1
|
Vales JP, Barbaric I. Culture-acquired genetic variation in human pluripotent stem cells: Twenty years on. Bioessays 2024; 46:e2400062. [PMID: 38873900 PMCID: PMC11589660 DOI: 10.1002/bies.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Genetic changes arising in human pluripotent stem cells (hPSC) upon culture may bestow unwanted or detrimental phenotypes to cells, thus potentially impacting on the applications of hPSCs for clinical use and basic research. In the 20 years since the first report of culture-acquired genetic aberrations in hPSCs, a characteristic spectrum of recurrent aberrations has emerged. The preponderance of such aberrations implies that they provide a selective growth advantage to hPSCs upon expansion. However, understanding the consequences of culture-acquired variants for specific applications in cell therapy or research has been more elusive. The rapid progress of hPSC-based therapies to clinics is galvanizing the field to address this uncertainty and provide definitive ways both for risk assessment of variants and reducing their prevalence in culture. Here, we aim to provide a timely update on almost 20 years of research on this fascinating, but a still unresolved and concerning, phenomenon.
Collapse
Affiliation(s)
- John P. Vales
- Centre for Stem Cell BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
- INSIGNEO InstituteUniversity of SheffieldSheffieldUK
| | - Ivana Barbaric
- Centre for Stem Cell BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
- INSIGNEO InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
2
|
Krivec N, de Deckersberg EC, Lei Y, Delbany DA, Regin M, Verhulst S, van Grunsven LA, Sermon K, Spits C. Gain of 1q confers an MDM4-driven growth advantage to undifferentiated and differentiating hESC while altering their differentiation capacity. Cell Death Dis 2024; 15:852. [PMID: 39572522 PMCID: PMC11582570 DOI: 10.1038/s41419-024-07236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Gain of 1q is a highly recurrent chromosomal abnormality in human pluripotent stem cells. In this work, we show that gains of 1q impact the differentiation capacity to derivates of the three germ layers, leading to mis-specification to cranial placode and non-neural ectoderm during neuroectoderm differentiation. Also, we found a weaker expression of lineage-specific markers in hepatoblasts and cardiac progenitors. Competition assays show that the cells retain their selective advantage during differentiation, which is mediated by a higher expression of MDM4, a gene located in the common region of gain. MDM4 drives the winner phenotype of the mutant cells in both the undifferentiated and differentiating state by reducing the cells' sensitivity to DNA damage through decreased p53-mediated apoptosis. Finally, we found that cell density in culture plays a key role in promoting the competitive advantage of the cells by increasing DNA damage.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Yingnan Lei
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Diana Al Delbany
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Marius Regin
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karen Sermon
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Claudia Spits
- Research Group Genetics, Reproduction and Development, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090, Brussels, Belgium.
| |
Collapse
|
3
|
Song HW, Solomon JN, Masri F, Mack A, Durand N, Cameau E, Dianat N, Hunter A, Oh S, Schoen B, Marsh M, Bravery C, Sumen C, Clarke D, Bharti K, Allickson JG, Lakshmipathy U. Bioprocessing considerations for generation of iPSCs intended for clinical application: perspectives from the ISCT Emerging Regenerative Medicine Technology working group. Cytotherapy 2024; 26:1275-1284. [PMID: 38970614 DOI: 10.1016/j.jcyt.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Approval of induced pluripotent stem cells (iPSCs) for the manufacture of cell therapies to support clinical trials is now becoming realized after 20 years of research and development. In 2022 the International Society for Cell and Gene Therapy (ISCT) established a Working Group on Emerging Regenerative Medicine Technologies, an area in which iPSCs-derived technologies are expected to play a key role. In this article, the Working Group surveys the steps that an end user should consider when generating iPSCs that are stable, well-characterised, pluripotent, and suitable for making differentiated cell types for allogeneic or autologous cell therapies. The objective is to provide the reader with a holistic view of how to achieve high-quality iPSCs from selection of the starting material through to cell banking. Key considerations include: (i) intellectual property licenses; (ii) selection of the raw materials and cell sources for creating iPSC intermediates and master cell banks; (iii) regulatory considerations for reprogramming methods; (iv) options for expansion in 2D vs. 3D cultures; and (v) available technologies and equipment for harvesting, washing, concentration, filling, cryopreservation, and storage. Some key process limitations are highlighted to help drive further improvement and innovation, and includes recommendations to close and automate current open and manual processes.
Collapse
Affiliation(s)
- Hannah W Song
- Center for Cellular Engineering, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Emmanuelle Cameau
- Cytiva, Pall Life Sciences 24-26 avenue de Winchester, CS5005, 78100 St. Germain-en-Laye, France
| | | | | | - Steve Oh
- Cellvec Pte. Ltd. 100 Pasir Panjang, #04-01/02, Singapore 118518 Singapore
| | - Brianna Schoen
- Charles River Laboratories Cell Solutions, Inc. 8500 Balboa Blvd. Suite 230 Northridge, CA 91320, USA
| | | | | | | | | | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethsda, MD, USA
| | - Julie G Allickson
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
4
|
Lezmi E, Jung J, Benvenisty N. High prevalence of acquired cancer-related mutations in 146 human pluripotent stem cell lines and their differentiated derivatives. Nat Biotechnol 2024; 42:1667-1671. [PMID: 38195986 DOI: 10.1038/s41587-023-02090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
To survey cancer-related mutations in human pluripotent stem cells and their derivatives, we analyzed >2,200 transcriptomes from 146 independent lines in the NCBI's Sequence Read Archive. Twenty-two per cent of samples had at least one cancer-related mutation; of these, 64% had TP53 mutations, which conferred a pronounced selective advantage, perturbed target gene expression and altered cellular differentiation. These findings underscore the need for robust surveillance of cancer-related mutations in pluripotent cells, especially in clinical applications.
Collapse
Affiliation(s)
- Elyad Lezmi
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Jonathan Jung
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
5
|
Algorta A, Artigas R, Rial A, Benavides U, Maisonnave J, Yaneselli K. Morphologic, Proliferative, and Cytogenetic Changes during In Vitro Propagation of Cat Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. Animals (Basel) 2024; 14:2408. [PMID: 39199942 PMCID: PMC11350862 DOI: 10.3390/ani14162408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Stem cell therapy in cat patients needs a high quantity of mesenchymal stromal/stem cells (MSCs) requiring in vitro propagation under culture conditions which may potentially impact cellular characteristics and genetic stability. This study aimed to assess the in vitro characteristics and cytogenetic stability of cat adipose tissue-derived MSCs (cAT-MSCs). For this purpose, morphological features, clonogenic potential, and proliferative capacity of cAT-MSCs were assessed at passages 2 (P2), P4, and P6. Multipotency and immunophenotype were evaluated. Cytogenetic analyses were conducted up to P6. The cAT-MSCs exhibited a spindle-shaped morphology in early passages. The doubling time increased from 2.5 days at P2 to 9.4 at P4 and 10.5 at P6, accompanied by the observation of nuclear abnormalities such as cluster formation, karyorrhexis, karyolysis, and a decline in the mitotic index at P4. Cells demonstrated multipotency capacity and were CD45-, CD90+, and CD44+. Metaphase analysis at P2 and P4 revealed some indications of structural instability such as gaps, breaks, deletions, duplications, and early chromatid segregation, but these alterations did not show an increase across passages. In conclusion, cAT-MSCs decreased their proliferative capacity after P4, accompanied by morphological alterations and signs of structural instability.
