1
|
Niu B, Lee B, Chen W, Alberto C, Betancourt Moreira K, Compton P, Homan K, Pinckney J, Zhu Y, Vendel M, Wetterhorn K, Walrond S, Santha E, Horowitz A, Zaubi N, Johnson J. End-To-End Automated Intact Protein Mass Spectrometry for High-Throughput Screening and Characterization of Bispecific and Multispecific Antibodies. Anal Chem 2024; 96:18287-18300. [PMID: 39479787 DOI: 10.1021/acs.analchem.4c04833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Bispecific antibodies (bsAbs) and multispecific antibodies (msAbs) represent a promising frontier in therapeutic antibody development, offering unique capabilities not achievable with traditional monoclonal antibodies. Despite their potential, significant challenges remain due to their increased molecular complexity. One prominent challenge is the correct assembly of light and heavy chains, as improper pairing leads to mispaired or incompletely assembled species that lack therapeutic efficacy and possess undesired properties, impairing the developability, manufacturability, and safety. There is a critical need for rapid, sensitive analytical tools to monitor and control these undesired species and ensure the quality assessment of bsAbs and msAbs. To address this need, we present a novel high-throughput, format-agnostic intact mass workflow that significantly enhances the efficiency of detecting and quantifying biotherapeutic products and related impurities. This workflow integrates automated sample preparation, novel high-resolution rapid mass detection powered by SampleStream-MS, and an advanced data analysis pipeline. It offers increased throughput and data quality while substantially reducing analysis turnover time and labor. This was demonstrated in a pilot program where ∼800 multispecific antibodies were processed in 10 working days. The article details the evaluation and validation of our method, demonstrating its repeatability and intermediate precision in terms of measurement accuracy and relative quantification of various product-related species. We underscore the transformative potential of this end-to-end high-throughput workflow in expediting bispecific and multispecific antibody discovery, optimizing production processes, and ensuring high-quality development and manufacturing for therapeutic antibodies.
Collapse
Affiliation(s)
- Ben Niu
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Benjamin Lee
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Wen Chen
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Cristian Alberto
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Karen Betancourt Moreira
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Philip Compton
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Kristoff Homan
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Jason Pinckney
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Yaxing Zhu
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Michelle Vendel
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Karl Wetterhorn
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Shana Walrond
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Esrath Santha
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Amanda Horowitz
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Nicole Zaubi
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| | - Jeffrey Johnson
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California 92121, United States
| |
Collapse
|
2
|
Gu Y, Zhao Q. Clinical Progresses and Challenges of Bispecific Antibodies for the Treatment of Solid Tumors. Mol Diagn Ther 2024; 28:669-702. [PMID: 39172329 PMCID: PMC11512917 DOI: 10.1007/s40291-024-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
In recent years, bispecific antibodies (BsAbs) have emerged as a promising therapeutic strategy against tumors. BsAbs can recruit and activate immune cells, block multiple signaling pathways, and deliver therapeutic payloads directly to tumor sites. This review provides a comprehensive overview of the recent advances in the development and clinical application of BsAbs for the treatment of solid tumors. We discuss the different formats, the unique mechanisms of action, and the clinical outcomes of the most advanced BsAbs in solid tumor therapy. Several studies have also analyzed the clinical progress of bispecific antibodies. However, this review distinguishes itself by exploring the challenges associated with bispecific antibodies and proposing potential solutions. As the field progresses, BsAbs hold promise to redefine cancer treatment paradigms and offer new hope to patients with solid tumors.
Collapse
Affiliation(s)
- Yuheng Gu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
3
|
Vasic V, Dickopf S, Spranger N, Rosenberger RS, Fischer M, Mayer K, Larraillet V, Bates JA, Maier V, Sela T, Nussbaum B, Duerr H, Dengl S, Brinkmann U. Generation of binder-format-payload conjugate-matrices by antibody chain-exchange. Nat Commun 2024; 15:9406. [PMID: 39477939 PMCID: PMC11525586 DOI: 10.1038/s41467-024-53730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The generation of antibody-drug conjugates with optimal functionality depends on many parameters. These include binder epitope, antibody format, linker composition, conjugation site(s), drug-to-antibody ratio, and conjugation method. The production of matrices that cover all possible parameters is a major challenge in identifying optimal antibody-drug conjugates. To address this bottleneck, we adapted our Format Chain Exchange technology (FORCE), originally established for bispecific antibodies, toward the generation of binder-format-payload matrices (pair-FORCE). Antibody derivatives with exchange-enabled Fc-heterodimers are combined with payload-conjugated Fc donors, and subsequent chain-exchange transfers payloads to antibody derivatives in different formats. The resulting binder-format-conjugate matrices can be generated with cytotoxic payloads, dyes, haptens, and large molecules, resulting in versatile tools for ADC screening campaigns. We show the relevance of pair-FORCE for identifying optimal HER2-targeting antibody-drug conjugates. Analysis of this matrix reveals that the notion of format-defines-function applies not only to bispecific antibodies, but also to antibody-drug conjugates.
Collapse
Affiliation(s)
- Vedran Vasic
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
- Veraxa Biotech, Heidelberg, Germany
| | - Nadine Spranger
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
- Institute of Molecular Immunology, School of Medicine and Health, Technical University Munich (TUM), Munich, Germany
| | - Rose-Sophie Rosenberger
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Michaela Fischer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Vincent Larraillet
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Jack A Bates
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Verena Maier
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Tatjana Sela
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Bianca Nussbaum
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Harald Duerr
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Dengl
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
4
|
Zhan L, Xie L, Lv F, Huang J, Chen ZJ, Wang L, Chen Z. Development of imaged capillary isoelectric focusing as a platform mispairing byproduct testing method for asymmetric WuXiBody-based bispecific antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124357. [PMID: 39504813 DOI: 10.1016/j.jchromb.2024.124357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
This study explores the application of imaged capillary isoelectric focusing (icIEF) to distinguish and quantify mispairing byproducts in asymmetric WuXiBody-based bispecific antibodies (AsWXbsAbs). Bispecific antibody (BsAb), developed using Knobs-into-Holes (KiH) technology, often result in byproducts such as knob-knob (KK) and hole-hole (HH) homodimers, which share similar sizes with the target BsAb, complicating their separation by traditional methods like size exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Our approach leverages the unique pI differences introduced by substituting the CH1/CL domain with the T cell receptor (TCR) constant domain in AsWXbsAbs. This modification enables icIEF to effectively differentiate between the KK and HH homodimers and the target BsAb. Through the construction and expression of heavy and light chain variants, we validated that the experimental pI values aligned with theoretical predictions, confirming icIEF's capability in distinguishing these entities. Enrichment of in-process K-related and H-related species was achieved, allowing for high-purity samples necessary for icIEF method development. The method was qualified and showed good specificity and linearity, with a quantitation limit of 4 % for K-related species (R2 = 0.9919) and 1 % for H-related species (R2 = 0.9805). This method was used effectively as an in-process test and release assay, proving its simple and quick utility in multiple AsWXbsAbs projects.
Collapse
Affiliation(s)
- Liping Zhan
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Luping Xie
- D3 Bio, Inc., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, China
| | - Fujiao Lv
- WuXi Biologics, 1951 West Huifeng Road, Fengxian District, Shanghai 201401, China
| | - Jincui Huang
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhi Jian Chen
- D3 Bio, Inc., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, China
| | - Li Wang
- WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| | - Zhiqiang Chen
- D3 Bio, Inc., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, China.
| |
Collapse
|
5
|
Bang I, Hattori T, Leloup N, Corrado A, Nyamaa A, Koide A, Geles K, Buck E, Koide S. Selective targeting of oncogenic hotspot mutations of the HER2 extracellular domain. Nat Chem Biol 2024:10.1038/s41589-024-01751-w. [PMID: 39438724 DOI: 10.1038/s41589-024-01751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Oncogenic mutations in the extracellular domain (ECD) of cell-surface receptors could serve as tumor-specific antigens that are accessible to antibody therapeutics. Such mutations have been identified in receptor tyrosine kinases including HER2. However, it is challenging to selectively target a point mutant, while sparing the wild-type protein. Here we developed antibodies selective to HER2 S310F and S310Y, the two most common oncogenic mutations in the HER2 ECD, via combinatorial library screening and structure-guided design. Cryogenic-electron microscopy structures of the HER2 S310F homodimer and an antibody bound to HER2 S310F revealed that these antibodies recognize the mutations in a manner that mimics the dimerization arm of HER2 and thus inhibit HER2 dimerization. These antibodies as T cell engagers selectively killed a HER2 S310F-driven cancer cell line in vitro, and in vivo as a xenograft. These results validate HER2 ECD mutations as actionable therapeutic targets and offer promising candidates toward clinical development.
Collapse
Affiliation(s)
- Injin Bang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nadia Leloup
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Alexis Corrado
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Atekana Nyamaa
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Division of Hematology Oncology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Geles
- Black Diamond Therapeutics, New York, NY, USA
| | | | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Yoshida J, Kato Y, Isogawa A, Tanaka Y, Kumagai I, Asano R, Nakanishi T, Makabe K. Construction of bispecific antibodies by specific pairing between the heavy chain and the light chain using removable SpyCatcher/SnoopCatcher units. J Biol Eng 2024; 18:57. [PMID: 39402666 PMCID: PMC11476941 DOI: 10.1186/s13036-024-00454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
During the production of bispecific antibodies (bsAbs), nonspecific pairing results in low yields of target bsAb molecules, an issue known as the "mispairing problem." Several antibody engineering techniques have been developed to overcome mispairing issues. Here, we introduce "bsAb by external pairing and excision" (BAPE), a novel chain pairing method that induces specific chain pairing by fusing external SpyCatcher/Tag and SnoopCatcher/Tag units. These tags are then removed via protease cleavage. In this study, we applied this method to force the correct pairings of heavy and light chains while the heavy-chain pairing was achieved by the Knobs-into-Holes mutation. We then confirmed the formation of interchain bridges with covalent isopeptide bonds. Both anti-CD3/anti-Her2 and anti-CD3/anti-EGFR bsAbs displayed satisfactory target binding activities and in vitro cell-killing activity with activated T-cells.
