1
|
Everett WH, Bucelli RC. Tofersen for SOD1 ALS. Neurodegener Dis Manag 2024; 14:149-160. [PMID: 39330700 PMCID: PMC11524200 DOI: 10.1080/17582024.2024.2402216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition affecting the motor system. The heterogenous nature of ALS complicates trial design. Genetic forms of ALS present an opportunity to intervene in a less heterogeneous population. ALS associated with gain of function mutations in SOD1 make 'knock-down' strategies an attractive therapeutic approach. Tofersen, an antisense oligonucleotide that reduces expression of SOD1 via RNAase mediated degradation of SOD1 mRNA, has shown robust effects on ALS biomarkers. While a Phase III trial of tofersen failed to meet its primary end point, open label extension data suggests that tofersen slows progression of SOD1 ALS.
Collapse
Affiliation(s)
- William H Everett
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO63110, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH43210, USA
| | - Robert C Bucelli
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO63110, USA
| |
Collapse
|
2
|
Folini A, Zhang L, Luedi MM, Moolan-Vadackumchery R, Matthiss L, Hoffmann A, Stüber F, Huang MYY. Regulatory effects of microRNAs on monocytic HLA-DR surface expression. Eur J Immunol 2024; 54:e2350756. [PMID: 38778505 DOI: 10.1002/eji.202350756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Decreased monocytic HLA-DR expression is the most studied biomarker of immune competency in critically ill and autoimmune disease patients. However, the underlying regulatory mechanisms remain largely unknown. One probable HLA-DR dysregulation is through microRNAs. The aim of this study was to investigate the effects of specific microRNAs on HLA-DR expression in human monocytic cells. Four up- and four down-HLA-DR-regulating microRNAs were identified, with hsa-miR-let-7f-2-3p showing the most significant upregulation and hsa-miR-567 and hsa-miR-3972 downregulation. Anti-inflammatory glucocorticoid medication Dexamethasone-decreased HLA-DR was significantly restored by hsa-miR-let-7f-2-3p and hsa-miR-5693. Contrarily, proinflammatory cytokines IFN-γ and TNF-α-increased HLA-DR were significantly reversed by hsa-miR-567. Clinically, paired plasma samples from patients before and one day after cardiac surgery revealed up-regulated expression of hsa-miR-5693, hsa-miR-567, and hsa-miR-3972, following the major surgical trauma. In silico approaches were applied for functional microRNA-mRNA interaction prediction and candidate target genes were confirmed by qPCR analysis. In conclusion, novel monocytic HLA-DR microRNA modulators were identified and validated in vitro. Moreover, both the interaction between the microRNAs and anti- and proinflammatory molecules and the up-regulated microRNAs identified in cardiac surgery highlight the potential clinical relevance of our findings.
Collapse
Affiliation(s)
- Anja Folini
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Lan Zhang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Markus M Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Robin Moolan-Vadackumchery
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Lena Matthiss
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Anneliese Hoffmann
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Frank Stüber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Melody Ying-Yu Huang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
- Luzerner Kantonsspital, Augenklinik, Luzern, Switzerland
| |
Collapse
|
3
|
Genna V, Reyes-Fraile L, Iglesias-Fernandez J, Orozco M. Nucleic acids in modern molecular therapies: A realm of opportunities for strategic drug design. Curr Opin Struct Biol 2024; 87:102838. [PMID: 38759298 DOI: 10.1016/j.sbi.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
RNA vaccines have made evident to society what was already known by the scientific community: nucleic acids will be the "drugs of the future." By modifying the genome, interfering in transcription or translation, and by introducing new catalysts into the cell or by mimicking antibody effects, nucleic acids can generate therapeutic activities that are not accessible by any other therapeutic agents. There are, however, challenges that need to be solved in the next few years to make nucleic acids usable in a wide range of therapeutic scenarios. This review illustrates how simulation methods can help achieve this goal.
Collapse
Affiliation(s)
- Vito Genna
- NBD|Nostrum Biodiscovery, Josep Tarradellas 8-10, Barcelona 08019, Spain. https://twitter.com/_VitoGenna_
| | - Laura Reyes-Fraile
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Sixfold Bioscience Ltd, Translational & Innovation Hub, 84 Wood Ln, London W12 0BZ, United Kingdom
| | | | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain; Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
4
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
5
|
Vandermeulen L, Geric I, Fumagalli L, Kreir M, Lu A, Nonneman A, Premereur J, Wolfs L, Policarpo R, Fattorelli N, De Bondt A, Van Den Wyngaert I, Asselbergh B, Fiers M, De Strooper B, d'Ydewalle C, Mancuso R. Regulation of human microglial gene expression and function via RNAase-H active antisense oligonucleotides in vivo in Alzheimer's disease. Mol Neurodegener 2024; 19:37. [PMID: 38654375 PMCID: PMC11040766 DOI: 10.1186/s13024-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-β plaques in vivo in a model of AD. CONCLUSIONS This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.
Collapse
Affiliation(s)
- Lina Vandermeulen
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ivana Geric
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Laura Fumagalli
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mohamed Kreir
- Preclinical Development & Safety, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ashley Lu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Annelies Nonneman
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Jessie Premereur
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Rafaela Policarpo
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Nicola Fattorelli
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium.
| | - Renzo Mancuso
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium.
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
6
|
Agrawal S. Considerations for Creating the Next Generation of RNA Therapeutics: Oligonucleotide Chemistry and Innate Immune Responses to Nucleic Acids. Nucleic Acid Ther 2024; 34:37-51. [PMID: 38578231 DOI: 10.1089/nat.2024.29009.sud] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
|
7
|
Thau H, Neuber S, Emmert MY, Nazari-Shafti TZ. Targeting Lipoprotein(a): Can RNA Therapeutics Provide the Next Step in the Prevention of Cardiovascular Disease? Cardiol Ther 2024; 13:39-67. [PMID: 38381282 PMCID: PMC10899152 DOI: 10.1007/s40119-024-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Numerous genetic and epidemiologic studies have demonstrated an association between elevated levels of lipoprotein(a) (Lp[a]) and cardiovascular disease. As a result, lowering Lp(a) levels is widely recognized as a promising strategy for reducing the risk of new-onset coronary heart disease, stroke, and heart failure. Lp(a) consists of a low-density lipoprotein-like particle with covalently linked apolipoprotein A (apo[a]) and apolipoprotein B-100, which explains its pro-thrombotic, pro-inflammatory, and pro-atherogenic properties. Lp(a) serum concentrations are genetically determined by the apo(a) isoform, with shorter isoforms having a higher rate of particle synthesis. To date, there are no approved pharmacological therapies that effectively reduce Lp(a) levels. Promising treatment approaches targeting apo(a) expression include RNA-based drugs such as pelacarsen, olpasiran, SLN360, and lepodisiran, which are currently in clinical trials. In this comprehensive review, we provide a detailed overview of RNA-based therapeutic approaches and discuss the recent advances and challenges of RNA therapeutics specifically designed to reduce Lp(a) levels and thus the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Henriette Thau
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Institute for Regenerative Medicine, University of Zurich, 8044, Zurich, Switzerland.