Collapse
Affiliation(s)
- Agustina Algorta
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay; (U.B.); (J.M.)
| | - Rody Artigas
- Unidad de Genética y Mejoramiento Animal, Departamento de Producción Animal y Salud de los Sistemas Productivos, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay;
| | - Analía Rial
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo 11600, Uruguay;
| | - Uruguaysito Benavides
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay; (U.B.); (J.M.)
| | - Jacqueline Maisonnave
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay; (U.B.); (J.M.)
| | - Kevin Yaneselli
- Unidad de Inmunología e Inmunoterapia, Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo 13000, Uruguay; (U.B.); (J.M.)
| |
Collapse
|
6
|
Li M, Yang J, Xiao R, Liu Y, Hu J, Li T, Wu P, Zhang M, Huang Y, Sun Y, Li C. The effect of trisomic chromosomes on spatial genome organization and global transcription in embryonic stem cells. Cell Prolif 2024; 57:e13639. [PMID: 38553796 PMCID: PMC11294443 DOI: 10.1111/cpr.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 08/03/2024] Open
Abstract
Aneuploidy frequently occurs in cancer and developmental diseases such as Down syndrome, with its functional consequences implicated in dosage effects on gene expression and global perturbation of stress response and cell proliferation pathways. However, how aneuploidy affects spatial genome organization remains less understood. In this study, we addressed this question by utilizing the previously established isogenic wild-type (WT) and trisomic mouse embryonic stem cells (mESCs). We employed a combination of Hi-C, RNA-seq, chromosome painting and nascent RNA imaging technologies to compare the spatial genome structures and gene transcription among these cells. We found that trisomy has little effect on spatial genome organization at the level of A/B compartment or topologically associating domain (TAD). Inter-chromosomal interactions are associated with chromosome regions with high gene density, active histone modifications and high transcription levels, which are confirmed by imaging. Imaging also revealed contracted chromosome volume and weakened transcriptional activity for trisomic chromosomes, suggesting potential implications for the transcriptional output of these chromosomes. Our data resources and findings may contribute to a better understanding of the consequences of aneuploidy from the angle of spatial genome organization.
Collapse
Affiliation(s)
- Mengfan Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Junsheng Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| | - Rong Xiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yunjie Liu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Jiaqi Hu
- School of Health HumanitiesPeking UniversityBeijingChina
| | - Tingting Li
- State Key Laboratory of ProteomicsInstitute of Basic Medical Sciences, National Center of Biomedical AnalysisBeijingChina
| | - Pengze Wu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Meili Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
7
|
Ya A, Deng C, Godek KM. Cell Competition Eliminates Aneuploid Human Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593217. [PMID: 38766106 PMCID: PMC11100710 DOI: 10.1101/2024.05.08.593217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Human pluripotent stem cells (hPSCs) maintain diploid populations for generations despite a persistently high rate of mitotic errors that cause aneuploidy, or chromosome imbalances. Consequently, to maintain genome stability, aneuploidy must inhibit hPSC proliferation, but the mechanisms are unknown. Here, we surprisingly find that homogeneous aneuploid populations of hPSCs proliferate unlike aneuploid non-transformed somatic cells. Instead, in mosaic populations, cell non-autonomous competition between neighboring diploid and aneuploid hPSCs eliminates less fit aneuploid cells. Aneuploid hPSCs with lower Myc or higher p53 levels relative to diploid neighbors are outcompeted but conversely gain a selective advantage when Myc and p53 relative abundance switches. Thus, although hPSCs frequently missegregate chromosomes and inherently tolerate aneuploidy, Myc- and p53-driven cell competition preserves their genome integrity. These findings have important implications for the use of hPSCs in regenerative medicine and for how diploid human embryos are established despite the prevalence of aneuploidy during early development.
Collapse
Affiliation(s)
- Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Lead contact
| |
Collapse
|
8
|
Yanagihara K, Hayashi Y, Liu Y, Yamaguchi T, Hemmi Y, Kokunugi M, Yamada KU, Fukumoto K, Suga M, Terada S, Nikawa H, Kawabata K, Furue M. Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024; 60:521-534. [PMID: 38169039 PMCID: PMC11126453 DOI: 10.1007/s11626-023-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs. We identified sublines of hPSCs carrying trisomy 12 after their prolonged culture. Transcriptome analysis revealed that these hPSC sublines carried abnormal gene expression patterns in specific signaling pathways in addition to cancer-related cell cycle pathways. These hPSC sublines showed a lower propensity for mesendodermal differentiation in embryoid bodies cultured in a serum-free medium. BMP4-induced exit from the self-renewal state was impaired in the trisomy 12 hPSC sublines, with less upregulation of key transcription factor gene expression. As a consequence, the differentiation efficiency of hematopoietic and hepatic lineages was also impaired in the trisomy 12 hPSC sublines. We reveal that trisomy 12 disrupts the genome-wide expression patterns that are required for proper mesendodermal differentiation.
Collapse
Affiliation(s)
- Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Yujung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Minako Kokunugi
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kozue Uchio Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Ken Fukumoto
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Satoshi Terada
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Miho Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan.
- Cel-MiM, Ltd., Tokyo, Japan.
| |
Collapse
|
9
|
Lei Y, Al Delbany D, Krivec N, Regin M, Couvreu de Deckersberg E, Janssens C, Ghosh M, Sermon K, Spits C. SALL3 mediates the loss of neuroectodermal differentiation potential in human embryonic stem cells with chromosome 18q loss. Stem Cell Reports 2024; 19:562-578. [PMID: 38552632 PMCID: PMC11096619 DOI: 10.1016/j.stemcr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.