Collapse
Affiliation(s)
- Jyunna Yoshida
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuki Kato
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ai Isogawa
- Department of Chemistry and Bioengineering, Division of Science and Engineering for Materials, Chemistry and Biology, Graduate School of Engineering, Osaka Metropolitan University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Takeshi Nakanishi
- Department of Chemistry and Bioengineering, Division of Science and Engineering for Materials, Chemistry and Biology, Graduate School of Engineering, Osaka Metropolitan University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
7
|
Misasi J, Wei RR, Wang L, Pegu A, Wei CJ, Oloniniyi OK, Zhou T, Moliva JI, Zhao B, Choe M, Yang ES, Zhang Y, Boruszczak M, Chen M, Leung K, Li J, Yang ZY, Andersen H, Carlton K, Godbole S, Harris DR, Henry AR, Ivleva VB, Lei QP, Liu C, Longobardi L, Merriam JS, Nase D, Olia AS, Pessaint L, Porto M, Shi W, Wallace SM, Wolff JJ, Douek DC, Suthar MS, Gall JG, Koup RA, Kwong PD, Mascola JR, Nabel GJ, Sullivan NJ. A multispecific antibody against SARS-CoV-2 prevents immune escape in vitro and confers prophylactic protection in vivo. Sci Transl Med 2024; 16:eado9026. [PMID: 39383243 DOI: 10.1126/scitranslmed.ado9026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies. Here, we describe multispecific antibodies, including a trivalent trispecific antibody that potently neutralized diverse SARS-CoV-2 variants and prevented virus escape more effectively than single antibodies or mixtures of the parental antibodies. Despite being generated before the appearance of Omicron, this trispecific antibody neutralized all major Omicron variants through BA.4/BA.5 at nanomolar concentrations. Negative stain electron microscopy suggested that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated binding across more than one spike protein. Moreover, a tetravalent trispecific antibody containing the same variable regions as the trivalent trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2, and BA.5 challenge, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. These results demonstrated that multispecific antibodies have the potential to provide broad SARS-CoV-2 coverage, decrease the likelihood of escape, simplify treatment, and provide a strategy for antibody therapies that could help eliminate pandemic spread for this and other pathogens.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronnie R Wei
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chih-Jen Wei
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Olamide K Oloniniyi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marika Boruszczak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan Li
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Zhi-Yong Yang
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | | | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vera B Ivleva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Q Paula Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lindsay Longobardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jeremy J Wolff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason G Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary J Nabel
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Whitehead CA, Wines BD, Davies AM, McDonnell JM, Trist HM, Esparon SE, Hogarth PM. Stellabody: A novel hexamer-promoting mutation for improved IgG potency. Immunol Rev 2024. [PMID: 39364646 DOI: 10.1111/imr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Advances in antibody engineering are being directed at the development of next generation immunotherapeutics with improved potency. Hexamerisation of IgG is a normal physiological aspect of IgG biology and recently described mutations that facilitate this process have a substantial impact upon monoclonal antibody behavior resulting in the elicitation of dramatically enhanced complement-dependent cytotoxicity, Fc receptor function, and enhanced antigen binding effects, such as targeted receptor agonism or microbe neutralization. Whereas the discovery of IgG hexamerisation enhancing mutations has largely focused on residues with exposure at the surface of the Fc-Fc and CH2-CH3 interfaces, our unique approach is the engineering of the mostly buried residue H429 in the CH3 domain. Selective substitution at position 429 forms the basis of Stellabody technology, where the choice of amino acid results in distinct hexamerisation outcomes. H429F results in monomeric IgG that hexamerises after target binding, so called "on-target" hexamerisation, while the H429Y mutant forms pH-sensitive hexamers in-solution prior to antigen binding. Moreover, Stellabody technologies are broadly applicable across the family of antibody-based biologic therapeutics, including conventional mAbs, bispecific mAbs, and Ig-like biologics such as Fc-fusions, with applications in diverse diseases.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anna M Davies
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, London, UK
| | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, London, UK
| | - Halina M Trist
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Sandra E Esparon
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Vaur V, Koutsopetras I, Erb S, Jackowska B, Benazza R, Cahuzac H, Detappe A, Hernandez-Alba O, Cianférani S, Scott CJ, Chaubet G. Chemical Production of Cytotoxic Bispecific Antibodies Using the Ugi Multicomponent Reaction. Chembiochem 2024; 25:e202400170. [PMID: 38713134 DOI: 10.1002/cbic.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Bispecific antibodies (bsAbs) have recently emerged as a promising platform for the treatment of several conditions, most importantly cancer. Based on the combination of two different antigen-binding motifs in a single macromolecule; bsAbs can either display the combined characteristics of their parent antibodies, or new therapeutic features, inaccessible by the sole combination of two distinct antibodies. While bsAbs are traditionally produced by molecular biology techniques, the chemical development of bsAbs holds great promises and strategies have just begun to surface. In this context, we took advantage of a chemical strategy based on the use of the Ugi reaction for the site-selective conjugation of whole antibodies and coupled the resulting conjugates in a bioorthogonal manner with Fab fragments, derived from various antibodies. We thus managed to produce five different bsAbs with 2 : 1 valency, with yields ranging from 20 % to 48 %, and showed that the affinity of the parent antibody was preserved in all bsAbs. We further demonstrated the interest of our strategy by producing two other bsAbs behaving as cytotoxic T cell engagers with IC50 values in the picomolar range in vitro.
Collapse
Affiliation(s)
- Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Ilias Koutsopetras
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Bianka Jackowska
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, U.K
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Héloïse Cahuzac
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | | | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Christopher J Scott
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, U.K
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| |
Collapse
|
10
|
Li M, Li W, Wang X, Wu G, Du J, Xu G, Duan M, Yu X, Cui C, Liu C, Fu Z, Yu C, Wang L. Identification and Activity Study of an Impurity Band Observed in the nrSDS-PAGE of Aflibercept. Pharm Res 2024; 41:2031-2042. [PMID: 39322793 DOI: 10.1007/s11095-024-03773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Aflibercept is a biopharmaceutical targeting vascular endothelial growth factor (VEGF) that has shown promise in the treatment of neovascular age-related macular degeneration (nAMD) and diabetic macular edema (DME) in adults. Quality control studies of aflibercept employing non-reduced SDS-PAGE (nrSDS-PAGE) have shown that a significant variant band (IM1) is consistently present below the main band. Considering the quality control strategy of biopharmaceuticals, structural elucidation and functional studies are required. METHODS In this study, the variant bands in nrSDS-PAGE were collected through electroelution and identified by peptide mass fingerprinting based on liquid chromatography-tandem MS (LC-MS/MS). This variant was expressed using knob-into-hole (KIH) design transient transfection for the detection of ligand affinity, binding activity and biological activity. RESULTS The variant band was formed by C-terminal truncation at position N99 of one chain in the aflibercept homodimer. Then, this variant was successfully expressed using KIH design transient transfection. The ligand affinity of the IM1 truncated variant was reduced by 18-fold, and neither binding activity nor biological activity were detected. CONCLUSIONS The efficacy of aflibercept is influenced by the loss of biological activity of the variant. Therefore, this study supports the development of a quality control strategy for aflibercept.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Weiyu Li
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Xin Wang
- Fujian Institute for Food and Drug Quality Control, Fuzhou, China
| | - Gang Wu
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Jialiang Du
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Gangling Xu
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Maoqin Duan
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Xiaojuan Yu
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Chunbo Cui
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Chunyu Liu
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Zhihao Fu
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629
| | - Chuanfei Yu
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629.
| | - Lan Wang
- NHC Key Laboratory of Research On Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, P.R. China, 102629.
| |
Collapse
|
11
|
van der Horst HJ, Mutis T. Enhancing Fc-mediated effector functions of monoclonal antibodies: The example of HexaBodies. Immunol Rev 2024. [PMID: 39275983 DOI: 10.1111/imr.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Since the approval of the CD20-targeting monoclonal antibody (mAb) rituximab for the treatment of lymphoma in 1997, mAb therapy has significantly transformed cancer treatment. With over 90 FDA-approved mAbs for the treatment of various hematological and solid cancers, modern cancer treatment relies heavily on these therapies. The overwhelming success of mAbs as cancer therapeutics is attributed to their broad applicability, high safety profile, and precise targeting of cancer-associated surface antigens. Furthermore, mAbs can induce various anti-tumor cytotoxic effector mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), all of which are mediated via their fragment crystallizable (Fc) domain. Over the past decades, these effector mechanisms have been substantially improved through Fc domain engineering. In this review, we will outline the different approaches to enhance Fc effector functions via Fc engineering of mAbs, with a specific emphasis on the so-called "HexaBody" technology, which is designed to enhance the hexamerization of mAbs on the target cell surface, thereby inducing greater complement activation, CDC, and receptor clustering. The review will summarize the development, preclinical, and clinical testing of several HexaBodies designed for the treatment of B-cell malignancies, as well as the potential use of the HexaBody technology beyond Fc-mediated effector functions.
Collapse
Affiliation(s)
- Hilma J van der Horst
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Dong W, Wang W, Cao C. The Evolution of Antibody-Drug Conjugates: Toward Accurate DAR and Multi-specificity. ChemMedChem 2024; 19:e202400109. [PMID: 38758596 DOI: 10.1002/cmdc.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Antibody-drug conjugates (ADCs) consist of antibodies, linkers and payloads. They offer targeted delivery of potent cytotoxic drugs to tumor cells, minimizing off-target effects. However, the therapeutic efficacy of ADCs is compromised by heterogeneity in the drug-to-antibody ratio (DAR), which impacts both cytotoxicity and pharmacokinetics (PK). Additionally, the emergence of drug resistance poses significant challenges to the clinical advancement of ADCs. To overcome these limitations, a variety of strategies have been developed, including the design of multi-specific drugs with accurate DAR. This review critically summarizes the current challenges faced by ADCs, categorizing key issues and evaluating various innovative solutions. We provide an in-depth analysis of the latest methodologies for achieving homogeneous DAR and explore design strategies for multi-specific drugs aimed at combating drug resistance. Our discussion offers a current perspective on the advancements made in refining ADC technologies, with an emphasis on enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Wenge Dong
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wanqi Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
13
|
Ingavat N, Dzulkiflie N, Liew JM, Wang X, Leong E, Loh HP, Ng SK, Yang Y, Zhang W. Investigation on environmental factors contributing to bispecific antibody stability and the reversal of self-associated aggregates. BIORESOUR BIOPROCESS 2024; 11:82. [PMID: 39177850 PMCID: PMC11343937 DOI: 10.1186/s40643-024-00796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Bispecific antibodies (bsAbs) hold promises for enhanced therapeutic potential surpassing that of their parental monoclonal antibodies. However, bsAbs pose great challenges in their manufacturing, and one of the common reasons is their susceptibility to aggregation. Building on previous studies demonstrating the functionality and potential manufacturability of Fab-scFv format bsAb, this investigation delved into the impact of environmental factors-such as pH, buffer types, ionic strength, protein concentrations, and temperatures-on its stability and the reversal of its self-associated aggregates. Mildly acidic, low-salt conditions were found optimal, ensuring bsAb stability for 30 days even at elevated temperature of 40 °C. Furthermore, these conditions facilitated the reversal of its self-associated aggregates to monomers during the initial 7-day incubation period. Our findings underscore the robustness and resilience of Fab-scFv format bsAb, further confirming its potential manufacturability despite its current absence as commercial products.
