1
|
Nakagawa K, Yamazaki M, Tanimura H, Sakaguchi N, Kohara M, Sato I, Azuma M, Nishimoto-Kakiuchi A, Kato A, Kitazawa T, Konno R, Sankai T. Development of a novel postoperative adhesion induction model in cynomolgus monkeys with high reliability and reproducibility. Sci Rep 2025; 15:7102. [PMID: 40016251 PMCID: PMC11868379 DOI: 10.1038/s41598-025-88022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Postoperative adhesions frequently occur following abdominal surgical interventions, leading to serious morbidities and requiring new therapeutic strategies. The development of new therapeutic agents to reduce postoperative adhesions needs animal models that closely mirror human pathophysiology. In this study, we established a novel surgical adhesion model in cynomolgus monkeys, which are characteristically similar to humans. Our model reliably and reproducibly developed adhesions. Histopathological analyses revealed that monkeys undergoing our novel surgery method exhibited changes consistent with those in monkeys that underwent open abdominal surgery. Furthermore, the cellular components of the adhesion tissue in our monkey model reflected those reported in human adhesion tissue. Furthermore, time-course transcriptomic analyses showed that our model accurately recapitulates the well-known progression cascade of postoperative adhesions. In addition, it identified the upregulation of gene that is absent in rodents. We expect our novel surgical method to be a promising tool for elucidating the detailed biology of postoperative adhesions and for assessing new therapeutic treatments with high translatability to human biology.
Collapse
Affiliation(s)
- Kenji Nakagawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan.
| | - Masaki Yamazaki
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Hiromi Tanimura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Narumi Sakaguchi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Miho Kohara
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba-shi, Ibaraki, 305-0843, Japan
| | - Izumi Sato
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Masahiro Azuma
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Ayako Nishimoto-Kakiuchi
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo, 103-8324, Japan
| | - Atsuhiko Kato
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Ryo Konno
- Department of Obstetrics and Gynecology, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya-ku, Saitama-shi, Saitama, 330-8503, Japan.
| | - Tadashi Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba-shi, Ibaraki, 305-0843, Japan.
| |
Collapse
|
2
|
Wu J, Li R, Zhu S, Chen K, Lin C, Tian J, Pan L, Liu H, Jia X, Yu Z, Li Z, Zhu Y, Liu W, Yang C, Wong C, Wang N, Zhuo Y. Normative Profile of Retinal Nerve Fiber Layer Thickness and Lamina Cribrosa-Related Parameters in a Healthy Non-Glaucoma Cynomolgus Monkey Colony. Transl Vis Sci Technol 2024; 13:6. [PMID: 39361317 PMCID: PMC11451825 DOI: 10.1167/tvst.13.10.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose The purpose of this study was to investigate the normal range of ophthalmic parameters and the correlations between systematic and ocular parameters and retinal nerve fiber layer (RNFL) thickness among a healthy non-glaucoma cynomolgus monkey colony. Methods All included monkeys were given detailed ophthalmic examinations, including anterior and posterior segments. Furthermore, univariate and multivariate linear regression models were conducted to estimate the relationship between systemic and ophthalmic parameters and global RNFL thickness. Results A total of 349 non-glaucoma monkeys (18.69 ± 2.88 years old) were collected. The global RNFL thickness was 94.61 ± 10.13 µm, and sex-specific differences existed in all sectors. The decreasing trend of RNFL is as follows: inferotemporal, superotemporal, inferonasal, superonasal, temporal, and nasal. For lamina cribrosa (LC)-related parameters, cup depth (P < 0.01), LC thickness (P = 0.014), and Bruch's membrane opening (BMO) - minimum rim width 2 (P = 0.002) were greater in the male group. However, LC depth (P = 0.02), anterior laminar insertion depth-1 (P = 0.009), and mean anterior laminar insertion depth (P = 0.029) of female monkeys were greater than those of male monkeys. In multivariate linear regression, only older age was significantly related to reduced global RNFL thickness (P < 0.001). Conclusions Our findings suggest the differences in RNFL thickness distribution and sex between non-glaucoma cynomolgus monkeys and humans. Therefore, the impact of this difference on outcomes should be fully considered in laboratory animal studies. Our findings are also significant in terms of developing a normative optical coherence tomography (OCT) database in nonhuman primates (NHPs). Translational Relevance We found that the differences in RNFL thickness distribution and sex between non-glaucoma cynomolgus monkey colonies and humans should be thoroughly taken into account in laboratory animal studies.
Collapse
Affiliation(s)
- Jian Wu
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ruyue Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sirui Zhu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kezhe Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Caixia Lin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiaxin Tian
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lijie Pan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongyi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xu Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ziyu Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wei Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China, Guangzhou Huazhen Biosciences, Guangzhou, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Chiwai Wong
- Guangzhou Huazhen Biosciences, Guangzhou, China
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - for the Non-Human Primate Eye Study Group
- Henan Academy of Innovations in Medical Science (AIMS), Zhengzhou, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China, Guangzhou Huazhen Biosciences, Guangzhou, China
- Department of Neurosurgery, Peking University Third Hospital, Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
- Guangzhou Huazhen Biosciences, Guangzhou, China
- Beijing Institute of Ophthalmology, Beijing, China
| |
Collapse
|
3
|
Moriano J, Leonardi O, Vitriolo A, Testa G, Boeckx C. A multi-layered integrative analysis reveals a cholesterol metabolic program in outer radial glia with implications for human brain evolution. Development 2024; 151:dev202390. [PMID: 39114968 PMCID: PMC11385646 DOI: 10.1242/dev.202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
The definition of molecular and cellular mechanisms contributing to brain ontogenetic trajectories is essential to investigate the evolution of our species. Yet their functional dissection at an appropriate level of granularity remains challenging. Capitalizing on recent efforts that have extensively profiled neural stem cells from the developing human cortex, we develop an integrative computational framework to perform trajectory inference and gene regulatory network reconstruction, (pseudo)time-informed non-negative matrix factorization for learning the dynamics of gene expression programs, and paleogenomic analysis for a higher-resolution mapping of derived regulatory variants in our species in comparison with our closest relatives. We provide evidence for cell type-specific regulation of gene expression programs during indirect neurogenesis. In particular, our analysis uncovers a key role for a cholesterol program in outer radial glia, regulated by zinc-finger transcription factor KLF6. A cartography of the regulatory landscape impacted by Homo sapiens-derived variants reveals signals of selection clustering around regulatory regions associated with GLI3, a well-known regulator of radial glial cell cycle, and impacting KLF6 regulation. Our study contributes to the evidence of significant changes in metabolic pathways in recent human brain evolution.
Collapse
Affiliation(s)
- Juan Moriano
- Department of General Linguistics, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain
| | | | - Alessandro Vitriolo
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Cedric Boeckx
- Department of General Linguistics, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain
- University of Barcelona Institute of Neurosciences, 08007 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), 08007 Barcelona, Spain
| |
Collapse
|
4
|
Pergande MR, Osterbauer KJ, Buck KM, Roberts DS, Wood NN, Balasubramanian P, Mann MW, Rossler KJ, Diffee GM, Colman RJ, Anderson RM, Ge Y. Mass Spectrometry-Based Multiomics Identifies Metabolic Signatures of Sarcopenia in Rhesus Monkey Skeletal Muscle. J Proteome Res 2024; 23:2845-2856. [PMID: 37991985 PMCID: PMC11109024 DOI: 10.1021/acs.jproteome.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.
Collapse
Affiliation(s)
- Melissa R. Pergande
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Katie J. Osterbauer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nina N. Wood
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Morgan W. Mann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ricki J. Colman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rozalyn M. Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
5
|
Wang X, Feng MH, Wang SB, Shi H. Melocular Evolution on Cold Temperature Adaptation of Chinese Rhesus Macaques. Curr Genomics 2024; 26:36-47. [PMID: 39911280 PMCID: PMC11793050 DOI: 10.2174/0113892029301969240708094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Currently, macaques are used as animal models for human disease in biomedical research. There are two macaques species widely used as animal models, i.e., cynomolgus macaques and rhesus macaques. These two primates distribute widely, and their natural habitats are different. Cynomolgus macaques distribute in tropical climates, while rhesus macaques mostly distribute in relatively cold environments, and cynomolgus macaques have a common frostbite problem during winter when they are transferred to cold environments. Methods In order to explore the molecular mechanisms underlying the temperature adaptation in macaques, genetic analysis and natural selection tests were performed. Based on the analysis of heat shock protein genes, DNAJC22, DNAJC28, and HSF5 showed positive selection signals. To these 3 genes, the significantly differential expression had been confirmed between cynomolgus macaques and Chinese rhesus macaques. Results Molecular evolution analysis showed that mutations of DNAJC22, DNAJC28, and HSF5 in Chinese rhesus macaques could enable them to gain the ability to rapidly regulate body temperature. The heat shock proteins provided an important function for Chinese rhesus macaques, allowing them to adapt to a wide range of temperatures and spread widely. The selection time that was estimated suggested that the cold adaptation of Chinese rhesus macaques coincided with the time that the modern human populations migrated northward from tropic regions to relatively cold regions, and the selection genes were similar. Conclusion This study elucidated the evolutionary history of cynomolgus macaques and rhesus macaques from molecular adaptation. Furthermore, it provided an evolutionary perspective to reveal the different distribution and adaptation of macaques. Cynomolgus macaques is an ideal biomedical animal model to mimic human natural frostbite.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming,Yunnan, 650500, China
| | - Ming-Hong Feng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming,Yunnan, 650500, China
| | - Shao-Bo Wang
- PET/CT Center, First People’s Hospital of Yunnan Province, Kunming 650032, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming,Yunnan, 650500, China
| |
Collapse
|
6
|
Fan Z, Zhang R, Zhou A, Hey J, Song Y, Osada N, Hamada Y, Yue B, Xing J, Li J. Genomic Evidence for the Complex Evolutionary History of Macaques (Genus Macaca). J Mol Evol 2024; 92:286-299. [PMID: 38634872 DOI: 10.1007/s00239-024-10166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
The genus Macaca is widely distributed, occupies a variety of habitats, shows diverse phenotypic characteristics, and is one of the best-studied genera of nonhuman primates. Here, we reported five re-sequencing Macaca genomes, including one M. cyclopis, one M. fuscata, one M. thibetana, one M. silenus, and one M. sylvanus. Together with published genomes of other macaque species, we combined 20 genome sequences of 10 macaque species to investigate the gene introgression and genetic differences among the species. The network analysis of the SNV-fragment trees indicates a reticular phylogeny of macaque species. Combining the results from various analytical methods, we identified extensive ancient introgression events among macaque species. The multiple introgression signals between different species groups were also observed, such as between fascicularis group species and silenus group species. However, gene flow signals between fascicularis and sinica group were not as strong as those between fascicularis group and silenus group. On the other hand, the unidirect gene flow in M. arctoides probably occurred between the progenitor of M. arctoides and the common ancestor of fascicularis group. Our study also shows that the genetic backgrounds and genetic diversity of different macaques vary dramatically among species, even among populations of the same species. In conclusion, using whole genome sequences and multiple methods, we have studied the evolutionary history of the genus Macaca and provided evidence for extensive introgression among the species.