Collapse
Affiliation(s)
- Yingnan Lei
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Diana Al Delbany
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
10
|
Indu S, Devi AN, Sahadevan M, Sengottaiyan J, Basu A, K SR, Kumar PG. Expression profiling of stemness markers in testicular germline stem cells from neonatal and adult Swiss albino mice during their transdifferentiation in vitro. Stem Cell Res Ther 2024; 15:93. [PMID: 38561834 PMCID: PMC10985951 DOI: 10.1186/s13287-024-03701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) were considered to be stem cells with limited potencies due to their existence in adult organisms. However, the production of spermatogonial stem cell colonies with broader differentiation capabilities in primary germ cell cultures from mice of select genetic backgrounds (C57BL6/Tg14, ddY, FVB and 129/Ola) indicated that SSCs from these strains were pluripotent. METHODS We established primary cultures of SSCs from neonatal and adult Swiss 3T3 Albino mice. Stemness of SSC colonies were evaluated by performing real-time PCR and immunofluorescence analysis for a panel of chosen stemness markers. Differentiation potentials of SSCs were examined by attempting the generation of embryoid bodies and evaluating the expression of ectodermal, mesodermal and endodermal markers using immunofluorescence and real-time PCR analysis. RESULTS Spermatogonial stem cells from neonatal and mature mice testes colonised in vitro and formed compact spermatogonial stem cell colonies in culture. The presence of stem cell markers ALPL, ITGA6 and CD9 indicated stemness in these colonies. The differentiation potential of these SSC colonies was demonstrated by their transformation into embryoid bodies upon withdrawal of growth factors from the culture medium. SSC colonies and embryoid bodies formed were evaluated using immunofluorescence and real-time PCR analysis. Embryoid body like structures derived from both neonatal and adult mouse testis were quite similar in terms of the expression of germ layer markers. CONCLUSION These results strongly suggest that SSC-derived EB-like structures could be used for further differentiation into cells of interest in cell-based therapeutics.
Collapse
Affiliation(s)
- Sivankutty Indu
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Anandavally N Devi
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Mahitha Sahadevan
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
| | - Jeeva Sengottaiyan
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Asmita Basu
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Shabith Raj K
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India
| | - Pradeep G Kumar
- Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014, Kerala, India.
- Department of Biotechnology, University of Kerala, Karyavattom Campus, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
11
|
Beltran-Rendon C, Price CJ, Glen K, Stacey A, Barbaric I, Thomas RJ. Modeling the selective growth advantage of genetically variant human pluripotent stem cells to identify opportunities for manufacturing process control. Cytotherapy 2024; 26:383-392. [PMID: 38349312 DOI: 10.1016/j.jcyt.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AIMS The appearance of genetically variant populations in human pluripotent stem cell (hPSC) cultures represents a concern for research and clinical applications. Genetic variations may alter hPSC differentiation potential or cause phenotype variation in differentiated cells. Further, variants may have properties such as proliferative rate, or response to the culture environment, that differ from wild-type cells. As such, understanding the behavior of these variants in culture, and any potential operational impact on manufacturing processes, will be necessary to control quality of putative hPSC-based products that include a proportion of variant threshold in their quality specification. METHODS Here we show a computational model that mathematically describes the growth dynamics between commonly occurring genetically variant hPSCs and their counterpart wild-type cells in culture. RESULTS We show that our model is capable of representing the growth behaviors of both wild-type and variant hPSCs in individual and co-culture systems. CONCLUSIONS This representation allows us to identify three critical process parameters that drive critical quality attributes when genetically variant cells are present within the system: total culture density, proportion of variant cells within the culture system and variant cell overgrowth. Lastly, we used our model to predict how the variability of these parameters affects the prevalence of both populations in culture.
Collapse
Affiliation(s)
| | - Christopher J Price
- School of Biological Sciences, The University of Sheffield, Western Bank, Sheffield, UK; The Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, UK; INSIGNEO Institute, University of Sheffield, Sheffield, UK
| | - Katie Glen
- Centre for Biological Engineering, Loughborough University, Loughborough, UK
| | - Adrian Stacey
- Centre for Biological Engineering, Loughborough University, Loughborough, UK
| | - Ivana Barbaric
- School of Biological Sciences, The University of Sheffield, Western Bank, Sheffield, UK; The Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, UK; INSIGNEO Institute, University of Sheffield, Sheffield, UK.
| | - Robert J Thomas
- Centre for Biological Engineering, Loughborough University, Loughborough, UK.
| |
Collapse
|
12
|
Krishnan S, Paul PK, Rodriguez TA. Cell competition and the regulation of protein homeostasis. Curr Opin Cell Biol 2024; 87:102323. [PMID: 38301378 DOI: 10.1016/j.ceb.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
The process of embryonic development involves remarkable cellular plasticity, which governs the coordination between cells necessary to build an organism. One role of this plasticity is to ensure that when aberrant cells are eliminated, growth adjustment occurs so that the size of the tissue is maintained. An important regulator of cellular plasticity that ensures cellular cooperation is a fitness-sensing mechanism termed cell competition. During cell competition, cells with defects that lower fitness but do not affect viability, such as those that cause impaired signal transduction, slower cellular growth, mitochondrial dysregulation or impaired protein homeostasis, are killed when surrounded by fitter cells. This is accompanied by the compensatory proliferation of the surviving cells. The underlying factors and mechanisms that demarcate certain cells as less fit than their neighbouring cells and losers of cell competition are still relatively unknown. Recent evidence has pointed to mitochondrial defects and proteotoxic stress as important hallmarks of these loser cells. Here, we review recent advances in this area, focussing on the role of mitochondrial activity and protein homeostasis as major mechanisms determining competitive cell fitness during development and the importance of cell proteostasis in determining cell fitness.
Collapse
Affiliation(s)
| | - Pranab K Paul
- National Heart and Lung Institute, Imperial College London, UK
| | | |
Collapse
|
13
|
Gallego Villarejo L, Gerding WM, Bachmann L, Hardt LHI, Bormann S, Nguyen HP, Müller T. Optical Genome Mapping Reveals Genomic Alterations upon Gene Editing in hiPSCs: Implications for Neural Tissue Differentiation and Brain Organoid Research. Cells 2024; 13:507. [PMID: 38534351 DOI: 10.3390/cells13060507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Genome editing, notably CRISPR (cluster regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), has revolutionized genetic engineering allowing for precise targeted modifications. This technique's combination with human induced pluripotent stem cells (hiPSCs) is a particularly valuable tool in cerebral organoid (CO) research. In this study, CRISPR/Cas9-generated fluorescently labeled hiPSCs exhibited no significant morphological or growth rate differences compared with unedited controls. However, genomic aberrations during gene editing necessitate efficient genome integrity assessment methods. Optical genome mapping, a high-resolution genome-wide technique, revealed genomic alterations, including chromosomal copy number gain and losses affecting numerous genes. Despite these genomic alterations, hiPSCs retain their pluripotency and capacity to generate COs without major phenotypic changes but one edited cell line showed potential neuroectodermal differentiation impairment. Thus, this study highlights optical genome mapping in assessing genome integrity in CRISPR/Cas9-edited hiPSCs emphasizing the need for comprehensive integration of genomic and morphological analysis to ensure the robustness of hiPSC-based models in cerebral organoid research.