Collapse
Affiliation(s)
- Nattha Ingavat
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nuruljannah Dzulkiflie
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jia Min Liew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinhui Wang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eunice Leong
- Animal Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Han Ping Loh
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Say Kong Ng
- Animal Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
14
|
Barker SJ, Thayer MB, Kim C, Tatarakis D, Simon MJ, Dial R, Nilewski L, Wells RC, Zhou Y, Afetian M, Akkapeddi P, Chappell A, Chew KS, Chow J, Clemens A, Discenza CB, Dugas JC, Dwyer C, Earr T, Ha C, Ho YS, Huynh D, Lozano EI, Jayaraman S, Kwan W, Mahon C, Pizzo M, Robles-Colmenares Y, Roche E, Sanders L, Stergioulis A, Tong R, Tran H, Zuchero Y, Estrada AA, Gadkar K, Koth CMM, Sanchez PE, Thorne RG, Watts RJ, Sandmann T, Kane LA, Rigo F, Dennis MS, Lewcock JW, DeVos SL. Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier. Sci Transl Med 2024; 16:eadi2245. [PMID: 39141703 DOI: 10.1126/scitranslmed.adi2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Antisense oligonucleotides (ASOs) are promising therapeutics for treating various neurological disorders. However, ASOs are unable to readily cross the mammalian blood-brain barrier (BBB) and therefore need to be delivered intrathecally to the central nervous system (CNS). Here, we engineered a human transferrin receptor 1 (TfR1) binding molecule, the oligonucleotide transport vehicle (OTV), to transport a tool ASO across the BBB in human TfR knockin (TfRmu/hu KI) mice and nonhuman primates. Intravenous injection and systemic delivery of OTV to TfRmu/hu KI mice resulted in sustained knockdown of the ASO target RNA, Malat1, across multiple mouse CNS regions and cell types, including endothelial cells, neurons, astrocytes, microglia, and oligodendrocytes. In addition, systemic delivery of OTV enabled Malat1 RNA knockdown in mouse quadriceps and cardiac muscles, which are difficult to target with oligonucleotides alone. Systemically delivered OTV enabled a more uniform ASO biodistribution profile in the CNS of TfRmu/hu KI mice and greater knockdown of Malat1 RNA compared with a bivalent, high-affinity TfR antibody. In cynomolgus macaques, an OTV directed against MALAT1 displayed robust ASO delivery to the primate CNS and enabled more uniform biodistribution and RNA target knockdown compared with intrathecal dosing of the same unconjugated ASO. Our data support systemically delivered OTV as a potential platform for delivering therapeutic ASOs across the BBB.
Collapse
Affiliation(s)
| | - Mai B Thayer
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Chaeyoung Kim
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Rebekah Dial
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Yinhan Zhou
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | - Kylie S Chew
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Johann Chow
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Jason C Dugas
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Timothy Earr
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Connie Ha
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Yvonne S Ho
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - David Huynh
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Wanda Kwan
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Cathal Mahon
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Elysia Roche
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Laura Sanders
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Raymond Tong
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Hai Tran
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Y Zuchero
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Kapil Gadkar
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | - Ryan J Watts
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Lesley A Kane
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Mark S Dennis
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Sarah L DeVos
- Denali Therapeutics Inc., South San Francisco, CA, USA
| |
Collapse
|
15
|
Shao C, Tang B, Chu JCH, Lau KM, Wong WT, Che CM, Tai WCS, Wong WT, Wong CTT. Macrophage-engaging peptidic bispecific antibodies (pBsAbs) for immunotherapy via a facile bioconjugation strategy. Chem Sci 2024; 15:11272-11278. [PMID: 39055004 PMCID: PMC11268508 DOI: 10.1039/d4sc00851k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024] Open
Abstract
Bispecific antibodies are artificial molecules that fuse two different antigen-binding sites of monoclonal antibodies into one single entity. They have emerged as a promising next-generation anticancer treatment. Despite the fascinating applications of bispecific antibodies, the design and production of bispecific antibodies remain tedious and challenging, leading to a long R&D process and high production costs. We herein report an unprecedented strategy to cyclise and conjugate tumour-targeting peptides on the surface of a monoclonal antibody to form a novel type of bispecific antibody, namely the peptidic bispecific antibody (pBsAb). Such design combines the merits of highly specific monoclonal antibodies and serum-stable cyclic peptides that endows an additional tumour-targeting ability to the monoclonal antibody for binding with two different antigens. Our results show that the novel pBsAb, which comprises EGFR-binding cyclic peptides and an anti-SIRP-α monoclonal antibody, could serve as a macrophage-engaging bispecific antibody to initiate enhanced macrophage-cancer cell interaction and block the "don't eat me" signal between CD47-SIRP-α, as well as promoting antibody-dependent cellular phagocytosis and 3D cell spheroid infiltration. These findings give rise to a new type of bispecific antibody and a new platform for the rapid generation of new bispecific antibodies for research and potential therapeutic uses.
Collapse
Affiliation(s)
- Chihao Shao
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Bo Tang
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Jacky C H Chu
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Kwai Man Lau
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - William C S Tai
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| |
Collapse
|
16
|
Liu S, Nguyen JB, Zhao Y, Schussler S, Kim S, Qiu H, Li N, Rosconi MP, Pyles EA. Development of a platform method for rapid detection and characterization of domain-specific post-translational modifications in bispecific antibodies. J Pharm Biomed Anal 2024; 244:116120. [PMID: 38547650 DOI: 10.1016/j.jpba.2024.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/29/2024]
Abstract
Charge heterogeneity is inherent to all therapeutic antibodies and arises from post-translational modifications (PTMs) and/or protein degradation events that may occur during manufacturing. Among therapeutic antibodies, the bispecific antibody (bsAb) containing two unique Fab arms directed against two different targets presents an additional layer of complexity to the charge profile. In the context of a bsAb, a single domain-specific PTM within one of the Fab domains may be sufficient to compromise target binding and could potentially impact the stability, safety, potency, and efficacy of the drug product. Therefore, characterization and routine monitoring of domain-specific modifications is critical to ensure the quality of therapeutic bispecific antibody products. We developed a Digestion-assisted imaged Capillary isoElectric focusing (DiCE) method to detect and quantitate domain-specific charge variants of therapeutic bispecific antibodies (bsAbs). The method involves enzymatic digestion using immunoglobulin G (IgG)-degrading enzyme of S. pyogenes (IdeS) to generate F(ab)2 and Fc fragments, followed by imaged capillary isoelectric focusing (icIEF) under reduced, denaturing conditions to separate the light chains (LCs) from the Fd domains. Our results suggest that DiCE is a highly sensitive method that is capable of quantitating domain-specific PTMs of a bsAb. In one case study, DiCE was used to quantitate unprocessed C-terminal lysine and site-specific glycation of Lys98 in the complementarity-determining region (CDR) of a bsAb that could not be accurately quantitated using conventional, platform-based charge variant analysis, such as intact icIEF. Quantitation of these PTMs by DiCE was comparable to results from peptide mapping, demonstrating that DiCE is a valuable orthogonal method for ensuring product quality. This method may also have potential applications for characterizing fusion proteins, antibody-drug conjugates, and co-formulated antibody cocktails.
Collapse
Affiliation(s)
- Sophia Liu
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jennifer B Nguyen
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| | - Yimeng Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Svetlana Schussler
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Sunnie Kim
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Michael P Rosconi
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Erica A Pyles
- Protein Biochemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| |
Collapse
|
17
|
Yadav S, Vinothkumar KR. Factors affecting macromolecule orientations in thin films formed in cryo-EM. Acta Crystallogr D Struct Biol 2024; 80:535-550. [PMID: 38935342 PMCID: PMC11220838 DOI: 10.1107/s2059798324005229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air-water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour.
Collapse
Affiliation(s)
- Swati Yadav
- National Centre for Biological SciencesTata Institute of Fundamental ResearchGKVK Post, Bellary RoadBengaluru560 065India
| | - Kutti R. Vinothkumar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchGKVK Post, Bellary RoadBengaluru560 065India
| |
Collapse
|
18
|
Moynihan KD, Kumar MP, Sultan H, Pappas DC, Park T, Chin SM, Bessette P, Lan RY, Nguyen HC, Mathewson ND, Ni I, Chen W, Lee Y, Liao-Chan S, Chen J, Schumacher TN, Schreiber RD, Yeung YA, Djuretic IM. IL2 Targeted to CD8+ T Cells Promotes Robust Effector T-cell Responses and Potent Antitumor Immunity. Cancer Discov 2024; 14:1206-1225. [PMID: 38563906 PMCID: PMC11215410 DOI: 10.1158/2159-8290.cd-23-1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
IL2 signals pleiotropically on diverse cell types, some of which contribute to therapeutic activity against tumors, whereas others drive undesired activity, such as immunosuppression or toxicity. We explored the theory that targeting of IL2 to CD8+ T cells, which are key antitumor effectors, could enhance its therapeutic index. To this aim, we developed AB248, a CD8 cis-targeted IL2 that demonstrates over 500-fold preference for CD8+ T cells over natural killer and regulatory T cells (Tregs), which may contribute to toxicity and immunosuppression, respectively. AB248 recapitulated IL2's effects on CD8+ T cells in vitro and induced selective expansion of CD8+T cells in primates. In mice, an AB248 surrogate demonstrated superior antitumor activity and enhanced tolerability as compared with an untargeted IL2Rβγ agonist. Efficacy was associated with the expansion and phenotypic enhancement of tumor-infiltrating CD8+ T cells, including the emergence of a "better effector" population. These data support the potential utility of AB248 in clinical settings. Significance: The full potential of IL2 therapy remains to be unlocked. We demonstrate that toxicity can be decoupled from antitumor activity in preclinical models by limiting IL2 signaling to CD8+ T cells, supporting the development of CD8+ T cell-selective IL2 for the treatment of cancer. See related article by Kaptein et al. p. 1226.
