show that the dorsomedial prefrontal cortex (dmPFC) encodes a general representation of danger while simultaneously encoding a specific neuronal representation of each threat. Importantly, the global representation of danger persisted in error trials that instead lacked specific threat identity representations. Consistently, optogenetic prefrontal inhibition impaired overall behavioral performance and discrimination of different threatening situations without any bias toward active or passive behaviors. Together, these data indicate that the prefrontal cortex encodes both a global representation of danger and specific representations of threat identity to control the selection of defensive behaviors.
Collapse
Affiliation(s)
- Mario Martin-Fernandez
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France.
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| | - Ana Paula Menegolla
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Guillem Lopez-Fernandez
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Nanci Winke
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Daniel Jercog
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Ha-Rang Kim
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Delphine Girard
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Cyril Dejean
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Cyril Herry
- Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France.
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| |
Collapse
|
20
|
Wu K, Wang D, Wang Y, Tang P, Li X, Pan Y, Tao HW, Zhang LI, Liang F. Distinct circuits in anterior cingulate cortex encode safety assessment and mediate flexibility of fear reactions. Neuron 2023; 111:3650-3667.e6. [PMID: 37652003 PMCID: PMC10990237 DOI: 10.1016/j.neuron.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
Safety assessment and threat evaluation are crucial for animals to live and survive in the wilderness. However, neural circuits underlying safety assessment and their transformation to mediate flexibility of fear-induced defensive behaviors remain largely unknown. Here, we report that distinct neuronal populations in mouse anterior cingulate cortex (ACC) encode safety status by selectively responding under different contexts of auditory threats, with one preferably activated when an animal staysing in a self-deemed safe zone and another specifically activated in more dangerous environmental settings that led to escape behavior. The safety-responding neurons preferentially target the zona incerta (ZI), which suppresses the superior colliculus (SC) via its GABAergic projection, while the danger-responding neurons preferentially target and excite SC. These distinct corticofugal pathways antagonistically modulate SC responses to threat, resulting in context-dependent expression of fear reactions. Thus, ACC serves as a critical node to encode safety/danger assessment and mediate behavioral flexibility through differential top-down circuits.
Collapse
Affiliation(s)
- Kaibin Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Dijia Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Yuwei Wang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Peiwen Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Xuan Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yidi Pan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Huizhong W Tao
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Feixue Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China; Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
21
|
Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci 2023; 46:912-925. [PMID: 37714808 DOI: 10.1016/j.tins.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/17/2023]
Abstract
Episodic memory relies on the hippocampus, a heterogeneous brain region with distinct functions. Spatial representations in the dorsal hippocampus (dHPC) are crucial for contextual memory, while the ventral hippocampus (vHPC) is more involved in emotional processing. Here, we review the literature in rodents highlighting the anatomical and functional properties of the hippocampus along its dorsoventral axis that underlie its role in contextual and emotional memory encoding, consolidation, and retrieval. We propose that the coordination between the dorsal and vHPC through theta oscillations during rapid eye movement (REM) sleep, and through sharp-wave ripples during non-REM (NREM) sleep, might facilitate the transfer of contextual information for integration with valence-related processing in other structures of the network. Further investigation into the physiology of the vHPC and its connections with other brain areas is needed to deepen the current understanding of emotional memory consolidation during sleep.
Collapse
Affiliation(s)
- Éléonore Pronier
- Institut du Fer à Moulin, Inserm U1270, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
22
|
Totty MS, Tuna T, Ramanathan KR, Jin J, Peters SE, Maren S. Thalamic nucleus reuniens coordinates prefrontal-hippocampal synchrony to suppress extinguished fear. Nat Commun 2023; 14:6565. [PMID: 37848425 PMCID: PMC10582091 DOI: 10.1038/s41467-023-42315-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Traumatic events result in vivid and enduring fear memories. Suppressing the retrieval of these memories is central to behavioral therapies for pathological fear. The medial prefrontal cortex (mPFC) and hippocampus (HPC) have been implicated in retrieval suppression, but how mPFC-HPC activity is coordinated during extinction retrieval is unclear. Here we show that after extinction training, coherent theta oscillations (6-9 Hz) in the HPC and mPFC are correlated with the suppression of conditioned freezing in male and female rats. Inactivation of the nucleus reuniens (RE), a thalamic hub interconnecting the mPFC and HPC, reduces extinction-related Fos expression in both the mPFC and HPC, dampens mPFC-HPC theta coherence, and impairs extinction retrieval. Conversely, theta-paced optogenetic stimulation of RE augments fear suppression and reduces relapse of extinguished fear. Collectively, these results demonstrate a role for RE in coordinating mPFC-HPC interactions to suppress fear memories after extinction.