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| |
Collapse
|
8
|
Wang Z, Fan X, Mu G, Zhao X, Wang Q, Wang J, Tang X. Cathepsin B-activatable cyclic antisense oligonucleotides for cell-specific target gene knockdown in vitro and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:548-558. [PMID: 37588686 PMCID: PMC10425675 DOI: 10.1016/j.omtn.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Trigger-activatable antisense oligonucleotides have been widely applied to regulate gene function. Among them, caged cyclic antisense oligonucleotides (cASOs) maintain a specific topology that temporarily inhibits their interaction with target genes. By inserting linkers that respond to cell-specific endogenous stimuli, they can be powerful tools and potential therapeutic agents for specific types of cancer cells with low off-target effects on normal cells. Here, we developed enzyme-activatable cASOs by tethering two terminals of linear antisense oligonucleotides through a cathepsin B (CB) substrate peptide (Gly-Phe-Leu-Gly [GFLG]), which could be efficiently uncaged by CB. CB-activatable cASOs were used to successfully knock down two disease-related endogenous genes in CB-abundant PC-3 tumor cells at the mRNA and protein levels but had much less effect on gene knockdown in CB-deficient human umbilical vein endothelial cell (HUVECs). In addition, reduced nonspecific immunostimulation was found using cASOs compared with their linear counterparts. Further in vivo studies indicated that CB-activatable cASOs showed effective tumor inhibition in PC-3 tumor model mice through downregulation of translationally controlled tumor protein (TCTP) protein in tumors. This study applies endogenous enzyme-activatable cASOs for antitumor therapy in tumor model mice, which demonstrates a promising stimulus-responsive cASO strategy for cell-specific gene knockdown upon endogenous activation and ASO prodrug development.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Guanqun Mu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38, Xueyuan Road, Beijing 100191, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic of China
| |
Collapse
|
9
|
Friedman L, Avitzur OB, Galai EO, Ferrari N, Choen A, Dahan S, Mordechai T, Hart G. The safety and toxicity profile of SPL84, an inhaled antisense oligonucleotide for treatment of cystic fibrosis patients with the 3849 +10kb C->T mutation, supports a Phase 1/2 clinical study. Expert Opin Drug Metab Toxicol 2023; 19:709-720. [PMID: 37799089 DOI: 10.1080/17425255.2023.2266361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION SPL84 is an inhaled antisense oligonucleotide (ASO) in development for the treatment of cystic fibrosis (CF) patients carrying the 3849 + 10kb C->T (3849) mutation. To support the initiation of the first clinical study, a full battery of safety and toxicology studies were performed. RESEARCH DESIGN AND METHODS SPL84 was administered by inhalation to mice and monkeys to determine the no observed adverse effect level (NOAEL) and establish sufficient safety margins for the starting clinical dose. RESULTS There were no preclinical safety findings with SPL84; no related clinical signs, nor any effect on body weight, food consumption, or clinical pathology. The microscopic changes in the lungs were regarded as non-adverse and reflected a normal clearance process for inhaled compounds. Systemic exposure in both species was low. The NOAEL for mice and monkeys was the highest administered dose in both species, resulting in safety margins ~ 40X the proposed starting clinical dose. CONCLUSION These successful results supported the initiation of a phase 1/2 clinical study of SPL84 (ongoing), assessing the safety, tolerability, and pharmacokinetics of a single ascending dose in healthy subjects to be followed by assessment of safety, tolerability, pharmacokinetics, and preliminary efficacy of multiple ascending doses in CF patients carrying the 3849 mutation.
Collapse
Affiliation(s)
- Lital Friedman
- SpliSense, BiohouseLabs, Haddasah Ein Kerem, Jerusalem, Israel
| | | | | | | | - Asa Choen
- SpliSense, BiohouseLabs, Haddasah Ein Kerem, Jerusalem, Israel
| | - Sara Dahan
- SpliSense, BiohouseLabs, Haddasah Ein Kerem, Jerusalem, Israel
| | - Tamar Mordechai
- SpliSense, BiohouseLabs, Haddasah Ein Kerem, Jerusalem, Israel
| | - Gili Hart
- SpliSense, BiohouseLabs, Haddasah Ein Kerem, Jerusalem, Israel
| |
Collapse
|
10
|
Goyenvalle A, Jimenez-Mallebrera C, van Roon W, Sewing S, Krieg AM, Arechavala-Gomeza V, Andersson P. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:1-16. [PMID: 36579950 PMCID: PMC9940817 DOI: 10.1089/nat.2022.0061] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Address correspondence to: Aurélie Goyenvalle, PhD, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles 78000, France
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Departamento de Genética, Microbiología y Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Willeke van Roon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Sewing
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arthur M. Krieg
- RNA Therapeutics Institute, University of Massachusetts, Worcester, Massachusetts, USA
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Patrik Andersson, PhD, Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg 431 83, Sweden
| |
Collapse
|
11
|
Boros BD, Schoch KM, Kreple CJ, Miller TM. Antisense Oligonucleotides for the Study and Treatment of ALS. Neurotherapeutics 2022; 19:1145-1158. [PMID: 35653060 PMCID: PMC9587169 DOI: 10.1007/s13311-022-01247-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 10/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron loss. ALS is now associated with mutations in numerous genes, many of which cause disease in part through toxic gain-of-function mechanisms. Antisense oligonucleotides (ASOs) are small sequences of DNA that can reduce expression of a target gene at the post-transcriptional level, making them attractive for neutralizing mutant or toxic gene products. Advancements in the medicinal chemistries of ASOs have improved their pharmacodynamic profile to allow safe and effective delivery to the central nervous system. ASO therapies for ALS have rapidly developed over the last two decades, and ASOs that target SOD1, C9orf72, FUS, and ATXN2 are now in clinical trials for familial or sporadic forms of ALS. This review discusses the current state of ASO therapies for ALS, outlining their successes from preclinical development to early clinical trials.
Collapse
Affiliation(s)
- Benjamin D Boros
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 115 Biotechnology Bldg, 660 S. Euclid Ave, MO, 63110, St. Louis, USA
| | - Kathleen M Schoch
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 115 Biotechnology Bldg, 660 S. Euclid Ave, MO, 63110, St. Louis, USA
| | - Collin J Kreple
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 115 Biotechnology Bldg, 660 S. Euclid Ave, MO, 63110, St. Louis, USA
| | - Timothy M Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, Box 8111, 115 Biotechnology Bldg, 660 S. Euclid Ave, MO, 63110, St. Louis, USA.
| |
Collapse
|
12
|
Houseman M, Huang MYY, Huber M, Staiger M, Zhang L, Hoffmann A, Lippuner C, Stüber F. Flow cytometry-based high-throughput RNAi screening for miRNAs regulating MHC class II HLA-DR surface expression. Eur J Immunol 2022; 52:1452-1463. [PMID: 35612261 PMCID: PMC9544904 DOI: 10.1002/eji.202149735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/15/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022]
Abstract
HLA‐DR isotype is a MHC‐II cell‐surface receptor found on APCs and plays a key role in initiating immune responses. In severely immunocompromised patients with conditions like sepsis, the number of HLA‐DR molecules expressed on leukocytes is considered to correlate with infectious complications and patients’ probability of survival. The underlying regulatory mechanisms of HLA‐DR expression remain largely unknown. One probable path to regulation is through microRNAs (miRNAs), which have been implicated as regulatory elements of both innate and adaptive immune system development and function. In our study, flow cytometry‐based high‐throughput miRNA screening was performed in a stable HLA‐DR‐expressing human melanoma cell line, MelJuSo, for either up‐ or downregulating miRNAs of the surface HLA‐DR expression. By the end of the screening, the top ten upregulators and top five downregulators were identified, and both the HLA‐DR protein and mRNA regulations were further verified and validated. In‐silico approaches were applied for functional miRNA‐mRNA interaction prediction. The potential underlying gene regulations of different miRNAs were proposed. Our results promote the study of miRNA‐mediated HLA‐DR regulation under both physiological and pathological conditions, and may pave the way for potential clinical applications.
Collapse
Affiliation(s)
- Maja Houseman
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Melody Ying-Yu Huang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Markus Huber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Matthias Staiger
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Lan Zhang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Anneliese Hoffmann
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Christoph Lippuner
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Frank Stüber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Abstract
This introduction charts the history of the development of the major chemical modifications that have influenced the development of nucleic acids therapeutics focusing in particular on antisense oligonucleotide analogues carrying modifications in the backbone and sugar. Brief mention is made of siRNA development and other applications that have by and large utilized the same modifications. We also point out the pitfalls of the use of nucleic acids as drugs, such as their unwanted interactions with pattern recognition receptors, which can be mitigated by chemical modification or used as immunotherapeutic agents.