Collapse
Affiliation(s)
| | - Manu P. Kumar
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Hussein Sultan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | | | - Terrence Park
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - S. Michael Chin
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Paul Bessette
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Ruth Y. Lan
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Henry C. Nguyen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | | - Irene Ni
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Wei Chen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Yonghee Lee
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Sindy Liao-Chan
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Jessie Chen
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | - Ton N.M. Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Yik A. Yeung
- Asher Biotherapeutics, Inc., South San Francisco, California.
| | | |
Collapse
|
19
|
Mikami H, Feng S, Matsuda Y, Ishii S, Naoi S, Azuma Y, Nagano H, Asanuma K, Kayukawa Y, Tsunenari T, Kamikawaji S, Iwabuchi R, Shinozuka J, Yamazaki M, Kuroi H, Ho SSW, Gan SW, Chichili P, Pang CL, Yeo CY, Shimizu S, Hironiwa N, Kinoshita Y, Shimizu Y, Sakamoto A, Muraoka M, Takahashi N, Kawa T, Shiraiwa H, Mimoto F, Kashima K, Kamata-Sakurai M, Ishikawa S, Aburatani H, Kitazawa T, Igawa T. Engineering CD3/CD137 Dual Specificity into a DLL3-Targeted T-Cell Engager Enhances T-Cell Infiltration and Efficacy against Small-Cell Lung Cancer. Cancer Immunol Res 2024; 12:719-730. [PMID: 38558120 DOI: 10.1158/2326-6066.cir-23-0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.
Collapse
Affiliation(s)
- Hirofumi Mikami
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Shu Feng
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yutaka Matsuda
- Project & Lifecycle Management Unit, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Sotaro Naoi
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yumiko Azuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Hiroaki Nagano
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kentaro Asanuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yoko Kayukawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shogo Kamikawaji
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Ryutaro Iwabuchi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Junko Shinozuka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaki Yamazaki
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Haruka Kuroi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Siok Wan Gan
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | | | - Chai Ling Pang
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Chiew Ying Yeo
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Shun Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Naoka Hironiwa
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yasuko Kinoshita
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yuichiro Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Tatsuya Kawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Futa Mimoto
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kenji Kashima
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Braun A, Gouni S, Pulles A, Strati P, Minnema MC, Budde LE. Bispecific Antibody Use in Patients With Lymphoma and Multiple Myeloma. Am Soc Clin Oncol Educ Book 2024; 44:e433516. [PMID: 38935881 DOI: 10.1200/edbk_433516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
This article endeavors to navigate the clinical journey of bispecific antibodies (BsAbs), from elucidating common toxicities and management strategies to examining novel agents and broadening access in community health care. These drugs, commonly through T-cell activation, result in shared adverse events such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Variations in target antigens and designs, however, might introduce unique toxicities for different BsAbs, warranting specific management approaches. Recent US Food and Drug Administration approvals of BsAbs targeting CD3+ T cells linked to CD20 for non-Hodgkin lymphoma and to B-cell maturation antigen or GPRC5D for multiple myeloma have transformed the treatment landscape for hematologic malignancies. Emerging new agents promise further enhancement and safety, exploring novel antigen targets, innovative structures such as trispecific antibodies, and the engagement of diverse immune cells. Simultaneously, the expansion of BsAbs into community practices is underway, demanding a multifaceted strategy that encompasses educational initiatives, operational adaptations, and collaborative frameworks. This ensures comprehensive treatment access, allowing every patient, irrespective of geographical or socioeconomic status, to benefit from these advancements in cancer therapy.
Collapse
Affiliation(s)
- Adam Braun
- City of Hope National Medical Center, Duarte, CA
| | | | - Astrid Pulles
- Department of Rheumatology & Clinical Immunology, Utrecht University, Utrecht, the Netherlands
| | - Paolo Strati
- MD Anderson Comprehensive Cancer Center, Houston, TX
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
21
|
Ludwig SD, Meksiriporn B, Tan J, Kureshi R, Mishra A, Kaeo KJ, Zhu A, Stavrakis G, Lee SJ, Schodt DJ, Wester MJ, Kumar D, Lidke KA, Cox AL, Dooley HM, Nimmagadda S, Spangler JB. Multiparatopic antibodies induce targeted downregulation of programmed death-ligand 1. Cell Chem Biol 2024; 31:904-919.e11. [PMID: 38547863 PMCID: PMC11102303 DOI: 10.1016/j.chembiol.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/28/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Programmed death-ligand 1 (PD-L1) drives inhibition of antigen-specific T cell responses through engagement of its receptor programmed death-1 (PD-1) on activated T cells. Overexpression of these immune checkpoint proteins in the tumor microenvironment has motivated the design of targeted antibodies that disrupt this interaction. Despite clinical success of these antibodies, response rates remain low, necessitating novel approaches to enhance performance. Here, we report the development of antibody fusion proteins that block immune checkpoint pathways through a distinct mechanism targeting molecular trafficking. By engaging multiple receptor epitopes on PD-L1, our engineered multiparatopic antibodies induce rapid clustering, internalization, and degradation in an epitope- and topology-dependent manner. The complementary mechanisms of ligand blockade and receptor downregulation led to more durable immune cell activation and dramatically reduced PD-L1 availability in mouse tumors. Collectively, these multiparatopic antibodies offer mechanistic insight into immune checkpoint protein trafficking and how it may be manipulated to reprogram immune outcomes.
Collapse
Affiliation(s)
- Seth D Ludwig
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bunyarit Meksiriporn
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jiacheng Tan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rakeeb Kureshi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akhilesh Mishra
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kyle J Kaeo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Angela Zhu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Georgia Stavrakis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Stephen J Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David J Schodt
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael J Wester
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Dhiraj Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Helen M Dooley
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology (IMET), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sridhar Nimmagadda
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
22
|
Gu Y, Wang Z, Wang Y. Bispecific antibody drug conjugates: Making 1+1>2. Acta Pharm Sin B 2024; 14:1965-1986. [PMID: 38799638 PMCID: PMC11119582 DOI: 10.1016/j.apsb.2024.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024] Open
Abstract
Bispecific antibody‒drug conjugates (BsADCs) represent an innovative therapeutic category amalgamating the merits of antibody‒drug conjugates (ADCs) and bispecific antibodies (BsAbs). Positioned as the next-generation ADC approach, BsADCs hold promise for ameliorating extant clinical challenges associated with ADCs, particularly pertaining to issues such as poor internalization, off-target toxicity, and drug resistance. Presently, ten BsADCs are undergoing clinical trials, and initial findings underscore the imperative for ongoing refinement. This review initially delves into specific design considerations for BsADCs, encompassing target selection, antibody formats, and the linker-payload complex. Subsequent sections delineate the extant progress and challenges encountered by BsADCs, illustrated through pertinent case studies. The amalgamation of BsAbs with ADCs offers a prospective solution to prevailing clinical limitations of ADCs. Nevertheless, the symbiotic interplay among BsAb, linker, and payload necessitates further optimizations and coordination beyond a simplistic "1 + 1" to effectively surmount the extant challenges facing the BsADC domain.
Collapse
Affiliation(s)
- Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijia Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
23
|
Cech P, Skórka K, Dziki L, Giannopoulos K. T-Cell Engagers-The Structure and Functional Principle and Application in Hematological Malignancies. Cancers (Basel) 2024; 16:1580. [PMID: 38672662 PMCID: PMC11048836 DOI: 10.3390/cancers16081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Recent advancements in cancer immunotherapy have made directing the cellular immune response onto cancer cells a promising strategy for the treatment of hematological malignancies. The introduction of monoclonal antibody-based (mAbs) targeted therapy has significantly improved the prognosis for hematological patients. Facing the issues of mAb-based therapies, a novel bispecific antibody (BsAb) format was developed. T-cell engagers (TCEs) are BsAbs, which simultaneously target tumor-associated antigens on tumor cells and CD3 molecules present on T-cells. This mechanism allows for the direct activation of T-cells and their anti-tumor features, ultimately resulting in the lysis of tumor cells. In 2014, the FDA approved blinatumomab, a TCE directed to CD3 and CD19 for treatment of acute lymphoblastic leukemia. Since then, numerous TCEs have been developed, allowing for treating different hematological malignancies such as acute myeloid leukemia, multiple myeloma, and non-Hodgkin lymphoma and Hodgkin lymphoma. As of November 2023, seven clinically approved TCE therapies are on the market. TCE-based therapies still have their limitations; however, improving the properties of TCEs, as well as combining TCE-based therapies with other forms of treatment, give hope to find the cures for currently terminal diseases. In this paper, we summarized the technical basis of the TCE technology, its application in hematology, and its current issues and prospects.
Collapse
Affiliation(s)
| | - Katarzyna Skórka
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland; (P.C.); (L.D.); (K.G.)
| | | | | |
Collapse
|
24
|
Zhou F, Ben Y, Jiang H, Tan S, Mu G, Zha Z, Dong S, Huang S, Zhou Y, Jin Y, Chiu ML. A Novel Dual-Fc Bispecific Antibody with Enhanced Fc Effector Function. Biochemistry 2024; 63:958-968. [PMID: 38426700 PMCID: PMC11025548 DOI: 10.1021/acs.biochem.3c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Bispecific antibodies (BsAbs) are undergoing continued development for applications in oncology and autoimmune diseases. While increasing activity by having more than one targeting arm, most BsAb engineering employs single Fc engagement as monoclonal antibodies. Here, we designed a novel immunoglobulin gamma-1 (IgG1)-derived dual-Fc BsAb containing two Fc regions and two distinct asymmetric antigen binding arms comprising a Fab arm and another VHH domain. In conjunction with the knob-into-hole technology, dual-Fc BsAbs could be produced with a high yield and good stability. We explore how Fc engineering effects on dual-Fc constructs could boost the desired therapeutic efficacy. This new format enabled simultaneous bispecific binding to corresponding antigens. Furthermore, compared to the one-Fc control molecules, dual-Fc BsAbs were shown to increase the avidity-based binding to FcγRs to result in higher ADCC and ADCP activities by potent avidity via binding to two antigens and Fc receptors. Overall, this novel BsAb format with enhanced effector functionalities provides a new option for antibody-based immunotherapy.
