1
|
Abbasi Dezfouli S, Michailides ME, Uludag H. Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases. Biochemistry 2024. [PMID: 39388611 DOI: 10.1021/acs.biochem.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hematological disorders result in significant health consequences, and traditional therapies frequently entail adverse reactions without addressing the root cause. A potential solution for hematological disorders characterized by gain-of-function mutations lies in the emergence of small interfering RNA (siRNA) molecules as a therapeutic option. siRNAs are a class of RNA molecules composed of double-stranded RNAs that can degrade specific mRNAs, thereby inhibiting the synthesis of underlying disease proteins. Therapeutic interventions utilizing siRNA can be tailored to selectively target genes implicated in diverse hematological disorders, including sickle cell anemia, β-thalassemia, and malignancies such as lymphoma, myeloma, and leukemia. The development of efficient siRNA silencers necessitates meticulous contemplation of variables such as the RNA backbone, stability, and specificity. Transportation of siRNA to specific cells poses a significant hurdle, prompting investigations of diverse delivery approaches, including chemically modified forms of siRNA and nanoparticle formulations with various biocompatible carriers. This review delves into the crucial role of siRNA technology in targeting and treating hematological malignancies and disorders. It sheds light on the latest research, development, and clinical trials, detailing how various pharmaceutical approaches leverage siRNA against blood disorders, mainly concentrating on cancers. It outlines the preferred molecular targets and physiological barriers to delivery while emphasizing the growing potential of various therapeutic delivery methods. The need for further research is articulated in the context of overcoming the shortcomings of siRNA in order to enrich discussions around siRNA's role in managing blood disorders and aiding the scientific community in advancing more targeted and effective treatments.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| | | | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| |
Collapse
|
2
|
Bell V, Varzakas T, Psaltopoulou T, Fernandes T. Sickle Cell Disease Update: New Treatments and Challenging Nutritional Interventions. Nutrients 2024; 16:258. [PMID: 38257151 PMCID: PMC10820494 DOI: 10.3390/nu16020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Sickle cell disease (SCD), a distinctive and often overlooked illness in the 21st century, is a congenital blood disorder characterized by considerable phenotypic diversity. It comprises a group of disorders, with sickle cell anemia (SCA) being the most prevalent and serious genotype. Although there have been some systematic reviews of global data, worldwide statistics regarding SCD prevalence, morbidity, and mortality remain scarce. In developed countries with a lower number of sickle cell patients, cutting-edge technologies have led to the development of new treatments. However, in developing settings where sickle cell disease (SCD) is more prevalent, medical management, rather than a cure, still relies on the use of hydroxyurea, blood transfusions, and analgesics. This is a disease that affects red blood cells, consequently affecting most organs in diverse manners. We discuss its etiology and the advent of new technologies, but the aim of this study is to understand the various types of nutrition-related studies involving individuals suffering from SCD, particularly in Africa. The interplay of the environment, food, gut microbiota, along with their respective genomes collectively known as the gut microbiome, and host metabolism is responsible for mediating host metabolic phenotypes and modulating gut microbiota. In addition, it serves the purpose of providing essential nutrients. Moreover, it engages in direct interactions with host homeostasis and the immune system, as well as indirect interactions via metabolites. Nutrition interventions and nutritional care are mechanisms for addressing increased nutrient expenditures and are important aspects of supportive management for patients with SCD. Underprivileged areas in Sub-Saharan Africa should be accompanied by efforts to define and promote of the nutritional aspects of SCD. Their importance is key to maintaining well-being and quality of life, especially because new technologies and products remain limited, while the use of native medicinal plant resources is acknowledged.
Collapse
Affiliation(s)
- Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Theodora Psaltopoulou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Tito Fernandes
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| |
Collapse
|
3
|
Koniali L, Flouri C, Kostopoulou MI, Papaioannou NY, Papasavva PL, Naiisseh B, Stephanou C, Demetriadou A, Sitarou M, Christou S, Antoniou MN, Kleanthous M, Patsali P, Lederer CW. Evaluation of Mono- and Bi-Functional GLOBE-Based Vectors for Therapy of β-Thalassemia by HBBAS3 Gene Addition and Mutation-Specific RNA Interference. Cells 2023; 12:2848. [PMID: 38132168 PMCID: PMC10741507 DOI: 10.3390/cells12242848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Therapy via the gene addition of the anti-sickling βAS3-globin transgene is potentially curative for all β-hemoglobinopathies and therefore of particular clinical and commercial interest. This study investigates GLOBE-based lentiviral vectors (LVs) for βAS3-globin addition and evaluates strategies for an increased β-like globin expression without vector dose escalation. First, we report the development of a GLOBE-derived LV, GLV2-βAS3, which, compared to its parental vector, adds anti-sickling action and a transcription-enhancing 848-bp transcription terminator element, retains high vector titers and allows for superior β-like globin expression in primary patient-derived hematopoietic stem and progenitor cells (HSPCs). Second, prompted by our previous correction of HBBIVSI-110(G>A) thalassemia based on RNApol(III)-driven shRNAs in mono- and combination therapy, we analyzed a series of novel LVs for the RNApol(II)-driven constitutive or late-erythroid expression of HBBIVSI-110(G>A)-specific miRNA30-embedded shRNAs (shRNAmiR). This included bifunctional LVs, allowing for concurrent βAS3-globin expression. LVs were initially compared for their ability to achieve high β-like globin expression in HBBIVSI-110(G>A)-transgenic cells, before the evaluation of shortlisted candidate LVs in HBBIVSI-110(G>A)-homozygous HSPCs. The latter revealed that β-globin promoter-driven designs for monotherapy with HBBIVSI-110(G>A)-specific shRNAmiRs only marginally increased β-globin levels compared to untransduced cells, whereas bifunctional LVs combining miR30-shRNA with βAS3-globin expression showed disease correction similar to that achieved by the parental GLV2-βAS3 vector. Our results establish the feasibility of high titers for LVs containing the full HBB transcription terminator, emphasize the importance of the HBB terminator for the high-level expression of HBB-like transgenes, qualify the therapeutic utility of late-erythroid HBBIVSI-110(G>A)-specific miR30-shRNA expression and highlight the exceptional potential of GLV2-βAS3 for the treatment of severe β-hemoglobinopathies.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Christina Flouri
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (C.F.); (M.N.A.)
| | - Markela I. Kostopoulou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Nikoletta Y. Papaioannou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Panayiota L. Papasavva
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Basma Naiisseh
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Coralea Stephanou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Anthi Demetriadou
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Maria Sitarou
- Thalassemia Clinic Larnaca, Larnaca General Hospital, 6301 Larnaca, Cyprus;
| | - Soteroula Christou
- Thalassemia Clinic Nicosia, Archbishop Makarios III Hospital, 1474 Nicosia, Cyprus;
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (C.F.); (M.N.A.)