Collapse
|
14
|
Hammond SM, Aartsma‐Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon‐Mom W, Arechavala‐Gomeza V. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021; 13:e13243. [PMID: 33821570 PMCID: PMC8033518 DOI: 10.15252/emmm.202013243] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Sandra Alves
- Department of Human Genetics, Research and Development UnitNational Health Institute Doutor Ricardo JorgePortoPortugal
| | - Sven E Borgos
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Ronald A M Buijsen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Giuseppina Covello
- Department of BiologyUniversity of PadovaPadovaItaly
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICCIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | | | - Camilla Foged
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen ØDenmark
| | - Gisela Gaina
- Victor Babes National Institute of PathologyBucharestRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Magdalena Guzowska
- Department of Physiological SciencesFaculty of Veterinary MedicineWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Irina Holodnuka
- Institute of Microbiology and VirologyRiga Stradins UniversityRigaLatvia
| | | | - Sabine Krause
- Department of NeurologyFriedrich‐Baur‐InstituteLudwig‐Maximilians‐University of MunichMunichGermany
| | - Taavi Lehto
- Institute of TechnologyUniversity of TartuTartuEstonia
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Marisol Montolio
- Duchenne Parent Project EspañaMadridSpain
- Department of Cell Biology, Fisiology and ImmunologyFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Willeke Van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Virginia Arechavala‐Gomeza
- Neuromuscular Disorders GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
15
|
Statello L, Ali MM, Kanduri C. In Vivo Administration of Therapeutic Antisense Oligonucleotides. Methods Mol Biol 2021; 2254:273-282. [PMID: 33326082 DOI: 10.1007/978-1-0716-1158-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With the rapid revolution in RNA/DNA sequencing technologies, it is evident that mammalian genomes express tens of thousands of long noncoding RNAs (lncRNAs). Since a large majority of lncRNAs have been functionally implicated in cancer development and progression, there is an increasing appreciation for the use of antisense oligonucleotide (ASO)-based therapies targeting lncRNAs in several cancers. Despite their great potential in therapeutic applications, their use is still limited due to cellular toxicity and shortcomings in achieving required stability in biological fluids and tissue uptake. To overcome these limitations, major changes in ASO chemistry have been introduced to generate second and third generation ASOs, including locked nucleic acids (LNA) technology. Here we describe two different LNA-ASO delivery approaches, a peritumoral administration and a systemic delivery in xenograft models of lung adenocarcinoma, that significantly reduced tumor growth without inducing toxicity.
Collapse
Affiliation(s)
- Luisa Statello
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohamad Moustafa Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
16
|
Lim KRQ, Yokota T. Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Front Pharmacol 2021; 12:642858. [PMID: 33776777 PMCID: PMC7996372 DOI: 10.3389/fphar.2021.642858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive, asymmetric muscle weakness at the face, shoulders, and upper limbs, which spreads to the lower body with age. It is the third most common inherited muscular disorder worldwide. Around 20% of patients are wheelchair-bound, and some present with extramuscular manifestations. FSHD is caused by aberrant expression of the double homeobox protein 4 (DUX4) gene in muscle. DUX4 codes for a transcription factor which, in skeletal muscle, dysregulates numerous signaling activities that culminate in cytotoxicity. Potential treatments for FSHD therefore aim to reduce the expression of DUX4 or the activity of its toxic protein product. In this article, we review how genetic approaches such as those based on oligonucleotide and genome editing technologies have been developed to achieve these goals. We also outline the challenges these therapies are facing on the road to translation, and discuss possible solutions and future directions.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
17
|
Vangoor VR, Gomes‐Duarte A, Pasterkamp RJ. Long non-coding RNAs in motor neuron development and disease. J Neurochem 2021; 156:777-801. [PMID: 32970857 PMCID: PMC8048821 DOI: 10.1111/jnc.15198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs that exceed 200 nucleotides in length and that are not translated into proteins. Thousands of lncRNAs have been identified with functions in processes such as transcription and translation regulation, RNA processing, and RNA and protein sponging. LncRNAs show prominent expression in the nervous system and have been implicated in neural development, function and disease. Recent work has begun to report on the expression and roles of lncRNAs in motor neurons (MNs). The cell bodies of MNs are located in cortex, brainstem or spinal cord and their axons project into the brainstem, spinal cord or towards peripheral muscles, thereby controlling important functions such as movement, breathing and swallowing. Degeneration of MNs is a pathological hallmark of diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. LncRNAs influence several aspects of MN development and disruptions in these lncRNA-mediated effects are proposed to contribute to the pathogenic mechanisms underlying MN diseases (MNDs). Accumulating evidence suggests that lncRNAs may comprise valuable therapeutic targets for different MNDs. In this review, we discuss the role of lncRNAs (including circular RNAs [circRNAs]) in the development of MNs, discuss how lncRNAs may contribute to MNDs and provide directions for future research.
Collapse
Affiliation(s)
- Vamshidhar R. Vangoor
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Andreia Gomes‐Duarte
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
18
|
Abstract
RNA therapeutics are finally taking their place as a main drug category alongside small molecules and proteins. Here, we follow the twists and turns on their road to success and highlight areas of ongoing research.
Collapse
Affiliation(s)
- Sudhir Agrawal
- University of Massachusetts Medical School, Department of Medicine, Worcester, MA 01655, USA; Arnay Sciences LLC, Shrewsbury, MA 01545, USA.
| |
Collapse
|
19
|
Villamizar O, Waters SA, Scott T, Saayman S, Grepo N, Urak R, Davis A, Jaffe A, Morris KV. Targeted Activation of Cystic Fibrosis Transmembrane Conductance Regulator. Mol Ther 2019; 27:1737-1748. [PMID: 31383454 PMCID: PMC6822231 DOI: 10.1016/j.ymthe.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The majority of CFTR mutations result in impaired chloride channel function as only a fraction of the mutated CFTR reaches the plasma membrane. The development of a therapeutic approach that facilitates increased cell-surface expression of CFTR could prove clinically relevant. Here, we evaluate and contrast two molecular approaches to activate CFTR expression. We find that an RNA-guided nuclease null Cas9 (dCas9) fused with a tripartite activator, VP64-p65-Rta can activate endogenous CFTR in cultured human nasal epithelial cells from CF patients. We also find that targeting BGas, a long non-coding RNA involved in transcriptionally modulating CFTR expression with a gapmer, induced both strong knockdown of BGas and concordant activation of CFTR. Notably, the gapmer can be delivered to target cells when generated as electrostatic particles with recombinant HIV-Tat cell penetrating peptide (CPP), when packaged into exosomes, or when loaded into lipid nanoparticles (LNPs). Treatment of patient-derived human nasal epithelial cells containing F508del with gapmer-CPP, gapmer-exosomes, or LNPs resulted in increased expression and function of CFTR. Collectively, these observations suggest that CRISPR/dCas-VPR (CRISPR) and BGas-gapmer approaches can target and specifically activate CFTR.