Collapse
Affiliation(s)
- Fulai Zhou
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Yinyin Ben
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Hao Jiang
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Siwen Tan
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Guangmao Mu
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Zhengxia Zha
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Shuting Dong
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Sheng Huang
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Yijun Zhou
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Ying Jin
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
| | - Mark L. Chiu
- Research
& Development Department, Tavotek Biotherapeutics, Suzhou 215000, China
- Research
& Development, Tavotek Biotherapeutics, Spring House, Pennsylvania 19102, United States
| |
Collapse
|
25
|
Poskute R, Sankaran PK, Sewell L, Lepore G, Shrubsall R, Dewis L, Watanabe Y, Wong V, Pascual Fernandez L, Mishra R, Holt A, Sou S, Harris C, Moreno Rodriguez C, Cankorur-Cetinkaya A, Smith J, Lonska N, Powell A, Cui T, Cheeks M, Lindo V. Identification and quantification of chain-pairing variants or mispaired species of asymmetric monovalent bispecific IgG1 monoclonal antibody format using reverse-phase polyphenyl chromatography coupled electrospray ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124085. [PMID: 38513430 DOI: 10.1016/j.jchromb.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Developing a knob-into-hole asymmetric bispecific IgG1 monoclonal antibody (mAb) poses manufacturing challenges due to the expression of chain pairing variants, also called mispaired species, in the desired product. The incorrect pairing of light and heavy chains could result in heterogeneous mispaired species of homodimers, heterodimers, light chain swapping, and low molecular weight species (LMWS). Standard chromatography, capillary electrophoretic, or spectroscopic methods poorly resolve these from the main variants. Here, we report a highly sensitive reverse-phase polyphenyl ultra-high-performance liquid chromatography (RP-UHPLC) method to accurately measure mispaired species of Duet mAb format, an asymmetric IgG1 bispecific mAb, for both process development and quality control analytical tests. Coupled with electrospray ionization mass spectrometry (ESI-MS), it enabled direct online characterization of mispaired species. This single direct assay detected diverse mispaired IgG-like species and LMWS. The method resolved eight disulfide bonds dissociated LMWS and three mispaired LMWS. It also resolved three different types of IgG-like mispaired species, including two homodimers and one heterodimer. The characterization and quantification simultaneously enabled the cell line selection that produces a lesser heterogeneity and lower levels of mispaired species with the desired correctly paired product. The biological activity assessment of samples with increased levels of these species quantified by the method exhibited a linear decline in potency with increasing levels of mispaired species in the desired product. We also demonstrated the utility of the technique for testing in-process intermediate materials to determine and assess downstream purification process capability in removing diverse mispaired IgG-like species and LMWS to a certain level during the downstream purification process. Our investigation demonstrates that adopting this method was vital in developing asymmetric bispecific mAb from the initial stage of cell line development to manufacturing process development. Therefore, this tool could be used in the control strategy to monitor and control mispaired species during manufacturing, thus improving the quality control of the final product.
Collapse
Affiliation(s)
- Ryte Poskute
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Laura Sewell
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Giordana Lepore
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Rebecca Shrubsall
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Lydia Dewis
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Yasunori Watanabe
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Vanessa Wong
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | | | - Rahul Mishra
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Alexander Holt
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Susie Sou
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Claire Harris
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Cristina Moreno Rodriguez
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Ayca Cankorur-Cetinkaya
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jennifer Smith
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Nikola Lonska
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Adam Powell
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Tingting Cui
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Matthew Cheeks
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Viv Lindo
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
26
|
Azzam T, Du JJ, Flowers MW, Ali AV, Hunn JC, Vijayvargiya N, Knagaram R, Bogacz M, Maravillas KE, Sastre DE, Fields JK, Mirzaei A, Pierce BG, Sundberg EJ. Combinatorially restricted computational design of protein-protein interfaces to produce IgG heterodimers. SCIENCE ADVANCES 2024; 10:eadk8157. [PMID: 38598628 PMCID: PMC11006224 DOI: 10.1126/sciadv.adk8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.
Collapse
Affiliation(s)
- Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria W. Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adeela V. Ali
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy C. Hunn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nina Vijayvargiya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rushil Knagaram
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marek Bogacz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kino E. Maravillas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diego E. Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James K. Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ardalan Mirzaei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20850, USA
| | - Eric J. Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther 2024; 7:132-156. [PMID: 38617189 PMCID: PMC11011201 DOI: 10.1093/abt/tbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
In calendar year 2023, the United States Food and Drug Administration (US FDA) approved a total of 55 new molecular entities, of which 12 were in the class of therapeutic antibodies. Besides antibody protein drugs, the US FDA also approved another five non-antibody protein drugs, making the broader class of protein drugs about 31% of the total approved drugs. Among the 12 therapeutic antibodies approved by the US FDA, 8 were relatively standard IgG formats, 3 were bivalent, bispecific antibodies and 1 was a trivalent, bispecific antibody. In 2023, no new antibody-drug conjugates, immunocytokines or chimeric antigen receptor-T cells were approved. Of the approved antibodies, two targeted programmed cell death receptor-1 (PD-1) for orphan indications, two targeted CD20 for diffuse large B cell lymphoma, two targeted different receptors (B-cell maturation antigen [BCMA] and G-coupled protein receptor class C, group 5, member D [GPRC5D]) for treatment of multiple myeloma, and one each that targeted amyloid-β protofibrils for Alzheimer's disease, neonatal Fc receptor alpha-chain for myasthenia gravis, complement factor C5 for CD55 deficiency with hyper-activation of complement, angiopathic thrombosis and severe protein-losing enteropathy disease, interleukin (IL)-23p19 for severely active ulcerative colitis, IL-17A-F for plaque psoriasis and respiratory syncytial virus (RSV)-F protein for season-long RSV prophylaxis in infants.
Collapse
Affiliation(s)
- William R Strohl
- Scientific Advisor Department, BiStro Biotechnology Consulting, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA
| |
Collapse
|
28
|
Pornnoppadol G, Bond LG, Lucas MJ, Zupancic JM, Kuo YH, Zhang B, Greineder CF, Tessier PM. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. Cell Chem Biol 2024; 31:361-372.e8. [PMID: 37890480 PMCID: PMC10922565 DOI: 10.1016/j.chembiol.2023.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023]
Abstract
The inability of antibodies to penetrate the blood-brain barrier (BBB) is a key limitation to their use in diverse applications. One promising strategy is to deliver IgGs using a bispecific BBB shuttle, which involves fusing an IgG to a second affinity ligand that engages a cerebrovascular endothelial target and facilitates transport across the BBB. Nearly all prior efforts have focused on shuttles that target transferrin receptor (TfR-1) despite inherent delivery and safety challenges. Here, we report bispecific antibody shuttles that engage CD98hc, the heavy chain of the large neutral amino acid transporter (LAT1), and efficiently transport IgGs into the brain. Notably, CD98hc shuttles lead to much longer-lived brain retention of IgGs than TfR-1 shuttles while enabling more specific targeting due to limited CD98hc engagement in the brain parenchyma, which we demonstrate for IgGs that either agonize a neuronal receptor (TrkB) or target other endogenous cell-surface proteins on neurons and astrocytes.
Collapse
Affiliation(s)
- Ghasidit Pornnoppadol
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Layne G Bond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J Lucas
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer M Zupancic
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yun-Huai Kuo
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boya Zhang
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colin F Greineder
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Peter M Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Rong Y, Chen IL, Larrabee L, Sawant MS, Fuh G, Koenig P. An Engineered Mouse Model That Generates a Diverse Repertoire of Endogenous, High-Affinity Common Light Chain Antibodies. Antibodies (Basel) 2024; 13:14. [PMID: 38390875 PMCID: PMC10885109 DOI: 10.3390/antib13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Bispecific antibodies have gained increasing popularity as therapeutics as they enable novel activities that cannot be achieved with monospecific antibodies. Some of the most popular bispecific formats are molecules in which two Fab arms with different antigen specificities are combined into one IgG-like molecule. One way to produce these bispecific molecules requires the discovery of antibodies against the two antigens of interest that share a common light chain. Here, we present the generation and characterization of a common light chain mouse model, in which the endogenous IGKJ cluster is replaced with a prearranged, modified murine IGKV10-96/IGKJ1 segment. We demonstrate that genetic modification does not impact B-cell development. Upon immunization with ovalbumin, the animals generate an antibody repertoire with VH gene segment usage of a similar diversity to wildtype mice, while the light chain diversity is restricted to antibodies derived from the prearranged IGKV10-96/IGKJ1 germline. We further show that the clonotype diversity of the common light chain immune repertoire matches the diversity of immune repertoire isolated from wildtype mice. Finally, the common light chain anti-ovalbumin antibodies have only slightly lower affinities than antibodies isolated from wildtype mice, demonstrating the suitability of these animals for antibody discovery for bispecific antibody generation.
Collapse
Affiliation(s)
- Yinghui Rong
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - I-Ling Chen
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Lance Larrabee
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Manali S Sawant
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Germaine Fuh
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Patrick Koenig
- 23andMe, Inc. Therapeutics, 349 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| |
Collapse
|
30
|
Barron N, Dickgiesser S, Fleischer M, Bachmann AN, Klewinghaus D, Hannewald J, Ciesielski E, Kusters I, Hammann T, Krause V, Fuchs SW, Siegmund V, Gross AW, Mueller-Pompalla D, Krah S, Zielonka S, Doerner A. A Generic Approach for Miniaturized Unbiased High-Throughput Screens of Bispecific Antibodies and Biparatopic Antibody-Drug Conjugates. Int J Mol Sci 2024; 25:2097. [PMID: 38396776 PMCID: PMC10889805 DOI: 10.3390/ijms25042097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The toolbox of modern antibody engineering allows the design of versatile novel functionalities exceeding nature's repertoire. Many bispecific antibodies comprise heterodimeric Fc portions recently validated through the approval of several bispecific biotherapeutics. While heterodimerization methodologies have been established for low-throughput large-scale production, few approaches exist to overcome the bottleneck of large combinatorial screening efforts that are essential for the identification of the best possible bispecific antibody. This report presents a novel, robust and miniaturized heterodimerization process based on controlled Fab-arm exchange (cFAE), which is applicable to a variety of heterodimeric formats and compatible with automated high-throughput screens. Proof of applicability was shown for two therapeutic molecule classes and two relevant functional screening read-outs. First, the miniaturized production of biparatopic anti-c-MET antibody-drug conjugates served as a proof of concept for their applicability in cytotoxic screenings on tumor cells with different target expression levels. Second, the automated workflow enabled a large unbiased combinatorial screening of biparatopic antibodies and the identification of hits mediating potent c-MET degradation. The presented workflow utilizes standard equipment and may serve as a facile, efficient and robust method for the discovery of innovative therapeutic agents in many laboratories worldwide.