Collapse
Affiliation(s)
- Michael S Totty
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Karthik R Ramanathan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Jingji Jin
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Shaun E Peters
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
23
|
Stubbendorff C, Hale E, Bast T, Cassaday HJ, Martin SJ, Suwansawang S, Halliday DM, Stevenson CW. Dopamine D1-like receptors modulate synchronized oscillations in the hippocampal-prefrontal-amygdala circuit in contextual fear. Sci Rep 2023; 13:17631. [PMID: 37848657 PMCID: PMC10582086 DOI: 10.1038/s41598-023-44772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Contextual fear conditioning (CFC) is mediated by a neural circuit that includes the hippocampus, prefrontal cortex, and amygdala, but the neurophysiological mechanisms underlying the regulation of CFC by neuromodulators remain unclear. Dopamine D1-like receptors (D1Rs) in this circuit regulate CFC and local synaptic plasticity, which is facilitated by synchronized oscillations between these areas. In rats, we determined the effects of systemic D1R blockade on CFC and oscillatory synchrony between dorsal hippocampus (DH), prelimbic (PL) cortex, basolateral amygdala (BLA), and ventral hippocampus (VH), which sends hippocampal projections to PL and BLA. D1R blockade altered DH-VH and reduced VH-PL and VH-BLA synchrony during CFC, as inferred from theta and gamma coherence and theta-gamma coupling. D1R blockade also impaired CFC, as indicated by decreased freezing at retrieval, which was characterized by altered DH-VH and reduced VH-PL, VH-BLA, and PL-BLA synchrony. This reduction in VH-PL-BLA synchrony was not fully accounted for by non-specific locomotor effects, as revealed by comparing between epochs of movement and freezing in the controls. These results suggest that D1Rs regulate CFC by modulating synchronized oscillations within the hippocampus-prefrontal-amygdala circuit. They also add to growing evidence indicating that this circuit synchrony at retrieval reflects a neural signature of learned fear.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
- Envigo, Hillcrest, Dodgeford Lane, Belton, LE12 9TE, UK
| | - Tobias Bast
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Helen J Cassaday
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Stephen J Martin
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sopapun Suwansawang
- School of Physics, Engineering and Technology, York Biomedical Research Institute, University of York, Heslington, York, UK
- Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand
| | - David M Halliday
- School of Physics, Engineering and Technology, York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Neuroscience@Nottingham, University of Nottingham, Nottingham, UK.
| |
Collapse
|
24
|
Agetsuma M, Sato I, Tanaka YR, Carrillo-Reid L, Kasai A, Noritake A, Arai Y, Yoshitomo M, Inagaki T, Yukawa H, Hashimoto H, Nabekura J, Nagai T. Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation. Nat Commun 2023; 14:5996. [PMID: 37803014 PMCID: PMC10558457 DOI: 10.1038/s41467-023-41547-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
Associative learning is crucial for adapting to environmental changes. Interactions among neuronal populations involving the dorso-medial prefrontal cortex (dmPFC) are proposed to regulate associative learning, but how these neuronal populations store and process information about the association remains unclear. Here we developed a pipeline for longitudinal two-photon imaging and computational dissection of neural population activities in male mouse dmPFC during fear-conditioning procedures, enabling us to detect learning-dependent changes in the dmPFC network topology. Using regularized regression methods and graphical modeling, we found that fear conditioning drove dmPFC reorganization to generate a neuronal ensemble encoding conditioned responses (CR) characterized by enhanced internal coactivity, functional connectivity, and association with conditioned stimuli (CS). Importantly, neurons strongly responding to unconditioned stimuli during conditioning subsequently became hubs of this novel associative network for the CS-to-CR transformation. Altogether, we demonstrate learning-dependent dynamic modulation of population coding structured on the activity-dependent formation of the hub network within the dmPFC.
Collapse
Grants
- MEXT | Japan Society for the Promotion of Science (JSPS)
- This study was supported by the Japan Science and Technology Agency, PRESTO (to M.A.), JSPS KAKENHI Grant (grant number JP18K06536, JP18H05144, JP20H05076, JP21H02801, JP22H05081, JP22H05519 to M.A.; JP20H03357, JP20H05073, JP21K18563 to Y.R.T.; JP20H05065, JP22H05080 to A.K.; JP22H05081 to A.N.), JSPS Bilateral Program (JPJSBP1-20199901 to M.A.), AMED (grant number JP19dm0207086 to M.A.; JP21dm0207117 to H.H.), the grant of Joint Research by the National Institutes of Natural Sciences (NINS program No 01112008 and 01112106 to M.A.), and grants from Brain Science Foundation and Shimadzu Foundation to M.A. and the Takeda Science Foundation to A.K. and H.H. Authors declare that they have no competing interests.
Collapse
Affiliation(s)
- Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.
- Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan.
| | - Issei Sato
- Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiro R Tanaka
- Brain Science Institute, Tamagawa University, 6-1-1 Tamagawagakuen, Machida, Tokyo, 194-8610, Japan
| | - Luis Carrillo-Reid
- Instituto de Neurobiologia, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Juriquilla, Queretaro, CP, 76230, Mexico
| | - Atsushi Kasai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Atsushi Noritake
- Division of Behavioral Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Yoshiyuki Arai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Miki Yoshitomo
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Takashi Inagaki
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Yukawa
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hitoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
25
|
Klune CB, Goodpaster CM, Gongwer MW, Gabriel CJ, Chen R, Jones NS, Schwarz LA, DeNardo LA. Developmentally distinct architectures in top-down circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.27.555010. [PMID: 37693480 PMCID: PMC10491090 DOI: 10.1101/2023.08.27.555010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in learning, mood and decision making, including in how individuals respond to threats 1-6 . mPFC undergoes a uniquely protracted development, with changes in synapse density, cortical thickness, long-range connectivity, and neuronal encoding properties continuing into early adulthood 7-21 . Models suggest that before adulthood, the slow-developing mPFC cannot adequately regulate activity in faster-developing subcortical centers 22,23 . They propose that during development, the enhanced influence of subcortical systems underlies distinctive behavioural strategies of juveniles and adolescents and that increasing mPFC control over subcortical structures eventually allows adult behaviours to emerge. Yet it has remained unclear how a progressive strengthening of top-down control can lead to nonlinear changes in behaviour as individuals mature 24,25 . To address this discrepancy, here we monitored and manipulated activity in the developing brain as animals responded to threats, establishing direct causal links between frontolimbic circuit activity and the behavioural strategies of juvenile, adolescent and adult mice. Rather than a linear strengthening of mPFC synaptic connectivity progressively regulating behaviour, we uncovered multiple developmental switches in the behavioural roles of mPFC circuits targeting the basolateral amygdala (BLA) and nucleus accumbens (NAc). We show these changes are accompanied by axonal pruning coinciding with functional strengthening of synaptic connectivity in the mPFC-BLA and mPFC-NAc pathways, which mature at different rates. Our results reveal how developing mPFC circuits pass through distinct architectures that may make them optimally adapted to the demands of age-specific challenges.