Collapse
Affiliation(s)
- Lucia Gallego Villarejo
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Wanda M Gerding
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Lisa Bachmann
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Luzie H I Hardt
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Stefan Bormann
- Department of Molecular Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Thorsten Müller
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
14
|
Xiao R, Xu D, Zhang M, Chen Z, Cheng L, Du S, Lu M, Zhou T, Li R, Bai F, Huang Y. Aneuploid embryonic stem cells drive teratoma metastasis. Nat Commun 2024; 15:1087. [PMID: 38316790 PMCID: PMC10844504 DOI: 10.1038/s41467-024-45265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Aneuploidy, a deviation of the chromosome number from euploidy, is one of the hallmarks of cancer. High levels of aneuploidy are generally correlated with metastasis and poor prognosis in cancer patients. However, the causality of aneuploidy in cancer metastasis remains to be explored. Here we demonstrate that teratomas derived from aneuploid murine embryonic stem cells (ESCs), but not from isogenic diploid ESCs, disseminated to multiple organs, for which no additional copy number variations were required. Notably, no cancer driver gene mutations were identified in any metastases. Aneuploid circulating teratoma cells were successfully isolated from peripheral blood and showed high capacities for migration and organ colonization. Single-cell RNA sequencing of aneuploid primary teratomas and metastases identified a unique cell population with high stemness that was absent in diploid ESCs-derived teratomas. Further investigation revealed that aneuploid cells displayed decreased proteasome activity and overactivated endoplasmic reticulum (ER) stress during differentiation, thereby restricting the degradation of proteins produced from extra chromosomes in the ESC state and causing differentiation deficiencies. Noticeably, both proteasome activator Oleuropein and ER stress inhibitor 4-PBA can effectively inhibit aneuploid teratoma metastasis.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Deshu Xu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Meili Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhanghua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Li Cheng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Songjie Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mingfei Lu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tonghai Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
15
|
Kim J, Kwon EJ, Kim YJ, Kim D, Shin YZ, Gil D, Kim JH, Shin HD, Kim LH, Lee MO, Go YH, Cha HJ. Epigenetic repression of CHCHD2 enhances survival from single cell dissociation through attenuated Rho A kinase activity. Cell Mol Life Sci 2024; 81:38. [PMID: 38214772 PMCID: PMC10787008 DOI: 10.1007/s00018-023-05060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024]
Abstract
During in vitro culture, human pluripotent stem cells (hPSCs) often acquire survival advantages characterized by decreased susceptibility to mitochondrial cell death, known as "culture adaptation." This adaptation is associated with genetic and epigenetic abnormalities, including TP53 mutations, copy number variations, trisomy, and methylation changes. Understanding the molecular mechanisms underlying this acquired survival advantage is crucial for safe hPSC-based cell therapies. Through transcriptome and methylome analysis, we discovered that the epigenetic repression of CHCHD2, a mitochondrial protein, is a common occurrence during in vitro culture using enzymatic dissociation. We confirmed this finding through genetic perturbation and reconstitution experiments in normal human embryonic stem cells (hESCs). Loss of CHCHD2 expression conferred resistance to single cell dissociation-induced cell death, a common stress encountered during in vitro culture. Importantly, we found that the downregulation of CHCHD2 significantly attenuates the activity of Rho-associated protein kinase (ROCK), which is responsible for inducing single cell death in hESCs. This suggests that hESCs may survive routine enzyme-based cell dissociation by downregulating CHCHD2 and thereby attenuating ROCK activity. These findings provide insights into the mechanisms by which hPSCs acquire survival advantages and adapt to in vitro culture conditions.
Collapse
Affiliation(s)
- Jumee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dayeon Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yoon-Ze Shin
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dayeon Gil
- Korea National Stem Cell Bank, Osong, Republic of Korea
- Division of Intractable Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex 202, Osong, Republic of Korea
| | - Jung-Hyun Kim
- Korea National Stem Cell Bank, Osong, Republic of Korea
- Division of Intractable Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Osong Health Technology Administration Complex 202, Osong, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Republic of Korea
- Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea
| | - Lyoung Hyo Kim
- Research Institute for Life Science, GW Vitek, Inc., Seoul, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Young-Hyun Go
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
- Research Institute of Pharmaceutical Science, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
- Research Institute of Pharmaceutical Science, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Krivec N, Ghosh MS, Spits C. Gains of 20q11.21 in human pluripotent stem cells: Insights from cancer research. Stem Cell Reports 2024; 19:11-27. [PMID: 38157850 PMCID: PMC10828824 DOI: 10.1016/j.stemcr.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
The genetic abnormalities observed in hPSC cultures worldwide have been suggested to pose an important hurdle in their safe use in regenerative medicine due to the possibility of oncogenic transformation by mutant cells in the patient posttransplantation. One of the best-characterized genetic lesions in hPSCs is the gain of 20q11.21, found in 20% of hPSC lines worldwide, and strikingly, also amplified in 20% of human cancers. In this review, we have curated the existing knowledge on the incidence of this mutation in hPSCs and cancer, explored the significance of chromosome 20q11.21 amplification in cancer progression, and reviewed the oncogenic role of the genes in the smallest common region of gain, to shed light on the significance of this mutation in hPSC-based cell therapy. Lastly, we discuss the state-of-the-art strategies devised to detect aneuploidies in hPSC cultures, avoid genetic changes in vitro cultures of hPSCs, and strategies to eliminate genetically abnormal cells from culture.
Collapse
Affiliation(s)
- Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha S Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
17
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Chang CC, Jiang SS, Tsai FY, Hsu PJ, Hsieh CC, Wang LT, Yen ML, Yen BL. Targeting Conserved Pathways in 3D Spheroid Formation of Diverse Cell Types for Translational Application: Enhanced Functional and Antioxidant Capacity. Cells 2023; 12:2050. [PMID: 37626861 PMCID: PMC10453086 DOI: 10.3390/cells12162050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional (3D) in vitro spheroid/organoid culture increasingly appears to better mimic physiological states than standard 2D systems. The biological consequence of 3D spheroids, however, differs for different cell types: for pluripotent embryonic stem cells (ESCs), differentiation and loss of stemness occur, while the converse is true for somatic and cancer cells. Despite such diverse consequences, there are likely conserved mechanisms governing 3D spheroid formation across cell types that are unknown but could be efficiently targeted for translational application. To elucidate such processes, we performed transcriptome analysis with functional validation on 2D- and 3D-cultured mouse ESCs, mesenchymal stromal/stem cells (MSCs), and cancer cells. At both the transcriptomic and functional levels, 3D spheroid formation resulted in commitment towards known cell-specific functional outcomes. Surprisingly in all cell types, downregulation of the cholesterol synthesis pathway was found during 3D spheroid formation, with modulation concomitantly affecting 3D spheroid formation and cell-specific consequences; similar results were seen with human cell types. Furthermore, improved antioxidant capacity after 3D spheroid formation across cell types was further enhanced with modulation of the pathway. These findings demonstrate the profound cell-specific consequences and the translational value of understanding conserved mechanisms across diverse cell types after 3D spheroid formation.