Collapse
Affiliation(s)
- Nadine Barron
- Protein and Cell Sciences, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stephan Dickgiesser
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Markus Fleischer
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Daniel Klewinghaus
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jens Hannewald
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Elke Ciesielski
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ilja Kusters
- Protein Engineering and Antibody Technologies, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Til Hammann
- Discovery Pharmacology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Volker Krause
- Discovery Pharmacology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Vanessa Siegmund
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Alec W. Gross
- Protein Engineering and Antibody Technologies, EMD Serono, 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Dirk Mueller-Pompalla
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Simon Krah
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stefan Zielonka
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Achim Doerner
- NBE Technologies, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
31
|
Lee RB, Maddineni S, Landry M, Diaz C, Tashfeen A, Yamada-Hunter SA, Mackall CL, Beinat C, Sunwoo JB, Cochran JR. An engineered NKp46 antibody for construction of multi-specific NK cell engagers. Protein Eng Des Sel 2024; 37:gzae013. [PMID: 39163262 PMCID: PMC11359164 DOI: 10.1093/protein/gzae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Indexed: 08/22/2024] Open
Abstract
Recent developments in cancer immunotherapy have highlighted the potential of harnessing natural killer (NK) cells in the treatment of neoplastic malignancies. Of these, bispecific antibodies, and NK cell engager (NKCE) protein therapeutics in particular, have been of interest. Here, we used phage display and yeast surface display to engineer RLN131, a unique cross-reactive antibody that binds to human, mouse, and cynomolgus NKp46, an activating receptor found on NK cells. RLN131 induced proliferation and activation of primary NK cells, and was used to create bispecific NKCE constructs of varying configurations and valency. All NKCEs were able to promote greater NK cell cytotoxicity against tumor cells than an unmodified anti-CD20 monoclonal antibody, and activity was observed irrespective of whether the constructs contained a functional Fc domain. Competition binding and fine epitope mapping studies were used to demonstrate that RLN131 binds to a conserved epitope on NKp46, underlying its species cross-reactivity.
Collapse
Affiliation(s)
- Robert B Lee
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
| | - Sainiteesh Maddineni
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Madeleine Landry
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 1701 Page Mill Road, Palo Alto, CA, 94304, United States
| | - Celeste Diaz
- Cancer Biology Program, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Aanya Tashfeen
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, United States
| | - Sean A Yamada-Hunter
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Corinne Beinat
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 1701 Page Mill Road, Palo Alto, CA, 94304, United States
| | - John B Sunwoo
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA, 94305, United States
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, United States
| |
Collapse
|
32
|
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations. Front Bioeng Biotechnol 2024; 12:1352014. [PMID: 38333084 PMCID: PMC10850309 DOI: 10.3389/fbioe.2024.1352014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Romei MG, Leonard B, Katz ZB, Le D, Yang Y, Day ES, Koo CW, Sharma P, Bevers Iii J, Kim I, Dai H, Farahi F, Lin M, Shaw AS, Nakamura G, Sockolosky JT, Lazar GA. i-shaped antibody engineering enables conformational tuning of biotherapeutic receptor agonists. Nat Commun 2024; 15:642. [PMID: 38245524 PMCID: PMC10799922 DOI: 10.1038/s41467-024-44985-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
The ability to leverage antibodies to agonize disease relevant biological pathways has tremendous potential for clinical investigation. Yet while antibodies have been successful as antagonists, immune mediators, and targeting agents, they are not readily effective at recapitulating the biology of natural ligands. Among the important determinants of antibody agonist activity is the geometry of target receptor engagement. Here, we describe an engineering approach inspired by a naturally occurring Fab-Fab homotypic interaction that constrains IgG in a unique i-shaped conformation. i-shaped antibody (iAb) engineering enables potent intrinsic agonism of five tumor necrosis factor receptor superfamily (TNFRSF) targets. When applied to bispecific antibodies against the heterodimeric IL-2 receptor pair, constrained bispecific IgG formats recapitulate IL-2 agonist activity. iAb engineering provides a tool to tune agonist antibody function and this work provides a framework for the development of intrinsic antibody agonists with the potential for generalization across broad receptor classes.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Brandon Leonard
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Zachary B Katz
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Le
- Department of Microchemistry, Proteomic, Lipidomics, and Next Generation Sequencing, Genentech Inc., South San Francisco, CA, USA
| | - Yanli Yang
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Eric S Day
- Department of Pharma Technical Development, Genentech Inc., South San Francisco, CA, USA
| | - Christopher W Koo
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Preeti Sharma
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Jack Bevers Iii
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Ingrid Kim
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Huiguang Dai
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Farzam Farahi
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - May Lin
- Department of Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Andrey S Shaw
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | | | - Greg A Lazar
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
34
|
Shapir Itai Y, Barboy O, Salomon R, Bercovich A, Xie K, Winter E, Shami T, Porat Z, Erez N, Tanay A, Amit I, Dahan R. Bispecific dendritic-T cell engager potentiates anti-tumor immunity. Cell 2024; 187:375-389.e18. [PMID: 38242085 DOI: 10.1016/j.cell.2023.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
Immune checkpoint inhibition treatment using aPD-1 monoclonal antibodies is a promising cancer immunotherapy approach. However, its effect on tumor immunity is narrow, as most patients do not respond to the treatment or suffer from recurrence. We show that the crosstalk between conventional type I dendritic cells (cDC1) and T cells is essential for an effective aPD-1-mediated anti-tumor response. Accordingly, we developed a bispecific DC-T cell engager (BiCE), a reagent that facilitates physical interactions between PD-1+ T cells and cDC1. BiCE treatment promotes the formation of active dendritic/T cell crosstalk in the tumor and tumor-draining lymph nodes. In vivo, single-cell and physical interacting cell analysis demonstrates the distinct and superior immune reprogramming of the tumors and tumor-draining lymph nodes treated with BiCE as compared to conventional aPD-1 treatment. By bridging immune cells, BiCE potentiates cell circuits and communication pathways needed for effective anti-tumor immunity.
Collapse
Affiliation(s)
- Yuval Shapir Itai
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Barboy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ran Salomon
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Akhiad Bercovich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eitan Winter
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Shami
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
35
|
Goncharov T, Kőműves LG, Kist M, Castellanos ER, Witt A, Fedorova AV, Izrael-Tomasevic A, Yu K, Keir M, Matsumoto ML, Vucic D. Simultaneous substrate and ubiquitin modification recognition by bispecific antibodies enables detection of ubiquitinated RIP1 and RIP2. Sci Signal 2024; 17:eabn1101. [PMID: 38227684 DOI: 10.1126/scisignal.abn1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
Ubiquitination is a posttranslational modification that is crucial for the dynamic regulation of diverse signaling pathways. To enhance our understanding of ubiquitination-mediated signaling, we generated a new class of bispecific antibodies that combine recognition of ubiquitination substrates and specific polyubiquitin linkages. RIP1-K63 and RIP1-linear (Lin) linkage polyubiquitin bispecific antibodies detected linkage-specific ubiquitination of the proinflammatory kinase RIP1 in cells and in tissues and revealed RIP1 ubiquitination by immunofluorescence. Similarly, ubiquitination of the RIP1-related kinase RIP2 with K63 or linear linkages was specifically detected with the RIP2-K63 and RIP2-Lin bispecific antibodies, respectively. Furthermore, using the RIP2-K63 and RIP2-Lin bispecific antibodies, we found prominent K63-linked and linear RIP2 ubiquitination in samples from patients with ulcerative colitis and Crohn's disease. We also developed a bispecific antibody (K63-Lin) that simultaneously recognizes K63-linked and linear ubiquitination of components of various signaling pathways. Together, these bispecific antibodies represent a new class of reagents with the potential to be developed for the detection of inflammatory biomarkers.
Collapse
Affiliation(s)
- Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - László G Kőműves
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Matthias Kist
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Erick R Castellanos
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Axel Witt
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - Anna V Fedorova
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Anita Izrael-Tomasevic
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Kebing Yu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Mary Keir
- Department of Human Pathobiology and OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Marissa L Matsumoto
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
- Department of Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
36
|
Koga H, Kuroi H, Hirano R, Hirayama H, Nabuchi Y, Kuramochi T. Rapid Generation of Murine Bispecific Antibodies Using FAST-Ig TM for Preclinical Screening of HER2/CD3 T-Cell Engagers. Antibodies (Basel) 2024; 13:3. [PMID: 38247567 PMCID: PMC10801562 DOI: 10.3390/antib13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Bispecific antibodies (BsAbs) can bind to two different antigens, enabling therapeutic concepts that cannot be achieved with monoclonal antibodies. Immuno-competent mice are essential for validating drug discovery concepts, necessitating the development of surrogate mouse BsAbs. In this study, we explored the potential of FAST-IgTM, a previously reported BsAb technology, for mouse BsAb production. We investigated charge-based orthogonal Fab mutations to facilitate the correct assembly of heavy and light chains of mouse antibodies and employed knobs-into-holes mutations to facilitate the heterodimerization of heavy chains. We combined five anti-CD3 and two anti-HER2 antibodies in mouse IgG1 and IgG2a subclasses. These 20 BsAbs were analyzed using mass spectrometry or ion exchange chromatography to calculate the percentages of BsAbs with correct chain pairing (BsAb yields). Using FAST-Ig, 19 out of the 20 BsAbs demonstrated BsAb yields of 90% or higher after simple protein A purification from transiently expressed antibodies in Expi293F cells. Importantly, the mouse BsAbs maintained their fundamental physicochemical properties and affinity against each antigen. A Jurkat NFAT-luciferase reporter cell assay demonstrated the combined effects of epitope, affinity, and subclasses. Our findings highlight the potential of FAST-Ig technology for efficiently generating mouse BsAbs for preclinical studies.
Collapse
Affiliation(s)
- Hikaru Koga
- Chugai Pharmaceutical Co., Ltd., Yokohama 244-8602, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Peltret M, Schmid A, Duarte L, Mette R, Giovannini R, Bertschinger M. Expression of Multispecific Antibodies. Methods Mol Biol 2024; 2810:161-180. [PMID: 38926279 DOI: 10.1007/978-1-0716-3878-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Bi- and multispecific antibody formats allow the development of new therapeutic strategies to address previously unmet medical needs. However, due to the increased complexity (e.g., the interface design and the presence of multiple binders), such molecules are generally more challenging to express and purify compared to standard monoclonal antibodies (mAbs). We describe here an optimized methodology to express and purify basic bispecific antibodies using the BEAT® interface. This interface allows to generate antibodies with very high levels of heterodimer product (reported titers exceed 10 g/L) and comes with a built-in purification strategy allowing removal of residual levels of undesired product-related impurities (e.g., homodimers and half molecules).