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Petros Patsali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Nicosia, Cyprus; (L.K.); (M.I.K.); (N.Y.P.); (P.L.P.); (B.N.); (C.S.); (A.D.); (M.K.)
| |
Collapse
|
4
|
Drakopoulou E, Georgomanoli M, Lederer CW, Panetsos F, Kleanthous M, Voskaridou E, Valakos D, Papanikolaou E, Anagnou NP. The Optimized γ-Globin Lentiviral Vector GGHI-mB-3D Leads to Nearly Therapeutic HbF Levels In Vitro in CD34 + Cells from Sickle Cell Disease Patients. Viruses 2022; 14:v14122716. [PMID: 36560719 PMCID: PMC9783242 DOI: 10.3390/v14122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
We have previously demonstrated that both the original γ-globin lentiviral vector (LV) GGHI and the optimized GGHI-mB-3D LV, carrying the novel regulatory elements of the 3D HPFH-1 enhancer and the 3' β-globin UTR, can significantly increase HbF production in thalassemic CD34+ cells and ameliorate the disease phenotype in vitro. In the present study, we investigated whether the GGHI-mB-3D vector can also exhibit an equally therapeutic effect, following the transduction of sickle cell disease (SCD) CD34+ cells at MOI 100, leading to HbF increase coupled with HbS decrease, and thus, to phenotype improvement in vitro. We show that GGHI-mB-3D LV can lead to high and potentially therapeutic HbF levels, reaching a mean 2-fold increase to a mean value of VCN/cell of 1.0 and a mean transduction efficiency of 55%. Furthermore, this increase was accompanied by a significant 1.6-fold HbS decrease, a beneficial therapeutic feature for SCD. In summary, our data demonstrate the efficacy of the optimized γ-globin lentiviral vector to improve the SCD phenotype in vitro, and highlights its potential use in future clinical SCD trials.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Georgomanoli
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | | | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Ersi Voskaridou
- Thalassemia and Sickle Cell Disease Centre, Laiko General Hospital, 11527 Athens, Greece
| | - Dimitrios Valakos
- Laboratory of Molecular Biology, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
5
|
Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 2021; 141:111875. [PMID: 34229250 DOI: 10.1016/j.biopha.2021.111875] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stands as one of the most leading causes of death worldwide, while one of the most significant challenges in treating it is revealing novel alternatives to predict, diagnose, and eradicate tumor cell growth. Although various methods, such as surgery, chemotherapy, and radiation therapy, are used today to treat cancer, its mortality rate is still high due to the numerous shortcomings of each approach. Regenerative medicine field, including tissue engineering, cell therapy, gene therapy, participate in cancer treatment and development of cancer models to improve the understanding of cancer biology. The final intention is to convey fundamental and laboratory research to effective clinical treatments, from the bench to the bedside. Proper interpretation of research attempts helps to lessen the burden of treatment and illness for patients. The purpose of this review is to investigate the role of regenerative medicine in accelerating and improving cancer treatment. This study examines the capabilities of regenerative medicine in providing novel cancer treatments and the effectiveness of these treatments to clarify this path as much as possible and promote advanced future research in this field.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
6
|
Nualkaew T, Sii-Felice K, Giorgi M, McColl B, Gouzil J, Glaser A, Voon HPJ, Tee HY, Grigoriadis G, Svasti S, Fucharoen S, Hongeng S, Leboulch P, Payen E, Vadolas J. Coordinated β-globin expression and α2-globin reduction in a multiplex lentiviral gene therapy vector for β-thalassemia. Mol Ther 2021; 29:2841-2853. [PMID: 33940155 PMCID: PMC8417505 DOI: 10.1016/j.ymthe.2021.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 01/30/2023] Open
Abstract
A primary challenge in lentiviral gene therapy of β-hemoglobinopathies is to maintain low vector copy numbers to avoid genotoxicity while being reliably therapeutic for all genotypes. We designed a high-titer lentiviral vector, LVβ-shα2, that allows coordinated expression of the therapeutic βA-T87Q-globin gene and of an intron-embedded miR-30-based short hairpin RNA (shRNA) selectively targeting the α2-globin mRNA. Our approach was guided by the knowledge that moderate reduction of α-globin chain synthesis ameliorates disease severity in β-thalassemia. We demonstrate that LVβ-shα2 reduces α2-globin mRNA expression in erythroid cells while keeping α1-globin mRNA levels unchanged and βA-T87Q-globin gene expression identical to the parent vector. Compared with the first βA-T87Q-globin lentiviral vector that has received conditional marketing authorization, BB305, LVβ-shα2 shows 1.7-fold greater potency to improve α/β ratios. It may thus result in greater therapeutic efficacy and reliability for the most severe types of β-thalassemia and provide an improved benefit/risk ratio regardless of the β-thalassemia genotype.
Collapse
Affiliation(s)
- Tiwaporn Nualkaew
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Karine Sii-Felice
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Paris-Saclay University, CEA, INSERM, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses & Le Kremlin Bicêtre, France
| | - Marie Giorgi
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Bradley McColl
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Julie Gouzil
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Astrid Glaser
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
| | - Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hsin Y Tee
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - George Grigoriadis
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Philippe Leboulch
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Genetics Division, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Emmanuel Payen
- Division of Innovative Therapies, CEA François Jacob Biology Institute, 18 route du Panorama, 92260, Fontenay-aux-Roses, France; Paris-Saclay University, CEA, INSERM, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses & Le Kremlin Bicêtre, France.
| | - Jim Vadolas
- Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia; Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
7
|
Yahya EB, Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci 2021; 269:119087. [PMID: 33476633 DOI: 10.1016/j.lfs.2021.119087] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Cancer treatment has been always considered one of the most critical and vital themes of clinical issues. Many approaches have been developed, depending on the type and the stage of tumor. Gene therapy has the potential to revolutionize different cancer therapy. With the advent of recent bioinformatics technologies and genetic science, it become possible to identify, diagnose and determine the potential treatment using the technology of gene delivery. Several approaches have been developed and experimented in vitro and vivo for cancer therapy including: naked nucleic acids based therapy, targeting micro RNAs, oncolytic virotherapy, suicide gene based therapy, targeting telomerase, cell mediated gene therapy, and CRISPR/Cas9 based therapy. In this review, we present a straightforward introduction to cancer biology and occurrence, highlighting different viral and non-viral gene delivery systems for gene therapy and critically discussed the current and various strategies for cancer gene therapy.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | | |
Collapse
|
8
|
Demirci S, Uchida N, Tisdale JF. Gene therapy for sickle cell disease: An update. Cytotherapy 2018; 20:899-910. [PMID: 29859773 PMCID: PMC6123269 DOI: 10.1016/j.jcyt.2018.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 01/14/2023]
Abstract
Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice.
Collapse
Affiliation(s)
- Selami Demirci
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Lidonnici MR, Ferrari G. Gene therapy and gene editing strategies for hemoglobinopathies. Blood Cells Mol Dis 2018; 70:87-101. [DOI: 10.1016/j.bcmd.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 10/24/2022]
|
10
|
Curtis HJ, Seow Y, Wood MJA, Varela MA. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res 2017; 45:7870-7885. [PMID: 28575281 PMCID: PMC5569705 DOI: 10.1093/nar/gkx483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
We evaluate a knockdown-replacement strategy mediated by mirtrons as an alternative to allele-specific silencing using spinocerebellar ataxia 7 (SCA7) as a model. Mirtrons are introns that form pre-microRNA hairpins after splicing, producing RNAi effectors not processed by Drosha. Mirtron mimics may therefore avoid saturation of the canonical processing pathway. This method combines gene silencing mediated by an artificial mirtron with delivery of a functional copy of the gene such that both elements of the therapy are always expressed concurrently, minimizing the potential for undesirable effects and preserving wild-type function. This mutation- and single nucleotide polymorphism-independent method could be crucial in dominant diseases that feature both gain- and loss-of-function pathologies or have a heterogeneous genetic background. Here we develop mirtrons against ataxin 7 with silencing efficacy comparable to shRNAs, and introduce silent mutations into an ataxin 7 transgene such that it is resistant to their effect. We successfully express the transgene and one mirtron together from a single construct. Hence, we show that this method can be used to silence the endogenous allele of ataxin 7 and replace it with an exogenous copy of the gene, highlighting the efficacy and transferability across patient genotypes of this approach.