Collapse
Affiliation(s)
- Chia-Chi Chang
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei 114, Taiwan
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| | | | - Fang-Yu Tsai
- National Institute of Cancer Research, NHRI, Zhunan 350, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| | - Chen-Chan Hsieh
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, Taipei 100, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, Taipei 100, Taiwan
| | - B. Linju Yen
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei 114, Taiwan
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| |
Collapse
|
19
|
Patterson B, Yang B, Tanaka Y, Kim KY, Cakir B, Xiang Y, Kim J, Wang S, Park IH. Female naïve human pluripotent stem cells carry X chromosomes with Xa-like and Xi-like folding conformations. SCIENCE ADVANCES 2023; 9:eadf2245. [PMID: 37540754 PMCID: PMC10403202 DOI: 10.1126/sciadv.adf2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
Three-dimensional (3D) genomics shows immense promise for studying X chromosome inactivation (XCI) by interrogating changes to the X chromosomes' 3D states. Here, we sought to characterize the 3D state of the X chromosome in naïve and primed human pluripotent stem cells (hPSCs). Using chromatin tracing, we analyzed X chromosome folding conformations in these cells with megabase genomic resolution. X chromosomes in female naïve hPSCs exhibit folding conformations similar to the active X chromosome (Xa) and the inactive X chromosome (Xi) in somatic cells. However, naïve X chromosomes do not exhibit the chromatin compaction typically associated with these somatic X chromosome states. In H7 naïve human embryonic stem cells, XIST accumulation observed on damaged X chromosomes demonstrates the potential for naïve hPSCs to activate XCI-related mechanisms. Overall, our findings provide insight into the X chromosome status of naïve hPSCs with a single-chromosome resolution and are critical in understanding the unique epigenetic regulation in early embryonic cells.
Collapse
Affiliation(s)
- Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bing Yang
- Department of Genetics, and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jonghun Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Siyuan Wang
- Department of Genetics, and Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
20
|
Milagre I, Pereira C, Oliveira RA. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11933. [PMID: 37569309 PMCID: PMC10418648 DOI: 10.3390/ijms241511933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in the discovery of new drugs. PSCs also hold great potential in regenerative medicine to treat or diminish the effects of certain debilitating diseases, such as degenerative disorders. However, some concerns have recently been raised over their safety for use in regenerative medicine. One of the major concerns is the fact that PSCs are prone to errors in passing the correct number of chromosomes to daughter cells, resulting in aneuploid cells. Aneuploidy, characterised by an imbalance in chromosome number, elicits the upregulation of different stress pathways that are deleterious to cell homeostasis, impair proper embryo development and potentiate cancer development. In this review, we will summarize known molecular mechanisms recently revealed to impair mitotic fidelity in human PSCs and the consequences of the decreased mitotic fidelity of these cells. We will finish with speculative views on how the physiological characteristics of PSCs can affect the mitotic machinery and how their suboptimal mitotic fidelity may be circumvented.
Collapse
Affiliation(s)
- Inês Milagre
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | | | - Raquel A. Oliveira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
21
|
Schloo C, Kutscher LM. Modeling brain and neural crest neoplasms with human pluripotent stem cells. Neuro Oncol 2023; 25:1225-1235. [PMID: 36757217 PMCID: PMC10326493 DOI: 10.1093/neuonc/noad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 02/10/2023] Open
Abstract
Pluripotent stem cells offer unique avenues to study human-specific aspects of disease and are a highly versatile tool in cancer research. Oncogenic processes and developmental programs often share overlapping transcriptomic and epigenetic signatures, which can be reactivated in induced pluripotent stem cells. With the emergence of brain organoids, the ability to recapitulate brain development and structure has vastly improved, making in vitro models more realistic and hence more suitable for biomedical modeling. This review highlights recent research and current challenges in human pluripotent stem cell modeling of brain and neural crest neoplasms, and concludes with a call for more rigorous quality control and for the development of models for rare tumor subtypes.
Collapse
Affiliation(s)
- Cedar Schloo
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. Cell 2023; 186:2977-2994.e23. [PMID: 37343560 PMCID: PMC10461406 DOI: 10.1016/j.cell.2023.05.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell-cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells and cerebral organoids, supporting the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells reshaped the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge, MA 02142, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Yen BL, Hsieh CC, Hsu PJ, Chang CC, Wang LT, Yen ML. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl Med 2023; 12:235-244. [PMID: 37184894 PMCID: PMC10184701 DOI: 10.1093/stcltm/szad011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/06/2023] [Indexed: 05/16/2023] Open
Abstract
As invaluable as the standard 2-dimensional (2D) monolayer in vitro cell culture system has been, there is increasing evidence that 3-dimensional (3D) non-adherent conditions are more relevant to the in vivo condition. While one of the criteria for human mesenchymal stem cells (MSCs) has been in vitro plastic adherence, such 2D culture conditions are not representative of in vivo cell-cell and cell-extracellular matrix (ECM) interactions, which may be especially important for this progenitor/stem cell of skeletal and connective tissues. The 3D spheroid, a multicellular aggregate formed under non-adherent 3D in vitro conditions, may be particularly suited as an in vitro method to better understand MSC physiological processes, since expression of ECM and other adhesion proteins are upregulated in such a cell culture system. First used in embryonic stem cell in vitro culture to recapitulate in vivo developmental processes, 3D spheroid culture has grown in popularity as an in vitro method to mimic the 3-dimensionality of the native niche for MSCs within tissues/organs. In this review, we discuss the relevance of the 3D spheroid culture for understanding MSC biology, summarize the biological outcomes reported in the literature based on such this culture condition, as well as contemplate limitations and future considerations in this rapidly evolving and exciting area.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chen-Chan Hsieh
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics and Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| |
Collapse
|
24
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
25
|
She R, Fair T, Schaefer NK, Saunders RA, Pavlovic BJ, Weissman JS, Pollen AA. Comparative landscape of genetic dependencies in human and chimpanzee stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533346. [PMID: 36993685 PMCID: PMC10055274 DOI: 10.1101/2023.03.19.533346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether changes in human cells alter requirements for essential genes. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation. These genes comprised coherent processes, including cell cycle progression and lysosomal signaling, which we determined to be human-derived by comparison with orangutan cells. Human-specific robustness to CDK2 and CCNE1 depletion persisted in neural progenitor cells, providing support for the G1-phase length hypothesis as a potential evolutionary mechanism in human brain expansion. Our findings demonstrate that evolutionary changes in human cells can reshape the landscape of essential genes and establish a platform for systematically uncovering latent cellular and molecular differences between species.
Collapse
Affiliation(s)
- Richard She
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- These authors contributed equally: Richard She, Tyler Fair
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- These authors contributed equally: Richard She, Tyler Fair
| | - Nathan K. Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Reuben A. Saunders
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bryan J. Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute Technology, Cambridge 02142, MA
| | - Alex A. Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
26
|
TPX2 Amplification-Driven Aberrant Mitosis in Culture Adapted Human Embryonic Stem Cells with gain of 20q11.21. Stem Cell Rev Rep 2023:10.1007/s12015-023-10514-4. [PMID: 36862329 DOI: 10.1007/s12015-023-10514-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Despite highly effective machinery for the maintenance of genome integrity in human embryonic stem cells (hESCs), the frequency of genetic aberrations during in-vitro culture has been a serious issue for future clinical applications. METHOD By passaging hESCs over a broad range of timepoints (up to 6 years), the isogenic hESC lines with different passage numbers with distinct cellular characteristics, were established. RESULT We found that mitotic aberrations, such as the delay of mitosis, multipolar centrosomes, and chromosome mis-segregation, were increased in parallel with polyploidy compared to early-passaged hESCs (EP-hESCs) with normal copy number. Through high-resolution genome-wide approaches and transcriptome analysis, we found that culture adapted-hESCs with a minimal amplicon in chromosome 20q11.21 highly expressed TPX2, a key protein for governing spindle assembly and cancer malignancy. Consistent with these findings, the inducible expression of TPX2 in EP-hESCs reproduced aberrant mitotic events, such as the delay of mitotic progression, spindle stabilization, misaligned chromosomes, and polyploidy. CONCLUSION These studies suggest that the increased transcription of TPX2 in culture adapted hESCs could contribute to an increase in aberrant mitosis due to altered spindle dynamics.