Collapse
Affiliation(s)
- Olga Villamizar
- Center for Gene Therapy, City of Hope-Beckman Research Institute at the City of Hope, Duarte, CA 91010, USA
| | - Shafagh A Waters
- Faculty of Medicine, School of Women's & Children's Health, University of New South Wales (UNSW), Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Women's & Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tristan Scott
- Center for Gene Therapy, City of Hope-Beckman Research Institute at the City of Hope, Duarte, CA 91010, USA
| | - Sheena Saayman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicole Grepo
- Center for Gene Therapy, City of Hope-Beckman Research Institute at the City of Hope, Duarte, CA 91010, USA
| | - Ryan Urak
- Center for Gene Therapy, City of Hope-Beckman Research Institute at the City of Hope, Duarte, CA 91010, USA
| | - Alicia Davis
- Center for Gene Therapy, City of Hope-Beckman Research Institute at the City of Hope, Duarte, CA 91010, USA
| | - Adam Jaffe
- Faculty of Medicine, School of Women's & Children's Health, University of New South Wales (UNSW), Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), School of Women's & Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Kevin V Morris
- Center for Gene Therapy, City of Hope-Beckman Research Institute at the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
20
|
Agrawal S, Kandimalla ER. Intratumoural immunotherapy: activation of nucleic acid sensing pattern recognition receptors. ACTA ACUST UNITED AC 2019; 3:15-23. [PMID: 35757301 PMCID: PMC9216656 DOI: 10.1016/j.iotech.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, it has become clear that the tumour microenvironment (TME) is important in cancer immunotherapy. While immune checkpoint inhibitors are effective for some patients, the heterogeneous nature and status of the TME (‘cold’ tumours) play a critical role in suppressing antitumour immunity in non-responding patients. Converting ‘cold’ to ‘hot’ tumours through modulation of the TME may enable expansion of the therapeutic efficacy of immunotherapy to a broader patient population. This paper describes advances in intratumoural immunotherapy, specifically activation of nucleic acid sensing pattern recognition receptors to modulate the TME. Intratumoural immunotherapy to modulate the tumour microenvironment. Use of novel immunostimulatory agents which activate nucleic acid sensing pattern recognition receptors. Harnessing innate and adaptive immunity induced by receptor-mediated immune cascade. Intratumoural therapy leads to local and anenestic tumour responses.
Collapse
Affiliation(s)
- Sudhir Agrawal
- University of Massachusetts Medical School, Department of Medicine, Worcester, USA
- ARNAY Sciences LLC, Shrewsbury, USA
- Corresponding author. Sudhir Agrawal, University of Massachusetts Medical School, Department of Medicine, 55 N Lake Ave, Worcester, MA 01655, USA.
| | | |
Collapse
|
21
|
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16:1149-1167. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects. Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery. Expert opinion: It has become apparent that a universal carrier that follows 'one-size' fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of 'intelligent' designs.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Boston , USA
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Gothenburg , Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville , TN , USA
| | | |
Collapse
|
22
|
Echevarría L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet 2019; 27:R163-R172. [PMID: 29771317 DOI: 10.1093/hmg/ddy171] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disorder characterized by progressive muscle wasting that has currently no cure. Exon-skipping strategy represents one of the most promising therapeutic approaches that aim to restore expression of a shorter but functional dystrophin protein. The antisense field has remarkably progress over the last years with recent accelerated approval of the first antisense oligonucleotide-based therapy for DMD, Exondys 51, though the therapeutic benefit remains to be proved in patients. Despite clinical advances, the poor effective delivery to target all muscle remains the main hurdle for antisense drug therapy. This review describes the antisense-based exon-skipping approach for DMD, from proof-of-concept to first marketed drug. We discuss the main obstacles to achieve a successful exon-skipping therapy and the latest advances of the international community to develop more powerful chemistries and more sophisticated delivery systems in order to increase potency, bioavailability and safety. Finally, we highlight the importance of collaborative efforts and early dialogue between drug developers and regulatory agencies in order to overcome difficulties, find appropriate outcome markers and collect useful data.
Collapse
Affiliation(s)
- Lucía Echevarría
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France.,SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Philippine Aupy
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Aurélie Goyenvalle
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| |
Collapse
|
23
|
Echevarría L, Aupy P, Relizani K, Bestetti T, Griffith G, Blandel F, Komisarski M, Haeberli A, Svinartchouk F, Garcia L, Goyenvalle A. Evaluating the Impact of Variable Phosphorothioate Content in Tricyclo-DNA Antisense Oligonucleotides in a Duchenne Muscular Dystrophy Mouse Model. Nucleic Acid Ther 2019; 29:148-160. [PMID: 31009315 DOI: 10.1089/nat.2018.0773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antisense oligonucleotides (ASOs) hold promise for therapeutic splice switching correction for genetic diseases, in particular for Duchenne muscular dystrophy (DMD), for which ASO-exon skipping represents one of the most advanced therapeutic strategies. We have previously reported the therapeutic potential of tricyclo-DNA (tcDNA) in mouse models of DMD, highlighting the unique pharmaceutical properties and unprecedented uptake in many tissues after systemic delivery, including the heart and central nervous system. TcDNA-ASOs demonstrate an encouraging safety profile and no particular class-related toxicity, however, when administered in high doses for several months, mild renal toxicity is observed secondary to predictable phosphorothioate (PS)-ASO accumulation in kidneys. In this study, we investigate the influence of the relative content of PS linkages in tcDNA-ASOs on exon skipping efficacy. Mdx mice were injected intravenously once weekly for 4 weeks with tcDNA carrying various amounts of PS linkages (0%, 25%, 33%, 50%, 67%, 83%, and 100%). The results indicate that levels of exon-23 skipping and dystrophin rescue increase with the number of PS linkages in most skeletal muscles except in the heart. As expected, plasma coagulation times are shortened with decreasing PS content, and tcDNA-protein binding in serum directly correlates with the number of PS linkages on the tcDNA backbone. Altogether, these data contribute in establishing the appropriate sulfur content within the tcDNA backbone for maximal efficacy and minimal toxicity of the oligonucleotide.
Collapse
Affiliation(s)
- Lucía Echevarría
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France.,2 SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Philippine Aupy
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Karima Relizani
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France.,2 SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Thomas Bestetti
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Graziella Griffith
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France.,2 SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Florence Blandel
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | | | | | - Fedor Svinartchouk
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France.,2 SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Luis Garcia
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Aurélie Goyenvalle
- 1 Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| |
Collapse
|
24
|
Fenini G, Grossi S, Contassot E, Biedermann T, Reichmann E, French LE, Beer HD. Genome Editing of Human Primary Keratinocytes by CRISPR/Cas9 Reveals an Essential Role of the NLRP1 Inflammasome in UVB Sensing. J Invest Dermatol 2018; 138:2644-2652. [PMID: 30096351 DOI: 10.1016/j.jid.2018.07.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
Abstract
By forming a protective barrier, epidermal keratinocytes represent the first line of defense against environmental insults. UVB radiation of the sun is a major challenge for the skin and can induce inflammation, aging, and eventually skin cancer. UVB induces an immune response in human keratinocytes resulting in activation and secretion of the proinflammatory cytokines proIL-1β and -18. This is mediated by an assembly of protein complexes, termed inflammasomes. However, the mechanisms underlying sensing of UVB by keratinocytes, and particularly the types of inflammasomes required for cytokine secretion, are a matter of debate. To address these questions, we established a protocol that allows the generation of CRISPR/Cas9-targeted human primary keratinocytes. Our experiments showed an essential role of the NLRP1 rather than the NLRP3 inflammasome in UVB sensing and subsequent IL-1β and -18 secretion by keratinocytes. Moreover, NLRP1 but not NLRP3 was required for inflammasome activation in response to nigericin, a potassium ionophore and well-established NLRP3 activator in immune cells. Because the CRISPR/Cas9-targeted cells retained their full differentiation capacity, genome editing of human primary keratinocytes might be useful for numerous research and medical applications.
Collapse
Affiliation(s)
- Gabriele Fenini
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Serena Grossi
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Emmanuel Contassot
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Abstract
The blood-brain barrier (BBB) is increasingly regarded as a dynamic interface that adapts to the needs of the brain, responds to physiological changes, and gets affected by and can even promote diseases. Modulation of BBB function at the molecular level in vivo is beneficial for a variety of basic and clinical studies. Here we show that our heteroduplex oligonucleotide (HDO), composed of an antisense oligonucleotide and its complementary RNA, conjugated to α-tocopherol as a delivery ligand, efficiently reduced the expression of organic anion transporter 3 (OAT3) gene in brain microvascular endothelial cells in mice. This proof-of-concept study demonstrates that intravenous administration of chemically synthesized HDO can remarkably silence OAT3 at the mRNA and protein levels. We also demonstrated modulation of the efflux transport function of OAT3 at the BBB in vivo. HDO will serve as a novel platform technology to advance the biology and pathophysiology of the BBB in vivo, and will also open a new therapeutic field of gene silencing at the BBB for the treatment of various intractable neurological disorders.