Collapse
|
26
|
Tsuji M, Nishizuka Y, Emoto K. Threat gates visual aversion via theta activity in Tachykinergic neurons. Nat Commun 2023; 14:3987. [PMID: 37443364 PMCID: PMC10345120 DOI: 10.1038/s41467-023-39667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Animals must adapt sensory responses to an ever-changing environment for survival. Such sensory modulation is especially critical in a threatening situation, in which animals often promote aversive responses to, among others, visual stimuli. Recently, threatened Drosophila has been shown to exhibit a defensive internal state. Whether and how threatened Drosophila promotes visual aversion, however, remains elusive. Here we report that mechanical threats to Drosophila transiently gate aversion from an otherwise neutral visual object. We further identified the neuropeptide tachykinin, and a single cluster of neurons expressing it ("Tk-GAL42 ∩ Vglut neurons"), that are responsible for gating visual aversion. Calcium imaging analysis revealed that mechanical threats are encoded in Tk-GAL42 ∩ Vglut neurons as elevated activity. Remarkably, we also discovered that a visual object is encoded in Tk-GAL42 ∩ Vglut neurons as θ oscillation, which is causally linked to visual aversion. Our data reveal how a single cluster of neurons adapt organismal sensory response to a threatening situation through a neuropeptide and a combination of rate/temporal coding schemes.
Collapse
Affiliation(s)
- Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuto Nishizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
27
|
Folschweiller S, Sauer JF. Behavioral State-Dependent Modulation of Prefrontal Cortex Activity by Respiration. J Neurosci 2023; 43:4795-4807. [PMID: 37277176 PMCID: PMC10312056 DOI: 10.1523/jneurosci.2075-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Respiration-rhythmic oscillations in the local field potential emerge in the mPFC, a cortical region with a key role in the regulation of cognitive and emotional behavior. Respiration-driven rhythms coordinate local activity by entraining fast γ oscillations as well as single-unit discharges. To what extent respiration entrainment differently engages the mPFC network in a behavioral state-dependent manner, however, is not known. Here, we compared the respiration entrainment of mouse PFC local field potential and spiking activity (23 male and 2 female mice) across distinct behavioral states: during awake immobility in the home cage (HC), during passive coping in response to inescapable stress under tail suspension (TS), and during reward consumption (Rew). Respiration-driven rhythms emerged during all three states. However, prefrontal γ oscillations were more strongly entrained by respiration during HC than TS or Rew. Moreover, neuronal spikes of putative pyramidal cells and putative interneurons showed significant respiration phase-coupling throughout behaviors with characteristic phase preferences depending on the behavioral state. Finally, while phase-coupling dominated in deep layers in HC and Rew conditions, TS resulted in the recruitment of superficial layer neurons to respiration. These results jointly suggest that respiration dynamically entrains prefrontal neuronal activity depending on the behavioral state.SIGNIFICANCE STATEMENT The mPFC, through its extensive connections (e.g., to the amygdala, the striatum, serotoninergic and dopaminergic nuclei), flexibly regulates cognitive behaviors. Impairment of prefrontal functions can lead to disease states, such as depression, addiction, or anxiety disorders. Deciphering the complex regulation of PFC activity during defined behavioral states is thus an essential challenge. Here, we investigated the role of a prefrontal slow oscillation that has recently attracted rising interest, the respiration rhythm, in modulating prefrontal neurons during distinct behavioral states. We show that prefrontal neuronal activity is differently entrained by the respiration rhythm in a cell type- and behavior-dependent manner. These results provide first insight into the complex modulation of prefrontal activity patterns by rhythmic breathing.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute of Physiology 1, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology 1, Medical Faculty, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
28
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
29
|
Nguyen R, Koukoutselos K, Forro T, Ciocchi S. Fear extinction relies on ventral hippocampal safety codes shaped by the amygdala. SCIENCE ADVANCES 2023; 9:eadg4881. [PMID: 37256958 PMCID: PMC10413664 DOI: 10.1126/sciadv.adg4881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Extinction memory retrieval is influenced by spatial contextual information that determines responding to conditioned stimuli (CS). However, it is poorly understood whether contextual representations are imbued with emotional values to support memory selection. Here, we performed activity-dependent engram tagging and in vivo single-unit electrophysiological recordings from the ventral hippocampus (vH) while optogenetically manipulating basolateral amygdala (BLA) inputs during the formation of cued fear extinction memory. During fear extinction when CS acquire safety properties, we found that CS-related activity in the vH reactivated during sleep consolidation and was strengthened upon memory retrieval. Moreover, fear extinction memory was facilitated when the extinction context exhibited precise coding of its affective zones. Last, these activity patterns along with the retrieval of the fear extinction memory were dependent on glutamatergic transmission from the BLA during extinction learning. Thus, fear extinction memory relies on the formation of contextual and stimulus safety representations in the vH instructed by the BLA.
Collapse
Affiliation(s)
| | | | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
30
|
Urrutia Desmaison JD, Sala RW, Ayyaz A, Nondhalee P, Popa D, Léna C. Cerebellar control of fear learning via the cerebellar nuclei-Multiple pathways, multiple mechanisms? Front Syst Neurosci 2023; 17:1176668. [PMID: 37229350 PMCID: PMC10203220 DOI: 10.3389/fnsys.2023.1176668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Fear learning is mediated by a large network of brain structures and the understanding of their roles and interactions is constantly progressing. There is a multitude of anatomical and behavioral evidence on the interconnection of the cerebellar nuclei to other structures in the fear network. Regarding the cerebellar nuclei, we focus on the coupling of the cerebellar fastigial nucleus to the fear network and the relation of the cerebellar dentate nucleus to the ventral tegmental area. Many of the fear network structures that receive direct projections from the cerebellar nuclei are playing a role in fear expression or in fear learning and fear extinction learning. We propose that the cerebellum, via its projections to the limbic system, acts as a modulator of fear learning and extinction learning, using prediction-error signaling and regulation of fear related thalamo-cortical oscillations.