Collapse
Affiliation(s)
| | | | | | - Romain Mette
- Ichnos Sciences SA, La Chaux-de-Fonds, Switzerland
| | | | | |
Collapse
|
38
|
Wang Z, Liu Y, Xu Y, Lu L, Zhu Z, Lv B, Fang X, Tang Y, Wang J, Cheng Y, Hu Y, Lou J, Wu P, Liu C, Liu Y, Zeng X, Xu Q. Anti-HER2 biparatopic antibody KJ015 has near-native structure, functional balanced high affinity, and synergistic efficacy with anti-PD-1 treatment in vivo. MAbs 2024; 16:2412881. [PMID: 39381966 PMCID: PMC11469434 DOI: 10.1080/19420862.2024.2412881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Currently approved human epidermal growth factor receptor 2 (HER2)-targeted antibody therapies are largely derived from trastuzumab, including trastuzumab-chemotherapy combinations, fixed-dose trastuzumab-pertuzumab combinations, and trastuzumab antibody-drug conjugates. To expand the options, bispecific antibodies, which may better utilize the benefits of combination therapy, are being developed. Among them, biparatopic antibodies (bpAbs) have shown improved efficacy compared to monoclonal antibody (mAb) combinations in HER2-positive patients. BpAbs bind two independent epitopes on the same antigen, which allows fine-tuning of mechanisms of action, including enhancement of on-target specificity and induction of strong antigen clustering due to the unique binding mode. To fully utilize the potential of bpAbs for anti-HER2 drug development, it is crucial to consider formats that offer stability and high-yield production, along with a functional balance between the two epitopes. In this study, we rationally designed a bpAb, KJ015, that shares a common light chain with two Fab arms and exhibits functionally balanced high affinity for two HER2 non-overlapping epitopes. KJ015 demonstrated high-expression titers over 7 g/L and stable physicochemical properties at elevated concentrations, facilitating subcutaneous administration with hyaluronidase. Moreover, KJ015 maintained comparable antibody-dependent cytotoxicity, phagocytosis, and complement-dependent cytotoxicity with trastuzumab plus pertuzumab. It exhibited enhanced synergy when administered subcutaneously with hyaluronidase and anti-PD-1 mAb in a mouse tumor model, suggesting promising clinical prospects for this combination.
Collapse
Affiliation(s)
- Zheng Wang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yu Liu
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Shanghai, China
| | - Yunxia Xu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Lin Lu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Zhen Zhu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Baojie Lv
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Xin Fang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yao Tang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Jinhua Wang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yu Cheng
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Ying Hu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Junwen Lou
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Peican Wu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Chendan Liu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yanjun Liu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Xin Zeng
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Shanghai, China
| |
Collapse
|
39
|
Tsai WTK, Li Y, Yin Z, Tran P, Phung Q, Zhou Z, Peng K, Qin D, Tam S, Spiess C, Brumm J, Wong M, Ye Z, Wu P, Cohen S, Carter PJ. Nonclinical immunogenicity risk assessment for knobs-into-holes bispecific IgG 1 antibodies. MAbs 2024; 16:2362789. [PMID: 38845069 PMCID: PMC11164226 DOI: 10.1080/19420862.2024.2362789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Bispecific antibodies, including bispecific IgG, are emerging as an important new class of antibody therapeutics. As a result, we, as well as others, have developed engineering strategies designed to facilitate the efficient production of bispecific IgG for clinical development. For example, we have extensively used knobs-into-holes (KIH) mutations to facilitate the heterodimerization of antibody heavy chains and more recently Fab mutations to promote cognate heavy/light chain pairing for efficient in vivo assembly of bispecific IgG in single host cells. A panel of related monospecific and bispecific IgG1 antibodies was constructed and assessed for immunogenicity risk by comparison with benchmark antibodies with known low (Avastin and Herceptin) or high (bococizumab and ATR-107) clinical incidence of anti-drug antibodies. Assay methods used include dendritic cell internalization, T cell proliferation, and T cell epitope identification by in silico prediction and MHC-associated peptide proteomics. Data from each method were considered independently and then together for an overall integrated immunogenicity risk assessment. In toto, these data suggest that the KIH mutations and in vitro assembly of half antibodies do not represent a major risk for immunogenicity of bispecific IgG1, nor do the Fab mutations used for efficient in vivo assembly of bispecifics in single host cells. Comparable or slightly higher immunogenicity risk assessment data were obtained for research-grade preparations of trastuzumab and bevacizumab versus Herceptin and Avastin, respectively. These data provide experimental support for the common practice of using research-grade preparations of IgG1 as surrogates for immunogenicity risk assessment of their corresponding pharmaceutical counterparts.
Collapse
Affiliation(s)
- Wen-Ting K. Tsai
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Yinyin Li
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Zhaojun Yin
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Peter Tran
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Qui Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc, South San Francisco, CA, USA
| | - Zhenru Zhou
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc, South San Francisco, CA, USA
| | - Kun Peng
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Dan Qin
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Sien Tam
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Jochen Brumm
- Department of Nonclinical Biostatistics, Genentech, Inc, South San Francisco, CA, USA
| | - Manda Wong
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | - Zhengmao Ye
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Patrick Wu
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Sivan Cohen
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
40
|
Amash A, Volkers G, Farber P, Griffin D, Davison KS, Goodman A, Tonikian R, Yamniuk A, Barnhart B, Jacobs T. Developability considerations for bispecific and multispecific antibodies. MAbs 2024; 16:2394229. [PMID: 39189686 DOI: 10.1080/19420862.2024.2394229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Bispecific antibodies (bsAb) and multispecific antibodies (msAb) encompass a diverse variety of formats that can concurrently bind multiple epitopes, unlocking mechanisms to address previously difficult-to-treat or incurable diseases. Early assessment of candidate developability enables demotion of antibodies with low potential and promotion of the most promising candidates for further development. Protein-based therapies have a stringent set of developability requirements in order to be competitive (e.g. high-concentration formulation, and long half-life) and their assessment requires a robust toolkit of methods, few of which are validated for interrogating bsAbs/msAbs. Important considerations when assessing the developability of bsAbs/msAbs include their molecular format, likelihood for immunogenicity, specificity, stability, and potential for high-volume production. Here, we summarize the critical aspects of developability assessment, and provide guidance on how to develop a comprehensive plan tailored to a given bsAb/msAb.
Collapse
Affiliation(s)
- Alaa Amash
- AbCellera Biologics Inc, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | - Tim Jacobs
- AbCellera Biologics Inc, Vancouver, BC, Canada
| |
Collapse
|
41
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
42
|
Mullin M, McClory J, Haynes W, Grace J, Robertson N, van Heeke G. Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions. MAbs 2024; 16:2341443. [PMID: 38666503 PMCID: PMC11057648 DOI: 10.1080/19420862.2024.2341443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.
Collapse
|
43
|
Ingavat N, Wang X, Liew JM, Mahfut FB, But KP, Kok YJ, Bi X, Yang Y, Shintaro K, Tsoumpra M, Zhang W. Harnessing ceramic hydroxyapatite as an effective polishing strategy to remove product- and process-related impurities in bispecific antibody purification. BIORESOUR BIOPROCESS 2023; 10:93. [PMID: 38647984 PMCID: PMC10992335 DOI: 10.1186/s40643-023-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/06/2023] [Indexed: 04/25/2024] Open
Abstract
Bispecific antibody (bsAb), a novel therapeutic modality, provides excellent treatment efficacy, yet poses numerous challenges to downstream process development, which are mainly due to the intricate diversity of bsAb structures and impurity profiles. Ceramic hydroxyapatite (CHT), a mixed-mode medium, allows proteins to interact with its calcium sites (C-sites) through metal affinity and/or its phosphate sites (P-sites) through cation exchange interactions. This dual-binding capability potentially offers unique bind and elute behaviours for different proteins of interest, resulting in optimal product purity when suitable elution conditions are employed. In this study, the effectiveness of CHT as a polishing step for bsAb purification was investigated across three model molecules and benchmarked against the traditional cation exchange chromatography (CEX). For both asymmetric and symmetric IgG-like bsAb post Protein A eluates, at least 97% product purity was achieved after CHT polishing. CHT delivered a superior aggregate clearance to CEX, resulting in low high molecular weight (HMW) impurities (0.5%) and low process-related impurities in the product pools. Moreover, CHT significantly mitigated "chromatography-induced aggregation" whereas eightfold more HMW was generated by CEX. This study illustrated the developability of CHT in effectively eliminating low molecular weight (LMW) impurities through post-load-wash (PLW) optimization, resulting in an additional reduction of up to 48% in LMW impurities. A mechanistic explanation regarding the performance of impurity removal and mitigation of the chromatography-induced aggregation by CHT was proposed, illustrating unique CHT capability is potentially driven by C-site cooperation, of which effectiveness could depend on the bsAb composition and size.
Collapse
Affiliation(s)
- Nattha Ingavat
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinhui Wang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jia Min Liew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Farouq Bin Mahfut
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ka Pui But
- Protein Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yee Jiun Kok
- Protein Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xuezhi Bi
- Protein Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kobayashi Shintaro
- Chromatography Media Business Division, HOYA Technosurgical Corporation, Singapore Branch, Singapore
| | - Maria Tsoumpra
- Chromatography Media Business Division, HOYA Technosurgical Corporation, Singapore Branch, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
44
|
Liu Y, Zhou YQ, Nie L, Zhu SS, Li N, Wu ZH, Wang Q, Qi J, Wu BY, Chen SQ, Wang HB. BR109, a Novel Fully Humanized T-Cell-Engaging Bispecific Antibody with GPRC5D Binding, Has Potent Antitumor Activities in Multiple Myeloma. Cancers (Basel) 2023; 15:5774. [PMID: 38136320 PMCID: PMC10741763 DOI: 10.3390/cancers15245774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
At present, multiple myeloma (MM) is still an essentially incurable hematologic malignancy. Although BCMA-targeted therapies have achieved remarkable results, BCMA levels were found to be downregulated in patients with MM who relapsed after these treatments. Therefore, the search for other antigens specific to MM has become a priority. Independently of BCMA expression, G-protein-coupled receptor family C group 5 member D (GPRC5D) is mainly expressed in the plasma cells of MM patients, while it is expressed in a limited number of normal tissues. Combining MM-specific antigen GPRC5D and T-cell-mediated therapies would be a promising therapeutic strategy for MM. Recently, we constructed a new anti-GPRC5D × anti-CD3 T-cell-engaging bispecific antibody (TCB), BR109, which was capable of binding to human GPRC5D and human CD3ε. Moreover, BR109 was proven to have relatively good stability and antitumor activity. BR109 could specifically trigger T-cell-mediated cytotoxicity against many GPRC5D-positive MM cells in vitro. Meanwhile, antitumor activity was demonstrated in MM cell line xenograft mouse models with human immune cell reconstitution. These preclinical studies have formed a solid foundation for the evaluation of MM treatment efficacy in clinical trials.
Collapse
Affiliation(s)
- Ying Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| | - Ya-Qiong Zhou
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| | - Lei Nie
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| | - Shan-Shan Zhu
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| | - Na Li
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
| | - Zhen-Hua Wu
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
| | - Qi Wang
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
| | - Jian Qi
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| | - Bing-Yuan Wu
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| | - Shu-Qing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Hai-Bin Wang
- Bioray Biopharmaceutical Co., Ltd., Taizhou 318000, China; (Y.-Q.Z.); (L.N.); (S.-S.Z.); (N.L.); (Z.-H.W.); (Q.W.); (J.Q.); (B.-Y.W.)