Collapse
Affiliation(s)
- Zhenxin Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Rusong Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Anbo Zhou
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jody Hey
- Department of Biology, Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, USA
| | - Yang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, 060-0814, Japan
| | - Yuzuru Hamada
- National Primate Research Center of Thailand, Chulalongkorn University, Bangkok, Thailand
| | - Bisong Yue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Jinchuan Xing
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, Feng Y, Ma K, Jiang X, Han J, Hu R, Zhang L, de Gennaro L, Ryabov F, Meng D, He Y, Wu D, Yang C, Paparella A, Mao Y, Bian X, Lu Y, Antonacci F, Ventura M, Shepelev VA, Miga KH, Alexandrov IA, Logsdon GA, Phillippy AM, Su B, Zhang G, Eichler EE, Lu Q, Shi Y, Sun Q, Mao Y. Comparative genomics of macaques and integrated insights into genetic variation and population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588379. [PMID: 38645259 PMCID: PMC11030432 DOI: 10.1101/2024.04.07.588379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The crab-eating macaques ( Macaca fascicularis ) and rhesus macaques ( M. mulatta ) are widely studied nonhuman primates in biomedical and evolutionary research. Despite their significance, the current understanding of the complex genomic structure in macaques and the differences between species requires substantial improvement. Here, we present a complete genome assembly of a crab-eating macaque and 20 haplotype-resolved macaque assemblies to investigate the complex regions and major genomic differences between species. Segmental duplication in macaques is ∼42% lower, while centromeres are ∼3.7 times longer than those in humans. The characterization of ∼2 Mbp fixed genetic variants and ∼240 Mbp complex loci highlights potential associations with metabolic differences between the two macaque species (e.g., CYP2C76 and EHBP1L1 ). Additionally, hundreds of alternative splicing differences show post-transcriptional regulation divergence between these two species (e.g., PNPO ). We also characterize 91 large-scale genomic differences between macaques and humans at a single-base-pair resolution and highlight their impact on gene regulation in primate evolution (e.g., FOLH1 and PIEZO2 ). Finally, population genetics recapitulates macaque speciation and selective sweeps, highlighting potential genetic basis of reproduction and tail phenotype differences (e.g., STAB1 , SEMA3F , and HOXD13 ). In summary, the integrated analysis of genetic variation and population genetics in macaques greatly enhances our comprehension of lineage-specific phenotypes, adaptation, and primate evolution, thereby improving their biomedical applications in human diseases.
Collapse
|
8
|
Wang J, Liu X, Lan Y, Que T, Li J, Yue B, Fan Z. DNA methylation and transcriptome analysis reveal epigenomic differences among three macaque species. Evol Appl 2024; 17:e13604. [PMID: 38343783 PMCID: PMC10853583 DOI: 10.1111/eva.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2024] Open
Abstract
Macaques (genus Macaca) are the most widely distributed non-human primates, and their evolutionary history, gene expression profiles, and genetic differences have been extensively studied. However, the DNA methylomes of macaque species are not available in public databases, which hampers understanding of epigenetic differences among macaque species. Epigenetic modifications can potentially affect development, physiology, behavior, and evolution. Here, we investigated the methylation patterns of the Tibetan macaque (M. thibetana; TM), Chinese rhesus macaque (M. mulatta lasiota; CR), and crab-eating macaque (M. fascicularis; CE) through whole-genome bisulfite sequencing from peripheral blood. We compared genome-wide methylation site information for the three species. We identified 12,128 (CR vs. CE), 59,165 (CR vs. TM), and 39,751 (CE vs. TM) differentially methylated regions (DMRs) in the three macaques. Furthermore, we obtained the differentially expressed genes (DEGs) among the three macaque species. The differences between CR and CE were smaller at both the methylome and transcriptome levels than compared with TM (CR vs. TM and CE vs. TM). We also found a change in the density of single nucleotide mutations in DMRs relative to their flanking regions, indicating a potential mechanism through which genomic alterations may modulate methylation landscapes, thereby influencing the transcriptome. Functional enrichment analyses showed the DMR-related genes were enriched in developmental processes and neurological functions, such as the growth hormone-related pathway, insulin secretion pathway, thyroid hormone synthesis pathway, morphine addiction, and GABAergic synapses. These differences may be associated with variations in physiology and habitat among the macaques. Our study provides one of the first genome-wide comparisons of genetic, gene expression, and epigenetic variations across different macaques. Our results should facilitate further research on comparative genomic and genetic differences in macaque species.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Xuyuan Liu
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Tengcheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of GuangxiGuangxiNanningChina
- Faculty of Data ScienceCity University of MacauMacauTaipaChina
| | - Jing Li
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| |
Collapse
|
9
|
Yu D, Wan H, Tong C, Guang L, Chen G, Su J, Zhang L, Wang Y, Xiao Z, Zhai J, Yan L, Ma W, Liang K, Liu T, Wang Y, Peng Z, Luo L, Yu R, Li W, Qi H, Wang H, Shyh-Chang N. A multi-tissue metabolome atlas of primate pregnancy. Cell 2024; 187:764-781.e14. [PMID: 38306985 DOI: 10.1016/j.cell.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.
Collapse
Affiliation(s)
- Dainan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Haifeng Wan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lu Guang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Gang Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jiali Su
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lan Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhenyu Xiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Long Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wenwu Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kun Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Taoyan Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yuefan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zehang Peng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lanfang Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ruoxuan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
10
|
Kabbej N, Ashby FJ, Riva A, Gamlin PD, Mandel RJ, Kunta A, Rouse CJ, Heldermon CD. Sex differences in brain transcriptomes of juvenile Cynomolgus macaques. RESEARCH SQUARE 2023:rs.3.rs-3422091. [PMID: 38045237 PMCID: PMC10690328 DOI: 10.21203/rs.3.rs-3422091/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background: Behavioral, social, and physical characteristics are posited to distinguish the sexes, yet research on transcription-level sexual differences in the brain is limited. Here, we investigated sexually divergent brain transcriptomics in prepubertal cynomolgus macaques, a commonly used surrogate species to humans. Methods: A transcriptomic profile using RNA sequencing was generated for the temporal lobe, ventral midbrain, and cerebellum of 3 female and 3 male cynomolgus macaques previously treated with an Adeno-associated virus vector mix. Statistical analyses to determine differentially expressed protein-coding genes in all three lobes were conducted using DeSeq2 with a false discovery rate corrected P value of .05. Results: We identified target genes in the temporal lobe, ventral midbrain, and cerebellum with functions in translation, immunity, behavior, and neurological disorders that exhibited statistically significant sexually divergent expression. Conclusions: We provide potential mechanistic insights to the epidemiological differences observed between the sexes with regards to mental health and infectious diseases, such as COVID19. Our results provide pre-pubertal information on sexual differences in non-human primate brain transcriptomics and may provide insight to health disparities between the biological sexes in humans.
Collapse
|
11
|
Wu R, Qi J, Li W, Wang L, Shen Y, Liu J, Teng Y, Roos C, Li M. Landscape genomics analysis provides insights into future climate change-driven risk in rhesus macaque. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165746. [PMID: 37495138 DOI: 10.1016/j.scitotenv.2023.165746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Climate change significantly affects the suitability of wildlife habitats. Thus, understanding how animals adapt ecologically and genetically to climate change is important for targeted species protection. Rhesus macaques (Macaca mulatta) are widely distributed and multi-climatically adapted primates. This study explored how rhesus macaques adapt to climate change by integrating ecological and genetic methods and applying species distribution models (SDMs) and a gradient forest (GF) model. The findings suggested that temperature seasonality primarily affects habitat suitability and indicated that climate change will have a dramatic impact on macaque populations in the future. We also applied genotype-environment association (GEA) analyses and selection signature analyses to identify genes associated with climate change and provide possible explanations for the adaptation of rhesus macaques to climatic environments. The population genomics analyses suggested that the Taihang population has the highest genomic vulnerability with inbreeding and low heterozygosity. Combined with the higher ecological vulnerability, additional conservation strategies are required for this population under higher risk of climate change. Our work measured the impact of climate change and enabled the identification of populations that exhibit high vulnerability to severe climate change. Such information is useful for selecting populations of rhesus macaques as subject of long-term monitoring or evolutionary rescue under future climate change.
Collapse
Affiliation(s)
- Ruifeng Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
12
|
Tan X, Qi J, Liu Z, Fan P, Liu G, Zhang L, Shen Y, Li J, Roos C, Zhou X, Li M. Phylogenomics Reveals High Levels of Incomplete Lineage Sorting at the Ancestral Nodes of the Macaque Radiation. Mol Biol Evol 2023; 40:msad229. [PMID: 37823401 PMCID: PMC10638670 DOI: 10.1093/molbev/msad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
The genus Macaca includes 23 species assigned into 4 to 7 groups. It exhibits the largest geographic range and represents the most successful example of adaptive radiation of nonhuman primates. However, intrageneric phylogenetic relationships among species remain controversial and have not been resolved so far. In this study, we conducted a phylogenomic analysis on 16 newly generated and 8 published macaque genomes. We found strong evidence supporting the division of this genus into 7 species groups. Incomplete lineage sorting (ILS) was the primary factor contributing to the discordance observed among gene trees; however, we also found evidence of hybridization events, specifically between the ancestral arctoides/sinica and silenus/nigra lineages that resulted in the hybrid formation of the fascicularis/mulatta group. Combined with fossil data, our phylogenomic data were used to establish a scenario for macaque radiation. These findings provide insights into ILS and potential ancient introgression events that were involved in the radiation of macaques, which will lead to a better understanding of the rapid speciation occurring in nonhuman primates.
Collapse
Affiliation(s)
- Xinxin Tan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing 100049, China
| | - Pengfei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Park EG, Lee YJ, Huh JW, Park SJ, Imai H, Kim WR, Lee DH, Kim JM, Shin HJ, Kim HS. Identification of microRNAs Derived from Transposable Elements in the Macaca mulatta (Rhesus Monkey) Genome. Genes (Basel) 2023; 14:1984. [PMID: 38002927 PMCID: PMC10671384 DOI: 10.3390/genes14111984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Transposable elements (TEs) are mobile DNA entities that can move within the host genome. Over long periods of evolutionary time, TEs are typically silenced via the accumulation of mutations in the genome, ultimately resulting in their immobilization. However, they still play an important role in the host genome by acting as regulatory elements. They influence host transcription in various ways, one of which as the origin of the generation of microRNAs (miRNAs), which are so-called miRNAs derived from TEs (MDTEs). miRNAs are small non-coding RNAs that are involved in many biological processes by regulating gene expression at the post-transcriptional level. Here, we identified MDTEs in the Macaca mulatta (rhesus monkey) genome, which is phylogenetically close species to humans, based on the genome coordinates of miRNAs and TEs. The expression of 5 out of 17 MDTEs that were exclusively registered in M. mulatta from the miRBase database (v22) was examined via quantitative polymerase chain reaction (qPCR). Moreover, Gene Ontology analysis was performed to examine the functional implications of the putative target genes of the five MDTEs.