Collapse
|
26
|
Nahar S, Sehgal P, Azhar M, Rai M, Singh A, Sivasubbu S, Chakraborty D, Maiti S. A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency. Chem Commun (Camb) 2018; 54:2377-2380. [PMID: 29450416 DOI: 10.1039/c7cc08893k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Originating as a component of prokaryotic adaptive immunity, the type II CRISPR/Cas9 system has been repurposed for targeted genome editing in various organisms. Although Cas9 can bind and cleave DNA efficiently under in vitro conditions, its activity inside a cell can vary dramatically between targets owing to the differences between genomic loci and the availability of enough Cas9/sgRNA (single guide RNA) complex molecules for cleavage. Most methods have so far relied on Cas9 protein engineering or base modifications in the sgRNA sequence to improve CRISPR/Cas9 activity. Here we demonstrate that a structure based rational design of sgRNAs can enhance the efficiency of Cas9 cleavage in vivo. By appending a naturally forming RNA G-quadruplex motif to the 3' end of sgRNAs we can improve its stability and target cleavage efficiency in zebrafish embryos without inducing off-target activity, thereby underscoring its value in the design of better and optimized genome editing triggers.
Collapse
Affiliation(s)
- Smita Nahar
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Paras Sehgal
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Mohd Azhar
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Manish Rai
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Amrita Singh
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Sridhar Sivasubbu
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Debojyoti Chakraborty
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Souvik Maiti
- Academy of Scientific & Innovative Research, Anusandhan Bhawan, New Delhi, 110001, India and CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India and CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
27
|
Aupy P, Echevarría L, Relizani K, Goyenvalle A. The Use of Tricyclo-DNA Oligomers for the Treatment of Genetic Disorders. Biomedicines 2017; 6:E2. [PMID: 29271929 PMCID: PMC5874659 DOI: 10.3390/biomedicines6010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023] Open
Abstract
Antisense Oligonucleotides (ASOs) represent very attractive therapeutic compounds for the treatment of numerous diseases. The antisense field has remarkably progressed over the last few years with the approval of the first antisense drugs and with promising developments of more potent and nuclease resistant chemistries. Despite these recent clinical successes and advances in chemistry and design, effective delivery of ASOs to their target tissues remains a major issue. This review will describe the latest advances obtained with the tricyclo-DNA (tcDNA) chemistry which displays unique pharmacological properties and unprecedented uptake in many tissues after systemic administration. We will examine the variety of therapeutic approaches using both fully modified tcDNA-ASOs and gapmers, including splice switching applications, correction of aberrant splicing, steric blocking strategies and targeted gene knock-down mediated by RNase H recruitment. We will then discuss the merits and potential liabilities of the tcDNA chemistry in the context of ASO drug development.
Collapse
Affiliation(s)
- Philippine Aupy
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Lucía Echevarría
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
- SQY Therapeutics, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Karima Relizani
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
- SQY Therapeutics, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Aurélie Goyenvalle
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| |
Collapse
|
28
|
Murray J, Todd KV, Bakre A, Orr-Burks N, Jones L, Wu W, Tripp RA. A universal mammalian vaccine cell line substrate. PLoS One 2017; 12:e0188333. [PMID: 29176782 PMCID: PMC5703543 DOI: 10.1371/journal.pone.0188333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022] Open
Abstract
Using genome-wide small interfering RNA (siRNA) screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD) enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences) across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205) showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.
Collapse
Affiliation(s)
- Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Kyle V. Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Les Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Weilin Wu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
29
|
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington's disease. Lancet Neurol 2017; 16:837-847. [PMID: 28920889 PMCID: PMC5604739 DOI: 10.1016/s1474-4422(17)30280-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 07/12/2017] [Indexed: 01/12/2023]
Abstract
No disease-slowing treatment exists for Huntington's disease, but its monogenic inheritance makes it an appealing candidate for the development of therapies targeting processes close to its genetic cause. Huntington's disease is caused by CAG repeat expansions in the HTT gene, which encodes the huntingtin protein; development of therapies to target HTT transcription and the translation of its mRNA is therefore an area of intense investigation. Huntingtin-lowering strategies include antisense oligonucleotides and RNA interference targeting mRNA, and zinc finger transcriptional repressors and CRISPR-Cas9 methods aiming to reduce transcription by targeting DNA. An intrathecally delivered antisense oligonucleotide that aims to lower huntingtin is now well into its first human clinical trial, with other antisense oligonucleotides expected to enter trials in the next 1-2 years and virally delivered RNA interference and zinc finger transcriptional repressors in advanced testing in animal models. Recent advances in the design and delivery of therapies to target HTT RNA and DNA are expected to improve their efficacy, safety, tolerability, and duration of effect in future studies.
Collapse
Affiliation(s)
- Edward J Wild
- Huntington's Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
30
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
31
|
Schoch KM, Miller TM. Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases. Neuron 2017. [PMID: 28641106 DOI: 10.1016/j.neuron.2017.04.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple neurodegenerative diseases are characterized by single-protein dysfunction and aggregation. Treatment strategies for these diseases have often targeted downstream pathways to ameliorate consequences of protein dysfunction; however, targeting the source of that dysfunction, the affected protein itself, seems most judicious to achieve a highly effective therapeutic outcome. Antisense oligonucleotides (ASOs) are small sequences of DNA able to target RNA transcripts, resulting in reduced or modified protein expression. ASOs are ideal candidates for the treatment of neurodegenerative diseases, given numerous advancements made to their chemical modifications and delivery methods. Successes achieved in both animal models and human clinical trials have proven ASOs both safe and effective. With proper considerations in mind regarding the human applicability of ASOs, we anticipate ongoing in vivo research and clinical trial development of ASOs for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kathleen M Schoch
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Timothy M Miller
- Department of Neurology, Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Relizani K, Griffith G, Echevarría L, Zarrouki F, Facchinetti P, Vaillend C, Leumann C, Garcia L, Goyenvalle A. Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:144-157. [PMID: 28918017 PMCID: PMC5498286 DOI: 10.1016/j.omtn.2017.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 12/30/2022]
Abstract
Antisense oligonucleotides (AONs) hold promise for therapeutic splice-switching correction in many genetic diseases. However, despite advances in AON chemistry and design, systemic use of AONs is limited due to poor tissue uptake and sufficient therapeutic efficacy is still difficult to achieve. A novel class of AONs made of tricyclo-DNA (tcDNA) is considered very promising for the treatment of Duchenne muscular dystrophy (DMD), a neuromuscular disease typically caused by frameshifting deletions or nonsense mutations in the gene-encoding dystrophin and characterized by progressive muscle weakness, cardiomyopathy, and respiratory failure in addition to cognitive impairment. Herein, we report the efficacy and toxicology profile of a 13-mer tcDNA in mdx mice. We show that systemic delivery of 13-mer tcDNA allows restoration of dystrophin in skeletal muscles and to a lower extent in the brain, leading to muscle function improvement and correction of behavioral features linked to the emotional/cognitive deficiency. More importantly, tcDNA treatment was generally limited to minimal glomerular changes and few cell necroses in proximal tubules, with only slight variation in serum and urinary kidney toxicity biomarker levels. These results demonstrate an encouraging safety profile for tcDNA, albeit typical of phosphorothiate AONs, and confirm its therapeutic potential for the systemic treatment of DMD patients.