Collapse
Affiliation(s)
- Helen J Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Singapore
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
11
|
Cavazzana M, Antoniani C, Miccio A. Gene Therapy for β-Hemoglobinopathies. Mol Ther 2017; 25:1142-1154. [PMID: 28377044 DOI: 10.1016/j.ymthe.2017.03.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 01/09/2023] Open
Abstract
β-Thalassemia and sickle cell disease (SCD) are the world's two most widely disseminated hereditary hemoglobinopathies. β-Thalassemia originated in the Mediterranean, Middle Eastern, and Asian regions, and SCD originated in central Africa. However, subsequent population migration means that these two diseases are now global and thus constitute a growing health problem in many countries. Despite remarkable improvements in medical care for patients with β-hemoglobinopathies, there is still only one definitive treatment option: allogeneic hematopoietic stem cell (HSC) transplantation. The development of gene therapy for β-hemoglobinopathies has been justified by (1) the limited availability of human leukocyte antigen (HLA)-identical donors, (2) the narrow window of application of HSC transplantation to the youngest patients, and (3) recent advances in HSC-based gene therapy. The huge ongoing efforts in translational medicine and the high number of related publications show that gene therapy has the potential to become the treatment of choice for patients who lack either an HLA genoidentical sibling or an alternative, medically acceptable donor. In this dynamic scientific context, we first summarize the main steps toward clinical translation of this therapeutic approach and then discuss novel lentiviral- and genome editing-based treatment strategies for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Biotherapy Clinical Investigation Center, Assistance Publique-Hôpitaux de Paris, INSERM, Groupe Hospitalier Universitaire Ouest, 75015 Paris, France; INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis, 75015 Paris, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Chiara Antoniani
- Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; INSERM UMR 1163, Laboratory of Chromatin and Gene Regulation, 75015 Paris, France
| | - Annarita Miccio
- Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; INSERM UMR 1163, Laboratory of Chromatin and Gene Regulation, 75015 Paris, France.
| |
Collapse
|
12
|
Dong AC, Rivella S. Gene Addition Strategies for β-Thalassemia and Sickle Cell Anemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1013:155-176. [PMID: 29127680 DOI: 10.1007/978-1-4939-7299-9_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Beta-thalassemia and sickle cell anemia are two of the most common diseases related to the hemoglobin protein. In these diseases, the beta-globin gene is mutated, causing severe anemia and ineffective erythropoiesis. Patients can additionally present with a number of life-threatening co-morbidities, such as stroke or spontaneous fractures. Current treatment involves transfusion and iron chelation; allogeneic bone marrow transplant is the only curative option, but is limited by the availability of matching donors and graft-versus-host disease. As these two diseases are monogenic diseases, they make an attractive setting for gene therapy. Gene therapy aims to correct the mutated beta-globin gene or add back a functional copy of beta- or gamma-globin. Initial gene therapy work was done with oncoretroviral vectors, but has since shifted to lentiviral vectors. Currently, there are a few clinical trials underway to test the curative potential of some of these lentiviral vectors. This review will highlight the work done thus far, and present the challenges still facing gene therapy, such as genome toxicity concerns and achieving sufficient transgene expression to cure those with the most severe forms of thalassemia.
Collapse
Affiliation(s)
- Alisa C Dong
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, 515 E. 71st St., Room S-709, New York, NY, 10021, USA
| | - Stefano Rivella
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, 515 E. 71st St., S702, Box 284, New York, NY, 10021, USA.
| |
Collapse
|
13
|
Seyhan AA. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences. MOLECULAR BIOSYSTEMS 2016; 12:295-312. [PMID: 26617199 DOI: 10.1039/c5mb00506j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently. In conclusion, the current platform technology offers a miRNA/shRNA scaffold for the expression of combinations of native or synthetic intronic miRNAs as singletons or polycistrons for combinatorial multiplexed RNAi silencing or RNA-based gene therapy applications.
Collapse
Affiliation(s)
- Attila A Seyhan
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 E. Princeton, St., Orlando, FL 32804, USA. and The Chemical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 2016; 127:839-48. [PMID: 26758916 DOI: 10.1182/blood-2015-09-618587] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022] Open
Abstract
Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development.
Collapse
|
15
|
Shunaeva A, Potashnikova D, Pichugin A, Mishina A, Filatov A, Nikolaitchik O, Hu WS, Mazurov D. Improvement of HIV-1 and Human T Cell Lymphotropic Virus Type 1 Replication-Dependent Vectors via Optimization of Reporter Gene Reconstitution and Modification with Intronic Short Hairpin RNA. J Virol 2015; 89:10591-601. [PMID: 26269177 PMCID: PMC4580202 DOI: 10.1128/jvi.01940-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cell-to-cell transmission is an efficient mechanism to disseminate human immunodeficiency virus type 1 (HIV-1) and human T cell lymphotropic virus type 1 (HTLV-1). However, it has been challenging to quantify the level of cell-to-cell transmission because the virus-producing cells cannot be easily distinguished from infected target cells. We have previously described replication-dependent vectors that can quantify infection events in cocultured cells. These vectors contain an antisense-oriented promoter and reporter gene interrupted by a sense-oriented intron from the human gamma-globin gene. This strategy prevents expression of the reporter gene in the transfected cells but permits its expression in target cells after infection. However, the gamma-globin intron is not efficiently removed by splicing in the aforementioned vectors, thereby reducing the level of reporter gene expression after transduction into target cells. Here, we used two approaches to improve the replication-dependent vectors. First, we improved the splicing events that remove the gamma-globin intron by optimizing the intron insertion site within the reporter gene. Second, we improved the packaging of the spliced RNA without the gamma-globin intron by targeting the intron-containing RNA via microRNA 30 (miR30)-based short hairpin RNAs. Using two optimized fluorescent reporter vectors and flow cytometry, we determined that multiply HIV-1-infected cells were generated at a higher frequency in coculture than in cell-free infection; furthermore, this increase was dependent upon viruses bearing HIV-1 Env. Compared with previously described vectors, these improved vectors can quantify the infection in lymphocytes and in primary cells with a higher sensitivity and allow the detection and quantitation of multiply infected cells, providing better tools to study retroviral cell-mediated infection. IMPORTANCE The human-pathogenic retroviruses HTLV-1 and HIV-1 can be transmitted more efficiently in vivo via direct contact of infected cells with healthy target cells than through cell-free virion-mediated infection. Despite its importance, cell-to-cell transmission has been difficult to quantify because the previously infected cells and the newly infected cells are mixed together in the same culture. In the current study, we generated vectors that are significantly improved over the previously described replication-dependent vectors. As a result, these improved vectors can efficiently detect and quantify cell-to-cell transmission or new infection events in cells in mixed culture. These luciferase- or fluorescence protein-based reporter vectors can be used to quantify and study HIV-1 or HTLV-1 cell-mediated infection in a simple one-step transfection/infection assay.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Nikolaitchik
- HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
16
|
Strocchio L, Romano M, Cefalo MG, Vinti L, Gaspari S, Locatelli F. Cord blood transplantation in children with hemoglobinopathies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1076724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Urbinati F, Hargrove PW, Geiger S, Romero Z, Wherley J, Kaufman ML, Hollis RP, Chambers CB, Persons DA, Kohn DB, Wilber A. Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells. Exp Hematol 2015; 43:346-351. [PMID: 25681747 PMCID: PMC4428920 DOI: 10.1016/j.exphem.2015.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell transplant. However, this is only possible when a matched donor is available, making the development of gene therapy using autologous hematopoietic stem cells a highly desirable alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified β-globin (βAS3-FB) for production of antisickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation. Bone marrow CD34+ cells from three SCD patients were transduced using V5m3-400 or βAS3-FB and compared with mock-transduced SCD or healthy donor CD34+ cells. Lentiviral transduction did not impair cell growth or differentiation, as gauged by proliferation and acquisition of erythroid markers. Vector copy number averaged approximately one copy per cell, and corrective globin mRNA levels were increased more than sevenfold over mock-transduced controls. Erythroblasts derived from healthy donor and mock-transduced SCD cells produced a low level of fetal Hb that was increased to 23.6 ± 4.1% per vector copy for cells transduced with V5m3-400. Equivalent levels of modified normal adult Hb of 17.6 ± 3.8% per vector copy were detected for SCD cells transduced with βAS3-FB. These levels of antisickling Hb production were sufficient to reduce sickling of terminal-stage red blood cells upon deoxygenation. We concluded that the achieved levels of fetal Hb and modified normal adult Hb would likely prove therapeutic to SCD patients who lack matched donors.