Collapse
|
31
|
Stegemann A, Liu S, Retana Romero OA, Oswald MJ, Han Y, Beretta CA, Gan Z, Tan LL, Wisden W, Gräff J, Kuner R. Prefrontal engrams of long-term fear memory perpetuate pain perception. Nat Neurosci 2023; 26:820-829. [PMID: 37024573 PMCID: PMC10166861 DOI: 10.1038/s41593-023-01291-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
A painful episode can lead to a life-long increase in an individual's experience of pain. Fearful anticipation of imminent pain could play a role in this phenomenon, but the neurobiological underpinnings are unclear because fear can both suppress and enhance pain. Here, we show in mice that long-term associative fear memory stored in neuronal engrams in the prefrontal cortex determines whether a painful episode shapes pain experience later in life. Furthermore, under conditions of inflammatory and neuropathic pain, prefrontal fear engrams expand to encompass neurons representing nociception and tactile sensation, leading to pronounced changes in prefrontal connectivity to fear-relevant brain areas. Conversely, silencing prefrontal fear engrams reverses chronically established hyperalgesia and allodynia. These results reveal that a discrete subset of prefrontal cortex neurons can account for the debilitating comorbidity of fear and chronic pain and show that attenuating the fear memory of pain can alleviate chronic pain itself.
Collapse
Affiliation(s)
- Alina Stegemann
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Sheng Liu
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | | | - Yechao Han
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Zheng Gan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - William Wisden
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
32
|
Fan FF, Vetrivelan R, Yang Y, Guo ZN, Lu J. Role of pontine sub-laterodorsal tegmental nucleus (SLD) in rapid eye movement (REM) sleep, cataplexy, and emotion. CNS Neurosci Ther 2023; 29:1192-1196. [PMID: 36585816 PMCID: PMC10018081 DOI: 10.1111/cns.14074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
Pontine sub-laterodorsal tegmental nucleus (SLD) is crucial for REM sleep. However, the necessary role of SLD for REM sleep, cataplexy that resembles REM sleep, and emotion memory by REM sleep has remained unclear. To address these questions, we focally ablated SLD neurons using adenoviral diphtheria-toxin (DTA) approach and found that SLD lesions completely eliminated REM sleep accompanied by wake increase, significantly reduced baseline cataplexy amounts by 40% and reward (sucrose) induced cataplexy amounts by 70% and altered cataplexy EEG Fast Fourier Transform (FFT) from REM sleep-like to wake-like in orexin null (OXKO) mice. We then used OXKO animals with absence of REM sleep and OXKO controls and examined elimination of REM sleep in anxiety and fear extinction. Our resulted showed that REM sleep elimination significantly increased anxiety-like behaviors in open field test (OFT), elevated plus maze test (EPM) and defensive aggression and impaired fear extinction. The data indicate that in OXKO mice the SLD is the sole generator for REM sleep; (2) the SLD selectively mediates REM sleep cataplexy (R-cataplexy) that merges with wake cataplexy (W-cataplexy); (3) REM sleep enhances positive emotion (sucrose induced cataplexy) response, reduces negative emotion state (anxiety), and promotes fear extinction.
Collapse
Affiliation(s)
- Fang-Fang Fan
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China
| | - Jun Lu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, China.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
33
|
Printz Y, Patil P, Mahn M, Benjamin A, Litvin A, Levy R, Bringmann M, Yizhar O. Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice. Nat Commun 2023; 14:1667. [PMID: 36966143 PMCID: PMC10039875 DOI: 10.1038/s41467-023-37318-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
The medial prefrontal cortex (mPFC) mediates a variety of complex cognitive functions via its vast and diverse connections with cortical and subcortical structures. Understanding the patterns of synaptic connectivity that comprise the mPFC local network is crucial for deciphering how this circuit processes information and relays it to downstream structures. To elucidate the synaptic organization of the mPFC, we developed a high-throughput optogenetic method for mapping large-scale functional synaptic connectivity in acute brain slices. We show that in male mice, mPFC neurons that project to the basolateral amygdala (BLA) display unique spatial patterns of local-circuit synaptic connectivity, which distinguish them from the general mPFC cell population. When considering synaptic connections between pairs of mPFC neurons, the intrinsic properties of the postsynaptic cell and the anatomical positions of both cells jointly account for ~7.5% of the variation in the probability of connection. Moreover, anatomical distance and laminar position explain most of this fraction in variation. Our findings reveal the factors determining connectivity in the mPFC and delineate the architecture of synaptic connections in the BLA-projecting subnetwork.
Collapse
Affiliation(s)
- Yoav Printz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Pritish Patil
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mathias Mahn
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Max Bringmann
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
34
|
Frontera JL, Sala RW, Georgescu IA, Baba Aissa H, d'Almeida MN, Popa D, Léna C. The cerebellum regulates fear extinction through thalamo-prefrontal cortex interactions in male mice. Nat Commun 2023; 14:1508. [PMID: 36932068 PMCID: PMC10023697 DOI: 10.1038/s41467-023-36943-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Fear extinction is a form of inhibitory learning that suppresses the expression of aversive memories and plays a key role in the recovery of anxiety and trauma-related disorders. Here, using male mice, we identify a cerebello-thalamo-cortical pathway regulating fear extinction. The cerebellar fastigial nucleus (FN) projects to the lateral subregion of the mediodorsal thalamic nucleus (MD), which is reciprocally connected with the dorsomedial prefrontal cortex (dmPFC). The inhibition of FN inputs to MD in male mice impairs fear extinction in animals with high fear responses and increases the bursting of MD neurons, a firing pattern known to prevent extinction learning. Indeed, this MD bursting is followed by high levels of the dmPFC 4 Hz oscillations causally associated with fear responses during fear extinction, and the inhibition of FN-MD neurons increases the coherence of MD bursts and oscillations with dmPFC 4 Hz oscillations. Overall, these findings reveal a regulation of fear-related thalamo-cortical dynamics by the cerebellum and its contribution to fear extinction.