Collapse
Affiliation(s)
- Karima Relizani
- Université de Versailles Saint-Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France; SQY Therapeutics, UFR des Sciences de la Santé, Université de Versailles Saint-Quentin en Yvelines, 78180 Montigny-le-Bretonneux, France
| | - Graziella Griffith
- Université de Versailles Saint-Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France; SQY Therapeutics, UFR des Sciences de la Santé, Université de Versailles Saint-Quentin en Yvelines, 78180 Montigny-le-Bretonneux, France
| | - Lucía Echevarría
- Université de Versailles Saint-Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France
| | - Faouzi Zarrouki
- Université de Versailles Saint-Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France; Neuro-PSI, UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Patricia Facchinetti
- Université de Versailles Saint-Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France
| | - Cyrille Vaillend
- Neuro-PSI, UMR 9197, Université Paris Sud, CNRS, Université Paris Saclay, 91405 Orsay, France
| | - Christian Leumann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Luis Garcia
- Université de Versailles Saint-Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France.
| | - Aurélie Goyenvalle
- Université de Versailles Saint-Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France.
| |
Collapse
|
33
|
van Meer L, Moerland M, Gallagher J, van Doorn MBA, Prens EP, Cohen AF, Rissmann R, Burggraaf J. Injection site reactions after subcutaneous oligonucleotide therapy. Br J Clin Pharmacol 2016; 82:340-51. [PMID: 27061947 DOI: 10.1111/bcp.12961] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
Oligonucleotides (ONs) are short fragments of nucleic acids, currently being investigated as therapeutic agents. When administered subcutaneously (sc), ONs cause a specific local reaction originating around the injection site, such as erythema, itching, discomfort and pain, including more severe manifestations such as ulceration or necrosis. These injection site reactions (ISRs) are common, but rather poorly described in the literature. With this review, we aim to provide an overview on the extent of the problem of ISRs, based on reported incidence. A structured literature search was performed to identify reported incidence and clinical features of ISRs which yielded 70 manuscripts that contained information regarding ISRs. The data from literature was combined with data on file available at our institution. All sc administered ONs described in the literature lead to the occurrence of ISRs. The percentage of trial subjects that developed ISRs ranged from 22 to 100% depending on ON. The majority of ONs caused ISRs in more than 70% of the trial subjects. The severity of the observed reactions varied between different ONs. Occurrence rate as well as severity of ISRs increases with higher doses. For chemistry and target of the compounds, no clear association regarding ISR incidence or severity was identified. All ONs developed to date are associated with ISRs. Overcoming the problem of ISRs might add greatly to the potential success of sc-administered ONs. Knowledge of these skin reactions and their specific immunostimulatory properties should be increased in order to obtain ONs that are more suitable for long-term use and clinically applicable in a broader patient population.
Collapse
Affiliation(s)
| | | | | | | | - Errol P Prens
- Department of Dermatology Erasmus MC, University Medical Center Rotterdam
| | - Adam F Cohen
- Centre for Human Drug Research, Leiden, the Netherlands
| | | | | |
Collapse
|
34
|
Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Proc Natl Acad Sci U S A 2015; 112:E7110-7. [PMID: 26589814 PMCID: PMC4697396 DOI: 10.1073/pnas.1520883112] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.
Collapse
Affiliation(s)
| | - Moira A McMahon
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093
| | | | | | | | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
35
|
Meissner JM, Toporkiewicz M, Czogalla A, Matusewicz L, Kuliczkowski K, Sikorski AF. Novel antisense therapeutics delivery systems: In vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. J Control Release 2015; 220:515-528. [PMID: 26585505 DOI: 10.1016/j.jconrel.2015.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
Antisense gene therapy using molecules such as antisense oligodeoxynucleotides, siRNA or miRNA is a very promising strategy for the treatment of neoplastic diseases. It can be combined with other treatment strategies to enhance therapeutic effect. In acute leukemias, overexpression of the antiapoptotic gene BCL2 is observed in more than 70% of cases. Therefore, reduction of the Bcl-2 protein level could, in itself, prevent the development of cancer or could possibly help sensitize cancer cells to apoptosis inducers. The main objective of our work is to develop therapeutic liposome formulations characterized by high transfection efficiency, stability in the presence of serum, as well as specificity and toxicity for target (leukemic) cells. Each of our liposomal formulations consists of a core composed of antisense oligonucleotides complexed by either cationic lipid, DOTAP, or a synthetic polycation, polyethyleneimine, encapsulated within liposomes modified with polyethylenoglycol. In addition, the liposomal shells are enriched with covalently-bound antibodies recognizing a well characterized bio-marker, CD20, exposed on the surface of leukemia cells. The resulting immunoliposomes selectively and effectively reduced the expression of BCL2 in target cells. Model animal experiments carried out on mice-engrafted tumors expressing the specific marker showed high efficiency of the liposome formulations against specific tumor development. In conclusion, we show that lipid formulations based on a polyplex or lipoplex backbone additionally equipped with antibodies are promising non-viral vectors for specific oligonucleotide transfer into human tumor cells.
Collapse
Affiliation(s)
- Justyna M Meissner
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; Electron Microscopy Laboratory, Faculty of Biology, University of Environmental and Life Sciences Wroclaw, Kożuchowska 5b, 50-631 Wroclaw, Poland
| | - Monika Toporkiewicz
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Aleksander Czogalla
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Kazimierz Kuliczkowski
- Wrocław Medical University, Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation ul. L, Pasteura 4, 50-367 Wroclaw, Poland
| | - Aleksander F Sikorski
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
36
|
Battistella M, Marsden PA. Advances, nuances, and potential pitfalls when exploiting the therapeutic potential of RNA interference. Clin Pharmacol Ther 2015; 97:79-87. [PMID: 25670385 DOI: 10.1002/cpt.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022]
Abstract
The discovery of RNA interference (RNAi) holds the potential to alter the paradigm of medical therapeutics. With the ability to selectively silence the function of a gene, RNAi not only provides an indispensable research tool for determining the function of a gene, but also offers potential for the development of novel therapeutics that will inhibit specific genes involved in disease. New concepts in therapeutics have been uncovered through the study of RNAi. Nuances have emerged. For instance, global RNAi pathways can be affected by somatic mutations in cancer and cellular stress, such as hypoxia. Also, viral gene therapy can have unexpected effects on endogenous short noncoding RNA pathways. Therefore, it is important to understand where RNAi therapeutics enter the processing pathways. We highlight the evolving use of RNAi as a new class of therapeutics, such as for amyloidosis, and address some of the anticipated challenges associated with its clinical application.
Collapse
Affiliation(s)
- M Battistella
- University Health Network and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
de Laat R, Meabon JS, Wiley JC, Hudson MP, Montine TJ, Bothwell M. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2015; 5:25796. [PMID: 25758563 PMCID: PMC4355507 DOI: 10.3402/pba.v5.25796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 11/24/2022]
Abstract
Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP) by β-secretase and γ-secretase generate amyloid β (Aβ) peptides, which are thought to contribute to Alzheimer's disease (AD). Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.
Collapse
Affiliation(s)
| | - James S Meabon
- Department of Psychiatry and Behavioral Sciences, University of Washington and Mental Illness Research Education and Clinical Center, VA Medical Center, Seattle, WA, USA
| | - Jesse C Wiley
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mark P Hudson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Mark Bothwell
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA;
| |
Collapse
|
38
|
Grabowska AM, Kircheis R, Kumari R, Clarke P, McKenzie A, Hughes J, Mayne C, Desai A, Sasso L, Watson SA, Alexander C. Systemic in vivo delivery of siRNA to tumours using combination of polyethyleneimine and transferrin–polyethyleneimine conjugates. Biomater Sci 2015; 3:1439-48. [DOI: 10.1039/c5bm00101c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Materials for delivery of oligonucleotides need to be simple to produce and formulate yet effectivein vivoto be considered for clinical applications.