Collapse
Affiliation(s)
- Fabrizia Urbinati
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Phillip W Hargrove
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sabine Geiger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Zulema Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jennifer Wherley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Michael L Kaufman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Christopher B Chambers
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Derek A Persons
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
18
|
Affiliation(s)
| | - Mark A Kay
- Pediatrics and Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R. Recent trends in the gene therapy of β-thalassemia. J Blood Med 2015; 6:69-85. [PMID: 25737641 PMCID: PMC4342371 DOI: 10.2147/jbm.s46256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.
Collapse
Affiliation(s)
- Alessia Finotti
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Laura Breda
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicoletta Bianchi
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Stefano Rivella
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA ; Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA
| | - Roberto Gambari
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| |
Collapse
|
20
|
Antoniou MN, Skipper KA, Anakok O. Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 2014; 24:363-74. [PMID: 23517535 DOI: 10.1089/hum.2013.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With their ability to integrate their genetic material into the target cell genome, retroviral vectors (RV) of both the gamma-retroviral (γ-RV) and lentiviral vector (LV) classes currently remain the most efficient and thus the system of choice for achieving transgene retention and therefore potentially long-term expression and therapeutic benefit. However, γ-RV and LV integration comes at a cost in that transcription units will be present within a native chromatin environment and thus be subject to epigenetic effects (DNA methylation, histone modifications) that can negatively impact on their function. Indeed, highly variable expression and silencing of γ-RV and LV transgenes especially resulting from promoter DNA methylation is well documented and was the cause of the failure of gene therapy in a clinical trial for X-linked chronic granulomatous disease. This review will critically explore the use of different classes of genetic control elements that can in principle reduce vector insertion site position effects and epigenetic-mediated silencing. These transcriptional regulatory elements broadly divide themselves into either those with a chromatin boundary or border function (scaffold/matrix attachment regions, insulators) or those with a dominant chromatin remodeling and transcriptional activating capability (locus control regions,, ubiquitous chromatin opening elements). All these types of elements have their strengths and weaknesses within the constraints of a γ-RV and LV backbone, showing varying degrees of efficacy in improving reproducibility and stability of transgene function. Combinations of boundary and chromatin remodeling; transcriptional activating elements, which do not impede vector production; transduction efficiency; and stability are most likely to meet the requirements within a gene therapy context especially when targeting a stem cell population.
Collapse
Affiliation(s)
- Michael N Antoniou
- Gene Expression and Therapy Group, King's College London School of Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, United Kingdom.
| | | | | |
Collapse
|
21
|
Du Y, Shi A, Han B, Li S, Wu D, Jia H, Zheng C, Ren L, Fan Z. COX-2 silencing enhances tamoxifen antitumor activity in breast cancer in vivo and in vitro. Int J Oncol 2014; 44:1385-93. [PMID: 24535190 DOI: 10.3892/ijo.2014.2299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/16/2014] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen (Tam), a selective estrogen receptor modulator, is in wide clinical use for the treatment and prevention of breast cancer. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy and highlighting the need for improved therapeutic strategies. Cyclooxygenase-2 (COX-2) silencing via a replication-incompetent lentivirus (LV-COX-2) induce cancer apoptosis and suppresses VEGF gene expression. In this study, the effect of LV-COX-2 infection, either alone or in combination with TAM, was analyzed in a breast cell lines for suppressing VEGF expression and simultaneously reducing doses of TAM. Cell proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, an receptor signaling were determined after LV-COX-2 combination with TAM treatment. In addition, tumor growth ability in nude mice was detected to define the combination treatment effect in tumorigenesis in vivo. It is found that LV-COX-2 combination with TAM treatment in breast cancer cell significantly suppressed the proliferation and metastasis, and induced tumor apoptosis in vitro, and tumor growth also was suppressed in vivo. In addition, we also found that LV-COX-2 combination with TAM treatment could inhibit angiogenesis and VEGF expression. Taken together, our experimental results indicate that LV-COX-2 combination with TAM has promising outcome in anti-metastatic and apoptotic studies. Furthermore, these results showed that LV-COX-2 combination with TAM is a potential drug candidate for treatment of breast tumors expressing high levels of VEGF.
Collapse
Affiliation(s)
- Ye Du
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Aiping Shi
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Bing Han
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Di Wu
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Hongyao Jia
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Chao Zheng
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, P.R. China
| |
Collapse
|
22
|
Abstract
β-thalassemia is an inherited disorder due to mutations found in the β-globin gene, leading to anemia and requiring sporadic or chronic blood transfusions for survival. Without proper chelation, β-thalassemia results in iron overload. Ineffective erythropoiesis can lead to iron overload even in untransfused patients who are affected by β-thalassemia intermedia. Better understanding of the molecular biologic aspects of this disorder has led to improvements in population screening and prenatal diagnosis, which, in turn, have led to dramatic reductions in the number of children born with β-thalassemia major in the Mediterranean littoral. However, as a consequence of decreases in neonatal and childhood mortality in other geographical areas, β-thalassemia has become a worldwide clinical problem. A number of unsolved pathophysiological issues remain, such as ineffective erythropoieis, abnormal iron absorption, oxidative stress, splenomegaly and thrombosis. In the last few years, novel studies have the potential to introduce new therapeutic approaches that might reduce these problems and limit the need for blood transfusion.
Collapse
Affiliation(s)
- Stefano Rivella
- Weill College Medical Center, Department of Pediatrics, Division of Hematology, Oncology, 515 E 71st Street, S702, New York, NY 10021, USA, Tel.: +1 212 746 4941, ,
| | | |
Collapse
|
23
|
Breda L, Rivella S, Zuccato C, Gambari R. Combining gene therapy and fetal hemoglobin induction for treatment of β-thalassemia. Expert Rev Hematol 2013; 6:255-64. [PMID: 23782080 DOI: 10.1586/ehm.13.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to a low or absent production of adult hemoglobin (HbA). Two major therapeutic approaches have recently been proposed: gene therapy and induction of fetal hemoglobin (HbF) with the objective of achieving clinically relevant levels of Hbs. The objective of this article is to describe the development of therapeutic strategies based on a combination of gene therapy and induction of HbFs. An increase of β-globin gene expression in β-thalassemia cells can be achieved by gene therapy, although de novo production of clinically relevant levels of adult Hb may be difficult to obtain. On the other hand, an increased production of HbF is beneficial in β-thalassemia. The combination of gene therapy and HbF induction appears to be a pertinent strategy to achieve clinically relevant results.