Collapse
Affiliation(s)
- Jimena L Frontera
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Romain W Sala
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Ioana A Georgescu
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Hind Baba Aissa
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Marion N d'Almeida
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| |
Collapse
|
35
|
Schroeder A, Pardi MB, Keijser J, Dalmay T, Groisman AI, Schuman EM, Sprekeler H, Letzkus JJ. Inhibitory top-down projections from zona incerta mediate neocortical memory. Neuron 2023; 111:727-738.e8. [PMID: 36610397 DOI: 10.1016/j.neuron.2022.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
Top-down projections convey a family of signals encoding previous experiences and current aims to the sensory neocortex, where they converge with external bottom-up information to enable perception and memory. Whereas top-down control has been attributed to excitatory pathways, the existence, connectivity, and information content of inhibitory top-down projections remain elusive. Here, we combine synaptic two-photon calcium imaging, circuit mapping, cortex-dependent learning, and chemogenetics in mice to identify GABAergic afferents from the subthalamic zona incerta as a major source of top-down input to the neocortex. Incertocortical transmission undergoes robust plasticity during learning that improves information transfer and mediates behavioral memory. Unlike excitatory pathways, incertocortical afferents form a disinhibitory circuit that encodes learned top-down relevance in a bidirectional manner where the rapid appearance of negative responses serves as the main driver of changes in stimulus representation. Our results therefore reveal the distinctive contribution of long-range (dis)inhibitory afferents to the computational flexibility of neocortical circuits.
Collapse
Affiliation(s)
- Anna Schroeder
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany.
| | - M Belén Pardi
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014 Paris, France
| | - Joram Keijser
- Modelling of Cognitive Processes, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10587 Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Tamas Dalmay
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Ayelén I Groisman
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10587 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany; Science of Intelligence, Research Cluster of Excellence, 10587 Berlin, Germany
| | - Johannes J Letzkus
- Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModul Basics), University of Freiburg, 79106 Freiburg, Germany; IMBIT//BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany.
| |
Collapse
|
36
|
Wang Z, Lou S, Ma X, Guo H, Liu Y, Chen W, Lin D, Yang Y. Neural ensembles in the murine medial prefrontal cortex process distinct information during visual perceptual learning. BMC Biol 2023; 21:44. [PMID: 36829186 PMCID: PMC9960446 DOI: 10.1186/s12915-023-01529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Perceptual learning refers to an augmentation of an organism's ability to respond to external stimuli, which has been described in most sensory modalities. Visual perceptual learning (VPL) is a manifestation of plasticity in visual information processing that occurs in the adult brain, and can be used to ameliorate the ability of patients with visual defects mainly based on an improvement of detection or discrimination of features in visual tasks. While some brain regions such as the primary visual cortex have been described to participate in VPL, the way more general high-level cognitive brain areas are involved in this process remains unclear. Here, we showed that the medial prefrontal cortex (mPFC) was essential for both the training and maintenance processes of VPL in mouse models. RESULTS We built a new VPL model in a custom-designed training chamber to enable the utilization of miniScopes when mice freely executed the VPL task. We found that pyramidal neurons in the mPFC participate in both the training process and maintenance of VPL. By recording the calcium activity of mPFC pyramidal neurons while mice freely executed the task, distinct ON and OFF neural ensembles tuned to different behaviors were identified, which might encode different cognitive information. Decoding analysis showed that mouse behaviors could be well predicted using the activity of each ON ensemble. Furthermore, VPL recruited more reward-related components in the mPFC. CONCLUSION We revealed the neural mechanism underlying vision improvement following VPL and identify distinct ON and OFF neural ensembles in the mPFC that tuned to different information during visual perceptual training. These results uncover an important role of the mPFC in VPL, with more reward-related components being also involved, and pave the way for future clarification of the reward signal coding rules in VPL.
Collapse
Affiliation(s)
- Zhenni Wang
- grid.59053.3a0000000121679639Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Shihao Lou
- grid.59053.3a0000000121679639Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Xiao Ma
- grid.59053.3a0000000121679639Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Hui Guo
- grid.59053.3a0000000121679639Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Yan Liu
- grid.59053.3a0000000121679639Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Wenjing Chen
- grid.59053.3a0000000121679639Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Dating Lin
- grid.420090.f0000 0004 0533 7147Intramural Research Program, National Institute On Drug Abuse, National Institutes of Health, Baltimore, MD 21224 USA
| | - Yupeng Yang
- Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
37
|
Lee JH, Kim WB, Park EH, Cho JH. Neocortical synaptic engrams for remote contextual memories. Nat Neurosci 2023; 26:259-273. [PMID: 36564546 PMCID: PMC9905017 DOI: 10.1038/s41593-022-01223-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/28/2022] [Indexed: 12/24/2022]
Abstract
While initial encoding of contextual memories involves the strengthening of hippocampal circuits, these memories progressively mature to stabilized forms in neocortex and become less hippocampus dependent. Although it has been proposed that long-term storage of contextual memories may involve enduring synaptic changes in neocortical circuits, synaptic substrates of remote contextual memories have been elusive. Here we demonstrate that the consolidation of remote contextual fear memories in mice correlated with progressive strengthening of excitatory connections between prefrontal cortical (PFC) engram neurons active during learning and reactivated during remote memory recall, whereas the extinction of remote memories weakened those synapses. This synapse-specific plasticity was CREB-dependent and required sustained hippocampal signals, which the retrosplenial cortex could convey to PFC. Moreover, PFC engram neurons were strongly connected to other PFC neurons recruited during remote memory recall. Our study suggests that progressive and synapse-specific strengthening of PFC circuits can contribute to long-term storage of contextual memories.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Woong Bin Kim
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Eui Ho Park
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Jun-Hyeong Cho
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
38
|
Folschweiller S, Sauer JF. Controlling neuronal assemblies: a fundamental function of respiration-related brain oscillations in neuronal networks. Pflugers Arch 2023; 475:13-21. [PMID: 35637391 PMCID: PMC9816207 DOI: 10.1007/s00424-022-02708-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023]
Abstract
Respiration exerts profound influence on cognition, which is presumed to rely on the generation of local respiration-coherent brain oscillations and the entrainment of cortical neurons. Here, we propose an addition to that view by emphasizing the role of respiration in pacing cortical assemblies (i.e., groups of synchronized, coactive neurons). We review recent findings of how respiration directly entrains identified assembly patterns and discuss how respiration-dependent pacing of assembly activations might be beneficial for cognitive functions.