Collapse
Affiliation(s)
- Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.H.); (S.-J.P.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; (J.-W.H.); (S.-J.P.)
| | - Hiroo Imai
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (E.G.P.); (Y.J.L.); (W.R.K.); (D.H.L.); (J.-m.K.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Bailey N, Ruiz C, Tosi A, Stevison L. Genomic analysis of the rhesus macaque ( Macaca mulatta) and the cynomolgus macaque ( Macaca fascicularis) uncover polygenic signatures of reinforcement speciation. Ecol Evol 2023; 13:e10571. [PMID: 37849934 PMCID: PMC10577069 DOI: 10.1002/ece3.10571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Speciation can involve phases of divergent adaptation in allopatry and ecological/reproductive character displacement in sympatry or parapatry. Reproductive character displacement can result as a means of preventing hybridization, a process known as reinforcement speciation. In this study, we use whole-genome sequencing (WGS) of two closely related primate species that have experienced introgression in their history, the rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques, to identify genes exhibiting reproductive character displacement and other patterns consistent with reinforcement speciation. Using windowed scans of various population genetic statistics to identify signatures of reinforcement, we find 184 candidate genes associated with a variety of functions, including an overrepresentation of multiple neurological functions and several genes involved in sexual development and gametogenesis. These results are consistent with a variety of genes acting in a reinforcement process between these species. We also find signatures of introgression of the Y-chromosome that confirm previous studies suggesting male-driven introgression of M. mulatta into M. fascicularis populations. This study uses WGS to find evidence of the process of reinforcement in primates that have medical and conservation relevance.
Collapse
Affiliation(s)
- Nick Bailey
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Cody Ruiz
- Department of AnthropologyKent State UniversityKentOhioUSA
| | - Anthony Tosi
- Department of AnthropologyKent State UniversityKentOhioUSA
| | - Laurie Stevison
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
15
|
Jagadesan S, Mondal P, Carlson MA, Guda C. Evaluation of Five Mammalian Models for Human Disease Research Using Genomic and Bioinformatic Approaches. Biomedicines 2023; 11:2197. [PMID: 37626695 PMCID: PMC10452283 DOI: 10.3390/biomedicines11082197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The suitability of an animal model for use in studying human diseases relies heavily on the similarities between the two species at the genetic, epigenetic, and metabolic levels. However, there is a lack of consistent data from different animal models at each level to evaluate this suitability. With the availability of genome sequences for many mammalian species, it is now possible to compare animal models based on genomic similarities. Herein, we compare the coding sequences (CDSs) of five mammalian models, including rhesus macaque, marmoset, pig, mouse, and rat models, with human coding sequences. We identified 10,316 conserved CDSs across the five organisms and the human genome based on sequence similarity. Mapping the human-disease-associated single-nucleotide polymorphisms (SNPs) from these conserved CDSs in each species has identified species-specific associations with various human diseases. While associations with a disease such as colon cancer were prevalent in multiple model species, the rhesus macaque showed the most model-specific human disease associations. Based on the percentage of disease-associated SNP-containing genes, marmoset models are well suited to study many human ailments, including behavioral and cardiovascular diseases. This study demonstrates a genomic similarity evaluation of five animal models against human CDSs that could help investigators select a suitable animal model for studying their target disease.
Collapse
Affiliation(s)
- Sankarasubramanian Jagadesan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.J.); (M.A.C.)
| | - Pinaki Mondal
- Department of Surgery and Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Mark A. Carlson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.J.); (M.A.C.)
- Department of Surgery and Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.J.); (M.A.C.)
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Chiu KP, Stuart L, Ooi HS, Yu J, Smith DG, Pei KJC. Genome sequencing and application of Taiwanese macaque Macaca cyclopis. Sci Rep 2023; 13:11545. [PMID: 37460589 DOI: 10.1038/s41598-023-38402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Formosan macaque (Macaca cyclopis) is the only non-human primate in Taiwan Island. We performed de novo hybrid assembly for M. cyclopis using Illumina paired-end short reads, mate-pair reads and Nanopore long reads and obtained 5065 contigs with a N50 of 2.66 megabases. M. cyclopis contigs > = 10 kb were assigned to chromosomes using Indian rhesus macaque (Macaca mulatta mulatta) genome assembly Mmul_10 as reference, resulting in a draft of M. cyclopis genome of 2,846,042,475 bases, distributed in 21 chromosomes. The draft genome contains 23,462 transcriptional origins (genes), capable of expressing 716,231 exons in 59,484 transcripts. Genome-based phylogenetic study using the assembled M. cyclopis genome together with genomes of four other macaque species, human, orangutan and chimpanzee showed similar result as previously reported. However, the M. cyclopis species was found to diverge from Chinese M. mulatta lasiota about 1.8 million years ago. Fossil gene analysis detected the presence of gap and pol endogenous viral elements of simian retrovirus in all macaques tested, including M. fascicularis, M. m. mulatta and M. cyclopis. However, M. cyclopis showed ~ 2 times less in number and more uniform in chromosomal locations. The constrain in foreign genome disturbance, presumably due to geographical isolation, should be able to simplify genomics-related investigations, making M. cyclopis an ideal primate species for medical research.
Collapse
Affiliation(s)
- Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Top Science Biotechnologies, Inc., 4F, 50-2 Dingping Rd., Sec. 1, Shiding District, New Taipei City, 223002, Taiwan.
| | - Lutimba Stuart
- Top Science Biotechnologies, Inc., 4F, 50-2 Dingping Rd., Sec. 1, Shiding District, New Taipei City, 223002, Taiwan
| | - Hong Sain Ooi
- Top Science Biotechnologies, Inc., 4F, 50-2 Dingping Rd., Sec. 1, Shiding District, New Taipei City, 223002, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, No.5, Fu-Shin St., Kuei Shang, Taoyuan, 333, Taiwan
| | - David Glenn Smith
- Department of Anthropology, University of California Davis, Davis, CA, USA
| | - Kurtis Jai-Chyi Pei
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
17
|
Jaeger AS, Crooks CM, Weiler AM, Bliss MI, Rybarczyk S, Richardson A, Einwalter M, Peterson E, Capuano S, Barkhymer A, Becker JT, Greene JT, Freedman TS, Langlois RA, Friedrich TC, Aliota MT. Primary infection with Zika virus provides one-way heterologous protection against Spondweni virus infection in rhesus macaques. SCIENCE ADVANCES 2023; 9:eadg3444. [PMID: 37390207 PMCID: PMC10313173 DOI: 10.1126/sciadv.adg3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Spondweni virus (SPONV) is the closest known relative of Zika virus (ZIKV). SPONV pathogenesis resembles that of ZIKV in pregnant mice, and both viruses are transmitted by Aedes aegypti mosquitoes. We aimed to develop a translational model to further understand SPONV transmission and pathogenesis. We found that cynomolgus macaques (Macaca fascicularis) inoculated with ZIKV or SPONV were susceptible to ZIKV but resistant to SPONV infection. In contrast, rhesus macaques (Macaca mulatta) supported productive infection with both ZIKV and SPONV and developed robust neutralizing antibody responses. Crossover serial challenge in rhesus macaques revealed that SPONV immunity did not protect against ZIKV infection, whereas ZIKV immunity was fully protective against SPONV infection. These findings establish a viable model for future investigation into SPONV pathogenesis and suggest that the risk of SPONV emergence is low in areas with high ZIKV seroprevalence due to one-way cross-protection between ZIKV and SPONV.
Collapse
Affiliation(s)
- Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| | - Chelsea M. Crooks
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mason I. Bliss
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sierra Rybarczyk
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alex Richardson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Morgan Einwalter
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric Peterson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alison Barkhymer
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Jordan T. Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| |
Collapse
|
18
|
Huang B, Lin Z, Chen Z, Chen J, Shi B, Jia J, Li Y, Pan Y, Liang Y, Cai Z. Strain differences in the drug transport capacity of intestinal glucose transporters in Sprague-Dawley versus Wistar rats, C57BL/6J versus Kunming mice. Int J Pharm 2023; 640:123000. [PMID: 37254285 DOI: 10.1016/j.ijpharm.2023.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Designing oral drug delivery systems using intestinal glucose transporters (IGTs) may be one of the strategies for improving oral bioavailability of drugs. However, little is known about the biological factors affecting the drug transport capacity of IGTs. Gastrodin is a sedative drug with a structure very similar to glucose. It is a highly water-soluble phenolic glucoside. It can hardly enter the intestine through simple diffusion but exhibits good oral bioavailability of over 80%. We confirmed that gastrodin is absorbed via the intestinal glucose transport pathway. It has the highest oral bioavailability among the reported glycosides' active ingredients through this pathway. Thus, gastrodin is the most selective drug substrate of IGTs and can be used to evaluate the drug transport capacity of IGTs. Obviously, strain is one of the main biological factors affecting drug absorption. This study firstly compared the drug transport capacity of IGTs between SD rats and Wistar rats and between C57 mice and KM mice by pharmacokinetic experiments and single-pass intestinal perfusion experiments of gastrodin. Then, the sodium-dependent glucose transporter type 1 (SGLT1) and sodium-independent glucose transporters type 2 (GLUT2) in the duodenum, jejunum, ileum and colon of these animals were quantified using RT-qPCR and Western blot. The results showed that the oral bioavailability of gastrodin in Wistar rats was significantly higher than in SD rats and significantly higher in KM mice than in C57 mice. Gastrodin absorption significantly differed among different intestinal segments in SD rats, C57 mice and KM mice, except Wistar rats. RT-qPCR and Western blot demonstrated that the intestinal expression distribution of SGLT1 and GLUT2 in SD rats and C57 mice was duodenum ≈ jejunum > ileum > colon. SGLT1 expression did not differ among different intestinal segments in KM mice, whereas the intestinal expression distribution of GLUT2 was duodenum ≈ jejunum ≈ ileum > colon. However, the expression of SGLT1 and GLUT2 did not differ among different intestinal segments in Wistar rats. It was reported that the intestinal expression distribution of SGLT1 and GLUT2 in humans is duodenum > jejunum > ileum > colon. Hence, the intestinal expression distribution of SGLT1 and GLUT2 of SD rats and C57 mice was more similar to that in humans. In conclusion, the drug transport capacity of IGTs differs in different strains of rats and mice. SD rats and C57 mice are more suitable for evaluating the pharmacokinetics of glycosides' active ingredients absorbed via the intestinal glucose transport pathway.
Collapse
Affiliation(s)
- Baolin Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Zimin Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Birui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Jingjing Jia
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511500 Qingyuan, China
| | - Yuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yueqing Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuntao Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
19
|
Wu J, Liu W, Zhu S, Liu H, Chen K, Zhu Y, Li Z, Yang C, Pan L, Li R, Lin C, Tian J, Ren J, Xu L, Yu H, Luo F, Huang Z, Su W, Wang N, Zhuo Y. Design, methodology, and preliminary results of the non-human primates eye study. BMC Ophthalmol 2023; 23:53. [PMID: 36750922 PMCID: PMC9903517 DOI: 10.1186/s12886-023-02796-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
PURPOSE To describe the normative profile of ophthalmic parameters in a healthy cynomolgus monkey colony, and to identify the characteristic of the spontaneous ocular disease non-human primates (NHP) models. METHODS The NHP eye study was a cross-sectional on-site ocular examination with about 1,000 macaques held in Guangdong Province, southeastern China. The NHPs (Macaca fascicularis, cynomolgus) in this study included middle-aged individuals with a high prevalence of the ocular disease. The NHP eye study (NHPES) performed the information including systematic data and ocular data. Ocular examination included measurement of intraocular pressure (IOP), anterior segment- optical coherence tomography (OCT), slit-lamp examination, fundus photography, autorefraction, electroretinography, etc. Ocular diseases included measurement of refractive error, anisometropia, cataract, pterygium, etc. RESULTS: A total of 1148 subjects were included and completed the ocular examination. The average age was 16.4 ± 4.93 years. Compared to the male participants, the females in the NHPES had shorter axial length and the mean Average retinal nerve fiber layer (RNFL) thickness (except for the nasal quadrants). The mean IOP, anterior chamber depth, lens thickness, axial length, central corneal thickness, choroid thickness and other parameters were similar in each group. CONCLUSION The NHPES is a unique and high-quality study, this is the first large macaque monkey cohort study focusing on ocular assessment along with comprehensive evaluation. Results from the NHPES will provide important information about the normal range of ophthalmic measurements in NHP.