Collapse
Affiliation(s)
- Laura Breda
- Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College, New York, NY, USA.
| | | | | | | |
Collapse
|
24
|
Zhao B, Yang C, Yang S, Gao Y, Wang J. Construction of conditional lentivirus-mediated shRNA vector targeting the human Mirk gene and identification of RNAi efficiency in rhabdomyosarcoma RD cells. Int J Oncol 2013; 43:1253-9. [PMID: 23913162 DOI: 10.3892/ijo.2013.2048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/23/2013] [Indexed: 11/05/2022] Open
Abstract
Rhabdomyosarcoma is the most common malignant soft tissue tumor in children. It has been demonstrated that Mirk as an activated protein kinase is overexpressed in rhabdomyosarcoma cells, which may be correlated with tumorigenesis. The aim of the present study was to explore the possibility of Mirk gene as a therapeutic target for the treatment of rhabdomyosarcoma, and the use of RNA interference in a temporally and spatially restricted manner to study the function of the target gene would be highly beneficial. To address this problem, a conditional lentivirus-mediated short hairpin RNA targeting human Mirk gene was constructed and employed to reduce endogenous Mirk expression in the rhabdomyosarcoma RD cell line in vitro. The expression of Mirk shRNA in RD cells transduced with this recombinant vector could be tracked with the expression of red fluorescent protein by the administration of doxycycline. A stable transgenic RD line was generated by transducing RD lines with the packaging viral particles. Quantitative PCR and western blot analysis indicated that the mRNA and protein levels of Mirk in the transgenic RD cells were significantly lower compared to those in the controls. In addition, the increasing apoptosis of RD cells induced by silencing of the Mirk gene was also observed. Overall, the results demonstrated that this recombinant vector-based RNAi expression system is an efficient approach to knockdown Mirk gene expression in the rhabdomyosarcoma RD cell line, which could, thereby, provide both a protocol to study the role of Mirk gene in tumor cells and a safer gene therapy in the clinic.
Collapse
Affiliation(s)
- Boming Zhao
- Department of Orthopaedic Surgery, The No. 1 People's Hospital of Jingzhou, Jingzhou, P.R. China
| | | | | | | | | |
Collapse
|
25
|
Progress in microRNA delivery. J Control Release 2013; 172:962-74. [PMID: 24075926 DOI: 10.1016/j.jconrel.2013.09.015] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are non-coding endogenous RNAs that direct post-transcriptional regulation of gene expression by several mechanisms. Activity is primarily through binding to the 3' untranslated regions (UTRs) of messenger RNAs (mRNA) resulting in degradation and translation repression. Unlike other small-RNAs, miRNAs do not require perfect base pairing, and thus, can regulate a network of broad, yet specific, genes. Although we have only just begun to gain insights into the full range of biologic functions of miRNA, their involvement in the onset and progression of disease has generated significant interest for therapeutic development. Mounting evidence suggests that miRNA-based therapies, either restoring or repressing miRNAs expression and activity, hold great promise. However, despite the early promise and exciting potential, critical hurdles often involving delivery of miRNA-targeting agents remain to be overcome before transition to clinical applications. Limitations that may be overcome by delivery include, but are not limited to, poor in vivo stability, inappropriate biodistribution, disruption and saturation of endogenous RNA machinery, and untoward side effects. Both viral vectors and nonviral delivery systems can be developed to circumvent these challenges. Viral vectors are efficient delivery agents but toxicity and immunogenicity limit their clinical usage. Herein, we review the recent advances in the mechanisms and strategies of nonviral miRNA delivery systems and provide a perspective on the future of miRNA-based therapeutics.
Collapse
|
26
|
Dong A, Rivella S, Breda L. Gene therapy for hemoglobinopathies: progress and challenges. Transl Res 2013; 161:293-306. [PMID: 23337292 PMCID: PMC3716457 DOI: 10.1016/j.trsl.2012.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Hemoglobinopathies are genetic inherited conditions that originate from the lack or malfunction of the hemoglobin (Hb) protein. Sickle cell disease (SCD) and thalassemia are the most common forms of these conditions. The severe anemia combined with complications that arise in the most affected patients raises the necessity for a cure to restore hemoglobin function. The current routine therapies for these conditions, namely transfusion and iron chelation, have significantly improved the quality of life in patients over the years, but still fail to address the underlying cause of the diseases. A curative option, allogeneic bone marrow transplantation is available, but limited by the availability of suitable donors and graft-vs-host disease. Gene therapy offers an alternative approach to cure patients with hemoglobinopathies and aims at the direct recovery of the hemoglobin function via globin gene transfer. In the last 2 decades, gene transfer tools based on lentiviral vector development have been significantly improved and proven curative in several animal models for SCD and thalassemia. As a result, clinical trials are in progress and 1 patient has been successfully treated with this approach. However, there are still frontiers to explore that might improve this approach: the stoichiometry between the transgenic hemoglobin and endogenous hemoglobin with respect to the different globin genetic mutations; donor cell sourcing, such as the use of induced pluripotent stem cells (iPSCs); and the use of safer gene insertion methods to prevent oncogenesis. With this review we will provide insights about (1) the different lentiviral gene therapy approaches in mouse models and human cells; (2) current and planned clinical trials; (3) hurdles to overcome for clinical trials, such as myeloablation toxicity, insertional oncogenesis, and high vector expression; and (4) future perspectives for gene therapy, including safe harbors and iPSCs technology.
Collapse
Affiliation(s)
- Alisa Dong
- Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, NY 10021, USA
| | | | | |
Collapse
|
27
|
Martínez T, Wright N, López-Fraga M, Jiménez AI, Pañeda C. Silencing human genetic diseases with oligonucleotide-based therapies. Hum Genet 2013; 132:481-93. [PMID: 23494242 DOI: 10.1007/s00439-013-1288-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/05/2013] [Indexed: 12/11/2022]
Abstract
RNA interference is an endogenous mechanism present in most eukaryotic cells that enables degradation of specific mRNAs. Pharmacological exploitation of this mechanism for therapeutic purposes attracted a whole amount of attention in its initial years, but was later hampered due to difficulties in delivery of the pharmacological agents to the appropriate organ or tissue. Advances in recent years have to a certain level started to address this specific issue. Genetic diseases are caused by aberrations in gene sequences or structure; these particular abnormalities are in theory easily addressable by RNAi therapeutics. Sequencing of the human genome has largely contributed to the identification of alterations responsible for genetic conditions, thus facilitating the design of compounds that can address these diseases. This review addresses the currently on-going programs with the aim of developing RNAi and other antisense compounds for the treatment of genetic conditions and the pros and cons that these products may encounter along the way. The authors have focused on those programs that have reached clinical trials or are very close to do so.
Collapse
Affiliation(s)
- Tamara Martínez
- Sylentis, PCM C/Santiago Grisolía no 2, Tres Cantos, 28760, Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals (Basel) 2013; 6:32-53. [PMID: 24275786 PMCID: PMC3816679 DOI: 10.3390/ph6010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023] Open
Abstract
The erythroid related disorders (ERDs) represent a large group of hematological diseases, which in most cases are attributed either to the deficiency or malfunction of biosynthetic enzymes or oxygen transport proteins. Current treatments for these disorders include histo-compatible erythrocyte transfusions or allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy delivered via suitable viral vectors or genetically modified HSCs have been under way. Protein Transduction Domain (PTD) technology has allowed the production and intracellular delivery of recombinant therapeutic proteins, bearing Cell Penetrating Peptides (CPPs), into a variety of mammalian cells. Remarkable progress in the field of protein transduction leads to the development of novel protein therapeutics (CPP-mediated PTs) for the treatment of monogenetic and/or metabolic disorders. The “concept” developed in this paper is the intracellular protein delivery made possible via the PTD technology as a novel therapeutic intervention for treatment of ERDs. This can be achieved via four stages including: (i) the production of genetically engineered human CPP-mediated PT of interest, since the corresponding native protein either is missing or is mutated in the erythroid progenitor cell (ErPCs) or mature erythrocytes of patients; (ii) isolation of target cells from the peripheral blood of the selected patients; (iii) ex vivo transduction of cells with the CPP-mediated PT of interest; and (iv) re-administration of the successfully transduced cells back into the same patients.