Collapse
Affiliation(s)
- Shani Folschweiller
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.
| |
Collapse
|
39
|
Haikonen J, Englund J, Amarilla SP, Kharybina Z, Shintyapina A, Kegler K, Garcia MS, Atanasova T, Taira T, Hartung H, Lauri SE. Aberrant cortical projections to amygdala GABAergic neurons contribute to developmental circuit dysfunction following early life stress. iScience 2022; 26:105724. [PMID: 36582824 PMCID: PMC9792886 DOI: 10.1016/j.isci.2022.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Early life stress (ELS) results in enduring dysfunction of the corticolimbic circuitry, underlying emotional and social behavior. However, the neurobiological mechanisms involved remain elusive. Here, we have combined viral tracing and electrophysiological techniques to study the effects of maternal separation (MS) on frontolimbic connectivity and function in young (P14-21) rats. We report that aberrant prefrontal inputs to basolateral amygdala (BLA) GABAergic interneurons transiently increase the strength of feed-forward inhibition in the BLA, which raises LTP induction threshold in MS treated male rats. The enhanced GABAergic activity after MS exposure associates with lower functional synchronization within prefrontal-amygdala networks in vivo. Intriguingly, no differences in these parameters were detected in females, which were also resistant to MS dependent changes in anxiety-like behaviors. Impaired plasticity and synchronization during the sensitive period of circuit refinement may contribute to long-lasting functional changes in the prefrontal-amygdaloid circuitry that predispose to neuropsychiatric conditions later on in life.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Jonas Englund
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Shyrley Paola Amarilla
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Zoia Kharybina
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Alexandra Shintyapina
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Kristel Kegler
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marta Saez Garcia
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tsvetomira Atanasova
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Henrike Hartung
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sari E. Lauri
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland,Corresponding author
| |
Collapse
|
40
|
Hazra D, Yoshinaga S, Yoshida K, Takata N, Tanaka KF, Kubo KI, Nakajima K. Rhythmic activation of excitatory neurons in the mouse frontal cortex improves the prefrontal cortex-mediated cognitive function. Cereb Cortex 2022; 32:5243-5258. [PMID: 35136976 DOI: 10.1093/cercor/bhac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
The prefrontal cortex (PFC) plays essential roles in cognitive processes. Previous studies have suggested the layer and the cell type-specific activation for cognitive enhancement. However, the mechanism by which a temporal pattern of activation affects cognitive function remains to be elucidated. Here, we investigated whether the specific activation of excitatory neurons in the superficial layers mainly in the PFC according to a rhythmic or nonrhythmic pattern could modulate the cognitive functions of normal mice. We used a C128S mutant of channelrhodopsin 2, a step function opsin, and administered two light illumination patterns: (i) alternating pulses of blue and yellow light for rhythmic activation or (ii) pulsed blue light only for nonrhythmic activation. Behavioral analyses were performed to compare the behavioral consequences of these two neural activation patterns. The alternating blue and yellow light pulses, but not the pulsed blue light only, significantly improved spatial working memory and social recognition without affecting motor activity or the anxiety level. These results suggest that the rhythmic, but not the nonrhythmic, activation could enhance cognitive functions. This study indicates that not only the population of neurons that are activated but also the pattern of activation plays a crucial role in the cognitive enhancement.
Collapse
Affiliation(s)
- Debabrata Hazra
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoshi Yoshinaga
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keitaro Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
41
|
Matulewicz P, Ramos-Prats A, Gómez-Santacana X, Llebaria A, Ferraguti F. Control of Theta Oscillatory Activity Underlying Fear Expression by mGlu 5 Receptors. Cells 2022; 11:cells11223555. [PMID: 36428984 PMCID: PMC9688906 DOI: 10.3390/cells11223555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Metabotropic glutamate 5 receptors (mGlu5) are thought to play an important role in mediating emotional information processing. In particular, negative allosteric modulators (NAMs) of mGlu5 have received a lot of attention as potential novel treatments for several neuropsychiatric diseases, including anxiety-related disorders. The aim of this study was to assess the influence of pre- and post-training mGlu5 inactivation in cued fear conditioned mice on neuronal oscillatory activity during fear retrieval. For this study we used the recently developed mGlu5 NAM Alloswicth-1 administered systemically. Injection of Alloswicth-1 before, but not after, fear conditioning resulted in a significant decrease in freezing upon fear retrieval. Mice injected with Alloswicth-1 pre-training were also implanted with recording microelectrodes into both the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC). The recordings revealed a reduction in theta rhythmic activity (4-12 Hz) in both the mPFC and vHPC during fear retrieval. These results indicate that inhibition of mGlu5 signaling alters local oscillatory activity in principal components of the fear brain network underlying a reduced response to a predicted threat.