Collapse
|
27
|
von Eyben FE, Kristiansen K, Kapp DS, Hu R, Preda O, Nogales FF. Epigenetic Regulation of Driver Genes in Testicular Tumorigenesis. Int J Mol Sci 2023; 24:ijms24044148. [PMID: 36835562 PMCID: PMC9966837 DOI: 10.3390/ijms24044148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In testicular germ cell tumor type II (TGCT), a seminoma subtype expresses an induced pluripotent stem cell (iPSC) panel with four upregulated genes, OCT4/POU5F1, SOX17, KLF4, and MYC, and embryonal carcinoma (EC) has four upregulated genes, OCT4/POU5F1, SOX2, LIN28, and NANOG. The EC panel can reprogram cells into iPSC, and both iPSC and EC can differentiate into teratoma. This review summarizes the literature on epigenetic regulation of the genes. Epigenetic mechanisms, such as methylations of cytosines on the DNA string and methylations and acetylations of histone 3 lysines, regulate expression of these driver genes between the TGCT subtypes. In TGCT, the driver genes contribute to well-known clinical characteristics and the driver genes are also important for aggressive subtypes of many other malignancies. In conclusion, epigenetic regulation of the driver genes are important for TGCT and for oncology in general.
Collapse
Affiliation(s)
- Finn E. von Eyben
- Center for Tobacco Control Research, Birkevej 17, 5230 Odense, Denmark
- Correspondence: ; Tel.: +45-66145862
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, August Krogh Building Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- BGI-Research, BGI-Shenzhen, Shenzhen 518120, China
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 166555, China
| | - Daniel S. Kapp
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Rong Hu
- Department of Pathology, Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Ovidiu Preda
- Department of Pathology, San Cecilio University Hospital, 18071 Granada, CP, Spain
| | - Francisco F. Nogales
- Department of Pathology, School of Medicine, University Granada, 18071 Granada, CP, Spain
| |
Collapse
|
28
|
Deng C, Ya A, Compton DA, Godek KM. A pluripotent developmental state confers a low fidelity of chromosome segregation. Stem Cell Reports 2023; 18:475-488. [PMID: 36638786 PMCID: PMC9968987 DOI: 10.1016/j.stemcr.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
During in vitro propagation, human pluripotent stem cells (hPSCs) frequently become aneuploid with incorrect chromosome numbers due to mitotic chromosome segregation errors. Yet, it is not understood why hPSCs exhibit a low mitotic fidelity. Here, we investigate the mechanisms responsible for mitotic errors in hPSCs and show that the primary cause is lagging chromosomes in anaphase with improper merotelic microtubule attachments. Accordingly, short-term treatment (<24 h) with small molecules that prolong mitotic duration or destabilize chromosome microtubule attachments reduces merotelic errors and lagging chromosome rates, although hPSCs adapt and lagging chromosome rates rebound upon long-term (>24 h) microtubule destabilization. Strikingly, we also demonstrate that mitotic error rates correlate with developmental potential decreasing or increasing upon loss or gain of pluripotency, respectively. Thus, a low mitotic fidelity is an inherent and conserved phenotype of hPSCs. Moreover, chromosome segregation fidelity depends on developmental state in normal human cells.
Collapse
Affiliation(s)
- Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
29
|
Kim YJ, Go YH, Jeong HC, Kwon EJ, Kim SM, Cheong HS, Kim W, Shin HD, Lee H, Cha HJ. TPX2 prompts mitotic survival via the induction of BCL2L1 through YAP1 protein stabilization in human embryonic stem cells. Exp Mol Med 2023; 55:32-42. [PMID: 36596852 PMCID: PMC9898288 DOI: 10.1038/s12276-022-00907-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2023] Open
Abstract
Genetic alterations have been reported for decades in most human embryonic stem cells (hESCs). Survival advantage, a typical trait acquired during long-term in vitro culture, results from the induction of BCL2L1 upon frequent copy number variation (CNV) at locus 20q11.21 and is one of the strongest candidates associated with genetic alterations that occur via escape from mitotic stress. However, the underlying mechanisms for BCL2L1 induction remain unknown. Furthermore, abnormal mitosis and the survival advantage that frequently occur in late passage are associated with the expression of BCL2L1, which is in locus 20q11.21. In this study, we demonstrated that the expression of TPX2, a gene located in 20q11.21, led to BCL2L1 induction and consequent survival traits under mitotic stress in isogenic pairs of hESCs and human induced pluripotent stem cells (iPSCs) with normal and 20q11.21 CNVs. High Aurora A kinase activity by TPX2 stabilized the YAP1 protein to induce YAP1-dependent BCL2L1 expression. A chemical inhibitor of Aurora A kinase and knockdown of YAP/TAZ significantly abrogated the high tolerance to mitotic stress through BCL2L1 suppression. These results suggest that the collective expression of TPX2 and BCL2L1 from CNV at loci 20q11.21 and a consequent increase in YAP1 signaling promote genome instability during long-term in vitro hESC culture.