Collapse
|
29
|
Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med (Berl) 2013; 91:715-25. [PMID: 23292172 DOI: 10.1007/s00109-012-0985-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/30/2012] [Accepted: 11/26/2012] [Indexed: 12/19/2022]
Abstract
It has been demonstrated that numerous microRNAs (miRNAs) have potent tumor-suppressing effects on a variety of cancers, implicating a possible application of miRNA in tumor therapy. Oncolytic adenovirus is a suitable vector to deliver tumor suppressor genes for treatment of cancers. However, it remains unknown whether co-expression of tumor suppressor genes and miRNAs can contribute to a more potent antitumor capacity within an oncolytic adenovirus delivery system. In this study, we found that expression of miRNA-34a was reduced in hepatocellular carcinoma (HCC), and the reduced expression of miRNA-34a was associated with worse outcome of HCC patients. Thus, we developed an oncolytic adenoviral vector, AdCN205, to co-express miRNA-34a and IL-24 driven by an adenovirus endogenous E3 promoter in HCC cells. High levels of miRNA-34a and IL-24 expression were detected in AdCN205-IL-24-miR-34a-infected HCC cells. AdCN205-IL-24-miR-34a significantly induced dramatic antitumor activity, as compared with that induced by AdCN205-IL-24 or AdCN205-miR-34a alone. Transfer of miRNA-34a into HCC cells inhibited the expression of its target genes, Bcl-2 and SIRT1. Treatment of established xenograft HCC tumors with AdCN205-IL-24-miR-34a in a mouse model resulted in complete tumor regression without recurrence. Taken together, our data provide a promising and reasonable delivery strategy of double-aimed cancer therapy, in which miRNAs and tumor-suppressing genes are used simultaneously.
Collapse
|
30
|
Rujitanaroj PO, Jao B, Yang J, Wang F, Anderson JM, Wang J, Chew SY. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater 2013; 9:4513-24. [PMID: 23036951 PMCID: PMC3523808 DOI: 10.1016/j.actbio.2012.09.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The foreign body reaction often interferes with the long-term functionality and performance of implanted biomedical devices through fibrous capsule formation. While many implant modification techniques have been adopted in attempts to control fibrous encapsulation, the outcomes remained sub-optimal. Nanofiber scaffold-mediated RNA interference may serve as an alternative approach through the localized and sustained delivery of siRNA at implant sites. In this study, we investigated the efficacy of siRNA-poly(caprolactone-co-ethylethylene phosphate) nanofibers in controlling fibrous capsule formation through the down-regulation of collagen type I (COL1A1) in vitro and in vivo. By encapsulating complexes of COL1A1 siRNA with a transfection reagent (Transit TKO) or the cell penetrating peptides CADY or MPG within the nanofibers (550-650 nm in diameter), a sustained release of siRNA was obtained for at least 28 days (loading efficiency ~60-67%). Scaffold-mediated transfection significantly enhanced cellular uptake of oligonucleotides and prolonged in vitro gene silencing duration by at least 2-3 times as compared to conventional bolus delivery of siRNA (14 days vs. 5-7 days by bolus delivery). In vivo subcutaneous implantation of siRNA scaffolds revealed a significant decrease in fibrous capsule thickness at weeks 2 and 4 as compared to plain nanofibers (p<0.05). Taken together, the results demonstrated the efficacy of scaffold-mediated siRNA gene-silencing in providing effective long-term control of fibrous capsule formation.
Collapse
Affiliation(s)
- Pim-on Rujitanaroj
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Brian Jao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Junghoon Yang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - James M. Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
31
|
Muroski ME, Kogot JM, Strouse GF. Bimodal gold nanoparticle therapeutics for manipulating exogenous and endogenous protein levels in mammalian cells. J Am Chem Soc 2012; 134:19722-30. [PMID: 23131062 DOI: 10.1021/ja307502x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new advance in cell transfection protocol using a bimodal nanoparticle agent to selectively manipulate protein expression levels within mammalian cells is demonstrated. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of codelivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol.
Collapse
Affiliation(s)
- Megan E Muroski
- Department of Chemistry and Biochemistry and Institute for Molecular Biophysics, The Florida State University, Florida 32306-4390, United States
| | | | | |
Collapse
|
32
|
Uchida N, Hargrove PW, Lap CJ, Evans ME, Phang O, Bonifacino AC, Krouse AE, Metzger ME, Nguyen AD, Hsieh MM, Wolfsberg TG, Donahue RE, Persons DA, Tisdale JF. High-efficiency transduction of rhesus hematopoietic repopulating cells by a modified HIV1-based lentiviral vector. Mol Ther 2012; 20:1882-92. [PMID: 22871664 DOI: 10.1038/mt.2012.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV1) vectors poorly transduce rhesus hematopoietic cells due to species-specific restriction factors, including the tripartite motif-containing 5 isoformα (TRIM5α) which targets the HIV1 capsid. We previously developed a chimeric HIV1 (χHIV) vector system wherein the vector genome is packaged with the simian immunodeficiency virus (SIV) capsid for efficient transduction of both rhesus and human CD34(+) cells. To evaluate whether χHIV vectors could efficiently transduce rhesus hematopoietic repopulating cells, we performed a competitive repopulation assay in rhesus macaques, in which half of the CD34(+) cells were transduced with standard SIV vectors and the other half with χHIV vectors. As compared with SIV vectors, χHIV vectors achieved higher vector integration, and the transgene expression rates were two- to threefold higher in granulocytes and red blood cells and equivalent in lymphocytes and platelets for 2 years. A recipient of χHIV vector-only transduced cells reached up to 40% of transgene expression rates in granulocytes and lymphocytes and 20% in red blood cells. Similar to HIV1 and SIV vectors, χHIV vector frequently integrated into gene regions, especially into introns. In summary, our χHIV vector demonstrated efficient transduction for rhesus long-term repopulating cells, comparable with SIV vectors. This χHIV vector should allow preclinical testing of HIV1-based therapeutic vectors in large animal models.
Collapse
Affiliation(s)
- Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Curtis HJ, Sibley CR, Wood MJA. Mirtrons, an emerging class of atypical miRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:617-32. [PMID: 22733569 DOI: 10.1002/wrna.1122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Post-transcriptional gene silencing (PTGS) via RNA interference (RNAi) is a vital gene regulatory mechanism for fine-tuning gene expression. RNAi effectors termed microRNAs (miRNAs) are implicated in various aspects of animal development and normal physiological function, while dysregulation has been linked to several pathologies. Several atypical miRNA biogenesis pathways have been identified, yet in most cases the reasons for their emergence remain unclear. One of these atypical pathways is the mirtron pathway, where short introns are excised by splicing to generate intermediates of the RNAi pathway, with no cleavage by the microprocessor. Closely related pathways involving tailed-mirtron and simtron biogenesis have also been described. There is extensive evidence that mirtrons function as miRNAs, and while some are evolutionarily conserved across similar species, others appear to have emerged relatively recently. In addition, through exploitation of the potent and sequence-specific silencing capabilities of RNAi, synthetic mirtrons may have potential for overcoming certain therapeutic challenges.