Collapse
Affiliation(s)
- Pawel Matulewicz
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Jana Bazynskiego 8, 80-309 Gdansk, Poland
- Correspondence:
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| | - Xavier Gómez-Santacana
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry & Synthesis (MCS), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, Peter-Mayr-Str. 1, 6020 Innsbruck, Austria
| |
Collapse
|
42
|
Wang C, Stratton PG, Sah P, Marek R. Theta coupling within the medial prefrontal cortex regulates fear extinction and renewal. iScience 2022; 25:105036. [PMID: 36147953 PMCID: PMC9485106 DOI: 10.1016/j.isci.2022.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Fear learning, and its extinction, are fundamental learning processes that allow for a response adaptation to aversive events and threats in the environment. Thus, it is critical to understand the neural mechanism that underpins fear learning and its relapse following extinction. The neural dynamics within the subregions of the medial prefrontal cortex, including the prelimbic cortex (PL) and the infralimbic (IL) cortex, and functional connectivity between them during fear extinction and its relapse, are not well understood. Using in-vivo electrophysiological recordings in awake behaving rats, we identified increased theta activity in the PL during fear learning and in the IL following extinction. Importantly, the PL-IL theta coupling is significantly enhanced throughout fear learning and extinction, but not in fear relapse. Together, our results provide evidence for the importance of synchronized PL-IL activity to regulate context-dependent retrieval of a fear extinction memory.
Collapse
Affiliation(s)
- Cong Wang
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| | - Peter G. Stratton
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
- Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, P. R. China, 518055
| | - Roger Marek
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne, Australia
| |
Collapse
|
43
|
Chowdhury A, Luchetti A, Fernandes G, Filho DA, Kastellakis G, Tzilivaki A, Ramirez EM, Tran MY, Poirazi P, Silva AJ. A locus coeruleus-dorsal CA1 dopaminergic circuit modulates memory linking. Neuron 2022; 110:3374-3388.e8. [PMID: 36041433 PMCID: PMC10508214 DOI: 10.1016/j.neuron.2022.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022]
Abstract
Individual memories are often linked so that the recall of one triggers the recall of another. For example, contextual memories acquired close in time can be linked, and this is known to depend on a temporary increase in excitability that drives the overlap between dorsal CA1 (dCA1) hippocampal ensembles that encode the linked memories. Here, we show that locus coeruleus (LC) cells projecting to dCA1 have a key permissive role in contextual memory linking, without affecting contextual memory formation, and that this effect is mediated by dopamine. Additionally, we found that LC-to-dCA1-projecting neurons modulate the excitability of dCA1 neurons and the extent of overlap between dCA1 memory ensembles as well as the stability of coactivity patterns within these ensembles. This discovery of a neuromodulatory system that specifically affects memory linking without affecting memory formation reveals a fundamental separation between the brain mechanisms modulating these two distinct processes.
Collapse
Affiliation(s)
- Ananya Chowdhury
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA 90095
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA 90095
| | - Giselle Fernandes
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA 90095
| | - Daniel Almeida Filho
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA 90095
| | - George Kastellakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas (FORTH), Vassilica Vouton, PO Box 1527, GR 711 10 Heraklion, Crete, Greece
| | - Alexandra Tzilivaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas (FORTH), Vassilica Vouton, PO Box 1527, GR 711 10 Heraklion, Crete, Greece
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Charitéplatz 1, 10117 Berlin Germany
- Einstein Center for Neurosciences Berlin Charitéplatz 1, 10117 Berlin Germany
- Neurocure Cluster of Excellence Charitéplatz 1, 10117 Berlin, Germany
| | - Erica M Ramirez
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA 90095
| | - Mary Y Tran
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA 90095
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas (FORTH), Vassilica Vouton, PO Box 1527, GR 711 10 Heraklion, Crete, Greece
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry & Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory, and Brain Research Institute, UCLA, Los Angeles, CA 90095
- Lead contact
| |
Collapse
|
44
|
Cummings KA, Bayshtok S, Dong TN, Kenny PJ, Clem RL. Control of fear by discrete prefrontal GABAergic populations encoding valence-specific information. Neuron 2022; 110:3036-3052.e5. [PMID: 35944526 PMCID: PMC10009874 DOI: 10.1016/j.neuron.2022.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Neurons activated by learning have been ascribed the unique potential to encode memory, but the functional contribution of discrete cell types remains poorly understood. In particular, it is unclear whether learning engages specific GABAergic interneurons and, if so, whether they differ functionally from interneurons recruited by other experiences. Here, we show that fear conditioning activates a heterogeneous neuronal population in the medial prefrontal cortex (mPFC) that is largely comprised of somatostatin-expressing interneurons (SST-INs). Using intersectional genetic approaches, we demonstrate that fear-learning-activated SST-INs exhibit distinct circuit properties and are selectively reactivated to mediate cue-evoked memory expression. In contrast, an orthogonal population of SST-INs activated by morphine experience exerts opposing control over fear and supports reward-like motivational effects. These results outline an important role for discrete subsets of GABAergic cells in emotional learning and point to an unappreciated capacity for functional specialization among SST-INs.
