1
|
Witt KC, Dziulko A, An J, Pekovic F, Cheng AX, Liu GY, Lee OV, Turner DJ, Lari A, Gaidt MM, Chavez R, Fattinger SA, Abraham P, Dhaliwal H, Lee AY, Kotov DI, Coscoy L, Glaunsinger BA, Valkov E, Chuong EB, Vance RE. SP140-RESIST pathway regulates interferon mRNA stability and antiviral immunity. Nature 2025:10.1038/s41586-025-09152-2. [PMID: 40500448 DOI: 10.1038/s41586-025-09152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 05/13/2025] [Indexed: 06/18/2025]
Abstract
Type I interferons are essential for antiviral immunity1 but must be tightly regulated2. The conserved transcriptional repressor SP140 inhibits interferon-β (Ifnb1) expression through an unknown mechanism3,4. Here we report that SP140 does not directly repress Ifnb1 transcription. Instead, SP140 negatively regulates Ifnb1 mRNA stability by directly repressing the expression of a previously uncharacterized regulator that we call RESIST (regulated stimulator of interferon via stabilization of transcript; previously annotated as annexin 2 receptor). RESIST promotes Ifnb1 mRNA stability by counteracting Ifnb1 mRNA destabilization mediated by the tristetraprolin (TTP) family of RNA-binding proteins and the CCR4-NOT deadenylase complex. SP140 localizes within punctate structures called nuclear bodies that have important roles in silencing DNA-virus gene expression in the nucleus3. Consistent with this observation, we find that SP140 inhibits replication of the gammaherpesvirus MHV68. The antiviral activity of SP140 is independent of its ability to regulate Ifnb1. Our results establish dual antiviral and interferon regulatory functions for SP140. We propose that SP140 and RESIST participate in antiviral effector-triggered immunity5,6.
Collapse
Affiliation(s)
- Kristen C Witt
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Adam Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joohyun An
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Filip Pekovic
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Arthur Xiuyuan Cheng
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Grace Y Liu
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ophelia Vosshall Lee
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - David J Turner
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Azra Lari
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, USA
| | - Moritz M Gaidt
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Roberto Chavez
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Preethy Abraham
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Dmitri I Kotov
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Britt A Glaunsinger
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, USA
| | - Eugene Valkov
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Russell E Vance
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Cancer Research Laboratory, University of California, Berkeley, CA, USA.
| |
Collapse
|
2
|
Kwiatkowska J, Stein E, Romanenko A, Plens-Gałąska M, Podsiadła-Białoskórska M, Szołajska E, Kühn U, Kamieniarz-Gdula K. A beginners guide to Sf9 and Sf21 insect cell line culture and troubleshooting. Sci Rep 2025; 15:19907. [PMID: 40481248 PMCID: PMC12144304 DOI: 10.1038/s41598-025-99812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/23/2025] [Indexed: 06/11/2025] Open
Abstract
Recombinant proteins are not only a crucial research tool but are also widely implemented in biomedicine. There are a number of expression systems used for recombinant protein production. Among them Spodoptera frugiperda (Sf) insect cell system is a powerful tool for multiprotein expression. Most commonly used are Sf9 and Sf21 cell lines due to their cost-effectiveness and availability. While a collection of protocols describing the Sf cell lines culturing is available, we have found them incomplete and their adaptation to real laboratory conditions challenging. Here we created a user-friendly hands-on protocol suitable for beginners. Our work combines the efforts of three independent laboratories which culture Sf cells, two labs with long experience, and one which recently successfully set up this system from scratch. We propose novel tricks and tips that allow for culturing of healthy Sf cells, and high protein yield production. Besides catering for beginners, our protocol can serve as a troubleshooting guide for more experienced researchers. We believe that this work is useful for biochemistry all the way to biomedical laboratories. Starting with an exhaustive description of Sf cell lines, through baculovirus expression vector system characteristic, this publication is a protocol, troubleshooting guide and compendium in one.
Collapse
Affiliation(s)
- Joanna Kwiatkowska
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznań, Poland.
- Department of Molecular and Cellular Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614, Poznań, Poland.
| | - Ewa Stein
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznań, Poland
- Department of Molecular and Cellular Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Anastasiia Romanenko
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznań, Poland
- Department of Molecular and Cellular Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Martyna Plens-Gałąska
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznań, Poland
- Department of Molecular and Cellular Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614, Poznań, Poland
| | | | - Ewa Szołajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University, Halle, Germany
| | - Kinga Kamieniarz-Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614, Poznań, Poland
- Department of Molecular and Cellular Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614, Poznań, Poland
| |
Collapse
|
3
|
Lovell TC, Dewling HAF, Li C, Lee HW, Gordon CJ, Kocincova D, Badmalia MD, Tchesnokov EP, Götte M, Cosa G. Single-Molecule Assay Reveals Binding Dynamics of SARS-CoV-2 Polymerase Components and Provides a New Tool to Distinguish Polymerase Inhibitors. ACS Infect Dis 2025. [PMID: 40465830 DOI: 10.1021/acsinfecdis.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The genome replication of SARS-CoV-2, the causative agent of COVID-19, involves a multisubunit replication complex consisting of nonstructural proteins (nsps) 12, 7, and 8. While the structure of this complex is known, the dynamic behavior of the subunits interacting with RNA is missing. Here we report a single-molecule protein induced fluorescence enhancement (SM-PIFE) assay to monitor binding dynamics between the reconstituted or coexpressed replication complex and RNA. Increasing binding times were observed, in this order, with nsp7 (none), nsp8, and nsp12, in nsp8 nsp12 mixtures and in reconstituted mixtures bearing all three proteins. Unstable, unstable→stable, and stable binding modes were recorded in the latter case, indicating that complexation is dynamic and the correct conformation must be achieved before stable RNA binding can occur. Notably, the coexpressed protein yields mostly stable binding even at low concentrations, while the reconstituted proteins exhibit unstable binding indicating inefficient complexation with reduced protein. The SM-PIFE assay distinguishes inhibitors that impact protein binding from those that prevent replication, as demonstrated with suramin and remdesivir, respectively. The data reveals a correlation between binding lifetime/affinity and protein activity and underscores differences between coexpressed vs reconstituted mixtures, suggesting the existence of trapped conformations that may not evolve to productive binding.
Collapse
Affiliation(s)
- Terri C Lovell
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Heidi A F Dewling
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Cynthia Li
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Hery W Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Maulik D Badmalia
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
4
|
Maiwald SA, Schneider LA, Vollrath R, Liwocha J, Maletic MD, Swatek KN, Mulder MPC, Schulman BA. TRIP12 structures reveal HECT E3 formation of K29 linkages and branched ubiquitin chains. Nat Struct Mol Biol 2025:10.1038/s41594-025-01561-1. [PMID: 40419785 DOI: 10.1038/s41594-025-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/10/2025] [Indexed: 05/28/2025]
Abstract
Regulation by ubiquitin depends on E3 ligases forging chains of specific topologies, yet the mechanisms underlying the generation of atypical linkages remain largely elusive. Here we utilize biochemistry, chemistry, and cryo-EM to define the catalytic architecture producing K29 linkages and K29/K48 branches for the human HECT E3 TRIP12. TRIP12 resembles a pincer. One pincer side comprises tandem ubiquitin-binding domains, engaging the proximal ubiquitin to direct its K29 towards the ubiquitylation active site, and selectively capturing a distal ubiquitin from a K48-linked chain. The opposite pincer side-the HECT domain-precisely juxtaposes the ubiquitins to be joined, further ensuring K29 linkage specificity. Comparison to the prior structure visualizing K48-linked chain formation by UBR5 reveals a similar mechanism shared by two human HECT enzymes: parallel features of the E3s, donor and acceptor ubiquitins configure the active site around the targeted lysine, with E3-specific domains buttressing the acceptor for linkage-specific polyubiquitylation.
Collapse
Affiliation(s)
- Samuel A Maiwald
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laura A Schneider
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- ISREC, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronnald Vollrath
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Joanna Liwocha
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Lyterian Therapeutics, South San Francisco, CA, USA
| | - Matthew D Maletic
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kirby N Swatek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brenda A Schulman
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
5
|
Effantin G, Kandiah E, Pelosse M. Structure of AcMNPV nucleocapsid reveals DNA portal organization and packaging apparatus of circular dsDNA baculovirus. Nat Commun 2025; 16:4844. [PMID: 40413174 PMCID: PMC12103608 DOI: 10.1038/s41467-025-60152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
Baculoviruses are large DNA viruses found in nature propagating amongst insects and lepidoptera in particular. They have been studied for decades and are nowadays considered as invaluable biotechnology tools used as biopesticides, recombinant expression systems or delivery vehicle for gene therapy. However, little is known about the baculovirus nucleocapsid assembly at a molecular level. Here, we solve the whole structure of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) nucleocapsid by applying cryo-electron microscopy (CryoEM) combined with de novo modelling and Alphafold predictions. Our structure completes prior observations and elucidates the intricate architecture of the apical cap, unravelling the organization of a DNA portal featuring intriguing symmetry mismatches between its core and vertex. The core, closing the capsid at the apex, holds two DNA helices of the viral genome tethered to Ac54 proteins. Different symmetry components at the apical cap and basal structure are constituted of the same building block, made of Ac101/Ac144, proving the versatility of this modular pair. The crown forming the portal vertex displays a C21 symmetry and contains, amongst others, the motor-like protein Ac66. Our findings support the viral portal to be involved in DNA packaging, probably in conjunction with other parts of a larger DNA packaging apparatus.