Collapse
Affiliation(s)
- Jian Wu
- grid.414373.60000 0004 1758 1243Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730 China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060 China
| | - Wei Liu
- grid.79703.3a0000 0004 1764 3838School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641 China
| | - Sirui Zhu
- grid.413259.80000 0004 0632 3337Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Hongyi Liu
- grid.414373.60000 0004 1758 1243Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730 China
| | - Kezhe Chen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060 China
| | - Yingting Zhu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060 China
| | - Zhidong Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060 China
| | - Chenlong Yang
- grid.411642.40000 0004 0605 3760Department of Neurosurgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Lijie Pan
- grid.414373.60000 0004 1758 1243Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730 China
| | - Ruyue Li
- grid.414373.60000 0004 1758 1243Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730 China
| | - Caixia Lin
- grid.414373.60000 0004 1758 1243Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730 China
| | - Jiaxin Tian
- grid.414373.60000 0004 1758 1243Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730 China
| | - Jiaoyan Ren
- grid.79703.3a0000 0004 1764 3838School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641 China
| | - Liangzhi Xu
- Guangzhou Huazhen Biosciences, Guangzhou, 510900 China
| | - Hanxiang Yu
- Guangzhou Huazhen Biosciences, Guangzhou, 510900 China
| | - Fagao Luo
- Guangzhou Huazhen Biosciences, Guangzhou, 510900 China
| | - Zhiwei Huang
- Guangzhou Huazhen Biosciences, Guangzhou, 510900 China
| | - Wenru Su
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060 China
| | - Ningli Wang
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
20
|
Li X, Santos R, Bernal JE, Li DD, Hargaden M, Khan NK. Biology and postnatal development of organ systems of cynomolgus monkeys (Macaca fascicularis). J Med Primatol 2023; 52:64-78. [PMID: 36300896 PMCID: PMC10092073 DOI: 10.1111/jmp.12622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The cynomolgus macaque has become the most used non-human primate species in nonclinical safety assessment during the past decades. METHODS This review summarizes the biological data and organ system development milestones of the cynomolgus macaque available in the literature. RESULTS The cynomolgus macaque is born precocious relative to humans in some organ systems (e.g., nervous, skeletal, respiratory, and gastrointestinal). Organ systems develop, refine, and expand at different rates after birth. In general, the respiratory, gastrointestinal, renal, and hematopoietic systems mature at approximately 3 years of age. The female reproductive, cardiovascular and hepatobiliary systems mature at approximately 4 years of age. The central nervous, skeletal, immune, male reproductive, and endocrine systems complete their development at approximately 5 to 9 years of age. CONCLUSIONS The cynomolgus macaque has no meaningful developmental differences in critical organ systems between 2 and 3 years of age for use in nonclinical safety assessment.
Collapse
Affiliation(s)
- Xiantang Li
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Rosemary Santos
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Jan E. Bernal
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Dingzhou D. Li
- Early Clinical DevelopmentPfizer, IncGrotonConnecticutUSA
| | - Maureen Hargaden
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Nasir K. Khan
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| |
Collapse
|
21
|
Zhu P, Liu W, Zhang X, Li M, Liu G, Yu Y, Li Z, Li X, Du J, Wang X, Grueter CC, Li M, Zhou X. Correlated evolution of social organization and lifespan in mammals. Nat Commun 2023; 14:372. [PMID: 36720880 PMCID: PMC9889386 DOI: 10.1038/s41467-023-35869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
Discerning the relationship between sociality and longevity would permit a deeper understanding of how animal life history evolved. Here, we perform a phylogenetic comparative analysis of ~1000 mammalian species on three states of social organization (solitary, pair-living, and group-living) and longevity. We show that group-living species generally live longer than solitary species, and that the transition rate from a short-lived state to a long-lived state is higher in group-living than non-group-living species, altogether supporting the correlated evolution of social organization and longevity. The comparative brain transcriptomes of 94 mammalian species identify 31 genes, hormones and immunity-related pathways broadly involved in the association between social organization and longevity. Further selection features reveal twenty overlapping pathways under selection for both social organization and longevity. These results underscore a molecular basis for the influence of the social organization on longevity.
Collapse
Affiliation(s)
- Pingfen Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Weiqiang Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Yang Yu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zihao Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanjing Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China
| | - Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,International Center of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, 671003, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, 100101, China.
| |
Collapse
|
22
|
Serrano C, Lopes-Marques M, Amorim A, João Prata M, Azevedo L. A partial duplication of an X-linked gene exclusive of a primate lineage (Macaca). Gene 2023; 851:146997. [DOI: 10.1016/j.gene.2022.146997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022]
|
23
|
Woo C, Kumari P, Eo KY, Lee WS, Kimura J, Yamamoto N. Combining vertebrate mitochondrial 12S rRNA gene sequencing and shotgun metagenomic sequencing to investigate the diet of the leopard cat (Prionailurus bengalensis) in Korea. PLoS One 2023; 18:e0281245. [PMID: 36719887 PMCID: PMC9888693 DOI: 10.1371/journal.pone.0281245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
The leopard cat (Prionailurus bengalensis), an endangered species in South Korea, is a small feline widely distributed in Asia. Here, we investigated the diet of leopard cats in the inland areas of Korea by examining their fecal contents using vertebrate mitochondrial 12S rRNA gene sequencing and shotgun metagenomic sequencing. Shotgun metagenomic sequencing revealed that the feces were rich in DNA not only of vertebrates but also of arthropods and plants, but care should be taken when using shotgun metagenomic sequencing to identify vertebrates at low taxonomic levels (e.g., genus level), as it was often erroneous. Meanwhile, vertebrate mitochondrial 12S rRNA gene sequencing was found to be accurate in the genus-level identification, as the genera identified were consistent with the Korean fauna. We found that small mammals such as murids were their main prey. By using these two sequencing methods in combination, this study demonstrated that accurate information about the overall dietary content and vertebrate prey of leopard cats could be obtained. We expect that the continued community efforts to expand the genome database of wildlife, including vertebrates, will alleviate the problem of erroneous identification of prey at low taxonomic levels by shotgun metagenomic sequencing in the near future.
Collapse
Affiliation(s)
- Cheolwoon Woo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Priyanka Kumari
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kyung Yeon Eo
- Department of Animal Health and Welfare, College of Healthcare and Biotechnology, Semyung University, Jecheon, Republic of Korea
| | - Woo-Shin Lee
- Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Junpei Kimura
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Hu Q, Huang X, Jin Y, Zhang R, Zhao A, Wang Y, Zhou C, Liu W, Liu X, Li C, Fan G, Zhuo M, Wang X, Ling F, Luo W. Long-read assembly of major histocompatibility complex and killer cell immunoglobulin-like receptor genome regions in cynomolgus macaque. Biol Direct 2022; 17:36. [PMID: 36447238 PMCID: PMC9707422 DOI: 10.1186/s13062-022-00350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) and the killer cell immunoglobulin-like receptors (KIR) are key regulators of immune responses. The cynomolgus macaque, an Old World monkey species, can be applied as an important preclinical model for studying human diseases, including coronavirus disease 2019 (COVID-19). Several MHC-KIR combinations have been associated with either a poor or good prognosis. Therefore, macaques with a well-characterized immunogenetic profile may improve drug evaluation and speed up vaccine development. At present, a complete overview of the MHC and KIR haplotype organizations in cynomolgus macaques is lacking, and characterization by conventional techniques is hampered by the extensive expansion of the macaque MHC-B region that complicates the discrimination between genes and alleles. METHODS We assembled complete MHC and KIR genomic regions of cynomolgus macaque using third-generation long-read sequencing approach. We identified functional Mafa-B loci at the transcriptome level using locus-specific amplification in a cohort of 33 Vietnamese cynomolgus macaques. RESULTS This is the first physical mapping of complete MHC and KIR gene regions in a Vietnamese cynomolgus macaque. Furthermore, we identified four functional Mafa-B loci (B2, B3, B5, and B6) and showed that alleles of the Mafa-I*01, -B*056, -B*034, and -B*001 functional lineages, respectively, are highly frequent in the Vietnamese cynomolgus macaque population. CONCLUSION The insights into the MHC and KIR haplotype organizations and the level of diversity may refine the selection of animals with specific genetic markers for future medical research.
Collapse
Affiliation(s)
- Qingxiu Hu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaoqi Huang
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Yabin Jin
- grid.12981.330000 0001 2360 039XThe First People’s Hospital of Foshan, Sun Yat-sen University, Foshan, 528000 China
| | - Rui Zhang
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Aimin Zhao
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Yiping Wang
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Chenyun Zhou
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Weixin Liu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xunwei Liu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Chunhua Li
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Guangyi Fan
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Min Zhuo
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaoning Wang
- grid.414252.40000 0004 1761 8894National Clinic Center of Geriatric, The Chinese PLA General Hospital, Beijing, 100853 China
| | - Fei Ling
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Wei Luo
- grid.12981.330000 0001 2360 039XThe First People’s Hospital of Foshan, Sun Yat-sen University, Foshan, 528000 China
| |
Collapse
|
25
|
Jaiswal S, Nyquist SK, Boyce S, Jivanjee T, Ibrahim S, Bromley JD, Gatter GJ, Gideon H, Patel K, Ganchua SK, Berger B, Fortune SM, Flynn JL, Shalek AK, Behar SM. Identification and characterization of the T cell receptor (TCR) repertoire of the cynomolgus macaque (Macaca Fascicularis). BMC Genomics 2022; 23:647. [PMID: 36096729 PMCID: PMC9465142 DOI: 10.1186/s12864-022-08867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/01/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cynomolgus macaque (Macaca fascicularis) is an attractive animal model for the study of human disease and is extensively used in biomedical research. Cynomolgus macaques share behavioral, physiological, and genomic traits with humans and recapitulate human disease manifestations not observed in other animal species. To improve the use of the cynomolgus macaque model to investigate immune responses, we defined and characterized the T cell receptor (TCR) repertoire. RESULT We identified and analyzed the alpha (TRA), beta (TRB), gamma (TRG), and delta (TRD) TCR loci of the cynomolgus macaque. The expressed repertoire was determined using 22 unique lung samples from Mycobacterium tuberculosis infected cynomolgus macaques by single cell RNA sequencing. Expressed TCR alpha (TRAV) and beta (TRBV) variable region genes were enriched and identified using gene specific primers, which allowed their functional status to be determined. Analysis of the primers used for cynomolgus macaque TCR variable region gene enrichment showed they could also be used to amplify rhesus macaque (M. mulatta) variable region genes. CONCLUSION The genomic organization of the cynomolgus macaque has great similarity with the rhesus macaque and they shared > 90% sequence similarity with the human TCR repertoire. The identification of the TCR repertoire facilitates analysis of T cell immunity in cynomolgus macaques.