Collapse
Affiliation(s)
- Kirstie A Cummings
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| | - Sabina Bayshtok
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tri N Dong
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
45
|
Staszelis A, Mofleh R, Kocsis B. The effect of ketamine on delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb. Brain Res 2022; 1791:147996. [PMID: 35779582 PMCID: PMC10038235 DOI: 10.1016/j.brainres.2022.147996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/22/2022]
Abstract
Respiratory rhythm plays an important role in cognitive functions in rodents, as well as in humans. Respiratory related oscillation (RRO), generated in the olfactory bulb (OB), is an extrinsic rhythm imposed on brain networks. In rats, RRO can couple with intrinsic brain oscillations at theta frequency during sniffing and in the delta range outside of such episodes. Disruption of gamma synchronization in cortical networks by ketamine is well established whereas its effects on slow rhythms are poorly understood. We found in this study, that RRO in prefrontal cortex (PFC) and hippocampus (HC) remains present after ketamine injection, even on the background of highly unstable respiratory rate, co-incident with "psychotic-like" behavior and abnormal cortical gamma activity. Guided by the timing of ketamine-induced gamma reaction, pairwise coherences between structures exhibiting RRO and their correlation structure was statistically tested in 5-min segments post-injection (0-25 min) and during recovery (1, 5, 10 h). As in control, RRO in the OB was firmly followed by cortical-bound OB exits directed toward PFC but not to HC. RRO between these structures, however, significantly correlated with OB-HC but not with OB-PFC. The only exception to this general observation was observed during a short transitional period, immediately after injection. Ketamine has a remarkable history in psychiatric research. Modeling chronic NMDA-hypofunction using acute NMDA-receptor blockade shifted the primary focus of schizophrenia research to dysfunctional cortical microcircuitry and the recent discovery of ketamine's antidepressant actions extended investigations to neurophysiology of anxiety and depression. Cortical oscillations are relevant for understanding their pathomechanism.
Collapse
Affiliation(s)
| | - Rola Mofleh
- Dept Psychiatry at BIDMC, Harvard Medical School, USA
| | - Bernat Kocsis
- Dept Psychiatry at BIDMC, Harvard Medical School, USA.
| |
Collapse
|
46
|
Herry C, Jercog D. Decoding defensive systems. Curr Opin Neurobiol 2022; 76:102600. [PMID: 35809501 DOI: 10.1016/j.conb.2022.102600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
Our understanding of the neuronal circuits and mechanisms of defensive systems has been primarily dominated by studies focusing on the contribution of individual cells in the processing of threat-predictive cues, defensive responses, the extinction of such responses and the contextual modulation of threat-related behavior. These studies have been key in establishing threat-related circuits and mechanisms. Yet, they fall short in answering long-standing questions related to the integrative processing of distinct threatening cues, behavioral states induced by threat-related events, or the bridging from sensory processing of threat-related cues to specific defensive responses. Recent conceptual and technical developments has allowed the monitoring of large populations of neurons, which in addition to advanced analytic tools, have improved our understanding of how collective neuronal activity supports threat-related behaviors. In this review, we discuss the current knowledge of neuronal population codes within threat-related networks, in the context of aversive motivated behavior and the study of defensive systems.
Collapse
Affiliation(s)
- Cyril Herry
- INSERM, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France.
| | - Daniel Jercog
- INSERM, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France; Univ. Bordeaux, Neurocentre Magendie, U1215, 146 Rue Léo-Saignat, 33077 Bordeaux, France.
| |
Collapse
|
47
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|
48
|
Divergent encoding of active avoidance behavior in corticostriatal and corticolimbic projections. Sci Rep 2022; 12:10731. [PMID: 35750718 PMCID: PMC9232563 DOI: 10.1038/s41598-022-14930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Active avoidance behavior, in which an animal performs an action to avoid a stressor, is crucial for survival and may provide insight into avoidance behaviors seen in anxiety disorders. Active avoidance requires the dorsomedial prefrontal cortex (dmPFC), which is thought to regulate avoidance via downstream projections to the striatum and amygdala. However, the endogenous activity of dmPFC projections during active avoidance learning has never been recorded. Here we utilized fiber photometry to record from the dmPFC and its axonal projections to the dorsomedial striatum (DMS) and the basolateral amygdala (BLA) during active avoidance learning in both male and female mice. We examined neural activity during conditioned stimulus (CS) presentations and during clinically relevant behaviors such as active avoidance or cued freezing. Both prefrontal projections showed learning-related increases in activity during CS onset throughout active avoidance training. The dmPFC as a whole showed increased and decreased patterns of activity during avoidance and cued freezing, respectively. Finally, dmPFC-DMS and dmPFC-BLA projections show divergent encoding of active avoidance behavior, with the dmPFC-DMS projection showing increased activity and the dmPFC-BLA projection showing decreased activity during active avoidance. Our results demonstrate task-relevant encoding of active avoidance in projection-specific dmPFC subpopulations that play distinct but complementary roles in active avoidance learning.
Collapse
|
49
|
Kuga N, Abe R, Takano K, Ikegaya Y, Sasaki T. Prefrontal-amygdalar oscillations related to social behavior in mice. eLife 2022; 11:78428. [PMID: 35580019 PMCID: PMC9113747 DOI: 10.7554/elife.78428] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
The medial prefrontal cortex and amygdala are involved in the regulation of social behavior and associated with psychiatric diseases but their detailed neurophysiological mechanisms at a network level remain unclear. We recorded local field potentials (LFPs) from the dorsal medial prefrontal cortex (dmPFC) and basolateral amygdala (BLA) while male mice engaged on social behavior. We found that in wild-type mice, both the dmPFC and BLA increased 4–7 Hz oscillation power and decreased 30–60 Hz power when they needed to attend to another target mouse. In mouse models with reduced social interactions, dmPFC 4–7 Hz power further increased especially when they exhibited social avoidance behavior. In contrast, dmPFC and BLA decreased 4–7 Hz power when wild-type mice socially approached a target mouse. Frequency-specific optogenetic manipulations replicating social approach-related LFP patterns restored social interaction behavior in socially deficient mice. These results demonstrate a neurophysiological substrate of the prefrontal cortex and amygdala related to social behavior and provide a unified pathophysiological understanding of neuronal population dynamics underlying social behavioral deficits.
Collapse
Affiliation(s)
- Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Reimi Abe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kotomi Takano
- School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
50
|
Takehara-Nishiuchi K. Neuronal ensemble dynamics in associative learning. Curr Opin Neurobiol 2022; 73:102530. [DOI: 10.1016/j.conb.2022.102530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/19/2023]
|