Collapse
Affiliation(s)
- Gregory Effantin
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France.
| | - Eaazhisai Kandiah
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000, Grenoble, France.
| | - Martin Pelosse
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, Cedex, France.
| |
Collapse
|
6
|
Klein M, Das A, Bera S, Anderson T, Kocincova D, Lee H, Wang B, Papini F, Marecki J, Arnold J, Cameron C, Raney K, Artsimovitch I, Götte M, Kirchdoerfer R, Depken M, Dulin D. A post-assembly conformational change makes the SARS-CoV-2 polymerase elongation-competent. Nucleic Acids Res 2025; 53:gkaf450. [PMID: 40464687 PMCID: PMC12135201 DOI: 10.1093/nar/gkaf450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/14/2025] [Accepted: 05/16/2025] [Indexed: 06/11/2025] Open
Abstract
Coronaviruses (CoVs) encode 16 nonstructural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s, and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell. While essential for viral replication, the mechanism by which the core RTC assembles into a processive polymerase remains poorly understood. We show that the core RTC preferentially assembles by first having nsp12-polymerase bind to the RNA template, followed by the subsequent association of nsp7 and nsp8. Once assembled on the RNA template, the core RTC requires hundreds of seconds to undergo a conformational change that enables processive elongation. In the absence of RNA, the (apo-)RTC requires several hours to adopt its elongation-competent conformation. We propose that this obligatory activation step facilitates the recruitment of additional nsps essential for efficient viral RNA synthesis and may represent a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Misha Klein
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
| | - Arnab Das
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
| | - Subhas C Bera
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Thomas K Anderson
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hery W Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Bing Wang
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Flavia S Papini
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jamie J Arnold
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, United States
| | - Craig E Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, United States
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Mathias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Robert N Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Meng X, Li Y, Xu J, Wu K, Hu W, Wu C, Xu HE, Xu Y. Structural insights into the activation of the human prostaglandin E 2 receptor EP1 subtype by prostaglandin E 2. Proc Natl Acad Sci U S A 2025; 122:e2423840122. [PMID: 40366695 DOI: 10.1073/pnas.2423840122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Prostaglandin E2 (PGE2) mediates diverse physiological processes through four G protein-coupled receptor subtypes (EP1-EP4). While structures of EP2, EP3, and EP4 have been determined, the structural basis for PGE2 recognition and activation of the EP1 receptor subtype has remained elusive due to its inherent instability. Here, we present the cryoelectron microscopy structure of the human EP1 receptor in complex with PGE2 and heterotrimeric Gq protein at 2.55 Å resolution, completing the structural characterization of the EP receptor family. Our structure reveals a unique binding mode of PGE2 within EP1, involving key interactions with residues in the orthosteric pocket. Notably, we observe a less pronounced outward displacement of transmembrane helix 6 compared to other EP receptor subtypes, suggesting a distinct activation mechanism for EP1. Through extensive mutational analyses, we identify critical residues involved in PGE2 recognition, EP1 activation, and Gq protein coupling. By overcoming the challenges associated with the instability of EP1, our findings provide valuable insights into the subtype-specific activation mechanisms of EP receptors and lay the foundation for the development of more selective EP1-targeted therapeutics.
Collapse
Affiliation(s)
- Xue Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiuyin Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the National Medical Products Administration and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| |
Collapse
|
8
|
Gordon CJ, Walker SM, LeCher JC, Amblard F, Schinazi RF, Götte M. Mechanism of Inhibition of the Active Triphosphate Form of 2'-α-Fluoro,2'-β-bromouridine against Yellow Fever Virus RNA-Dependent RNA Polymerase. ACS Infect Dis 2025. [PMID: 40323779 DOI: 10.1021/acsinfecdis.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Yellow fever virus (YFV) is a deadly mosquito-borne flavivirus that infects approximately 200,000 individuals each year. YFV outbreak and infection are persistent throughout South America and Africa, demonstrating significant epidemic potential. Although an approved and effective vaccine exists, the zoonotic nature of YFV undermines any potential eradication efforts, highlighting the need for effective, direct-acting antivirals. Essential for viral replication, RNA-dependent RNA polymerase (RdRp) is a proven therapeutic target. A prominent example includes sofosbuvir, a 2'-α-fluoro,2'-β-methyluridine prodrug approved for the treatment of hepatitis C virus (HCV), that has demonstrated efficacy against YFV in vitro. A structurally similar 2'-α-fluoro, 2'-β-bromouridine prodrug has exhibited potent anti-YFV activity both in vitro and in vivo. Here, we expressed the full-length nonstructural protein 5 from YFV in insect cells to investigate the active triphosphate form of these prodrugs. Enzyme kinetics indicate that both nucleotide analogs are incorporated less efficiently than UTP. Once incorporated, the analogs inhibit RNA synthesis through immediate chain termination. Omitting the 2'-β-modification alleviates the inhibition of RNA synthesis, highlighting its role in eliciting an antiviral effect. S282T is a well-characterized mutation in motif B of HCV RdRp that confers resistance to sofosbuvir. We discovered that the analogous substitution in YFV (S603T) improved discrimination against the 2'-α-fluoro,2'-β-modified uridine analogs. Collectively, our findings explain their observed anti-YFV activity and identify a conserved mechanism of resistance. Based on its in vivo efficacy and mechanism of action, the 2'-fluoro,2'-bromouridine prodrug shows potential for future therapeutic strategies against YFV.
Collapse
Affiliation(s)
- Calvin Joel Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Simon Maximus Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Julia Christine LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Raymond Felix Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
9
|
Ramou I, Janvier S, Claes P, Menet C, Steyaert J, Pardon E. pFastBac4x: A Novel Vector for the Simultaneous Expression of Four Proteins-Expression and Purification of a G-Protein Complex as a Case Study. Mol Biotechnol 2025:10.1007/s12033-025-01434-4. [PMID: 40295446 DOI: 10.1007/s12033-025-01434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Baculovirus-mediated expression in insect cells has become one of the most widely used expression systems for the production of eukaryotic proteins. Since the initial discovery that baculoviruses can be employed for the heterologous expression of proteins, the system has evolved and improved in various ways. In this study, we describe the design of a novel vector, termed pFastBac4x, and present a case study involving the co-expression of four proteins in Sf9 insect cells: Gqi alpha, G beta, G gamma, and Ric8A. Protein expression was assessed by Flow Cytometry and Western Blot techniques. The Gqi protein complex was purified via Immobilized Metal Affinity Chromatography, followed by a polishing Size Exclusion Chromatography step. The data demonstrate that the pFastBac4x vector can successfully be used for the co-expression of up to four proteins or protein subunits.
Collapse
Affiliation(s)
- Ioanna Ramou
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Steven Janvier
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Pieter Claes
- Confo Therapeutics, Tech Lane Ghent Science Park, Ghent, Belgium
| | - Christel Menet
- Confo Therapeutics, Tech Lane Ghent Science Park, Ghent, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium.
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium.
| |
Collapse
|
10
|
Bitala A, Benko M, Nemčovič M, Nemčovičová I. Equi-MOI ratio for rapid baculovirus-mediated multiprotein co-expression in insect cells integrating selenomethionine for structural studies. FEBS Open Bio 2025; 15:563-572. [PMID: 40103323 PMCID: PMC11961385 DOI: 10.1002/2211-5463.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Proteins often co-exist as multicomponent assemblies, making their co-expression essential in recombinant production processes. The baculovirus expression vector system is commonly used to produce recombinant multiprotein complexes mostly for structural and functional studies. Although AI-enhanced tools, such as AlphaFold, have revolutionized protein structure prediction, solving the phase problem remains the most significant challenge in X-ray crystallography for determining entirely novel, dynamic, or complex protein structures. To address this challenge, the early incorporation of selenomethionine into native proteins during production is especially advantageous for facilitating experimental phasing. Here, we describe a fast, effective, and versatile research protocol that uniquely combines these two challenging features. The principle of this method is based on using co-infection of several recombinant baculoviruses in so-called equal multiplicity of infection (MOI) or equi-MOI ratio, while at the same time, the balanced selenomethionine incorporation takes place to allow for an accelerated workflow. The delicate balance between individual conditions for producing selenomethionine-incorporated multiprotein complexes with high efficiency has been developed over several years of studying protein complexes; therefore, many useful tips and tricks are provided as well. Moreover, this protocol is straightforward to implement in any wet lab.