Collapse
Affiliation(s)
- Yun-Jeong Kim
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Young-Hyun Go
- grid.263736.50000 0001 0286 5954Department of Life Sciences, Sogang University, Seoul, 04107 Republic of Korea
| | - Ho-Chang Jeong
- grid.263736.50000 0001 0286 5954Department of Life Sciences, Sogang University, Seoul, 04107 Republic of Korea
| | - Eun-Ji Kwon
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Seong-Min Kim
- grid.31501.360000 0004 0470 5905College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Sub Cheong
- grid.412670.60000 0001 0729 3748Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| | - Wantae Kim
- grid.254230.20000 0001 0722 6377Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Hyoung Doo Shin
- grid.263736.50000 0001 0286 5954Department of Life Sciences, Sogang University, Seoul, 04107 Republic of Korea
| | - Haeseung Lee
- grid.262229.f0000 0001 0719 8572College of Pharmacy, Pusan National University, Busan, 46241 Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
30
|
Park SJ, Kim DS, Choi M, Han KH, Han JS, Yoo KH, Moon KS. Preclinical Evaluation of interferon-gamma primed human Wharton's jelly-derived mesenchymal stem cells. Hum Exp Toxicol 2023; 42:9603271231171650. [PMID: 37092667 DOI: 10.1177/09603271231171650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The potential of human mesenchymal stem cells (MSCs) for cell therapy has been investigated in numerous immune-mediated conditions; MSCs are considered one of the most promising cellular therapeutics to treat intractable diseases. Recently, approaches to prime MSCs have been investigated, thereby generating cellular products with enhanced potential for a variety of clinical applications. Interferon-gamma (IFN-γ) priming is a current approach used to increase the therapeutic efficacy of MSCs. In this study, we determined the systemic toxicity, tumorigenicity and biodistribution of IFN-γ-primed Wharton's jelly-derived (WJ)-MSCs in male and female BALB/c-nu/nu mice. There were no deaths or pathologic lesions in the mice treated with 5 × 106 cells/kg IFN-γ-primed MSCs in the repeated dose study. In the tumorigenicity study, one of the subcutaneously treated mice showed bronchioloalveolar adenoma in the lung but tested negative for human-specific anti-mitochondrial antibody, suggesting the spontaneous murine origin of the adenoma. A biodistribution study using real-time quantitative polymerase chain reaction demonstrated the systemic IFN-γ-primed MSC clearance by day 28. Based on the toxicity, biodistribution, and tumorigenicity studies, we concluded that IFN-γ-primed MSCs at 5 × 106 cells/kg do not induce tumor formation and adverse changes.
Collapse
Affiliation(s)
- Sang-Jin Park
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Clinical Development, CELLnLIFE Research Center, CELLnLIFE Inc., Seoul, Republic of Korea
| | - Myeongjin Choi
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kang-Hyun Han
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ji-Seok Han
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | | |
Collapse
|
31
|
Suvá M, Arnold VH, Wiedenmann EA, Jordan R, Galvagno E, Martínez M, Vichera GD. First sex modification case in equine cloning. PLoS One 2023; 18:e0279869. [PMID: 36598913 PMCID: PMC9812313 DOI: 10.1371/journal.pone.0279869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) is an asexual reproductive technique where cloned offspring contain the same genetic material as the original donor. Although this technique preserves the sex of the original animal, the birth of sex-reversed offspring has been reported in some species. Here, we report for the first time the birth of a female foal generated by SCNT of a male nuclear donor. After a single SCNT procedure, 16 blastocysts were obtained and transferred to eight recipient mares, resulting in the birth of two clones: one male and one female. Both animals had identical genetic profiles, as observed in the analysis of 15-horse microsatellite marker panel, which confirmed they are indeed clones of the same animal. Cytogenetic analysis and fluorescent in situ hybridization using X and Y specific probes revealed a 63,X chromosome set in the female offspring, suggesting a spontaneous Y chromosome loss. The identity of the lost chromosome in the female was further confirmed through PCR by observing the presence of X-linked markers and absence of Y-linked markers. Moreover, cytogenetic and molecular profiles were analyzed in blood and skin samples to detect a possible mosaicism in the female, but results showed identical chromosomal constitutions. Although the cause of the spontaneous chromosome loss remains unknown, the possibility of equine sex reversal by SCNT holds great potential for the preservation of endangered species, development of novel breeding techniques, and sportive purposes.
Collapse
Affiliation(s)
- Mariana Suvá
- Kheiron Biotech S.A., Pilar, Buenos Aires, Argentina
- * E-mail: (MS); (GDV)
| | | | | | | | | | - Marcela Martínez
- Laboratorio de Genética Aplicada, Sociedad Rural Argentina, Buenos Aires, Argentina
| | | |
Collapse
|
32
|
Andrews PW, Barbaric I, Benvenisty N, Draper JS, Ludwig T, Merkle FT, Sato Y, Spits C, Stacey GN, Wang H, Pera MF. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell 2022; 29:1624-1636. [PMID: 36459966 DOI: 10.1016/j.stem.2022.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.
Collapse
Affiliation(s)
- Peter W Andrews
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Steering Committee, International Stem Cell Initiative
| | - Jonathan S Draper
- Stem Cell Network, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Steering Committee, International Stem Cell Initiative
| | - Tenneille Ludwig
- WiCell Research Institute, Madison, WI, USA; University of Wisconsin-Madison, Madison, WI 53719, USA; Steering Committee, International Stem Cell Initiative
| | - Florian T Merkle
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0QQ, UK; Steering Committee, International Stem Cell Initiative
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa 210-9501, Japan; Steering Committee, International Stem Cell Initiative
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Steering Committee, International Stem Cell Initiative
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Steering Committee, International Stem Cell Initiative
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China; Steering Committee, International Stem Cell Initiative
| | - Martin F Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Steering Committee, International Stem Cell Initiative.
| |
Collapse
|
33
|
Steventon-Jones V, Stavish D, Halliwell JA, Baker D, Barbaric I. Single Nucleotide Polymorphism (SNP) Arrays and Their Sensitivity for Detection of Genetic Changes in Human Pluripotent Stem Cell Cultures. Curr Protoc 2022; 2:e606. [PMID: 36426882 DOI: 10.1002/cpz1.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human pluripotent stem cells (hPSCs) can be grown in culture indefinitely, making them a valuable tool for use in basic biology, disease modeling, and regenerative medicine. However, over prolonged periods in culture, hPSCs tend to acquire genomic aberrations that confer growth advantages, similar to those seen in some cancers. Monitoring the genomic stability of cultured hPSCs is critical to ensuring their efficacy and safety as a therapeutic tool. Most commonly employed methods for monitoring of hPSC genomes are cytogenetic methods, such as G-banding. Nonetheless, such methods have limited resolution and sensitivity for detecting mosaicism. Single nucleotide polymorphism (SNP) array platforms are a potential alternative that could improve detection of abnormalities. Here, we outline protocols for SNP array whole-genome screening of hPSCs. Moreover, we detail the procedure for assessing the SNP array's sensitivity in detecting low-level mosaic copy-number changes. We show that mosaicism can be confidently identified in samples only once they contain 20% variants, although samples containing 10% variants typically display enough variation to warrant further investigation and confirmation, for example by using a more sensitive targeted method. Finally, we highlight the advantages and limitations of SNP arrays, including a cost comparison of SNP arrays versus other commonly employed methods for detection of genetic changes in hPSC cultures. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA sample preparation for SNP arrays Basic Protocol 2: SNP array hybridization, washing, and scanning Basic Protocol 3: SNP array data analysis Support Protocol: Assessment of SNP array sensitivity for detection of mosaicism.