Collapse
Affiliation(s)
- Swati Jaiswal
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| | - Sarah K. Nyquist
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Shayla Boyce
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| | - Tasneem Jivanjee
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Samira Ibrahim
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Joshua D. Bromley
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - G. James Gatter
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Hannah Gideon
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Kush Patel
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Sharie Keanne Ganchua
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Bonnie Berger
- grid.116068.80000 0001 2341 2786Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Sarah M. Fortune
- grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Boston, MA USA
| | - JoAnne L. Flynn
- grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Alex K. Shalek
- grid.116068.80000 0001 2341 2786Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Boston, MA USA ,grid.116068.80000 0001 2341 2786Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA USA
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, Universityof Massachusetts Chan Medical School, Worcester, MA USA
| |
Collapse
|
26
|
Liang W, He J, Mao C, Yu C, Meng Q, Xue J, Wu X, Li S, Wang Y, Yi H. Gene editing monkeys: Retrospect and outlook. Front Cell Dev Biol 2022; 10:913996. [PMID: 36158194 PMCID: PMC9493099 DOI: 10.3389/fcell.2022.913996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models play a key role in life science research, especially in the study of human disease pathogenesis and drug screening. Because of the closer proximity to humans in terms of genetic evolution, physiology, immunology, biochemistry, and pathology, nonhuman primates (NHPs) have outstanding advantages in model construction for disease mechanism study and drug development. In terms of animal model construction, gene editing technology has been widely applied to this area in recent years. This review summarizes the current progress in the establishment of NHPs using gene editing technology, which mainly focuses on rhesus and cynomolgus monkeys. In addition, we discuss the limiting factors in the applications of genetically modified NHP models as well as the possible solutions and improvements. Furthermore, we highlight the prospects and challenges of the gene-edited NHP models.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Chenyu Mao
- University of Pennsylvania, Philadelphia, PA, United States
| | - Chengwei Yu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shanliang Li
- Department of Pharmacology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| | - Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Weizheng Liang, ; Shanliang Li, ; Yukai Wang, ; Hongyang Yi,
| |
Collapse
|
27
|
Cooper EB, Brent LJN, Snyder-Mackler N, Singh M, Sengupta A, Khatiwada S, Malaivijitnond S, Qi Hai Z, Higham JP. The natural history of model organisms: the rhesus macaque as a success story of the Anthropocene. eLife 2022; 11:78169. [PMID: 35801697 PMCID: PMC9345599 DOI: 10.7554/elife.78169] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Of all the non-human primate species studied by researchers, the rhesus macaque (Macaca mulatta) is likely the most widely used across biological disciplines. Rhesus macaques have thrived during the Anthropocene and now have the largest natural range of any non-human primate. They are highly social, exhibit marked genetic diversity, and display remarkable niche flexibility (which allows them to live in a range of habitats and survive on a variety of diets). These characteristics mean that rhesus macaques are well-suited for understanding the links between sociality, health and fitness, and also for investigating intra-specific variation, adaptation and other topics in evolutionary ecology.
Collapse
Affiliation(s)
- Eve B Cooper
- Department of Anthropology, New York University, New York, United States
| | | | | | - Mewa Singh
- Biopsychology Laboratory, University of Mysore, Mysuru, India
| | | | - Sunil Khatiwada
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Garbatka, Poland
| | | | - Zhou Qi Hai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, China
| | - James P Higham
- Department of Anthropology, New York University, New York, United States
| |
Collapse
|
28
|
Sawada Y, Kaneko A, Morimoto M, Suzuki J, Pai C, Nakayama S, Ageyama N, Koie H, Miyabe-Nishiwaki T. The effect of different body positions on the cardiothoracic ratios obtained by chest radiography in Japanese macaques (Macaca fuscata) AND RHESUS MACAQUES (Macaca mulatta). J Med Primatol 2022; 51:345-354. [PMID: 35808827 DOI: 10.1111/jmp.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although some studies have reported cardiac diseases in macaques, an adequate screening method for cardiac enlargement has not yet been established. This study aimed to evaluate the positioning of macaques for radiographs and establish reference intervals for the cardiothoracic ratio (CTR). MATERIALS AND METHODS We developed a device for chest radiography in the sitting position and performed chest radiography in 50 Japanese and 48 rhesus macaques to evaluate the CTR and chest cavity size. RESULTS In Japanese and rhesus macaques, the thorax height was significantly larger, the heart width was significantly smaller, and the mean CTR was significantly smaller in the sitting position than in the prone position. The reference intervals for CTR in the sitting position were 51.6 ± 4.6% and 52.2 ± 5.1% in Japanese and rhesus macaques, respectively. CONCLUSION Thoracic radiographic images obtained in a sitting position resulted in a smaller CTR and a larger thorax height, which could be useful for detecting pulmonary and cardiac abnormalities.
Collapse
Affiliation(s)
- Yuto Sawada
- Center of Human Evolution Modelling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Laboratory of Laboratory Animal Science, Azabu University, School of Veterinary Medicine, Sagamihara, Japan
| | - Akihisa Kaneko
- Center of Human Evolution Modelling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Center for the Evolutionary Origins of Human Behavior (EHUB), Kyoto University, Inuyama, Japan
| | - Mayumi Morimoto
- Center of Human Evolution Modelling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Center for the Evolutionary Origins of Human Behavior (EHUB), Kyoto University, Inuyama, Japan
| | - Juri Suzuki
- Center of Human Evolution Modelling Research, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Chungyu Pai
- College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Shunya Nakayama
- College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Hiroshi Koie
- College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Takako Miyabe-Nishiwaki
- Center of Human Evolution Modelling Research, Primate Research Institute, Kyoto University, Inuyama, Japan.,Center for the Evolutionary Origins of Human Behavior (EHUB), Kyoto University, Inuyama, Japan
| |
Collapse
|
29
|
Andirkó A, Moriano J, Vitriolo A, Kuhlwilm M, Testa G, Boeckx C. Temporal mapping of derived high-frequency gene variants supports the mosaic nature of the evolution of Homo sapiens. Sci Rep 2022; 12:9937. [PMID: 35705575 PMCID: PMC9200848 DOI: 10.1038/s41598-022-13589-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Large-scale estimations of the time of emergence of variants are essential to examine hypotheses concerning human evolution with precision. Using an open repository of genetic variant age estimations, we offer here a temporal evaluation of various evolutionarily relevant datasets, such as Homo sapiens-specific variants, high-frequency variants found in genetic windows under positive selection, introgressed variants from extinct human species, as well as putative regulatory variants specific to various brain regions. We find a recurrent bimodal distribution of high-frequency variants, but also evidence for specific enrichments of gene categories in distinct time windows, pointing to different periods of phenotypic changes, resulting in a mosaic. With a temporal classification of genetic mutations in hand, we then applied a machine learning tool to predict what genes have changed more in certain time windows, and which tissues these genes may have impacted more. Overall, we provide a fine-grained temporal mapping of derived variants in Homo sapiens that helps to illuminate the intricate evolutionary history of our species.
Collapse
Affiliation(s)
- Alejandro Andirkó
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Juan Moriano
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Alessandro Vitriolo
- University of Milan, Milan, Italy
- European Institute of Oncology (IEO), Milan, Italy
- Human Technopole, Milan, Italy
| | - Martin Kuhlwilm
- University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Giuseppe Testa
- University of Milan, Milan, Italy
- European Institute of Oncology (IEO), Milan, Italy
- Human Technopole, Milan, Italy
| | - Cedric Boeckx
- Universitat de Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Catalonia, Spain.
| |
Collapse
|
30
|
Bangari DS, Lanigan LG, Goulet F, Siso S, Bolon B. Society of Toxicologic Pathology Neuropathology Interest Group Article: Neuropathologic Findings in Nonhuman Primates Associated With Administration of Biomolecule-Based Test Articles. Toxicol Pathol 2022; 50:693-711. [PMID: 35695393 DOI: 10.1177/01926233221101314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing specificity of novel druggable targets coupled with the complexity of emerging therapeutic modalities for treating human diseases has created a growing need for nonhuman primates (NHPs) as models for translational drug discovery and nonclinical safety assessment. In particular, NHPs are critical for investigating potential unexpected/undesired on-target and off-target liabilities associated with administration of candidate biotherapeutics (nucleic acids, proteins, viral gene therapy vectors, etc.) to treat nervous system disorders. Nervous system findings unique to or overrepresented in NHPs administered biomolecule-based ("biologic") test articles include mononuclear cell infiltration in most neural tissues for all biomolecule classes as well as neuronal necrosis with glial cell proliferation in sensory ganglia for certain viral vectors. Such test article-related findings in NHPs often must be differentiated from procedural effects (e.g., local parenchymal or meningeal reactions associated with an injection site or implanted catheter to administer a test article directly into the central nervous system) or spontaneous background findings (e.g., neuronal autophagy in sensory ganglia).
Collapse
Affiliation(s)
- Dinesh S Bangari
- Global Discovery Pathology, Translational In-Vivo Models Platform, Sanofi, Cambridge, Massachusetts, USA
| | | | - Felix Goulet
- Charles River Laboratories, Senneville, Quebec, Canada
| | - Silvia Siso
- Translational Imaging and Pathology, Codiak BioSciences, Cambridge, Massachusetts, USA
| | | |
Collapse
|
31
|
Li X, Li D, Biddle KE, Portugal SS, Li MR, Santos R, Burkhardt JE, Khan NK. Age- and sex-related changes in body weights and clinical pathology analytes in cynomolgus monkeys (Macaca Fascicularis) of Mauritius origin. Vet Clin Pathol 2022; 51:356-375. [PMID: 35608195 PMCID: PMC9541124 DOI: 10.1111/vcp.13094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Background Clinical pathology and body weight information for the cynomolgus monkey in the literature is primarily derived from a small number of animals with limited age ranges, varying geographic origins, and mixed genders. Objectives This study aimed to summarize the age‐ and sex‐related changes in clinical pathology analytes and body weights in cynomolgus monkeys of Mauritian origin. Methods Pre‐study age and body weight data were reviewed in 1819 animals, and pre‐study hematologic, coagulation, and serum biochemical analytes were reviewed in 1664 animals. Results Body weights were statistically higher (P < 0.01) in males than females in all age groups (2–10 years). These measurements became prominent after 4 years of age and peaked at 7 to 8 years of age in both sexes. Sex‐related differences were noted in reticulocyte (RETIC) counts, creatinine, cholesterol, and triglyceride concentrations, and alkaline phosphatase (ALP) and gamma‐glutamyl transferase (GGT) activities. Age‐related differences were noted in RETIC and lymphocyte counts, creatinine, triglyceride, phosphorus, and globulin concentrations, and ALP and GGT activities. The youngest (2 to <3 year) age group had the fewest number of clinical pathologic analyte differences including ALP and GGT activity differences which occurred in all age groups from 2 to 10 years; they also had age‐related lower globulin concentrations. There were no age‐ or sex‐related differences in coagulation measurands. Conclusions Sexual dimorphism in body weight was apparent for all ages from 2 to 10 years of age. The only difference in clinical pathology analytes unique to the 2 to <3 years of age group were age‐related lower globulin levels.
Collapse
Affiliation(s)
- Xiantang Li
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Dingzhou Li
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Kathleen E Biddle
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Susan S Portugal
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Mark R Li
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Rosemary Santos
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - John E Burkhardt
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Nasir K Khan
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| |
Collapse
|
32
|
Andirkó A, Boeckx C. Brain region-specific effects of nearly fixed sapiens-derived alleles. BMC Genom Data 2022; 23:36. [PMID: 35546225 PMCID: PMC9097168 DOI: 10.1186/s12863-022-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
The availability of high-coverage genomes of our extinct relatives, the Neanderthals and Denisovans, and the emergence of large, tissue-specific databases of modern human genetic variation, offer the possibility of probing the effects of modern-derived alleles in specific tissues, such as the brain, and its specific regions. While previous research has explored the effects of introgressed variants in gene expression, the effects of Homo sapiens-specific gene expression variability are still understudied. Here we identify derived, Homo sapiens-specific high-frequency (≥90%) alleles that are associated with differential gene expression across 15 brain structures derived from the GTEx database. We show that regulation by these derived variants targets regions under positive selection more often than expected by chance, and that high-frequency derived alleles lie in functional categories related to transcriptional regulation. Our results highlight the role of these variants in gene regulation in specific regions like the cerebellum and pituitary.