Collapse
Affiliation(s)
- Andrej Bitala
- Biomedical Research Center, Slovak Academy of SciencesBratislavaSlovakia
| | - Mário Benko
- Biomedical Research Center, Slovak Academy of SciencesBratislavaSlovakia
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of SciencesBratislavaSlovakia
| | - Ivana Nemčovičová
- Biomedical Research Center, Slovak Academy of SciencesBratislavaSlovakia
| |
Collapse
|
11
|
Bhatta A, Kuhle B, Yu RD, Spanaus L, Ditter K, Bohnsack KE, Hillen HS. Molecular basis of human nuclear and mitochondrial tRNA 3' processing. Nat Struct Mol Biol 2025; 32:613-624. [PMID: 39747487 PMCID: PMC11996679 DOI: 10.1038/s41594-024-01445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
Eukaryotic transfer RNA (tRNA) precursors undergo sequential processing steps to become mature tRNAs. In humans, ELAC2 carries out 3' end processing of both nucleus-encoded (nu-tRNAs) and mitochondria-encoded (mt-tRNAs) tRNAs. ELAC2 is self-sufficient for processing of nu-tRNAs but requires TRMT10C and SDR5C1 to process most mt-tRNAs. Here we show that TRMT10C and SDR5C1 specifically facilitate processing of structurally degenerate mt-tRNAs lacking the canonical elbow. Structures of ELAC2 in complex with TRMT10C, SDR5C1 and two divergent mt-tRNA substrates reveal two distinct mechanisms of pre-tRNA recognition. While canonical nu-tRNAs and mt-tRNAs are recognized by direct ELAC2-RNA interactions, processing of noncanonical mt-tRNAs depends on protein-protein interactions between ELAC2 and TRMT10C. These results provide the molecular basis for tRNA 3' processing in both the nucleus and the mitochondria and explain the organelle-specific requirement for additional factors. Moreover, they suggest that TRMT10C-SDR5C1 evolved as a mitochondrial tRNA maturation platform to compensate for the structural erosion of mt-tRNAs in bilaterian animals.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, University of Göttingen, Göttingen, Germany
| | - Bernhard Kuhle
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ryan D Yu
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, University of Göttingen, Göttingen, Germany
| | - Lucas Spanaus
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katja Ditter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Loutan AJ, Yang B, Connolly G, Montoya A, Smiley RJ, Chatterjee AK, Götte M. Bunyaviral Cap-Snatching Endonuclease Activity and Inhibition with Baloxavir-like Inhibitors in the Context of Full-Length L Proteins. Viruses 2025; 17:420. [PMID: 40143347 PMCID: PMC11946187 DOI: 10.3390/v17030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
The Bunyavirales order includes a range of zoonotic viruses, which can cause severe disease in humans. The viral replication machinery is a logical target for the development of direct-acting antivirals. Inhibition of the cap-snatching endonuclease activity of related influenza viruses provides a proof of concept. Using the influenza B virus (IBV) RNA-dependent RNA polymerase complex as a benchmark, we conducted a comparative analysis of endonuclease activities of recombinant full-length bunyaviral L proteins using gel-based assays. The IBV complex demonstrates specific endonucleolytic cleavage and a clear preference for capped substrates. In contrast, severe fever with thrombocytopenia syndrome, Sin Nombre, and Hantaan virus L proteins readily cleave capped and uncapped RNAs to a broader spectrum of RNA fragments. Active site mutants further help to control for the potential of contaminating nucleases, exonuclease activity, and RNA hydrolysis. The influenza cap-snatching inhibitor baloxavir and derivatives have been used to validate this approach. In conclusion, the results of this study demonstrate the importance of assays with single nucleotide resolution and the use of full-length L proteins as a valuable experimental tool to identify selective endonuclease inhibitors.
Collapse
Affiliation(s)
- Arlo J. Loutan
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada (R.J.S.)
| | - Baiuyan Yang
- Calibr-Skaggs Institute for Innovation Medicines at Scripps Research, La Jolla, CA 92037, USA; (B.Y.)
| | - Gabrielle Connolly
- Calibr-Skaggs Institute for Innovation Medicines at Scripps Research, La Jolla, CA 92037, USA; (B.Y.)
| | - Adam Montoya
- Calibr-Skaggs Institute for Innovation Medicines at Scripps Research, La Jolla, CA 92037, USA; (B.Y.)
| | - Robert J. Smiley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada (R.J.S.)
| | - Arnab K. Chatterjee
- Calibr-Skaggs Institute for Innovation Medicines at Scripps Research, La Jolla, CA 92037, USA; (B.Y.)
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada (R.J.S.)
| |
Collapse
|
13
|
Sala FA, Ditter K, Dybkov O, Urlaub H, Hillen HS. Structural basis of Nipah virus RNA synthesis. Nat Commun 2025; 16:2261. [PMID: 40050611 PMCID: PMC11885841 DOI: 10.1038/s41467-025-57219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
Nipah virus (NiV) is a non-segmented negative-strand RNA virus (nsNSV) with high pandemic potential, as it frequently causes zoonotic outbreaks and can be transmitted from human to human. Its RNA-dependent RNA polymerase (RdRp) complex, consisting of the L and P proteins, carries out viral genome replication and transcription and is therefore an attractive drug target. Here, we report cryo-EM structures of the NiV polymerase complex in the apo and in an early elongation state with RNA and incoming substrate bound. The structure of the apo enzyme reveals the architecture of the NiV L-P complex, which shows a high degree of similarity to other nsNSV polymerase complexes. The structure of the RNA-bound NiV L-P complex shows how the enzyme interacts with template and product RNA during early RNA synthesis and how nucleoside triphosphates are bound in the active site. Comparisons show that RNA binding leads to rearrangements of key elements in the RdRp core and to ordering of the flexible C-terminal domains of NiV L required for RNA capping. Taken together, these results reveal the first structural snapshots of an actively elongating nsNSV L-P complex and provide insights into the mechanisms of genome replication and transcription by NiV and related viruses.
Collapse
Affiliation(s)
- Fernanda A Sala
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katja Ditter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences (GZMB), Research Group Structure and Function of Molecular Machines, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Watzlowik MT, Silberhorn E, Das S, Singhal R, Venugopal K, Holzinger S, Stokes B, Schadt E, Sollelis L, Bonnell VA, Gow M, Klingl A, Marti M, Llinás M, Meissner M, Längst G. Plasmodium blood stage development requires the chromatin remodeller Snf2L. Nature 2025; 639:1069-1075. [PMID: 39972139 PMCID: PMC11946908 DOI: 10.1038/s41586-025-08595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2025] [Indexed: 02/21/2025]
Abstract
The complex life cycle of the malaria parasite Plasmodium falciparum involves several major differentiation stages, each requiring strict control of gene expression. Fundamental changes in chromatin structure and epigenetic modifications during life cycle progression suggest a central role for these mechanisms in regulating the transcriptional program of malaria parasite development1-6. P. falciparum chromatin is distinct from other eukaryotes, with an extraordinarily high AT content (>80%)7 and highly divergent histones resulting in atypical DNA packaging properties8. Moreover, the chromatin remodellers that are critical for shaping chromatin structure are not conserved and are unexplored in P. falciparum. Here we identify P. falciparum Snf2L (PfSnf2L, encoded by PF3D7_1104200) as an ISWI-related ATPase that actively repositions P. falciparum nucleosomes in vitro. Our results demonstrate that PfSnf2L is essential, regulating both asexual development and sexual differentiation. PfSnf2L globally controls just-in-time transcription by spatiotemporally determining nucleosome positioning at the promoters of stage-specific genes. The unique sequence and functional properties of PfSnf2L led to the identification of an inhibitor that specifically kills P. falciparum and phenocopies the loss of correct gene expression timing. The inhibitor represents a new class of antimalarial transmission-blocking drugs, inhibiting gametocyte formation.
Collapse
Affiliation(s)
| | - Elisabeth Silberhorn
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sujaan Das
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Ritwik Singhal
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
| | - Kannan Venugopal
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Holzinger
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Barbara Stokes
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ella Schadt
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Lauriane Sollelis
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
| | - Matthew Gow
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Marti
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
- Department of Chemistry, Pennsylvania State University, State College, PA, USA
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany.
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.
| |
Collapse
|
15
|
Pelosse M, Marcia M. biGMamAct: efficient CRISPR/Cas9-mediated docking of large functional DNA cargoes at the ACTB locus. Synth Biol (Oxf) 2025; 10:ysaf003. [PMID: 40065842 PMCID: PMC11891445 DOI: 10.1093/synbio/ysaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 04/26/2025] Open
Abstract
Recent advances in molecular and cell biology and imaging have unprecedentedly enabled multiscale structure-functional studies of entire metabolic pathways from atomic to micrometer resolution and the visualization of macromolecular complexes in situ, especially if these molecules are expressed with appropriately engineered and easily detectable tags. However, genome editing in eukaryotic cells is challenging when generating stable cell lines loaded with large DNA cargoes. To address this limitation, here, we have conceived biGMamAct, a system that allows the straightforward assembly of a multitude of genetic modules and their subsequent integration in the genome at the ACTB locus with high efficacy, through standardized cloning steps. Our system comprises a set of modular plasmids for mammalian expression, which can be efficiently docked into the genome in tandem with a validated Cas9/sgRNA pair through homologous-independent targeted insertion. As a proof of concept, we have generated a stable cell line loaded with an 18.3-kilobase-long DNA cargo to express six fluorescently tagged proteins and simultaneously visualize five different subcellular compartments. Our protocol leads from the in silico design to the genetic and functional characterization of single clones within 6 weeks and can be implemented by any researcher with familiarity with molecular biology and access to mammalian cell culturing infrastructure.
Collapse
Affiliation(s)
- Martin Pelosse
- EMBL Grenoble, European Molecular Biology Laboratory, 71 avenue des Martyrs, Grenoble Cedex 9 CS 90181, 38042, France
| | - Marco Marcia
- EMBL Grenoble, European Molecular Biology Laboratory, 71 avenue des Martyrs, Grenoble Cedex 9 CS 90181, 38042, France
| |
Collapse
|
16
|
Muhar MF, Farnung J, Cernakova M, Hofmann R, Henneberg LT, Pfleiderer MM, Denoth-Lippuner A, Kalčic F, Nievergelt AS, Peters Al-Bayati M, Sidiropoulos ND, Beier V, Mann M, Jessberger S, Jinek M, Schulman BA, Bode JW, Corn JE. C-terminal amides mark proteins for degradation via SCF-FBXO31. Nature 2025; 638:519-527. [PMID: 39880951 PMCID: PMC11821526 DOI: 10.1038/s41586-024-08475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts1. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites2,3. Such modifications have been proposed to trigger the selective removal of chemically marked proteins3-6; however, identifying modifications that are sufficient to induce protein degradation has remained challenging. Here, using a semi-synthetic chemical biology approach coupled to cellular assays, we found that C-terminal amide-bearing proteins (CTAPs) are rapidly cleared from human cells. A CRISPR screen identified FBXO31 as a reader of C-terminal amides. FBXO31 is a substrate receptor for the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase SCF-FBXO31, which ubiquitylates CTAPs for subsequent proteasomal degradation. A conserved binding pocket enables FBXO31 to bind to almost any C-terminal peptide bearing an amide while retaining exquisite selectivity over non-modified clients. This mechanism facilitates binding and turnover of endogenous CTAPs that are formed after oxidative stress. A dominant human mutation found in neurodevelopmental disorders reverses CTAP recognition, such that non-amidated neosubstrates are now degraded and FBXO31 becomes markedly toxic. We propose that CTAPs may represent the vanguard of a largely unexplored class of modified amino acid degrons that could provide a general strategy for selective yet broad surveillance of chemically damaged proteins.