Collapse
Affiliation(s)
- Anna M. Grabowska
- Cancer Biology
- Division of Cancer and Stem Cells
- University of Nottingham
- UK
| | | | | | - Philip Clarke
- Cancer Biology
- Division of Cancer and Stem Cells
- University of Nottingham
- UK
| | | | - Jaime Hughes
- Cancer Biology
- Division of Cancer and Stem Cells
- University of Nottingham
- UK
| | - Cerys Mayne
- Cancer Biology
- Division of Cancer and Stem Cells
- University of Nottingham
- UK
| | - Arpan Desai
- School of Pharmacy
- University of Nottingham
- UK
| | - Luana Sasso
- School of Pharmacy
- University of Nottingham
- UK
| | - Susan A. Watson
- Cancer Biology
- Division of Cancer and Stem Cells
- University of Nottingham
- UK
| | | |
Collapse
|
39
|
Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist's perspective. Toxicol Pathol 2014; 43:78-89. [PMID: 25385330 DOI: 10.1177/0192623314551840] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many antisense oligonucleotides (ASOs) from several classes of molecules are currently in drug development. Despite over 20 years of pharmaceutical research, few ASOs have been marketed due to problems with clinical efficacy or preclinical toxicologic challenges. However, a number of recent developments have renewed interest in this class including the registration of mipomersen, the advent of successful screening strategies to eliminate more toxic molecules, and new understanding of the risks of off-target nucleotide binding and mitigation of potential off-target effects. Recent advances in backbone chemistries, conjugation to other moieties, and new delivery systems have allowed better tissue penetration, enhanced intracellular targeting, and less frequent dosing, resulting in fewer toxicities. While these new developments provide invigorated interest in these platforms, a few lingering challenges and preclinical/clinical toxicity issues remain to be completely resolved, including: (1) proinflammatory effects (vasculitis/inflammatory infiltrates); (2) nephrotoxicity and hepatotoxicity unrelated to lysosomal accumulation; and (3) thrombocytopenia. Recent investigative work by several laboratories have helped elucidate mechanisms for these issues, allowing a better understanding of the clinical relevance and implications of particular toxicities. It is important for toxicologists, pathologists, and regulatory reviewers to be familiar with new developments in the ASO field and their implications, as a greater number of new types of antisense molecules undergo preclinical toxicity testing.
Collapse
|
40
|
Wu Q, Chu HW. Role of infections in the induction and development of asthma: genetic and inflammatory drivers. Expert Rev Clin Immunol 2014; 5:97-109. [PMID: 19885377 DOI: 10.1586/1744666x.5.1.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic and environmental factors interact to initiate and even maintain the course of asthma. As one of the highly risky environmental factors, infections in predisposed individuals can promote asthma development and exacerbations and/or prolong symptoms. This review will describe our current understanding of the genetic markers of innate immunity in the induction and development of asthma, the diverse roles of infections in modulating allergic inflammation, host susceptibility to infections and subsequent acute exacerbations in an allergic setting, and the therapeutic or preventive implications of existing knowledge. Current challenges and future directions in basic and clinical research of asthma are also discussed.
Collapse
Affiliation(s)
- Qun Wu
- Postdoctoral Research Fellow, Department of Medicine, National Jewish Health, 1400 Jackson Street, Room A635, Denver, CO 80206, USA, Tel.: +1 303 398 1589, ,
| | | |
Collapse
|
41
|
Meltzer D, Nadel Y, Lecka J, Amir A, Sévigny J, Fischer B. Nucleoside-(5'→P) methylenebisphosphonodithioate analogues: synthesis and chemical properties. J Org Chem 2013; 78:8320-9. [PMID: 23895237 DOI: 10.1021/jo400931n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nucleoside-(5'→P) methylenebisphosphonodithioate analogues are bioisosteres of natural nucleotides. The potential therapeutic applications of these analogues are limited by their relative instability. With a view toward improving their chemical and metabolic stability as well as their affinity toward zinc ions, we developed a novel nucleotide scaffold, nucleoside-5'-tetrathiobisphosphonate. We synthesized P1-(uridine/adenosine-5')-methylenebisphosphonodithioate, 2 and 3, and P1,P2-di(uridine/adenosine-5')-methylenebisphosphonodithioate, 4 and 5. Using (1)H and (31)P NMR-monitored Zn(2+)/Mg(2+) titrations, we found that 5 coordinated Zn(2+) by both N7 nitrogen atoms and both dithiophosphonate moieties, whereas 3 coordinated Zn(2+) by an N7 nitrogen atom and Pβ. Both 3 and 5 did not coordinate Mg(2+) ions. (31)P NMR-monitored kinetic studies showed that 3 was more stable at pD 1.5 than 5, with t(1/2) of 44 versus 9 h, respectively, and at pD 11 both showed no degradation for at least 2 weeks. However, 5 was more stable than 3 under an air-oxidizing atmosphere, with t1/2 of at least 3 days versus 14 h, respectively. Analogues 3 and 5 were highly stable to NPP1,3 and NTPDase1,2,3,8 hydrolysis (0-7%). However, they were found to be poor ectonucleotidase inhibitors. Although 3 and 5 did not prove to be effective inhibitors of zinc-containing NPP1/3, which is involved in the pathology of osteoarthritis and diabetes, they may be promising zinc chelators for the treatment of other health disorders involving an excess of zinc ions.
Collapse
Affiliation(s)
- Diana Meltzer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Kasai A, Ishimaru Y, Higashino K, Kobayashi K, Yamamuro A, Yoshioka Y, Maeda S. Inhibition of apelin expression switches endothelial cells from proliferative to mature state in pathological retinal angiogenesis. Angiogenesis 2013; 16:723-34. [PMID: 23640575 PMCID: PMC3682100 DOI: 10.1007/s10456-013-9349-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/24/2013] [Indexed: 11/25/2022]
Abstract
The recruitment of mural cells such as pericytes to patent vessels with an endothelial lumen is a key factor for the maturation of blood vessels and the prevention of hemorrhage in pathological angiogenesis. To date, our understanding of the specific trigger underlying the transition from cell growth to the maturation phase remains incomplete. Since rapid endothelial cell growth causes pericyte loss, we hypothesized that suppression of endothelial growth factors would both promote pericyte recruitment, in addition to inhibiting pathological angiogenesis. Here, we demonstrate that targeted knockdown of apelin in endothelial cells using siRNA induced the expression of monocyte chemoattractant protein-1 (MCP-1) through activation of Smad3, via suppression of the PI3K/Akt pathway. The conditioned medium of endothelial cells treated with apelin siRNA enhanced the migration of vascular smooth muscle cells, through MCP-1 and its receptor pathway. Moreover, in vivo delivery of siRNA targeting apelin, which causes exuberant endothelial cell proliferation and pathological angiogenesis through its receptor APJ, led to increased pericyte coverage and suppressed pathological angiogenesis in an oxygen-induced retinopathy model. These data demonstrate that apelin is not only a potent endothelial growth factor, but also restricts pericyte recruitment, establishing a new connection between endothelial cell proliferation signaling and a trigger of mural recruitment.
Collapse
Affiliation(s)
- Atsushi Kasai
- Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Sussman J, Argov Z, Wirguin Y, Apolski S, Milic-Rasic V, Soreq H. Further developments with antisense treatment for myasthenia gravis. Ann N Y Acad Sci 2013; 1275:13-6. [PMID: 23278572 DOI: 10.1111/j.1749-6632.2012.06825.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We present further developments in the study of the antisense oligonucleotide EN101. Ongoing in vitro and in vivo studies demonstrate that EN101 is a TLR9-specific ligand that can suppress pro-inflammatory functions and shift nuclear factor kappa B (NF-κB) from the pro-inflammatory canonical pathway to the anti-inflammatory alternative pathway, which results in decreases acetylcholinesterase (AChE) activity. Preliminary results of a double-blinded phase II cross-over study compared 10, 20, and 40 mg EN101 administered to patients with myasthenia gravis. Patients were randomly assigned to one of three treatment groups in weeks 1, 3, and 5 and received their pretreatment dose of pyridostigmine in weeks 2 and 4. Thus far, all doses show a decrease in QMG scores, with a greater response to higher doses.