Collapse
Affiliation(s)
- Alejandro Andirkó
- University of Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Cedric Boeckx
- University of Barcelona, Barcelona, Spain. .,University of Barcelona Institute of Complex Systems, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
33
|
Stevison LS, Bailey NP, Szpiech ZA, Novak TE, Melnick DJ, Evans BJ, Wall JD. Evolution of genes involved in the unusual genitals of the bear macaque, Macaca arctoides. Ecol Evol 2022; 12:e8897. [PMID: 35646310 PMCID: PMC9130562 DOI: 10.1002/ece3.8897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Genital divergence is thought to contribute to reproductive barriers by establishing a “lock‐and‐key" mechanism for reproductive compatibility. One such example, Macaca arctoides, the bear macaque, has compensatory changes in both male and female genital morphology as compared to close relatives. M. arctoides also has a complex evolutionary history, having extensive introgression between the fascicularis and sinica macaque species groups. Here, phylogenetic relationships were analyzed via whole‐genome sequences from five species, including M. arctoides, and two species each from the putative parental species groups. This analysis revealed ~3x more genomic regions supported placement in the sinica species group as compared to the fascicularis species group. Additionally, introgression analysis of the M. arctoides genome revealed it is a mosaic of recent polymorphisms shared with both species groups. To examine the evolution of their unique genital morphology further, the prevalence of candidate genes involved in genital morphology was compared against genome‐wide outliers in various population genetic metrics of diversity, divergence, introgression, and selection, while accounting for background variation in recombination rate. This analysis identified 67 outlier genes, including several genes that influence baculum morphology in mice, which were of interest since the bear macaque has the longest primate baculum. The mean of four of the seven population genetic metrics was statistically different in the candidate genes as compared to the rest of the genome, suggesting that genes involved in genital morphology have increased divergence and decreased diversity beyond expectations. These results highlight specific genes that may have played a role in shaping the unique genital morphology in the bear macaque.
Collapse
Affiliation(s)
- Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Alabama USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Alabama USA
| | - Zachary A Szpiech
- Department of Biological Sciences Auburn University Auburn Alabama USA.,Department of Biology Pennsylvania State University University Park Pennsylvania USA.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Alabama USA
| | - Don J Melnick
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York New York USA
| | - Ben J Evans
- Biology Department McMaster University Hamilton Ontario Canada
| | - Jeffrey D Wall
- Institute for Human Genetics University of California, San Francisco San Francisco California USA
| |
Collapse
|
34
|
Bolon B, Everitt JI. Selected Resources for Pathology Evaluation of Nonhuman Primates in Nonclinical Safety Assessment. Toxicol Pathol 2022; 50:725-732. [PMID: 35481786 DOI: 10.1177/01926233221091763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Humans and nonhuman primates (NHPs) share numerous anatomical and physiological characteristics, thereby explaining the importance of NHPs as essential animal models for translational medicine and nonclinical toxicity testing. Researchers, toxicologic pathologists, toxicologists, and regulatory reviewers must be familiar with normal and abnormal NHP biological traits when designing, performing, and interpreting data sets from NHP studies. The current compilation presents a list of essential books, journal articles, and websites that provide context to safety assessment and research scientists working with NHP models. The resources used most frequently by the authors have been briefly annotated to permit readers to rapidly ascertain their applicability to particular research endeavors. The references are aimed primarily for toxicologic pathologists working with cynomolgus and rhesus macaques and common marmosets in efficacy and safety assessment studies.
Collapse
Affiliation(s)
| | - Jeffrey I Everitt
- Duke University, Department of Pathology, Durham, North Carolina, USA
| |
Collapse
|
35
|
Min F, Xu F, Huang S, Wu R, Zhang L, Wang J. Genetic diversity of Chinese laboratory macaques based on 2b-RAD simplified genome sequencing. J Med Primatol 2022; 51:101-107. [PMID: 35165897 DOI: 10.1111/jmp.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Currently, Chinese laboratory macaques are widely used in biomedical research. Correspondingly, clarity regarding the genetic diversity of Chinese laboratory macaques is important for both vendors and users. METHODS Genome sequences of 55 laboratory macaques (40 cynomolgus macaques and 15 rhesus macaques) bred in South China were analyzed using 2b-RAD simplified genome sequencing. RESULTS A total of 115,681 single-nucleotide polymorphisms (SNPs) were found that were distributed in 21 chromosomes and an unplaced scaffold. Genetic diversity indices varied across populations and exhibited low values. The results of principal coordinate analysis (PCA) were consistent with those of the arithmetic mean (UPGMA) clustered tree and supported the structure analysis, demonstrating that the genetic differentiation in rhesus macaques was higher than that in cynomolgus macaques. Introgressive hybridization with the Chinese rhesus macaque was supported in more than 80% (32/40) of cynomolgus macaques. CONCLUSIONS Chinese laboratory macaques had relatively low genetic diversity at the genomic level, and genetic differentiation in Chinese rhesus macaques was higher than in cynomolgus macaques. The genome of cynomolgus macaques has been shaped by introgression after hybridization with the Chinese rhesus macaques.
Collapse
Affiliation(s)
- Fangui Min
- Guangdong Laboratory, Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Fengjiao Xu
- Guangdong Laboratory, Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Shuwu Huang
- Guangdong Laboratory, Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Ruike Wu
- Guangdong Laboratory, Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Lan Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Wang
- Guangdong Laboratory, Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| |
Collapse
|
36
|
Phadphon P, Kanthaswamy S, Oldt RF, Hamada Y, Malaivijitnond S. Population Structure of Macaca fascicularis aurea, and their Genetic Relationships with M. f. fascicularis and M. mulatta Determined by 868 RADseq-Derived Autosomal SNPs-A consideration for biomedical research. J Med Primatol 2022; 51:33-44. [PMID: 34825374 PMCID: PMC8849537 DOI: 10.1111/jmp.12554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND This study examined the population structure of Macaca fascicularis aurea and their genetic relationships with M. f. fascicularis and M. mulatta. METHODS The study analyzed 868 RADseq-derived SNPs from samples representing the entire distribution range of M. f. aurea, including their inter- and intraspecific hybrid zones. RESULTS The study supports a M. mulatta/Indochinese M. f. fascicularis, Sundaic M. f. fascicularis, and M. f. aurea trichotomy; M. f. aurea was genetically distinct from both forms of M. f. fascicularis and M. mulatta. Hybridization between M. f. aurea and M. f. fascicularis occurred in two directions: south-north (8°25' to 15°56') and west-east (98°28' to 99°02'). Low levels of M. mulatta introgression were also detected in M. f. aurea. CONCLUSION This study showcases a complicated scenario of genetic relationships between the M. fascicularis subspecies and between M. fascicularis and M. mulatta and underscores the importance of these taxa's population structure and genetic relationships for biomedical research.
Collapse
Affiliation(s)
- Poompat Phadphon
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sree Kanthaswamy
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, AZ, USA,California National Primate Research Center, University of California, Davis, CA, USA,Correspondence to: Suchinda Malaivijitnond, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Tel./Fax: +66-2-2185275; ; Sree Kanthaswamy, School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, AZ, USA. Tel.: (602) 543-3405;
| | - Robert F. Oldt
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, AZ, USA,Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yuzuru Hamada
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand,Correspondence to: Suchinda Malaivijitnond, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Tel./Fax: +66-2-2185275; ; Sree Kanthaswamy, School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, AZ, USA. Tel.: (602) 543-3405;
| |
Collapse
|
37
|
Bai B, Wang Y, Zhu R, Zhang Y, Wang H, Fan G, Liu X, Shi H, Niu Y, Ji W. Long- read sequencing and de novo assembly of the cynomolgus macaque genome. J Genet Genomics 2022; 49:975-978. [PMID: 35045366 DOI: 10.1016/j.jgg.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Bing Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yi Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ran Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; Translational Immunology group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China.
| |
Collapse
|
38
|
Suminda GGD, Bhandari S, Won Y, Goutam U, Kanth Pulicherla K, Son YO, Ghosh M. High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Comput Struct Biotechnol J 2022; 20:5378-5392. [PMID: 36212529 PMCID: PMC9526013 DOI: 10.1016/j.csbj.2022.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Increasing globalization, agricultural intensification, urbanization, and climatic changes have resulted in a significant recent increase in emerging infectious zoonotic diseases. Zoonotic diseases are becoming more common, so innovative, effective, and integrative research is required to better understand their transmission, ecological implications, and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS) methodologies have enormous potential for unraveling these contingencies and improving our understanding, but they are only now beginning to be realized in livestock research. This study investigates the current state of use of sequencing technologies in the detection of livestock pathogens such as bovine, dogs (Canis lupus familiaris), sheep (Ovis aries), pigs (Sus scrofa), horses (Equus caballus), chicken (Gallus gallus domesticus), and ducks (Anatidae) as well as how it can improve the monitoring and detection of zoonotic infections. We also described several high-throughput sequencing approaches for improved detection of known, unknown, and emerging infectious agents, resulting in better infectious disease diagnosis, as well as surveillance of zoonotic infectious diseases. In the coming years, the continued advancement of sequencing technologies will improve livestock research and hasten the development of various new genomic and technological studies on farm animals.
Collapse
|
39
|
Li Y, Cai Q, Dong C, Hou L, Li Y, Guo B, Zeng C, Cheng Y, Shang J, Ling X, Gong J, Xu H. Analysis of serum bone turnover markers in female cynomolgus monkeys of different ages. Front Endocrinol (Lausanne) 2022; 13:984523. [PMID: 36299457 PMCID: PMC9588968 DOI: 10.3389/fendo.2022.984523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to examine bone turnover markers, estradiol, parathyroid hormone, and 25 hydroxyvitamin D, in cynomolgus monkeys at different ages to improve our understanding of the changes in bone turnover markers throughout the life cycle of cynomolgus monkeys and to provide a basis for the establishment of a non-human primate model of osteoporosis. METHODS Total Body Bone Mineral Density and Total Body Bone Mineral Content were measured using Dual-Energy X-Ray Absorptiometry in cynomolgus monkeys at different ages. Serum bone turnover marker' levels were measured using enzyme immunoassays at each age group, and the relationship between bone turnover markers and age was assessed by Spearman rank correlation analysis to investigate the relationship between bone turnover markers and age in female cynomolgus monkeys. RESULTS Total Body Bone Mineral Density in female cynomolgus monkeys peaked at 10 years of age and then formed a plateau that was maintained until old age. Procollagen I Aminoterminal Propeptide, Bone Alkaline Phosphatase, Osteocalcin, and C-Terminal Telopeptide Of Type I Collagen peaked at 1 to 3 years of age and gradually decreased with age, leveling off by 10 years of age. Estradiol, parathyroid hormone, and 25 hydroxyvitamin D, follicle-stimulating hormone, luteinizing hormone, were not significantly different among age groups. CONCLUSION This paper provides data on trends in bone turnover markers throughout the life cycle of female cynomolgus monkeys, which are similar to human changes.