Collapse
Affiliation(s)
- Matthias F Muhar
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Jakob Farnung
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Raphael Hofmann
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Annina Denoth-Lippuner
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Filip Kalčic
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ajse S Nievergelt
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marwa Peters Al-Bayati
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nikolaos D Sidiropoulos
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jeffrey W Bode
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Reithofer M, Huber S, Grabherr R. Establishment of the REMBAC-cassette, a rapid, efficient and manifold BacMam tool for recombinant protein expression. J Biotechnol 2025; 398:183-192. [PMID: 39755260 DOI: 10.1016/j.jbiotec.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Efficient recombinant protein production requires mammalian stable cell lines or often relies on inefficient transfection processes. Baculoviral transduction of mammalian cells (BacMam) offers cost-effective and robust gene transfer and straightforward scalability. The advantages over conventional approaches are, no need of high biosafety level laboratories, efficient transduction of various cell types and transfer of large transgenes into host cells. In our study, we aim to develop a high expression cassette to increase yields of baculoviral transduction. The establishment follows a sequential approach by first identifying the strongest promoter, followed by intron and WPRE sequences as enhancer elements for transcription and translation. The resulting REMBAC-cassette was compared to conventional transfection in suspension and adherent cells. Irrespective of the cell line, transduction reached nearly 100 % efficiency and led to almost 10-fold increases of gene expression levels. We confirmed these results in larger scale with batch and fed-batch cultivations. Finally, expression of different soluble proteins with high degrees of complexity confirmed the versatility of our established cassette. Overall, the REMBAC-cassette incorporated into the BacMam platform is a manifold tool offering advantages over standard transfection, in the scalability, efficiency and gene expression, which results in higher yields, shorter cultivation times and consequently cost-effective production processes.
Collapse
Affiliation(s)
- Manuel Reithofer
- Institute of Molecular Biotechnology (IMBT), BOKU University, Vienna, Austria.
| | - Sophie Huber
- Institute of Molecular Biotechnology (IMBT), BOKU University, Vienna, Austria
| | - Reingard Grabherr
- Institute of Molecular Biotechnology (IMBT), BOKU University, Vienna, Austria
| |
Collapse
|
18
|
Witt KC, Dziulko A, An J, Pekovic F, Cheng AX, Liu GY, Lee OV, Turner DJ, Lari A, Gaidt MM, Chavez R, Fattinger SA, Abraham P, Dhaliwal H, Lee AY, Kotov DI, Coscoy L, Glaunsinger BA, Valkov E, Chuong EB, Vance RE. The SP140-RESIST pathway regulates interferon mRNA stability and antiviral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.28.610186. [PMID: 39974928 PMCID: PMC11838211 DOI: 10.1101/2024.08.28.610186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type I interferons (IFN-Is) are essential for antiviral immunity but must be tightly regulated1-3. The conserved transcriptional repressor SP140 inhibits interferon beta (Ifnb1) expression via an unknown mechanism4,5. Here we report that SP140 does not directly repress Ifnb1 transcription. Instead, SP140 negatively regulates Ifnb1 mRNA stability by directly repressing the expression of a previously uncharacterized regulator we call RESIST (REgulated Stimulator of Interferon via Stabilization of Transcript, previously annotated as Annexin-2 Receptor). RESIST promotes Ifnb1 mRNA stability by counteracting Ifnb1 mRNA destabilization mediated by the Tristetraprolin (TTP) family of RNA-binding proteins and the CCR4-NOT deadenylase complex. SP140 localizes within nuclear bodies, punctate structures that play important roles in silencing DNA virus gene expression in the nucleus4. Consistent with this observation, we found that SP140 inhibits replication of the gammaherpesvirus MHV68. The antiviral activity of SP140 was independent of its ability to regulate Ifnb1. Our results establish dual antiviral and interferon regulatory functions for SP140. We propose that SP140 and RESIST participate in antiviral effector-triggered immunity6,7.
Collapse
Affiliation(s)
- Kristen C Witt
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Adam Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joohyun An
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Filip Pekovic
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Arthur Xiuyuan Cheng
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Grace Y Liu
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ophelia Vosshall Lee
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - David J Turner
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Azra Lari
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Moritz M Gaidt
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Current address: Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Roberto Chavez
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Preethy Abraham
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Angus Y Lee
- Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Dmitri I Kotov
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Britt A Glaunsinger
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, USA
| | - Eugene Valkov
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Russell E Vance
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Cancer Research Laboratory, University of California, Berkeley, CA, USA
| |
Collapse
|
19
|
Mrozek P, Grunewald S, Treffon K, Poschmann G, Rabe von Pappenheim F, Tittmann K, Gatz C. Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates. Nat Commun 2025; 16:589. [PMID: 39799154 PMCID: PMC11724882 DOI: 10.1038/s41467-024-55532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms. Here we show that Arabidopsis thaliana class III GRX ROXY9 is inactive as an oxidoreductase on widely used model substrates. Glutathionylation of the active site cysteine, a prerequisite for enzymatic activity, occurs only under highly oxidizing conditions established by the GSH/glutathione disulfide (GSSG) redox couple, while class I GRXs are readily glutathionylated even at very negative GSH/GSSG redox potentials. Thus, structural alterations in the GSH binding site leading to an altered GSH binding mode likely explain the enzymatic inactivity of ROXY9. This might have evolved to avoid overlapping functions with class I GRXs and raises questions of whether ROXY9 regulates TGA substrates through redox regulation.
Collapse
Affiliation(s)
- Pascal Mrozek
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Stephan Grunewald
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Katrin Treffon
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Rabe von Pappenheim
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Centre for Molecular Biosciences and Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
| |
Collapse
|
20
|
Klein M, Das A, Bera SC, Anderson TK, Kocincova D, Lee HW, Wang B, Papini FS, Marecki JC, Arnold JJ, Cameron CE, Raney KD, Artsimovitch I, Götte M, Kirchdoerfer RN, Depken M, Dulin D. A post-assembly conformational change makes the SARS-CoV-2 polymerase elongation-competent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632299. [PMID: 39829827 PMCID: PMC11741424 DOI: 10.1101/2025.01.10.632299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Coronaviruses (CoV) encode sixteen non-structural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell. While essential for viral replication, the mechanism by which the core RTC assembles into a processive polymerase remains poorly understood. We show that the core RTC preferentially assembles by first having nsp12-polymerase bind to the RNA template, followed by the subsequent association of nsp7 and nsp8. Once assembled on the RNA template, the core RTC requires hundreds of seconds to undergo a conformational change that enables processive elongation. In the absence of RNA, the (apo-)RTC requires several hours to adopt its elongation-competent conformation. We propose that this obligatory activation step facilitates the recruitment of additional nsp's essential for efficient viral RNA synthesis and may represent a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Misha Klein
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Arnab Das
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Subhas C. Bera
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Thomas K. Anderson
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Bing Wang
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Flavia S. Papini
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - John C. Marecki
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Mathias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Robert N. Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
21
|
Chesnutt K, Yayli G, Toelzer C, Damilot M, Cox K, Gautam G, Berger I, Tora L, Poirier M. ATAC and SAGA histone acetyltransferase modules facilitate transcription factor binding to nucleosomes independent of their acetylation activity. Nucleic Acids Res 2025; 53:gkae1120. [PMID: 39656677 PMCID: PMC11724297 DOI: 10.1093/nar/gkae1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Transcription initiation involves the coordination of multiple events, starting with activators binding specific DNA target sequences, which recruit transcription coactivators to open chromatin and enable binding of general transcription factors and RNA polymerase II to promoters. Two key human transcriptional coactivator complexes, ATAC (ADA-two-A-containing) and SAGA (Spt-Ada-Gcn5 acetyltransferase), containing histone acetyltransferase (HAT) activity, target genomic loci to increase promoter accessibility. To better understand the function of ATAC and SAGA HAT complexes, we used in vitro biochemical and biophysical assays to characterize human ATAC and SAGA HAT module interactions with nucleosomes and how a transcription factor (TF) coordinates these interactions. We found that ATAC and SAGA HAT modules bind nucleosomes with high affinity, independent of their HAT activity and the tested TF. ATAC and SAGA HAT modules directly interact with the VP16 activator domain and this domain enhances acetylation activity of both HAT modules. Surprisingly, ATAC and SAGA HAT modules increase TF binding to its DNA target site within the nucleosome by an order of magnitude independent of histone acetylation. Altogether, our results reveal synergistic coordination between HAT modules and a TF, where ATAC and SAGA HAT modules (i) acetylate histones to open chromatin and (ii) facilitate TF targeting within nucleosomes independently of their acetylation activity.