Collapse
Affiliation(s)
- Jon Sussman
- Greater Manchester Neuroscience Centre, Manchester UK.
| | | | | | | | | | | |
Collapse
|
45
|
Putta MR, Bhagat L, Wang D, Zhu FG, Kandimalla ER, Agrawal S. Immune-Stimulatory Dinucleotide at the 5'-End of Oligodeoxynucleotides Is Critical for TLR9-Mediated Immune Responses. ACS Med Chem Lett 2013; 4:302-5. [PMID: 24900663 DOI: 10.1021/ml300482z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/23/2013] [Indexed: 11/28/2022] Open
Abstract
Oligodeoxynucleotides (ODNs) containing a CpG or certain synthetic dinucleotides, referred to as immune-stimulatory dinucleotides, induce Toll-like receptor 9 (TLR9)-mediated immune responses. Chemical modifications such as 2'-O-methylribonucleotides incorporated adjacent to the immune-stimulatory dinucleotide on the 5'-side abrogate TLR9-mediated immune responses. In this study, we evaluated the effect of the location of immune-stimulatory dinucleotides in ODNs on TLR9-mediated immune responses. We designed and synthesized ODNs with two immune-stimulatory dinucleotides, one placed toward the 5'-end region and the other toward the 3'-end region, incorporated 2'-O-methylribonucleotides selectively preceding the 5'- or 3'-immune-stimulatory dinucleotide or both, and studied TLR9-mediated immune responses of these compounds in cell-based assays and in vivo in mice. These studies showed that an immune-stimulatory dinucleotide located closer to the 5'-end is critical for and dictates TLR9-mediated immune responses. These studies provide insights for the use of ODNs when employed as TLR9 agonists and antagonists or antisense agents.
Collapse
Affiliation(s)
- Mallikarjuna R. Putta
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Lakshmi Bhagat
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Daqing Wang
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Fu-Gang Zhu
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Ekambar R. Kandimalla
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| | - Sudhir Agrawal
- Idera Pharmaceuticals, Inc., 167 Sidney Street, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
46
|
Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia. Blood 2012; 121:136-47. [PMID: 23165478 DOI: 10.1182/blood-2012-01-407742] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif-mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)-conjugated lipopolyplex nanoparticle (RIT-INP)- and Bcl-2-targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell-targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP-G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed.
Collapse
|
47
|
Ghanty U, Fostvedt E, Valenzuela R, Beal PA, Burrows CJ. Promiscuous 8-alkoxyadenosines in the guide strand of an siRNA: modulation of silencing efficacy and off-pathway protein binding. J Am Chem Soc 2012; 134:17643-52. [PMID: 23030736 DOI: 10.1021/ja307102g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
8-Alkoxyadenosines have the potential to exist in anti or syn conformations around the glycosidic bond when paired opposite to U or G in the complementary strands, thereby placing the sterically demanding 8-alkoxy groups in the major or minor groove, respectively, of duplex RNA. These modified bases were used as "base switches" in the guide strands of an siRNA to prevent off-pathway protein binding during delivery via placement of the alkoxy group in the minor groove, while maintaining significant RNAi efficacy by orienting the alkoxy group in the major groove. 8-Alkoxyadenosine phosphoramidites were synthesized and incorporated into the guide strand of caspase 2 siRNA at four different positions: two in the seed region, one at the cleavage junction, and another nearer to the 3'-end of the guide strand. Thermal stabilities of the corresponding siRNA duplexes showed that U is preferred over G as the base-pairing partner in the complementary strand. When compared to the unmodified positive control siRNAs, singly modified siRNAs knocked down the target mRNA efficiently and with little or no loss of efficacy. Doubly modified siRNAs were found to be less effective and lose their efficacy at low nanomolar concentrations. SiRNAs singly modified at positions 6 and 10 of the guide strand were found to be effective in blocking binding to the RNA-dependent protein kinase PKR, a cytoplasmic dsRNA-binding protein implicated in sequence-independent off-target effects.
Collapse
Affiliation(s)
- Uday Ghanty
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | | | |
Collapse
|
48
|
Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 2012; 64:1508-21. [PMID: 22975009 DOI: 10.1016/j.addr.2012.08.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) has just made it through the pipeline to clinical trials. However, in order for RNAi to serve as an ideal personalized therapeutics and be clinically approved-safe, specific, and potent strategies must be devised for efficient delivery of RNAi payloads to specific cell types, which despite the immense potential, remains a challenge. Through evaluating the recent reported studies in this field, we introduce the progress in designing targeted nano-scaled strategies that are anticipated to overcome the delivery drawbacks and along with the exciting "omics" discipline to personalize RNAi-based therapeutics.
Collapse
Affiliation(s)
- Ala Daka
- Laboratory of Nanomedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Israel
| | | |
Collapse
|
49
|
Brakier-Gingras L, Charbonneau J, Butcher SE. Targeting frameshifting in the human immunodeficiency virus. Expert Opin Ther Targets 2012; 16:249-58. [PMID: 22404160 DOI: 10.1517/14728222.2012.665879] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION HIV-1 uses a programmed –1 ribosomal frameshift to generate Gag-Pol, the precursor of its enzymes, when its full-length mRNA is translated by the ribosomes of the infected cells. This change in the reading frame occurs at a so-called slippery sequence that is followed by a specific secondary structure, the frameshift stimulatory signal. This signal controls the frameshift efficiency. The synthesis of HIV-1 enzymes is critical for virus replication and therefore, the –1 ribosomal frameshift could be the target of novel antiviral drugs. AREAS COVERED Various approaches were used to select drugs interfering with the –1 frameshift of HIV-1. These include the selection and modification of chemical compounds that specifically bind to the frameshift stimulatory signal, the use of antisense oligonucleotides targeting this signal and the selection of compounds that modulate HIV-1 frameshift, by using bicistronic reporters where the expression of the second cistron depends upon HIV-1 frameshift. EXPERT OPINION The most promising approach is the selection and modification of compounds specifically targeting the HIV-1 frameshift stimulatory signal. The use of antisense oligonucleotides binding to the frameshift stimulatory signal is still questionable. The use of bicistronic reporters preferentially selects compounds that modulate the frameshift by targeting the ribosomes, which is less promising.
Collapse
|
50
|
Chen H, Ma X, Li Z, Shi Q, Zheng W, Liu Y, Wang P. Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed Pharmacother 2012; 66:334-8. [PMID: 22397761 DOI: 10.1016/j.biopha.2011.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022] Open
Abstract
The delivery of DNA or RNA to cells represents the limiting step in the development of cancer gene therapy and RNA interference protocols. Single walled carbon nanotubes (SWNTs) are of interest as carriers of biologically active molecules because of their ability to cross cell membranes. In this study, we developed a novel strategy for chemical functionalization of SWNTs (f-SWCNTs) with DSPE-PEG-Amine to bind small interfering RNA (siRNA) by disulfide bonds applied to siRNA-mediated gene silencing in breast cancer cells. Results indicated the efficiency of f-SWNTs carrying siRNA reached 83.55%, and the new f-SWNTs-siRNA-MDM2 complexes were successfully introduced into the breast carcinoma B-Cap-37 cells at a concentration of 100 nM in mediums, and caused proliferation inhibition of B-Cap-37 cells significantly. The proliferation inhibition ratio of B-Cap-37 cells was detected as 44.53% for 72 h, and the apoptosis ratio was measured as 30.45%. It was obvious that MDM2 can serve as a novel therapeutic target by an effective carrier system of DSPE-PEG-Amine-functionalized SWNTs, which would be very advanced and significant to therapy of breast cancer further.
Collapse
Affiliation(s)
- Hailong Chen
- School of Biotechnology, State Key Laboratory of Bioreactor engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | | | |
Collapse
|