- Hisun Biopharmaceutical Co., Ltd., Hangzhou 311404, China
| |
Collapse
|
45
|
Wachter S, Angevin T, Bubna N, Tan A, Cichy A, Brown D, Wolfe LS, Sappington R, Lilla E, Berry L, Grismer D, Orth C, Blanusa M, Mostafa S, Kaufmann H, Felderer K. Application of platform process development approaches to the manufacturing of Mabcalin™ bispecifics. J Biotechnol 2023; 377:13-22. [PMID: 37820750 DOI: 10.1016/j.jbiotec.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Bispecific biotherapeutics offer potent and highly specific treatment options in oncology and immuno-oncology. However, many bispecific formats are prone to high levels of aggregation and instability, leading to prolonged development timelines, inefficient manufacturing, and high costs. The novel class of Mabcalin™ molecules consist of Anticalin® proteins fused to an IgG and are currently being evaluated in pre-clinical and clinical studies. Here, we describe a robust high-yield manufacturing platform for these therapeutic fusion proteins providing data up to commercially relevant scales. A platform upstream process was established for one of the Mabcalin bispecifics and then applied to other clinically relevant drug candidates with different IgG target specificities. Process performance was compared in 3 L bioreactors and production was scaled-up to up to 1000 L for confirmation. The Mabcalin proteins' structural and biophysical similarities enabled a downstream platform approach consisting of initial protein A capture, viral inactivation, mixed-mode anion exchange polishing, second polishing by cation exchange or hydrophobic interaction chromatography, viral filtration, buffer exchange and concentration by ultrafiltration/diafiltration. All three processes met their target specifications and achieved comparable clearance of impurities and product yields across scales. The described platform approach provides a fast and economic path to process confirmation and is well comparable to classical monoclonal antibody approaches in terms of costs and time to clinic.
Collapse
Affiliation(s)
- Stefanie Wachter
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany.
| | - Thibaut Angevin
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Niket Bubna
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Adelene Tan
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Adam Cichy
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - David Brown
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Leslie S Wolfe
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Ryan Sappington
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Edward Lilla
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Luke Berry
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Dane Grismer
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Christian Orth
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Milan Blanusa
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Sigma Mostafa
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Hitto Kaufmann
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Karin Felderer
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| |
Collapse
|
46
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. Nat Commun 2023; 14:7218. [PMID: 37940661 PMCID: PMC10632514 DOI: 10.1038/s41467-023-42097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved envelope (Env) epitopes to block viral replication. Here, using structural analyses, we provide evidence to explain why a vaccine targeting the membrane-proximal external region (MPER) of HIV-1 elicits antibodies with human bnAb-like paratopes paradoxically unable to bind HIV-1. Unlike in natural infection, vaccination with MPER/liposomes lacks a necessary structure-based constraint to select for antibodies with an adequate approach angle. Consequently, the resulting Abs cannot physically access the MPER crawlspace on the virion surface. By studying naturally arising Abs, we further reveal that flexibility of the human IgG3 hinge mitigates the epitope inaccessibility and additionally facilitates Env spike protein crosslinking. Our results suggest that generation of IgG3 subtype class-switched B cells is a strategy for anti-MPER bnAb induction. Moreover, the findings illustrate the need to incorporate topological features of the target epitope in immunogen design.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Junjian Chen
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Laboratory of Immunology, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kaku
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- NeoCura Bio-Medical Technology Co., Ltd., Beijing, China
| | - Luke Donius
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, MA, USA
| | - Rafiq Ahmad Khan
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaolong Li
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hannah Richter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Mikyung Kim
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Zhuang W, Zhang W, Wang L, Xie L, Feng J, Zhang B, Hu Y. Generation of a Novel SORT1×HER2 Bispecific Antibody-Drug Conjugate Targeting HER2-Low-Expression Tumor. Int J Mol Sci 2023; 24:16056. [PMID: 38003245 PMCID: PMC10671096 DOI: 10.3390/ijms242216056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is considered an ideal antibody-drug conjugate (ADC) target because the gene is overexpressed in many tumors compared to normal tissues. Multiple anti-HER2 ADCs conjugated with different toxic payloads bring benefits to patients with high HER2 expression. However, HER2-targeted ADC technology needs further optimization to improve its effect for the treatment of patients with low HER2 expression. We hypothesized that bispecific antibody-drug conjugate (bsADC) targeting HER2 and Sortilin-1 (SORT1) would overcome this limitation. SORT1 is a suitable target for pairing with HER2 to generate a bispecific antibody (BsAb) since the gene is co-expressed with HER2 in tumors and possesses rapid internalization. We developed a BsAb (bsSORT1×HER2) that exhibited strong binding and internalization activity on HER2-low-expression tumor cells and facilitated higher HER2 degradation. The bsSORT1×HER2 was further conjugated with DXd to generate a bsADC (bsSORT1×HER2-DXd) that showed strong cytotoxicity on HER2-low-expression tumor cells and antitumor efficacy in an MDA-MB-231 xenograft mice model. These results demonstrated that employment of a SORT1×HER2-targeted bsADC may be promising to improve the antitumor efficacy of HER2-targeted ADC for the treatment of tumors with low HER2 expression.
Collapse
Affiliation(s)
- Weiliang Zhuang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| |
Collapse
|
48
|
Lee SM, Min SW, Kwon HS, Bae GD, Jung JH, Park HI, Lee SH, Lim CS, Ko BJ, Lee JC, Jung ST. Effective clearance of rituximab-resistant tumor cells by breaking the mirror-symmetry of immunoglobulin G and simultaneous binding to CD55 and CD20. Sci Rep 2023; 13:18275. [PMID: 37880350 PMCID: PMC10600224 DOI: 10.1038/s41598-023-45491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Complement-dependent cytotoxicity (CDC), which eliminates aberrant target cells through the assembly and complex formation of serum complement molecules, is one of the major effector functions of anticancer therapeutic antibodies. In this study, we discovered that breaking the symmetry of natural immunoglobulin G (IgG) antibodies significantly increased the CDC activity of anti-CD20 antibodies. In addition, the expression of CD55 (a checkpoint inhibitor in the CDC cascade) was significantly increased in a rituximab-resistant cell line generated in-house, suggesting that CD55 overexpression might be a mechanism by which cancer cells acquire rituximab resistance. Based on these findings, we developed an asymmetric bispecific antibody (SBU-CD55 × CD20) that simultaneously targets both CD55 and CD20 to effectively eliminate rituximab-resistant cancer cells. In various cancer cell lines, including rituximab-resistant lymphoma cells, the SBU-CD55 × CD20 antibody showed significantly higher CDC activity than either anti-CD20 IgG antibody alone or a combination of anti-CD20 IgG antibody and anti-CD55 IgG antibody. Furthermore, the asymmetric bispecific antibody (SBU-CD55 × CD20) exhibited significantly higher CDC activity against rituximab-resistant cancer cells compared to other bispecific antibodies with symmetric features. These results demonstrate that enhancing CDC with an asymmetric CD55-binding bispecific antibody could be a new strategy for developing therapeutics to treat patients with relapsed or refractory cancers.
Collapse
Affiliation(s)
- Sang Min Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Applied Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sung-Won Min
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Hyeong Sun Kwon
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Gong-Deuk Bae
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Ji Hae Jung
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Hye In Park
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Seung Hyeon Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chung Su Lim
- New Drug Development Center, Osong Medical Innovation Foundation 123, Cheongju, Chungcheongbuk-do, 28160, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, 55, Dobonng-Ro 76ga-gil, Gangbuk, Seoul, 01133, Republic of Korea
| | - Ji Chul Lee
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea.
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Genetics, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Biomedical Research Center, Korea University Anam Hospital, Seoul, 02841, Republic of Korea.
| |
Collapse
|
49
|
Fernández-Quintero ML, Pomarici ND, Fischer ALM, Hoerschinger VJ, Kroell KB, Riccabona JR, Kamenik AS, Loeffler JR, Ferguson JA, Perrett HR, Liedl KR, Han J, Ward AB. Structure and Dynamics Guiding Design of Antibody Therapeutics and Vaccines. Antibodies (Basel) 2023; 12:67. [PMID: 37873864 PMCID: PMC10594513 DOI: 10.3390/antib12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Antibodies and other new antibody-like formats have emerged as one of the most rapidly growing classes of biotherapeutic proteins. Understanding the structural features that drive antibody function and, consequently, their molecular recognition is critical for engineering antibodies. Here, we present the structural architecture of conventional IgG antibodies alongside other formats. We emphasize the importance of considering antibodies as conformational ensembles in solution instead of focusing on single-static structures because their functions and properties are strongly governed by their dynamic nature. Thus, in this review, we provide an overview of the unique structural and dynamic characteristics of antibodies with respect to their antigen recognition, biophysical properties, and effector functions. We highlight the numerous technical advances in antibody structure prediction and design, enabled by the vast number of experimentally determined high-quality structures recorded with cryo-EM, NMR, and X-ray crystallography. Lastly, we assess antibody and vaccine design strategies in the context of structure and dynamics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nancy D. Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna-Lena M. Fischer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Katharina B. Kroell
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James A. Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
50
|
Khosla AA, Jatwani K, Singh R, Reddy A, Jaiyesimi I, Desai A. Bispecific Antibodies in Lung Cancer: A State-of-the-Art Review. Pharmaceuticals (Basel) 2023; 16:1461. [PMID: 37895932 PMCID: PMC10609957 DOI: 10.3390/ph16101461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Bispecific antibodies have emerged as a promising class of therapeutics in the field of oncology, offering an innovative approach to target cancer cells while sparing healthy tissues. These antibodies are designed to bind two different antigens, enabling them to bridge immune cells with cancer cells, resulting in enhanced tumor cell killing and improved treatment responses. This review article summarizes the current landscape of bispecific antibodies in lung cancer, including their mechanisms of action, clinical development, and potential applications in other solid tumor malignancies. Additionally, the challenges and opportunities associated with their use in the clinic are discussed, along with future directions for research and development in this exciting area of cancer immunotherapy.
Collapse
Affiliation(s)
- Atulya Aman Khosla
- Division of Internal Medicine, William Beaumont University Hospital, Royal Oak, MI 48073, USA;
| | - Karan Jatwani
- Division of Hematology-Oncology, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Rohit Singh
- Division of Hematology-Oncology, University of Vermont, Burlington, VT 05405, USA
| | - Aswanth Reddy
- Division of Hematology-Oncology, Mercy Clinic, Fort Smith, AR 72903, USA
| | - Ishmael Jaiyesimi
- Division of Hematology-Oncology, William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Aakash Desai
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|