Collapse
Affiliation(s)
- Kristin V Chesnutt
- Ohio State Biochemistry Program, Ohio State University, 191 W. Woodruff Ave. Columbus, OH, 43210, USA
| | - Gizem Yayli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Mylène Damilot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Khan Cox
- Department of Physics, Ohio State University, 191 W. Woodruff Ave. Columbus, OH 43210, USA
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 1 Rue Laurent Fries 67400Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 1 Rue Laurent Fries 67400Illkirch, France
- Université de Strasbourg, 1 Rue Laurent Fries 67400 Illkirch, France
| | - Michael G Poirier
- Ohio State Biochemistry Program, Ohio State University, 191 W. Woodruff Ave. Columbus, OH, 43210, USA
- Department of Physics, Ohio State University, 191 W. Woodruff Ave. Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, Ohio State University, Columbus, OH43210, USA
| |
Collapse
|
22
|
Abi Nahed R, Pelosse M, Aulicino F, Cottaz F, Berger I, Schlattner U. FRET-Based Sensor for Measuring Adenine Nucleotide Binding to AMPK. Methods Mol Biol 2025; 2882:15-45. [PMID: 39992503 DOI: 10.1007/978-1-0716-4284-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
AMP-activated protein kinase (AMPK) has evolved to detect a critical increase in cellular AMP/ATP and ADP/ATP concentration ratios as a signal for limiting energy supply. Such energy stress then leads to AMPK activation and downstream events that maintain cellular energy homeostasis. AMPK activation by AMP, ADP, or pharmacological activators involves a conformational switch within the AMPK heterotrimeric complex. We have engineered an AMPK-based sensor, AMPfret, which translates the activating conformational switch into a fluorescence signal, based on increased fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores. Here we describe how this sensor can be used to analyze direct AMPK activation by small molecules in vitro using a fluorimeter, or to estimate changes in the energy state of cells using standard fluorescence or confocal microscopy.
Collapse
Affiliation(s)
- Roland Abi Nahed
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 2280 Rue de la Piscine, Domaine Universitaire Gières, Grenoble, France
| | - Martin Pelosse
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 2280 Rue de la Piscine, Domaine Universitaire Gières, Grenoble, France
| | - Francesco Aulicino
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BSH 1TD, United Kingdom, Bristol, UK
| | - Florine Cottaz
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 2280 Rue de la Piscine, Domaine Universitaire Gières, Grenoble, France
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BSH 1TD, United Kingdom, Bristol, UK
| | - Uwe Schlattner
- Univ. Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), 2280 Rue de la Piscine, Domaine Universitaire Gières, Grenoble, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
23
|
Yudaeva A, Kostyusheva A, Kachanov A, Brezgin S, Ponomareva N, Parodi A, Pokrovsky VS, Lukashev A, Chulanov V, Kostyushev D. Clinical and Translational Landscape of Viral Gene Therapies. Cells 2024; 13:1916. [PMID: 39594663 PMCID: PMC11592828 DOI: 10.3390/cells13221916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Gene therapies hold significant promise for treating previously incurable diseases. A number of gene therapies have already been approved for clinical use. Currently, gene therapies are mostly limited to the use of adeno-associated viruses and the herpes virus. Viral vectors, particularly those derived from human viruses, play a critical role in this therapeutic approach due to their ability to efficiently deliver genetic material to target cells. Despite their advantages, such as stable gene expression and efficient transduction, viral vectors face numerous limitations that hinder their broad application. These limitations include small cloning capacities, immune and inflammatory responses, and risks of insertional mutagenesis. This review explores the current landscape of viral vectors used in gene therapy, discussing the different types of DNA- and RNA-based viral vectors, their characteristics, limitations, and current medical and potential clinical applications. The review also highlights strategies to overcome existing challenges, including optimizing vector design, improving safety profiles, and enhancing transgene expression both using molecular techniques and nanotechnologies, as well as by approved drug formulations.
Collapse
Affiliation(s)
- Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
| | - Vadim S. Pokrovsky
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Biochemistry, People’s Friendship University, 117198 Moscow, Russia
| | - Alexander Lukashev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.Y.); (A.K.); (A.K.); (S.B.); (N.P.); (A.L.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (V.S.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
24
|
Abbouche L, Murphy V, Gao J, van Twest S, Sobinoff A, Auweiler K, Pickett H, Bythell-Douglas R, Deans A. Mechanism of structure-specific DNA binding by the FANCM branchpoint translocase. Nucleic Acids Res 2024; 52:11029-11044. [PMID: 39189453 PMCID: PMC11472164 DOI: 10.1093/nar/gkae727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
FANCM is a DNA repair protein that recognizes stalled replication forks, and recruits downstream repair factors. FANCM activity is also essential for the survival of cancer cells that utilize the Alternative Lengthening of Telomeres (ALT) mechanism. FANCM efficiently recognizes stalled replication forks in the genome or at telomeres through its strong affinity for branched DNA structures. In this study, we demonstrate that the N-terminal translocase domain drives this specific branched DNA recognition. The Hel2i subdomain within the translocase is crucial for effective substrate engagement and couples DNA binding to catalytic ATP-dependent branch migration. Removal of Hel2i or mutation of key DNA-binding residues within this domain diminished FANCM's affinity for junction DNA and abolished branch migration activity. Importantly, these mutant FANCM variants failed to rescue the cell cycle arrest, telomere-associated replication stress, or lethality of ALT-positive cancer cells depleted of endogenous FANCM. Our results reveal the Hel2i domain is key for FANCM to properly engage DNA substrates, and therefore plays an essential role in its tumour-suppressive functions by restraining the hyperactivation of the ALT pathway.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jixuan Gao
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Karen M Auweiler
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Julius-Maximilians-University of Würzburg, Germany
| | - Hilda A Pickett
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
25
|
Mattioli M, Raele RA, Gautam G, Borucu U, Schaffitzel C, Aulicino F, Berger I. Tuning VSV-G Expression Improves Baculovirus Integrity, Stability and Mammalian Cell Transduction Efficiency. Viruses 2024; 16:1475. [PMID: 39339951 PMCID: PMC11437408 DOI: 10.3390/v16091475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Baculoviral vectors (BVs) derived from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) are an attractive tool for multigene delivery in mammalian cells, which is particularly relevant for CRISPR technologies. Most applications in mammalian cells rely on BVs that are pseudotyped with vesicular stomatitis virus G-protein (VSV-G) to promote efficient endosomal release. VSV-G expression typically occurs under the control of the hyperactive polH promoter. In this study, we demonstrate that polH-driven VSV-G expression results in BVs characterised by reduced stability, impaired morphology, and VSV-G induced toxicity at high multiplicities of transduction (MOTs) in target mammalian cells. To overcome these drawbacks, we explored five alternative viral promoters with the aim of optimising VSV-G levels displayed on the pseudotyped BVs. We report that Orf-13 and Orf-81 promoters reduce VSV-G expression to less than 5% of polH, rescuing BV morphology and stability. In a panel of human cell lines, we elucidate that BVs with reduced VSV-G support efficient gene delivery and CRISPR-mediated gene editing, at levels comparable to those obtained previously with polH VSV-G-pseudotyped BVs (polH VSV-G BV). These results demonstrate that VSV-G hyperexpression is not required for efficient transduction of mammalian cells. By contrast, reduced VSV-G expression confers similar transduction dynamics while substantially improving BV integrity, structure, and stability.
Collapse
Affiliation(s)
- Martina Mattioli
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (M.M.); (R.A.R.); (G.G.); (C.S.)
| | - Renata A. Raele
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (M.M.); (R.A.R.); (G.G.); (C.S.)
| | - Gunjan Gautam
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (M.M.); (R.A.R.); (G.G.); (C.S.)
| | - Ufuk Borucu
- GW4 Cryo-EM Facility, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK;
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (M.M.); (R.A.R.); (G.G.); (C.S.)
| | - Francesco Aulicino
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (M.M.); (R.A.R.); (G.G.); (C.S.)
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (M.M.); (R.A.R.); (G.G.); (C.S.)
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
26
|
Huang Y, Mei H, Deng C, Wang W, Yuan C, Nie Y, Li JD, Liu J. EXTL3 and NPC1 are mammalian host factors for Autographa californica multiple nucleopolyhedrovirus infection. Nat Commun 2024; 15:7711. [PMID: 39231976 PMCID: PMC11374996 DOI: 10.1038/s41467-024-52193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Baculovirus is an obligate parasitic virus of the phylum Arthropoda. Baculovirus including Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used in the laboratory and industrial preparation of proteins or protein complexes. Due to its large packaging capacity and non-replicative and non-integrative natures in mammals, baculovirus has been proposed as a gene therapy vector for transgene delivery. However, the mechanism of baculovirus transduction in mammalian cells has not been fully illustrated. Here, we employed a cell surface protein-focused CRISPR screen to identify host dependency factors for baculovirus transduction in mammalian cells. The screening experiment uncovered a series of baculovirus host factors in human cells, including exostosin-like glycosyltransferase 3 (EXTL3) and NPC intracellular cholesterol transporter 1 (NPC1). Further investigation illustrated that EXTL3 affected baculovirus attachment and entry by participating in heparan sulfate biosynthesis. In addition, NPC1 promoted baculovirus transduction by mediating membrane fusion and endosomal escape. Moreover, in vivo, baculovirus transduction in Npc1-/+ mice showed that disruption of Npc1 gene significantly reduced baculovirus transduction in mouse liver. In summary, our study revealed the functions of EXTL3 and NPC1 in baculovirus attachment, entry, and endosomal escape in mammalian cells, which is useful for understanding baculovirus transduction in human cells.
Collapse
Affiliation(s)
- Yuege Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Chunchen Deng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Shanghai Asiflyerbio Biotechnology, Shanghai, China.
| |
Collapse
|
27
|
Chakraborty S, Feng Z, Lee S, Alvarenga OE, Panda A, Bruni R, Khelashvili G, Gupta K, Accardi A. Structure and function of the human apoptotic scramblase Xkr4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607004. [PMID: 39149361 PMCID: PMC11326236 DOI: 10.1101/2024.08.07.607004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Phosphatidylserine externalization on the surface of dying cells is a key signal for their recognition and clearance by macrophages and is mediated by members of the X-Kell related (Xkr) protein family. Defective Xkr-mediated scrambling impairs clearance, leading to inflammation. It was proposed that activation of the Xkr4 apoptotic scramblase requires caspase cleavage, followed by dimerization and ligand binding. Here, using a combination of biochemical approaches we show that purified monomeric, full-length human Xkr4 (hXkr4) scrambles lipids. CryoEM imaging shows that hXkr4 adopts a novel conformation, where three conserved acidic residues create an electronegative surface embedded in the membrane. Molecular dynamics simulations show this conformation induces membrane thinning, which could promote scrambling. Thinning is ablated or reduced in conditions where scrambling is abolished or reduced. Our work provides insights into the molecular mechanisms of hXkr4 scrambling and suggests the ability to thin membranes might be a general property of active scramblases.