Collapse
|
40
|
Zhong T, Wei J, Wu K, Chen L, Zhao F, Pei Y, Wang Y, Zhang H, Wu Z, Huang Y, Li T, Wang L, Chen Y, Ji W, Zhang Y, Li G, Niu Y. Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age. Neuroimage 2021; 247:118799. [PMID: 34896583 DOI: 10.1016/j.neuroimage.2021.118799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/05/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022] Open
Abstract
Longitudinal brain imaging atlases with densely sampled time-points and ancillary anatomical information are of fundamental importance in studying early developmental characteristics of human and non-human primate brains during infancy, which feature extremely dynamic imaging appearance, brain shape and size. However, for non-human primates, which are highly valuable animal models for understanding human brains, the existing brain atlases are mainly developed based on adults or adolescents, denoting a notable lack of temporally densely-sampled atlases covering the dynamic early brain development. To fill this critical gap, in this paper, we construct a comprehensive set of longitudinal brain atlases and associated tissue probability maps (gray matter, white matter, and cerebrospinal fluid) with totally 12 time-points from birth to 4 years of age (i.e., 1, 2, 3, 4, 5, 6, 9, 12, 18, 24, 36, and 48 months of age) based on 175 longitudinal structural MRI scans from 39 typically-developing cynomolgus macaques, by leveraging state-of-the-art computational techniques tailored for early developing brains. Furthermore, to facilitate region-based analysis using our atlases, we also provide two popular hierarchy parcellations, i.e., cortical hierarchy maps (6 levels) and subcortical hierarchy maps (6 levels), on our longitudinal macaque brain atlases. These early developing atlases, which have the densest time-points during infancy (to the best of our knowledge), will greatly facilitate the studies of macaque brain development.
Collapse
Affiliation(s)
- Tao Zhong
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA; Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Kunhua Wu
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Liangjun Chen
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Fenqiang Zhao
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Yuchen Pei
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Ya Wang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Hongjiang Zhang
- Department of MRI, the First People's Hospital of Yunnan Province, Kunming, China
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Ying Huang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Tengfei Li
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina Chapel Hill, USA.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China.
| |
Collapse
|
41
|
Tang DH, Wang CY, Huang X, Yi HK, Li ZL, Ma KL, Ye YS, Zhang JW. Inosine induces acute hyperuricaemia in rhesus monkey ( Macaca mulatta) as a potential disease animal model. PHARMACEUTICAL BIOLOGY 2021; 59:175-182. [PMID: 33715593 PMCID: PMC7971274 DOI: 10.1080/13880209.2020.1871373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 11/10/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
CONTEXT The uric acid metabolism pathway is more similar in primates and humans than in rodents. However, there are no reports of using primates to establish animal models of hyperuricaemia (HUA). OBJECTIVES To establish an animal model highly related to HUA in humans. MATERIALS AND METHODS Inosine (75, 100 and 200 mg/kg) was intraperitoneally administered to adult male rhesus monkeys (n = 5/group). Blood samples were collected over 8 h, and serum uric acid (SUA) level was determined using commercial assay kits. XO and PNP expression in the liver and URAT1, OAT4 and ABCG2 expression in the kidneys were examined by qPCR and Western blotting to assess the effects of inosine on purine and uric acid metabolism. The validity of the acute HUA model was assessed using ulodesine, allopurinol and febuxostat. RESULTS Inosine (200 mg/kg) effectively increased the SUA level in rhesus monkeys from 51.77 ± 14.48 at 0 h to 178.32 ± 14.47 μmol/L within 30 min and to peak levels (201.41 ± 42.73 μmol/L) at 1 h. PNP mRNA level was increased, whereas XO mRNA and protein levels in the liver were decreased by the inosine group compared with those in the control group. No changes in mRNA and protein levels of the renal uric acid transporter were observed. Ulodesine, allopurinol and febuxostat eliminated the inosine-induced elevation in SUA in tested monkeys. CONCLUSIONS An acute HUA animal model with high reproducibility was induced; it can be applied to evaluate new anti-HUA drugs in vivo and explore the disease pathogenesis.
Collapse
Affiliation(s)
- Dong-hong Tang
- Medical Primate Research Center of China, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
| | - Chen-yun Wang
- Medical Primate Research Center of China, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
| | - Xi Huang
- KPC Pharmaceuticals Inc., Kunming, China
| | - Hong-kun Yi
- Medical Primate Research Center of China, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
| | - Zhe-li Li
- Medical Primate Research Center of China, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
| | - Kai-li Ma
- Medical Primate Research Center of China, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
| | - You-song Ye
- Medical Primate Research Center of China, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, China
| | | |
Collapse
|
42
|
Huang L, Ni J, Duncan T, Song Z, Johnson TS. Development of a unilateral ureteral obstruction model in cynomolgus monkeys. Animal Model Exp Med 2021; 4:359-368. [PMID: 34977487 PMCID: PMC8690991 DOI: 10.1002/ame2.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Chronic kidney disease (CKD) has a high global prevalence and large unmet need. Central to developing new CKD therapies are in vivo models in CKD. However, next-generation antibody, protein, and gene therapies are highly specific, meaning some do not cross-react with rodent targets. This complicates preclinical development, as established in vivo rodent models cannot be utilized unless tool therapeutics are also developed. Tool compounds can be difficult to develop and, if available, typically have different epitopes, sequences, and/or altered affinity, making it unclear how efficacious the lead therapeutic may be, or what dosing regimen to investigate. To address this, we aimed to develop a nonhuman primate model of CKD. Methods In vivo rodent unilateral ureteral obstruction (UUO) models kidney fibrosis and is commonly used due to its rapidity, consistency, and ease. We describe translation of this model to the cynomolgus monkey, specifically optimizing the model duration to allow adequate time for assessment of novel therapeutics prior to the fibrotic plateau. Results We demonstrated that disease developed more slowly in cynomolgus monkeys than in rodents post-UUO, with advanced fibrosis developing by 6 weeks. The tubulointerstitial fibrosis in cynomolgus monkeys was more consistent with human obstructive disease than in rodents, having a more aggressive tubular basement expansion and a higher fibroblast infiltration. The fibrosis was also associated with increased transglutaminase activity, consistent with that seen in patients with CKD. Conclusion This cynomolgus monkey UUO model can be used to test potential human-specific therapeutics in kidney fibrosis.
Collapse
Affiliation(s)
| | - Jia Ni
- Research and DevelopmentPrisys BiotechnologiesPudongChina
- Present address:
Haisco Pharmaceutical Group Co., LtdChengduChina
| | | | - Zhizhan Song
- Research and DevelopmentPrisys BiotechnologiesPudongChina
| | - Timothy S. Johnson
- Immunology Therapeutic AreaUCB PharmaSloughUK
- Present address:
Experimental Renal Medicine, Oncology & Human Metabolism, School of MedicineUniversity of SheffieldSheffieldUK
| |
Collapse
|
43
|
Zhong D, Chen W, Xia Z, Hu R, Qi Y, Zhou B, Li W, He J, Wang Z, Zhao Z, Ding D, Tian M, Tang BZ, Zhou M. Aggregation-induced emission luminogens for image-guided surgery in non-human primates. Nat Commun 2021; 12:6485. [PMID: 34759280 PMCID: PMC9632329 DOI: 10.1038/s41467-021-26417-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
During the past two decades, aggregation-induced emission luminogens (AIEgens) have been intensively exploited for biological and biomedical applications. Although a series of investigations have been performed in non-primate animal models, there is few pilot studies in non-human primate animal models, strongly hindering the clinical translation of AIE luminogens (AIEgens). Herein, we present a systemic and multifaceted demonstration of an optical imaging-guided surgical operation via AIEgens from small animals (e.g., mice and rabbits) to rhesus macaque, the typical non-human primate animal model. Specifically, the folic conjugated-AIE luminogen (folic-AIEgen) generates strong and stable fluorescence for the detection and surgical excision of sentinel lymph nodes (SLNs). Moreover, with the superior tumor/normal tissue ratio and rapid tumor accumulation, folic-AIEgen successfully images and guides the precise resection of invisible cancerous metastases. Taken together, the presented strategies of folic-AIEgen based fluorescence intraoperative imaging and visualization-guided surgery show potential for clinical applications. Most applications of aggregation-induced emission luminogens (AIEgens) have been limited in small animal models. Here, the authors show the versatility of AIEgens-based imaging-guided surgical operation from small animals to rhesus macaque, in support of the clinical translation of AIEgens.
Collapse
Affiliation(s)
- Danni Zhong
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 320000, China.,Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, 94305, USA
| | - Zhiming Xia
- Department of Nuclear Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Rong Hu
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Bo Zhou
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wanlin Li
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhiming Wang
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mei Tian
- Department of Nuclear Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ben Zhong Tang
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China. .,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Neuroscienceand Division of Biomedical Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China.
| | - Min Zhou
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. .,Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China. .,Cancer Center, Zhejiang University, Hangzhou, 310009, China. .,State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Choi KE, Anh VTQ, Yun C, Kim YJ, Jung H, Eom H, Shin D, Kim SW. Normative Data of Ocular Biometry, Optical Coherence Tomography, and Electrophysiology Conducted for Cynomolgus Macaque Monkeys. Transl Vis Sci Technol 2021; 10:14. [PMID: 34757392 PMCID: PMC8590181 DOI: 10.1167/tvst.10.13.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose To present normative data of optical coherence tomography (OCT) parameters, electrophysiological tests, and optical biometry conducted for cynomolgus monkeys. Methods Multimodal examinations were performed for 11 adult cynomolgus monkeys (Macaca fascicularis, weighing 2.6–7.5 kg, aged 45–99 months). A-scan biometry was performed to measure ocular biometry. OCT images were obtained at 30° and 55°. After the pupils were fully dilated, electroretinogram (ERG) and visual evoked potentials (VEP) were recorded with a commercial system using a contact lens electrode. Results All cynomolgus monkeys were males. The mean axial length was 17.92 ± 0.34 mm. The central total retinal layer (TRL) and subfoveal choroidal thicknesses were 286.27 ± 18.43 and 234.73 ± 53.93 µm, respectively. The TRL and nerve fiber layer thickness was greater in the nasal than in other quadrants in the Early Treatment Diabetic Retinopathy Study circle in the macula. Peripheral TRL and ganglion cell complex thickness on the temporal outside the vascular arcades were lower than on the other sides. The peak latency of a-wave and b-wave in scotopic and photopic 3.0 ERG was 14.78 ± 1.00 and 32.89 ± 1.81 ms, and 12.91 ± 1.03 and 31.79 ± 2.16 ms, respectively. The n2 wave peak latency of VEP was 15.21 ± 8.07 ms. The a-wave peak latency of ERG and the n2 wave peak latency of VEP negatively correlated with age. Conclusions The normative ocular biometric, electrophysiological test, and OCT parametric data of cynomolgus monkeys could serve as reference values for further preclinical studies. Translational Relevance We present normative data of cynomolgus monkeys’ eyes, an adequate animal model for preclinical studies.