Collapse
Affiliation(s)
- Helen J Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
34
|
Zhang ZW, Cheng J, Xu F, Chen YE, Du JB, Yuan M, Zhu F, Xu XC, Yuan S. Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life 2012; 63:560-5. [PMID: 21698761 DOI: 10.1002/iub.490] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mammal red blood cells (erythrocytes) contain neither nucleus nor mitochondria. Traditional theory suggests that the presence of a nucleus would prevent big nucleated erythrocytes to squeeze through these small capillaries. However, nucleus is too small to hinder erythrocyte deformation. And, there is no sound reason to abandon mitochondria for the living cells. Here, we found that mammal erythrocyte reactive oxygen species (ROS) levels kept stable under diabetes, ischemia reperfusion, and malaria conditions or in vitro sugar/heme treatments, whereas bird erythrocyte ROS levels increased dramatically in these circumstances. Nuclear and mitochondrial extrusion may help mammal erythrocytes to better adapt to high-sugar and high-heme conditions by limiting ROS generation.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources and Environmental Sciences, Sichuan Agriculture University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Mansilla-Soto J, Rivière I, Sadelain M. Genetic strategies for the treatment of sickle cell anaemia. Br J Haematol 2011; 154:715-27. [DOI: 10.1111/j.1365-2141.2011.08773.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Seyhan AA. RNAi: a potential new class of therapeutic for human genetic disease. Hum Genet 2011; 130:583-605. [PMID: 21537948 DOI: 10.1007/s00439-011-0995-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/17/2011] [Indexed: 12/19/2022]
Abstract
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.
Collapse
Affiliation(s)
- Attila A Seyhan
- Pfizer Inc., Translational Immunology, Inflammation and Immunology, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
38
|
Bagnis C, Chiaroni J, Bailly P. Elimination of blood group antigens: hope and reality. Br J Haematol 2011; 152:392-400. [DOI: 10.1111/j.1365-2141.2010.08561.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Kubodera T, Yamada H, Anzai M, Ohira S, Yokota S, Hirai Y, Mochizuki H, Shimada T, Mitani T, Mizusawa H, Yokota T. In Vivo Application of an RNAi Strategy for the Selective Suppression of a Mutant Allele. Hum Gene Ther 2011; 22:27-34. [DOI: 10.1089/hum.2010.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Takayuki Kubodera
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hiromi Yamada
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masayuki Anzai
- Institute of Advanced Technology, Kinki University, Kainan, Wakayama 642-0017, Japan
| | - Shinga Ohira
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shigefumi Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yukihiko Hirai
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Hideki Mochizuki
- Department of Neurology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 252-0374, Japan
| | - Takashi Shimada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Tasuku Mitani
- Institute of Advanced Technology, Kinki University, Kainan, Wakayama 642-0017, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
40
|
Li F, Mahato RI. RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev 2011; 63:47-68. [PMID: 21156190 DOI: 10.1016/j.addr.2010.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 01/06/2023]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still not common because a large number of transplanted islets get damaged by multiple challenges including instant blood mediated inflammatory reaction, hypoxia/reperfusion injury, inflammatory cytokines, and immune rejection. RNA interference (RNAi) is a novel strategy to selectively degrade target mRNA. The use of RNAi technologies to downregulate the expression of harmful genes has the potential to improve the outcome of islet transplantation. The aim of this review is to gain a thorough understanding of biological obstacles to islet transplantation and discuss how to overcome these barriers using different RNAi technologies. This eventually will help improve islet survival and function post transplantation. Chemically synthesized small interferring RNA (siRNA), vector based short hairpin RNA (shRNA), and their critical design elements (such as sequences, promoters, and backbone) are discussed. The application of combinatorial RNAi in islet transplantation is also discussed. Last but not the least, several delivery strategies for enhanced gene silencing are discussed, including chemical modification of siRNA, complex formation, bioconjugation, and viral vectors.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | |
Collapse
|
41
|
Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic disease treatment. Biotechnol Adv 2010; 28:715-24. [DOI: 10.1016/j.biotechadv.2010.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 12/15/2022]
|
42
|
Perumbeti A, Malik P. Therapy for beta-globinopathies: a brief review and determinants for successful and safe correction. Ann N Y Acad Sci 2010; 1202:36-44. [PMID: 20712770 DOI: 10.1111/j.1749-6632.2010.05584.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gene therapy for beta-globinopathies, particularly beta-thalassemia and sickle cell anemia, hold much promise for the future, as a one time cure for these common and debilitating disorders. Correction of the beta-globinopathies using lentivirus vectors (LV) carrying the beta- or gamma-globin genes and elements of the locus control region has been well established in murine models, and a good idea of "what it will take to cure these diseases" has been developed in the first decade of the twenty-first century. A clinical trial using one such vector has been initiated in France while other trials are in development. Vector improvements to enhance the safety and efficiency of LV are being explored, while newer strategies, like homologous recombination in induced pluripotent cells for correction of sickle cell anemia, has been shown as a proof-of-concept. Here we provide a review of current progress in genetic correction of beta-globin disorders.
Collapse
Affiliation(s)
- Ajay Perumbeti
- Hematology-Oncology, Cancer and Blood Institute, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
43
|
Abstract
Plants have evolved a variety of gene silencing pathways mediated by small RNAs. Mostly 21 or 24 nt in size, these small RNAs repress the expression of sequence homologous genes at the transcriptional, post-transcriptional and translational levels. These pathways, also referred as RNA silencing pathways, play important roles in regulating growth and development as well as in response to both biotic and abiotic stress. Although the molecular basis of these complicated and interconnected pathways has become clear only in recent years, RNA silencing effects were observed and utilized in transgenic plants early in the plant biotechnology era, more than two decades ago. Today, with a better understanding of the pathways, various genetic engineering approaches have been developed to apply RNA silencing more effectively and broadly. In addition to summarizing the current models of RNA silencing, this review discusses examples of its potential uses and related issues concerning its application in plant biotechnology.
Collapse
Affiliation(s)
- Alessandra Frizzi
- Calgene Campus, Monsanto Company, 1920 Fifth Street, Davis, CA 95616, USA
| | | |
Collapse
|
44
|
Gene therapy, gene targeting and induced pluripotent stem cells: applications in monogenic disease treatment. Biotechnol Adv 2010; 29:1-10. [PMID: 20656005 DOI: 10.1016/j.biotechadv.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 01/15/2023]
Abstract
Monogenic diseases are often severe, life-threatening disorders for which lifelong palliative treatment is the only option. Over the last two decades, a number of strategies have been devised with the aim to treat these diseases with a genetic approach. Gene therapy has been under development for many years, yet suffers from the lack of an effective and safe vector for the delivery of genetic material into cells. More recently, gene targeting by homologous recombination has been proposed as a safer treatment, by specifically correcting disease-causing mutations. However, low efficiency is a major drawback. The emergence of two technologies could overcome some of these obstacles. Terminally differentiated somatic cells can be reprogrammed, using defined factors, to become induced pluripotent stem cells (iPSCs), which can undergo efficient gene mutation correction with the aid of fusion proteins known as zinc finger nucleases (ZFNs). The amalgamation of these two technologies has the potential to break through the current bottleneck in gene therapy and gene targeting.