Collapse
Affiliation(s)
| | - Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical College
| | - Omar E. Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College
| | - Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center, New York, NY 10027, USA
| | | | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College
- Department of Physiology and Biophysics, Weill Cornell Medical College
- Department of Biochemistry, Weill Cornell Medical College
| |
Collapse
|
28
|
Sabath K, Qiu C, Jonas S. Assembly mechanism of Integrator's RNA cleavage module. Mol Cell 2024; 84:2882-2899.e10. [PMID: 39032489 DOI: 10.1016/j.molcel.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
The modular Integrator complex is a transcription regulator that is essential for embryonic development. It attenuates coding gene expression via premature transcription termination and performs 3'-processing of non-coding RNAs. For both activities, Integrator requires endonuclease activity that is harbored by an RNA cleavage module consisting of INTS4-9-11. How correct assembly of Integrator modules is achieved remains unknown. Here, we show that BRAT1 and WDR73 are critical biogenesis factors for the human cleavage module. They maintain INTS9-11 inactive during maturation by physically blocking the endonuclease active site and prevent premature INTS4 association. Furthermore, BRAT1 facilitates import of INTS9-11 into the nucleus, where it is joined by INTS4. Final BRAT1 release requires locking of the mature cleavage module conformation by inositol hexaphosphate (IP6). Our data explain several neurodevelopmental disorders caused by BRAT1, WDR73, and INTS11 mutations as Integrator assembly defects and reveal that IP6 is an essential co-factor for cleavage module maturation.
Collapse
Affiliation(s)
- Kevin Sabath
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Chunhong Qiu
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Stefanie Jonas
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
30
|
Karasu ME, Jahnke L, Joseph BJ, Amerzhanova Y, Mironov A, Shu X, Schröder MS, Gvozdenovic A, Sala I, Zavolan M, Jonas S, Corn JE. CCAR1 promotes DNA repair via alternative splicing. Mol Cell 2024; 84:2634-2647.e9. [PMID: 38964321 DOI: 10.1016/j.molcel.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
DNA repair is directly performed by hundreds of core factors and indirectly regulated by thousands of others. We massively expanded a CRISPR inhibition and Cas9-editing screening system to discover factors indirectly modulating homology-directed repair (HDR) in the context of ∼18,000 individual gene knockdowns. We focused on CCAR1, a poorly understood gene that we found the depletion of reduced both HDR and interstrand crosslink repair, phenocopying the loss of the Fanconi anemia pathway. CCAR1 loss abrogated FANCA protein without substantial reduction in the level of its mRNA or that of other FA genes. We instead found that CCAR1 prevents inclusion of a poison exon in FANCA. Transcriptomic analysis revealed that the CCAR1 splicing modulatory activity is not limited to FANCA, and it instead regulates widespread changes in alternative splicing that would damage coding sequences in mouse and human cells. CCAR1 therefore has an unanticipated function as a splicing fidelity factor.
Collapse
Affiliation(s)
- Mehmet E Karasu
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland
| | - Leonard Jahnke
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland
| | - Brian J Joseph
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Yerkezhan Amerzhanova
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland
| | - Aleksei Mironov
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Xuan Shu
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland
| | - Markus S Schröder
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland
| | - Ana Gvozdenovic
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland
| | - Irene Sala
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Stefanie Jonas
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich 8093, Switzerland.
| |
Collapse
|
31
|
Sabath K, Nabih A, Arnold C, Moussa R, Domjan D, Zaugg JB, Jonas S. Basis of gene-specific transcription regulation by the Integrator complex. Mol Cell 2024; 84:2525-2541.e12. [PMID: 38906142 DOI: 10.1016/j.molcel.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
The Integrator complex attenuates gene expression via the premature termination of RNA polymerase II (RNAP2) at promoter-proximal pausing sites. It is required for stimulus response, cell differentiation, and neurodevelopment, but how gene-specific and adaptive regulation by Integrator is achieved remains unclear. Here, we identify two sites on human Integrator subunits 13/14 that serve as binding hubs for sequence-specific transcription factors (TFs) and other transcription effector complexes. When Integrator is attached to paused RNAP2, these hubs are positioned upstream of the transcription bubble, consistent with simultaneous TF-promoter tethering. The TFs co-localize with Integrator genome-wide, increase Integrator abundance on target genes, and co-regulate responsive transcriptional programs. For instance, sensory cilia formation induced by glucose starvation depends on Integrator-TF contacts. Our data suggest TF-mediated promoter recruitment of Integrator as a widespread mechanism for targeted transcription regulation.
Collapse
Affiliation(s)
- Kevin Sabath
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Amena Nabih
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Rim Moussa
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - David Domjan
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Stefanie Jonas
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
32
|
Capin J, Harrison A, Raele RA, Yadav SKN, Baiwir D, Mazzucchelli G, Quinton L, Satchwell T, Toye A, Schaffitzel C, Berger I, Aulicino F. An engineered baculoviral protein and DNA co-delivery system for CRISPR-based mammalian genome editing. Nucleic Acids Res 2024; 52:3450-3468. [PMID: 38412306 PMCID: PMC11014373 DOI: 10.1093/nar/gkae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
CRISPR-based DNA editing technologies enable rapid and accessible genome engineering of eukaryotic cells. However, the delivery of genetically encoded CRISPR components remains challenging and sustained Cas9 expression correlates with higher off-target activities, which can be reduced via Cas9-protein delivery. Here we demonstrate that baculovirus, alongside its DNA cargo, can be used to package and deliver proteins to human cells. Using protein-loaded baculovirus (pBV), we demonstrate delivery of Cas9 or base editors proteins, leading to efficient genome and base editing in human cells. By implementing a reversible, chemically inducible heterodimerization system, we show that protein cargoes can selectively and more efficiently be loaded into pBVs (spBVs). Using spBVs we achieved high levels of multiplexed genome editing in a panel of human cell lines. Importantly, spBVs maintain high editing efficiencies in absence of detectable off-targets events. Finally, by exploiting Cas9 protein and template DNA co-delivery, we demonstrate up to 5% site-specific targeted integration of a 1.8 kb heterologous DNA payload using a single spBV in a panel of human cell lines. In summary, we demonstrate that spBVs represent a versatile, efficient and potentially safer alternative for CRISPR applications requiring co-delivery of DNA and protein cargoes.
Collapse
Affiliation(s)
- Julien Capin
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Alexandra Harrison
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Renata A Raele
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Sathish K N Yadav
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, B-4000 Liege, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Loic Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Timothy J Satchwell
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | | | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | - Francesco Aulicino
- School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| |
Collapse
|
33
|
Toth M, Reithofer M, Dutra G, Pereira Aguilar P, Dürauer A, Grabherr R. Comprehensive Comparison of Baculoviral and Plasmid Gene Delivery in Mammalian Cells. Viruses 2024; 16:426. [PMID: 38543791 PMCID: PMC10974095 DOI: 10.3390/v16030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 05/23/2024] Open
Abstract
(1) Recombinant protein production in mammalian cells is either based on transient transfection processes, often inefficient and underlying high batch-to-batch variability, or on laborious generation of stable cell lines. Alternatively, BacMam, a transduction process using the baculovirus, can be employed. (2) Six transfecting agents were compared to baculovirus transduction in terms of transient and stable protein expression characteristics of the model protein ACE2-eGFP using HEK293-6E, CHO-K1, and Vero cell lines. Furthermore, process optimization such as expression enhancement using sodium butyrate and TSA or baculovirus purification was assessed. (3) Baculovirus transduction efficiency was superior to all transfection agents for all cell lines. Transduced protein expression was moderate, but an 18-fold expression increase was achieved using the enhancer sodium butyrate. Ultracentrifugation of baculovirus from a 3.5 L bioreactor significantly improved the transduction efficiency and protein expression. Stable cell lines were obtained with each baculovirus transduction, yet stable cell line generation after transfection was highly unreliable. (4) This study demonstrated the superiority of the BacMam platform to standard transfections. The baculovirus efficiently transduced an array of cell lines both transiently and stably and achieved the highest efficiency for all tested cell lines. The feasibility of the scale-up of baculovirus production was demonstrated and the possibility of baculovirus purification was successfully explored.
Collapse
Affiliation(s)
- Maria Toth
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, AT, Austria
| | - Manuel Reithofer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, AT, Austria
| | - Gregory Dutra
- Austrian Centre of Industrial Biotechnology (ACIB), 1190 Vienna, AT, Austria
| | | | - Astrid Dürauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, AT, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, AT, Austria
| |
Collapse
|
34
|
Ngo LH, Bert AG, Dredge BK, Williams T, Murphy V, Li W, Hamilton WB, Carey KT, Toubia J, Pillman KA, Liu D, Desogus J, Chao JA, Deans AJ, Goodall GJ, Wickramasinghe VO. Nuclear export of circular RNA. Nature 2024; 627:212-220. [PMID: 38355801 DOI: 10.1038/s41586-024-07060-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.
Collapse
Affiliation(s)
- Linh H Ngo
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tobias Williams
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vincent Murphy
- Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Wanqiu Li
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine and Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - William B Hamilton
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirstyn T Carey
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Dawei Liu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jessica Desogus
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
35
|
Ouasti F, Audin M, Fréon K, Quivy JP, Tachekort M, Cesard E, Thureau A, Ropars V, Fernández Varela P, Moal G, Soumana-Amadou I, Uryga A, Legrand P, Andreani J, Guerois R, Almouzni G, Lambert S, Ochsenbein F. Disordered regions and folded modules in CAF-1 promote histone deposition in Schizosaccharomyces pombe. eLife 2024; 12:RP91461. [PMID: 38376141 PMCID: PMC10942606 DOI: 10.7554/elife.91461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.