Collapse
Affiliation(s)
- Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Vu Thi Que Anh
- Department of Ophthalmology, Hanoi Medical University, Hanoi, Vietnam
| | - Cheolmin Yun
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Young-Jin Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, Korea
| | - Hachul Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, Korea
| | - Heejong Eom
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, Korea
| | - Dongkwan Shin
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Wang S, Jaggi U, Yu J, Ghiasi H. Blocking HSV-1 glycoprotein K binding to signal peptide peptidase reduces virus infectivity in vitro and in vivo. PLoS Pathog 2021; 17:e1009848. [PMID: 34352042 PMCID: PMC8370620 DOI: 10.1371/journal.ppat.1009848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/17/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
HSV glycoprotein K (gK) is an essential herpes protein that contributes to enhancement of eye disease. We previously reported that gK binds to signal peptide peptidase (SPP) and that depletion of SPP reduces HSV-1 infectivity in vivo. To determine the therapeutic potential of blocking gK binding to SPP on virus infectivity and pathogenicity, we mapped the gK binding site for SPP to a 15mer peptide within the amino-terminus of gK. This 15mer peptide reduced infectivity of three different virus strains in vitro as determined by plaque assay, FACS, and RT-PCR. Similarly, the 15mer peptide reduced ocular virus replication in both BALB/c and C57BL/6 mice and also reduced levels of latency and exhaustion markers in infected mice when compared with control treated mice. Addition of the gK-15mer peptide also increased the survival of infected mice when compared with control mice. These results suggest that blocking gK binding to SPP using gK peptide may have therapeutic potential in treating HSV-1-associated infection. Signal peptide peptidase (SPP) and HSV-1 glycoprotein K (gK) are essential genes in the host and virus, respectively. SPP and gK genes are both highly conserved. Previously we reported that gK binding to SPP is important for virus infectivity in vitro and in vivo. In this study we have identified the gK binding site to SPP and have shown that a gK peptide that blocks gK binding to SPP can block HSV-1 infectivity in vitro and in vivo using different strains of virus and mice. Thus, the ability of this peptide to block gK binding to SPP may be a useful tool to control HSV-1-induced eye disease in patients with herpes stromal keratitis (HSK).
Collapse
Affiliation(s)
- Shaohui Wang
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Jayakumar V, Nishimura O, Kadota M, Hirose N, Sano H, Murakawa Y, Yamamoto Y, Nakaya M, Tsukiyama T, Seita Y, Nakamura S, Kawai J, Sasaki E, Ema M, Kuraku S, Kawaji H, Sakakibara Y. Chromosomal-scale de novo genome assemblies of Cynomolgus Macaque and Common Marmoset. Sci Data 2021; 8:159. [PMID: 34183680 PMCID: PMC8239027 DOI: 10.1038/s41597-021-00935-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Cynomolgus macaque (Macaca fascicularis) and common marmoset (Callithrix jacchus) have been widely used in human biomedical research. Long-standing primate genome assemblies used the human genome as a reference for ordering and orienting the assembled fragments into chromosomes. Here we performed de novo genome assembly of these two species without any human genome-based bias observed in the genome assemblies released earlier. We assembled PacBio long reads, and the resultant contigs were scaffolded with Hi-C data, which were further refined based on Hi-C contact maps and alternate de novo assemblies. The assemblies achieved scaffold N50 lengths of 149 Mb and 137 Mb for cynomolgus macaque and common marmoset, respectively. The high fidelity of our assembly is also ascertained by BAC-end concordance in common marmoset. Our assembly of cynomolgus macaque outperformed all the available assemblies of this species in terms of contiguity. The chromosome-scale genome assemblies produced in this study are valuable resources for non-human primate models and provide an important baseline in human biomedical research.
Collapse
Affiliation(s)
- Vasanthan Jayakumar
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Minatojimaminami-machi 2-2-3, Kobe, Hyogo, 650-0047, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Minatojimaminami-machi 2-2-3, Kobe, Hyogo, 650-0047, Japan
| | - Naoki Hirose
- RIKEN Center for Integrative Medical Science Preventive Medicine and Applied Genomics Unit, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiromi Sano
- RIKEN Center for Integrative Medical Science Preventive Medicine and Applied Genomics Unit, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN Center for Integrative Medical Sciences RIKEN-IFOM Joint Laboratory for Cancer Genomics, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences RIKEN-IFOM Joint Laboratory for Cancer Genomics, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Yumiko Yamamoto
- RIKEN Center for Integrative Medical Sciences Laboratory for Comprehensive Genomic Analysis, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masataka Nakaya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Shinichiro Nakamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Jun Kawai
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, 3-25-12, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, 520-2192, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Minatojimaminami-machi 2-2-3, Kobe, Hyogo, 650-0047, Japan
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Science Preventive Medicine and Applied Genomics Unit, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
47
|
Song Y, Jiang C, Li KH, Li J, Qiu H, Price M, Fan ZX, Li J. Genome-wide analysis reveals signatures of complex introgressive gene flow in macaques (genus Macaca). Zool Res 2021; 42:433-449. [PMID: 34114757 PMCID: PMC8317189 DOI: 10.24272/j.issn.2095-8137.2021.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genus Macaca serves as an ideal research model for speciation and introgressive gene flow due to its short period of diversification (about five million years ago) and rapid radiation of constituent species. To understand evolutionary gene flow in macaques, we sequenced four whole genomes (two M. arctoides and two M. thibetana) and combined them with publicly available macaque genome data for genome-wide analyses. We analyzed 14 individuals from nine Macaca species covering all Asian macaque species groups and detected extensive gene flow signals, with the strongest signals between the fascicularis and silenus species groups. Notably, we detected bidirectional gene flow between M. fascicularis and M. nemestrina. The estimated proportion of the genome inherited via gene flow between the two species was 6.19%. However, the introgression signals found among studied island species, such as Sulawesi macaques and M. fuscata, and other species were largely attributed to the genomic similarity of closely related species or ancestral introgression. Furthermore, gene flow signals varied in individuals of the same species (M. arctoides, M. fascicularis, M. mulatta, M. nemestrina and M. thibetana), suggesting very recent gene flow after the populations split. Pairwise sequentially Markovian coalescence (PSMC) analysis showed all macaques experienced a bottleneck five million years ago, after which different species exhibited different fluctuations in demographic history trajectories, implying they have experienced complicated environmental variation and climate change. These results should help improve our understanding of the complicated evolutionary history of macaques, particularly introgressive gene flow.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Cong Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kun-Hua Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hong Qiu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Megan Price
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhen-Xin Fan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.,Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China. E-mail:
| |
Collapse
|
48
|
der Wel AVV, Hofman SO, Kocken CHM. Isolation of GFP-expressing Malarial Hypnozoites by Flow Cytometry Cell Sorting. Bio Protoc 2021; 11:e4006. [PMID: 34124306 DOI: 10.21769/bioprotoc.4006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 11/02/2022] Open
Abstract
Hypnozoites are dormant liver-stage parasites unique to relapsing malarial species, including the important human pathogen Plasmodium vivax, and pose a barrier to the elimination of malaria. Little is known regarding the biology of these stages, largely due to their inaccessible location. Hypnozoites can be cultured in vitro but these cultures always consist of a mixture of hepatocytes, developing forms, and hypnozoites. Here, using a GFP-expressing line of the hypnozoite model parasite Plasmodium cynomolgi, we describe a protocol for the FACS-based isolation of malarial hypnozoites. The purified hypnozoites can be used for a range of '-omics' studies to dissect the biology of this cryptic stage of the malarial life cycle.
Collapse
Affiliation(s)
| | - Sam O Hofman
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
49
|
Genetic variation in the Mauritian cynomolgus macaque population reflects variation in the human population. Gene 2021; 787:145648. [PMID: 33848572 DOI: 10.1016/j.gene.2021.145648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
The cynomolgus macaque is an important species for preclinical research, however the extent of genetic variation in this population and its similarity to the human population is not well understood. Exome sequencing was conducted for 101 cynomolgus macaques to characterize genetic variation. The variant distribution frequency was 7.81 variants per kilobase across the sequenced regions, with a total of 2,770,009 single nucleotide variants identified from 2,996,041 loci. A large portion (85.6%) had minor allele frequencies greater than 5%. Enriched pathways for genes with high genetic diversity (≥10 variants per kilobase) were those involving signaling peptides and immune response. Compared to human, the variant distribution frequency and nucleotide diversity in the macaque exome was approximately 4 times greater; however the ratio of non-synonymous to synonymous variants was similar (0.735 and 0.831, respectively). Understanding genetic variability in cynomolgus macaques will enable better interpretation and human translation of phenotypic variability in this species.
Collapse
|
50
|
Lopez-Cruzan M, Walter NA, Sanchez JJ, Ginsburg BC, Koek W, Jimenez VA, Grant KA, Javors MA. Phosphatidylethanol in whole blood of rhesus monkeys correlates with ethanol consumption. Alcohol Clin Exp Res 2021; 45:689-696. [PMID: 33616217 PMCID: PMC8150885 DOI: 10.1111/acer.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/12/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphatidylethanol (PEth) homologs are ethanol metabolites used to identify and monitor alcohol drinking in humans. In this study, we measured levels of the 2 most abundant homologs, PEth 16:0/18:1 and PEth 16:0/18:2, in whole blood samples from rhesus macaque monkeys that drank ethanol daily ad libitum to assess the relationship between PEth levels and recent ethanol exposure in this animal model. METHODS Blood samples were obtained from The Monkey Alcohol Tissue Research Resource. The monkeys were first induced to consume 4% (w/v) ethanol in water from a panel attached to their home cage. Then, monkeys were allowed to drink ethanol and water ad libitum 22 h daily for 12 months and the daily amount of ethanol each monkey consumed was measured. Whole, uncoagulated blood was collected from each animal at the end of the entire experimental procedure. PEth 16:0/18:1 and PEth 16:0/18:2 levels were analyzed by HPLC with tandem mass spectrometry, and the ethanol consumed during the preceding 14 days was measured. Combined PEth was the sum of the concentrations of both homologs. RESULTS Our results show that (1) PEth accumulates in the blood of rhesus monkeys after ethanol consumption; (2) PEth homolog levels were correlated with the daily average ethanol intake during the 14-day period immediately preceding blood collection; (3) the application of established human PEth 16:0/18:1 cutoff concentrations indicative of light social or no ethanol consumption (<20 ng/ml), moderate ethanol consumption (≥ 20 and < 200 ng/ml) and heavy ethanol consumption (≥ 200 ng/ml) predicted significantly different ethanol intake in these animals. PEth homologs were not detected in ethanol-naïve controls. CONCLUSIONS This study confirms that PEth is a sensitive biomarker for ethanol consumption in rhesus macaque monkeys. This nonhuman primate model may prove useful in evaluating sources of variability previously shown to exist between ethanol consumption and PEth homolog levels among humans.
Collapse
Affiliation(s)
- Marisa Lopez-Cruzan
- Department of Psychiatry and Behavioral Sciences,
University of Texas Health Science Center at San Antonio, Texas
| | - Nicole A.R. Walter
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jesus J. Sanchez
- Department of Psychiatry and Behavioral Sciences,
University of Texas Health Science Center at San Antonio, Texas
| | - Brett C. Ginsburg
- Department of Psychiatry and Behavioral Sciences,
University of Texas Health Science Center at San Antonio, Texas
| | - Wouter Koek
- Department of Psychiatry and Behavioral Sciences,
University of Texas Health Science Center at San Antonio, Texas
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas
| | - Vanessa A. Jimenez
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Kathleen A. Grant
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
- Department of Behavioral Neuroscience, Oregon Health &
Science University, Portland, Oregon
| | - Martin A. Javors
- Department of Psychiatry and Behavioral Sciences,
University of Texas Health Science Center at San Antonio, Texas
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas
| |
Collapse
|