Collapse
|
45
|
Chen Q, Lou W, Shen J, Ma L, Yang Z, Liu L, Luo J, Qian C. Potent antitumor activity in experimental hepatocellular carcinoma by adenovirus-mediated coexpression of TRAIL and shRNA against COX-2. Clin Cancer Res 2010; 16:3696-705. [PMID: 20515870 DOI: 10.1158/1078-0432.ccr-09-3097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent studies have indicated that short hairpin RNA (shRNA) driven by RNA polymerase (Pol) II promoters can be transcribed into precursor mRNAs together with transgenes. It remains unclear, however, whether coexpression of shRNA and transgene from a single promoter is feasible for cancer therapy. EXPERIMENTAL DESIGN In this study, we generated novel adenoviral vectors that permitted coexpression of shRNA against cyclooxygenase-2 (COX-2) and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapeutic gene from a cytomegalovirus promoter to evaluate whether silencing of COX-2 could increase the sensitivity of hepatocellular carcinoma to TRAIL. RESULTS Our data showed that adenovirus vector Ad-TM, in which the shRNA was inserted into the 3' untranslated region of the TRAIL gene, not only significantly suppressed COX-2 expression, but also expressed a high level of TRAIL. Moreover, infection with Ad-TM resulted in significant cytotoxicity in hepatocellular carcinoma cell lines. In contrast, it had no effect on normal liver cell line. Impressively, treatment of the established hepatocellular carcinoma tumors with Ad-TM resulted in complete tumor regression. This potent antitumor activity induced by Ad-TM was due to strong inhibition of COX-2 and high expression of TRAIL. Furthermore, using the shRNA and transgene coexpression adenovirus system, we showed that silencing of COX-2 increased the sensitivity of hepatocellular carcinoma to TRAIL through inhibition of Bcl-2 and Bcl-w. CONCLUSION This study indicated that adenovirus carrying shRNA and transgene expressed from a single promoter represented a potent approach for cancer therapy.
Collapse
Affiliation(s)
- Qing Chen
- Laboratory of Biotherapy of Cancer, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia. J Neurosci 2010; 30:38-46. [PMID: 20053885 DOI: 10.1523/jneurosci.4346-09.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated administration of opioids not only leads to tolerance and dependence, but also results in nociceptive enhancement called opioid-induced hyperalgesia (OIH). Nociceptive mediators involved in OIH generation remain poorly understood. In the present study, we tested the hypothesis that Ca(2+)/calmodulin-depent protein kinase II (CaMKIIalpha) is critical for OIH. Opioid-induced hyperalgesia was produced by repeated morphine administration or pellet implantation in mice. Correlating with the development of tactile allodynia and thermal hyperalgesia, spinal CaMKIIalpha activity was significantly increased in OIH. KN93, a CaMKII inhibitor, dose- and time-dependently reversed OIH and CaMKII activation without impairing locomotor coordination. To elucidate the specific CaMKII isoform involved, we targeted CaMKIIalpha by using small interfering RNA and demonstrated that knockdown of spinal CaMKIIalpha attenuated OIH. Furthermore, morphine failed to induce OIH in CaMKIIalpha(T286A) point mutant mice, although wild-type littermate mice developed robust OIH after repeated treatments with morphine. These data implicate, for the first time, an essential role of CaMKIIalpha as a cellular mechanism leading to and maintaining opioid-induced hyperalgesia.
Collapse
|
47
|
Felfly H, Trudel M. Successful correction of murine sickle cell disease with reduced stem cell requirements reinforced by fractionated marrow infusions. Br J Haematol 2010; 148:646-58. [DOI: 10.1111/j.1365-2141.2009.07985.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Hayakawa J, Hsieh MM, Anderson DE, Phang O, Uchida N, Washington K, Tisdale JF. The assessment of human erythroid output in NOD/SCID mice reconstituted with human hematopoietic stem cells. Cell Transplant 2010; 19:1465-73. [PMID: 21214970 PMCID: PMC3879801 DOI: 10.3727/096368910x314161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The third-generation NOD/LtSz-scid/IL2Rγ(null) (NOD/SCID IL2Rγ(null)) mouse represents a significantly improved xenograft model allowing high levels of human leukocyte engraftment over extended follow up. One remaining limitation of this mouse model, however, is the low level of circulating human erythrocytes. We established a practical ex vivo erythroid culture system of xenograft marrow progenitors to enrich for human erythroid progeny. At various time points after transplant, erythroid cells were easily assayed after 17 days of ex vivo culture of xenograft marrow, with nearly all nucleated cells of human origin and approximately 60% human GPA or CD71 positive. We then transplanted cord blood CD34(+) cells marked with a lentiviral vector encoding green fluorescent protein (GFP). Three months later, ex vivo culture of xenograft marrow progenitors showed 41.3% of the cultured erythroid cells were positive for GFP and human CD71, and 56.2% were positive for GFP and human GPA, similar to that of circulating leukocytes at the same time point. Next, G-CSF mobilized peripheral blood CD34(+) cells from a sickle cell trait subject were infused in this mouse model to determine if the hemoglobin pattern could be modeled. CD34(+) cells from the sickle cell trait subject engrafted equally compared to CD34(+) cells from normal subjects, establishing the sickle cell trait phenotype. Lastly, a comparison of adult-derived peripheral blood CD34(+) cells and cord blood-derived CD34(+) cells xenografted mice was made, and long term follow-up demonstrated a recapitulation of the fetal to adult hemoglobin switch. This approach should prove a useful tool for testing strategies for genetic manipulation of erythroid progeny and the study of hemoglobin switching.
Collapse
Affiliation(s)
- Jun Hayakawa
- Molecular and Clinical Hematology Branch, National Institutes of Diabetes and Digestive and Kidney Disorders (NIDDK) and National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gene therapy in thalassemia and hemoglobinopathies. Mediterr J Hematol Infect Dis 2009; 1:e2009008. [PMID: 21415990 PMCID: PMC3033156 DOI: 10.4084/mjhid.2009.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 11/12/2009] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough.
Collapse
|
50
|
Li F, Mahato RI. Bipartite vectors for co-expression of a growth factor cDNA and short hairpin RNA against an apoptotic gene. J Gene Med 2009; 11:764-71. [PMID: 19554613 DOI: 10.1002/jgm.1357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although human islet transplantation is a promising approach for treating type I diabetes, its success is limited as a result of the poor survival rate of transplanted islets. Expression of a growth factor gene to promote revascularization and silencing of pro-apoptotic genes before transplantation may improve the outcome of islet transplantation. METHODS In the present study, we constructed bipartite plasmid vectors to co-express a vascular endothelial growth factor (VEGF) cDNA and short hairpin (sh)RNA targeting inducible NO synthase (iNOS) gene. First, we screened shRNA sequences against human iNOS by transfecting plasmids encoding shRNA targeting different start sites of human iNOS. Then, the effect of different promoters [such as H1, U6 and cytomegalovirus (CMV)] and micro RNA backbones on gene silencing was determined. RESULTS No statistical difference in iNOS gene silencing was observed for the shRNA with H1, U6 and CMV promoters. In addition, a conventional shRNA showed better silencing of the iNOS gene compared to shRNA containing mir375 and mir30 backbones. A bipartite plasmid was also constructed with mir30-shRNA and a VEGF cDNA controlled by a single CMV promoter. This plasmid showed a better silencing effect compared to plasmid without VEGF cDNA. CONCLUSIONS In the present study, we have successfully constructed bipartite vectors co-expressing a VEGF cDNA and a shRNA against the iNOS gene. These vectors could be attractive candidates for improving the survival of transplanted islets.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103-3308, USA
| | | |
Collapse
|