Collapse
Affiliation(s)
- Fouad Ouasti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Maxime Audin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Karine Fréon
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, Sorbonne Université,CNRS UMR3664, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le CancerParisFrance
| | - Mehdi Tachekort
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Elizabeth Cesard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Aurélien Thureau
- Synchrotron SOLEIL, HelioBio group, l'Orme des MerisiersSaint-AubinFrance
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Paloma Fernández Varela
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Gwenaelle Moal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Ibrahim Soumana-Amadou
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Aleksandra Uryga
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, l'Orme des MerisiersSaint-AubinFrance
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université,CNRS UMR3664, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le CancerParisFrance
| | - Sarah Lambert
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Francoise Ochsenbein
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| |
Collapse
|
36
|
Pekovic F, Wahle E. In Vitro Reconstitution of the Drosophila melanogaster CCR4-NOT Complex to Assay Deadenylation. Methods Mol Biol 2024; 2723:19-45. [PMID: 37824062 DOI: 10.1007/978-1-0716-3481-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The CCR4-NOT complex is a multi-subunit poly(A)-specific 3' exoribonuclease that catalyzes the deadenylation of mRNA. In this chapter, we describe procedures to express and purify recombinant Drosophila melanogaster CCR4-NOT. Furthermore, we provide protocols for preparing radioactively labeled RNA substrates and conducting in vitro deadenylation assays.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany.
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
37
|
Loup-Forest J, Matuchet M, Schnitzler C, Pichard S, Poterszman A. A Time and Cost-Effective Pipeline for Expression Screening and Protein Production in Insect Cells Based on the HR-Bac Toolbox to Generate Recombinant Baculoviruses. Methods Mol Biol 2024; 2829:21-48. [PMID: 38951325 DOI: 10.1007/978-1-0716-3961-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The baculovirus expression vector system (BEVS) is recognized as a powerful platform for producing challenging proteins and multiprotein complexes both in academia and industry. Since a baculovirus was first used to produce heterologous human IFN-β protein in insect cells, the BEVS has continuously been developed and its applications expanded. We have recently established a multigene expression toolbox (HR-bac) composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. Unlike platforms that rely on Tn7-medidated transposition for the construction of baculoviruses, HR-bac relies on homologous recombination, which allows to evaluate expression constructs in 2 weeks and is thus perfectly adapted to parallel expression screening. In this chapter, we detail our standard operating procedures for the preparation of the reagents, the construction and evaluation of baculoviruses, and the optimization of protein production for both intracellularly expressed and secreted proteins.
Collapse
Affiliation(s)
- Jules Loup-Forest
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France
| | - Manon Matuchet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France
| | - Charlotte Schnitzler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France
| | - Simon Pichard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France.
| |
Collapse
|
38
|
Flock J, Xie Y, Lemaitre R, Lapouge K, Remans K. The Use of Baculovirus-Mediated Gene Expression in Mammalian Cells for Recombinant Protein Production. Methods Mol Biol 2024; 2810:29-53. [PMID: 38926271 DOI: 10.1007/978-1-0716-3878-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Baculovirus-mediated gene expression in mammalian cells, BacMam, is a useful alternative to transient transfection for recombinant protein production in various types of mammalian cell lines. We decided to establish BacMam in our lab in order to streamline our workflows for gene expression in insect and mammalian cells, as it is straightforward to parallelize the baculovirus generation for both types of eukaryotic cells. This chapter provides a step-by-step description of the protocols we use for the generation of the recombinant BacMam viruses, the transduction of mammalian cell cultures, and optimization of the protein production conditions through small-scale expression and purification tests.
Collapse
Affiliation(s)
- Julia Flock
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yexin Xie
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Régis Lemaitre
- Protein Biochemistry Facility, Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kim Remans
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
39
|
Aulicino F, Raele RA, Harrison A, Berger I. Assembly of Baculovirus Vectors for Multiplexed Prime Editing. Methods Mol Biol 2024; 2829:301-327. [PMID: 38951346 DOI: 10.1007/978-1-0716-3961-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Efficient genome editing by using CRISPR technologies requires simultaneous and efficient delivery of multiple genetically encoded components to mammalian cells. Amongst all editing approaches, prime editing (PE) has the unique potential to perform seamless genome rewriting, in the absence of DNA double-strand breaks (DSBs). The cargo capacity required for efficient PE delivery to mammalian cells stands at odd with the limited packaging capacity of traditional viral delivery vectors. By contrast, baculovirus (BV) has a large synthetic DNA capacity and can efficiently transduce mammalian cells. Here we describe a protocol for the assembly of baculovirus vectors for multiplexed prime editing in mammalian cells.
Collapse
Affiliation(s)
| | - Renata A Raele
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Imre Berger
- School of Biochemistry, University of Bristol, Bristol, UK.
- School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck Bristol Centre for Minimal Biology, Bristol, UK.
| |
Collapse
|
40
|
Schütz A, Bernhard F, Berrow N, Buyel JF, Ferreira-da-Silva F, Haustraete J, van den Heuvel J, Hoffmann JE, de Marco A, Peleg Y, Suppmann S, Unger T, Vanhoucke M, Witt S, Remans K. A concise guide to choosing suitable gene expression systems for recombinant protein production. STAR Protoc 2023; 4:102572. [PMID: 37917580 PMCID: PMC10643540 DOI: 10.1016/j.xpro.2023.102572] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023] Open
Abstract
This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems.
Collapse
Affiliation(s)
- Anja Schütz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Technology Platform for Protein Production & Characterization, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe-University of Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Nick Berrow
- Protein Expression Core Facility, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Johannes F Buyel
- Univeristy of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Frederico Ferreira-da-Silva
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Jurgen Haustraete
- VIB, Center for Inflammation Research & Ugent, Department of Biomedical Molecular Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Joop van den Heuvel
- Helmholtz Centre for Infection Research (HZI), Department of Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jan-Erik Hoffmann
- Protein Chemistry Facility, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabine Suppmann
- Protein Expression and Purification Core Facility, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tamar Unger
- Structural Proteomics Unit (SPU), Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Martine Vanhoucke
- BCCM/GeneCorner Plasmid Collection, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Gent, Belgium
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Notkestr. 85, 22607 Hamburg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
41
|
Fisch D, Pfleiderer MM, Anastasakou E, Mackie GM, Wendt F, Liu X, Clough B, Lara-Reyna S, Encheva V, Snijders AP, Bando H, Yamamoto M, Beggs AD, Mercer J, Shenoy AR, Wollscheid B, Maslowski KM, Galej WP, Frickel EM. PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection. Science 2023; 382:eadg2253. [PMID: 37797010 PMCID: PMC7615196 DOI: 10.1126/science.adg2253] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.
Collapse
Affiliation(s)
- Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Moritz M Pfleiderer
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Eleni Anastasakou
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Gillian M Mackie
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
| | - Fabian Wendt
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Xiangyang Liu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Barbara Clough
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
- Bruker Nederland BV
| | - Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kendle M Maslowski
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wojtek P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|
42
|
Amorós Morales LC, Marchesini A, Gómez Bergna SM, García Fallit M, Tongiani SE, Vásquez L, Ferrelli ML, Videla-Richardson GA, Candolfi M, Romanowski V, Pidre ML. PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms. Viruses 2023; 15:1984. [PMID: 37896762 PMCID: PMC10610652 DOI: 10.3390/v15101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Baculoviruses are insect-specific pathogens widely used in biotechnology. In particular, the Autographa californica nucleopolyhedrovirus (AcMNPV) has been exploited as a platform for bio-inputs production. This is why the improvement of the technologies used for the production of recombinant baculoviruses takes on particular relevance. To achieve this goal, we developed a highly versatile baculoviral transfer vector generation system called PluriBAC. The PluriBAC system consists of three insert entry levels using Golden Gate assembly technology. The wide availability of vectors and sticky ends allows enough versatility to combine more than four different promoters, genes of interest, and terminator sequences. Here, we report not only the rational design of the PluriBAC system but also its use for the generation of baculoviral reporter vectors applied to different fields of biotechnology. We demonstrated that recombinant AcMNPV baculoviruses generated with the PluriBAC system were capable of infecting Spodoptera frugiperda larvae. On the other hand, we found that the recombinant budded virions (BV) generated using our system were capable of transducing different types of tumor and normal cells both in vitro and in vivo. Our findings suggest that the PluriBAC system could constitute a versatile tool for the generation of insecticide and gene therapy vectors.
Collapse
Affiliation(s)
- Leslie C. Amorós Morales
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Abril Marchesini
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Santiago M. Gómez Bergna
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías García Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Silvana E. Tongiani
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Larisa Vásquez
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Guillermo A. Videla-Richardson
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Ciudad Autónoma de Buenos Aires C1121A6B, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías L. Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| |
Collapse
|
43
|
Setyo Utomo DI, Suhaimi H, Muhammad Azami NA, Azmi F, Mohd Amin MCI, Xu J. An Overview of Recent Developments in the Application of Antigen Displaying Vaccine Platforms: Hints for Future SARS-CoV-2 VLP Vaccines. Vaccines (Basel) 2023; 11:1506. [PMID: 37766182 PMCID: PMC10536610 DOI: 10.3390/vaccines11091506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, a great effort has been devoted to studying attenuated and subunit vaccine development against SARS-CoV-2 since its outbreak in December 2019. It is known that diverse virus-like particles (VLPs) are extensively employed as carriers to display various antigenic and immunostimulatory cargo modules for vaccine development. Single or multiple antigens or antigenic domains such as the spike or nucleocapsid protein or their variants from SARS-CoV-2 could also be incorporated into VLPs via either a genetic or chemical display approach. Such antigen display platforms would help screen safer and more effective vaccine candidates capable of generating a strong immune response with or without adjuvant. This review aims to provide valuable insights for the future development of SARS-CoV-2 VLP vaccines by summarizing the latest updates and perspectives on the vaccine development of VLP platforms for genetic and chemical displaying antigens from SARS-CoV-2.
Collapse
Affiliation(s)
- Doddy Irawan Setyo Utomo
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Gedung 611, LAPTIAB, KST Habibie, Serpong, Tangerang Selatan 15314, Indonesia;
| | - Hamizah Suhaimi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Nor Azila Muhammad Azami
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Fazren Azmi
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Mohd Cairul Iqbal Mohd Amin
- Centre of Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (H.S.); (F.A.); (M.C.I.M.A.)
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai 200062, China
| |
Collapse
|
44
|
Wang X, Zhang S, Zhang Z, Mazloum NA, Lee EYC, Lee MYW. The DHX9 helicase interacts with human DNA polymerase δ4 and stimulates its activity in D-loop extension synthesis. DNA Repair (Amst) 2023; 128:103513. [PMID: 37285751 PMCID: PMC10330758 DOI: 10.1016/j.dnarep.2023.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
The extension of the invading strand within a displacement loop (D-loop) is a key step in homology directed repair (HDR) of doubled stranded DNA breaks. The primary goal of these studies was to test the hypotheses that 1) D-loop extension by human DNA polymerase δ4 (Pol δ4) is facilitated by DHX9, a 3' to 5' motor helicase, which acts to unwind the leading edge of the D-loop, and 2) the recruitment of DHX9 is mediated by direct protein-protein interactions between DHX9 and Pol δ4 and/or PCNA. DNA synthesis by Pol δ4 was analyzed in a reconstitution assay by the extension of a 93mer oligonucleotide inserted into a plasmid to form a D-loop. Product formation by Pol δ4 was monitored by incorporation of [α-32P]dNTPs into the 93mer primer followed by denaturing gel electrophoresis. The results showed that DHX9 strongly stimulated Pol δ4 mediated D-loop extension. Direct interactions of DHX9 with PCNA, the p125 and the p12 subunits of Pol δ4 were demonstrated by pull-down assays with purified proteins. These data support the hypothesis that DHX9 helicase is recruited by Pol δ4/PCNA to facilitate D-loop synthesis in HDR, and is a participant in cellular HDR. The involvement of DHX9 in HDR represents an important addition to its multiple cellular roles. Such helicase-polymerase interactions may represent an important aspect of the mechanisms involved in D-loop primer extension synthesis in HDR.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Nayef A Mazloum
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Marietta Y W Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
45
|
Shaaban M, Clapperton JA, Ding S, Kunzelmann S, Mäeots ME, Maslen SL, Skehel JM, Enchev RI. Structural and mechanistic insights into the CAND1-mediated SCF substrate receptor exchange. Mol Cell 2023:S1097-2765(23)00418-5. [PMID: 37339624 DOI: 10.1016/j.molcel.2023.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Modular SCF (SKP1-CUL1-Fbox) ubiquitin E3 ligases orchestrate multiple cellular pathways in eukaryotes. Their variable SKP1-Fbox substrate receptor (SR) modules enable regulated substrate recruitment and subsequent proteasomal degradation. CAND proteins are essential for the efficient and timely exchange of SRs. To gain structural understanding of the underlying molecular mechanism, we reconstituted a human CAND1-driven exchange reaction of substrate-bound SCF alongside its co-E3 ligase DCNL1 and visualized it by cryo-EM. We describe high-resolution structural intermediates, including a ternary CAND1-SCF complex, as well as conformational and compositional intermediates representing SR- or CAND1-dissociation. We describe in molecular detail how CAND1-induced conformational changes in CUL1/RBX1 provide an optimized DCNL1-binding site and reveal an unexpected dual role for DCNL1 in CAND1-SCF dynamics. Moreover, a partially dissociated CAND1-SCF conformation accommodates cullin neddylation, leading to CAND1 displacement. Our structural findings, together with functional biochemical assays, help formulate a detailed model for CAND-SCF regulation.
Collapse
Affiliation(s)
- Mohammed Shaaban
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Julie A Clapperton
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Shan Ding
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Märt-Erik Mäeots
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Radoslav I Enchev
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
46
|
Bruder MR, Aucoin MG. A sensitive assay for scrutiny of Autographa californica multiple nucleopolyhedrovirus genes using CRISPR-Cas9. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12462-y. [PMID: 37233755 DOI: 10.1007/s00253-023-12462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
Baculoviruses have very large genomes and previous studies have demonstrated improvements in recombinant protein production and genome stability through the removal of some nonessential sequences. However, recombinant baculovirus expression vectors (rBEVs) in widespread use remain virtually unmodified. Traditional approaches for generating knockout viruses (KOVs) require several experimental steps to remove the target gene prior to the generation of the virus. In order to optimize rBEV genomes by removing nonessential sequences, more efficient techniques for establishing and evaluating KOVs are required. Here, we have developed a sensitive assay utilizing CRISPR-Cas9-mediated gene targeting to examine the phenotypic impact of disruption of endogenous Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genes. For validation, 13 AcMNPV genes were targeted for disruption and evaluated for the production of GFP and progeny virus - traits that are essential for their use as vectors for recombinant protein production. The assay involves transfection of sgRNA into a Cas9-expressing Sf9 cell line followed by infection with a baculovirus vector carrying the gfp gene under the p10 or p6.9 promoters. This assay represents an efficient strategy for scrutinizing AcMNPV gene function through targeted disruption, and represents a valuable tool for developing an optimized rBEV genome. KEY POINTS: [Formula: see text] A method to scrutinize the essentiality of baculovirus genes was developed. [Formula: see text] The method uses Sf9-Cas9 cells, a targeting plasmid carrying a sgRNA, and a rBEV-GFP. [Formula: see text] The method allows scrutiny by only needing to modify the targeting sgRNA plasmid.
Collapse
Affiliation(s)
- Mark R Bruder
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, N2L 3G1, Ontario, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, N2L 3G1, Ontario, Canada.
| |
Collapse
|
47
|
Sekulovski S, Sušac L, Stelzl LS, Tampé R, Trowitzsch S. Structural basis of substrate recognition by human tRNA splicing endonuclease TSEN. Nat Struct Mol Biol 2023:10.1038/s41594-023-00992-y. [PMID: 37231152 DOI: 10.1038/s41594-023-00992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/06/2023] [Indexed: 05/27/2023]
Abstract
Heterotetrameric human transfer RNA (tRNA) splicing endonuclease TSEN catalyzes intron excision from precursor tRNAs (pre-tRNAs), utilizing two composite active sites. Mutations in TSEN and its associated RNA kinase CLP1 are linked to the neurodegenerative disease pontocerebellar hypoplasia (PCH). Despite the essential function of TSEN, the three-dimensional assembly of TSEN-CLP1, the mechanism of substrate recognition, and the structural consequences of disease mutations are not understood in molecular detail. Here, we present single-particle cryogenic electron microscopy reconstructions of human TSEN with intron-containing pre-tRNAs. TSEN recognizes the body of pre-tRNAs and pre-positions the 3' splice site for cleavage by an intricate protein-RNA interaction network. TSEN subunits exhibit large unstructured regions flexibly tethering CLP1. Disease mutations localize far from the substrate-binding interface and destabilize TSEN. Our work delineates molecular principles of pre-tRNA recognition and cleavage by human TSEN and rationalizes mutations associated with PCH.
Collapse
Affiliation(s)
- Samoil Sekulovski
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lukas S Stelzl
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- KOMET 1, Institute of Physics, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
48
|
Chari A, Stark H. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. Annu Rev Biophys 2023; 52:391-411. [PMID: 37159297 DOI: 10.1146/annurev-biophys-111622-091300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.
Collapse
Affiliation(s)
- Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
49
|
Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Nucleic Acids Res 2023; 51:3950-3970. [PMID: 36951092 PMCID: PMC10164591 DOI: 10.1093/nar/gkad159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| | - Jana Kubíková
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| |
Collapse
|
50
|
Yu Y, Zhang T, Lu D, Wang J, Xu Z, Zhang Y, Liu Q. Genome-wide nonessential gene identification of Autographa californica multiple nucleopolyhedrovirus. Gene 2023; 863:147239. [PMID: 36736504 DOI: 10.1016/j.gene.2023.147239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
The Baculovirus Expression Vector System (BEVS) is an insect cell-based heterologous protein expression system that possesses powerful potential in the development of protein drugs and vaccines. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most widely-used vector in BEVS with 151 open reading frames (ORFs) containing essential and nonessential genes. Deletion of nonessential genes has many advantages including increased foreign gene insertion. In this study, the λ red recombination system was used to knock out genes in a modified AcMNPV that carried an enhanced yellow fluorescent protein (eYFP) at the Ac126-Ac127 locus. Eighty genes were almost completely deleted respectively and 69 gene knockout AcMNPVs (KOVs) were obtained to evaluate their infection efficiency. After infecting Spodoptera frugiperda 9 (Sf9) cells, 51 KOVs including 62 genes showed similar infectivity as wide type (WT) and hence were defined as nonessential genes. However, 18 KOVs produced fewer infectious virions, indicating that these genes were influential in the production of progeny viruses. Combining our research with previous studies, a desired minimal AcMNPV genome containing 86 ORFs and all of the homologous regions (hrs) was brought up, facilitating genetic modification of baculovirus vectors and improvement of recombinant protein expression in the future.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Dongbo Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|