Collapse
Affiliation(s)
| | - Dylan Stavish
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, United Kingdom.,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Jason A Halliwell
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, United Kingdom.,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, United Kingdom.,Current address: Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | - Duncan Baker
- Sheffield Diagnostic Genetic Services, Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield, United Kingdom.,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
34
|
Krasnova OA, Gursky VV, Chabina AS, Kulakova KA, Alekseenko LL, Panova AV, Kiselev SL, Neganova IE. Prognostic Analysis of Human Pluripotent Stem Cells Based on Their Morphological Portrait and Expression of Pluripotent Markers. Int J Mol Sci 2022; 23:12902. [PMID: 36361693 PMCID: PMC9656397 DOI: 10.3390/ijms232112902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2023] Open
Abstract
The ability of human pluripotent stem cells for unlimited proliferation and self-renewal promotes their application in the fields of regenerative medicine. The morphological assessment of growing colonies and cells, as a non-invasive method, allows the best clones for further clinical applications to be safely selected. For this purpose, we analyzed seven morphological parameters of both colonies and cells extracted from the phase-contrast images of human embryonic stem cell line H9, control human induced pluripotent stem cell (hiPSC) line AD3, and hiPSC line HPCASRi002-A (CaSR) in various passages during their growth for 120 h. The morphological phenotype of each colony was classified using a visual analysis and associated with its potential for pluripotency and clonality maintenance, thus defining the colony phenotype as the control parameter. Using the analysis of variance for the morphological parameters of each line, we showed that selected parameters carried information about different cell lines and different phenotypes within each line. We demonstrated that a model of classification of colonies and cells by phenotype, built on the selected parameters as predictors, recognized the phenotype with an accuracy of 70-75%. In addition, we performed a qRT-PCR analysis of eleven pluripotency markers genes. By analyzing the variance of their expression in samples from different lines and with different phenotypes, we identified group-specific sets of genes that could be used as the most informative ones for the separation of the best clones. Our results indicated the fundamental possibility of constructing a morphological portrait of a colony informative for the automatic identification of the phenotype and for linking this portrait to the expression of pluripotency markers.
Collapse
Affiliation(s)
| | - Vitaly V. Gursky
- Institute of Cytology, 194064 Saint Petersburg, Russia
- Ioffe Institute, 194021 Saint Petersburg, Russia
| | | | | | | | - Alexandra V. Panova
- Endocrinology Research Centre, 115478 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - Sergey L. Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | | |
Collapse
|
35
|
Cantor EL, Shen F, Jiang G, Tan Z, Cunningham GM, Wu X, Philips S, Schneider BP. Passage number affects differentiation of sensory neurons from human induced pluripotent stem cells. Sci Rep 2022; 12:15869. [PMID: 36151116 PMCID: PMC9508090 DOI: 10.1038/s41598-022-19018-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a valuable resource for neurological disease-modeling and drug discovery due to their ability to differentiate into neurons reflecting the genetics of the patient from which they are derived. iPSC-derived cultures, however, are highly variable due to heterogeneity in culture conditions. We investigated the effect of passage number on iPSC differentiation to optimize the generation of sensory neurons (iPSC-dSNs). Three iPSC lines reprogrammed from the peripheral blood of three donors were differentiated into iPSC-dSNs at passage numbers within each of the following ranges: low (5-10), intermediate (20-26), and high (30-38). Morphology and pluripotency of the parent iPSCs were assessed prior to differentiation. iPSC-dSNs were evaluated based on electrophysiological properties and expression of key neuronal markers. All iPSC lines displayed similar morphology and were similarly pluripotent across passage numbers. However, the expression levels of neuronal markers and sodium channel function analyses indicated that iPSC-dSNs differentiated from low passage numbers better recapitulated the sensory neuron phenotype than those differentiated from intermediate or high passage numbers. Our results demonstrate that lower passage numbers may be better suited for differentiation into peripheral sensory neurons.
Collapse
Affiliation(s)
- Erica L Cantor
- Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fei Shen
- Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guanglong Jiang
- Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhiyong Tan
- Pharmacology & Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Geneva M Cunningham
- Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xi Wu
- Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Santosh Philips
- Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bryan P Schneider
- Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
36
|
Rouhani FJ, Zou X, Danecek P, Badja C, Amarante TD, Koh G, Wu Q, Memari Y, Durbin R, Martincorena I, Bassett AR, Gaffney D, Nik-Zainal S. Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nat Genet 2022; 54:1406-1416. [PMID: 35953586 PMCID: PMC9470532 DOI: 10.1038/s41588-022-01147-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/24/2022] [Indexed: 12/27/2022]
Abstract
We explored human induced pluripotent stem cells (hiPSCs) derived from different tissues to gain insights into genomic integrity at single-nucleotide resolution. We used genome sequencing data from two large hiPSC repositories involving 696 hiPSCs and daughter subclones. We find ultraviolet light (UV)-related damage in ~72% of skin fibroblast-derived hiPSCs (F-hiPSCs), occasionally resulting in substantial mutagenesis (up to 15 mutations per megabase). We demonstrate remarkable genomic heterogeneity between independent F-hiPSC clones derived during the same round of reprogramming due to oligoclonal fibroblast populations. In contrast, blood-derived hiPSCs (B-hiPSCs) had fewer mutations and no UV damage but a high prevalence of acquired BCOR mutations (26.9% of lines). We reveal strong selection pressure for BCOR mutations in F-hiPSCs and B-hiPSCs and provide evidence that they arise in vitro. Directed differentiation of hiPSCs and RNA sequencing showed that BCOR mutations have functional consequences. Our work strongly suggests that detailed nucleotide-resolution characterization is essential before using hiPSCs.
Collapse
Affiliation(s)
- Foad J Rouhani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Cherif Badja
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Tauanne Dias Amarante
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Gene Koh
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Qianxin Wu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yasin Memari
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniel Gaffney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Genomics plc, King Charles House, Oxford, UK
| | - Serena Nik-Zainal
- Early Cancer Institute, Hutchison/MRC Research Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge, UK.
| |
Collapse
|
37
|
DuBose CO, Daum JR, Sansam CL, Gorbsky GJ. Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells. Genes (Basel) 2022; 13:genes13071157. [PMID: 35885940 PMCID: PMC9318709 DOI: 10.3390/genes13071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great potential for regenerative medicine. By reprogramming a patient′s own cells, immunological rejection can be avoided during transplantation. For expansion and gene editing, iPSCs are grown in artificial culture for extended times. Culture affords potential danger for the accumulation of genetic aberrations. To study these, two induced pluripotent stem (iPS) cell lines were cultured and periodically analyzed using advanced optical mapping to detect and classify chromosome numerical and segmental changes that included deletions, insertions, balanced translocations and inversions. In one of the lines, a population trisomic for chromosome 12 gained dominance over a small number of passages. This appearance and dominance of the culture by chromosome 12 trisomic cells was tracked through intermediate passages by the analysis of chromosome spreads. Mathematical modeling suggested that the proliferation rates of diploid versus trisomic cells could not account for the rapid dominance of the trisomic population. In addition, optical mapping revealed hundreds of structural variations distinct from those generally found within the human population. Many of these structural variants were detected in samples obtained early in the culturing process and were maintained in late passage samples, while others were acquired over the course of culturing.
Collapse
Affiliation(s)
- Casey O. DuBose
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.O.D.); (J.R.D.)
| | - John R. Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.O.D.); (J.R.D.)
| | - Christopher L. Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.O.D.); (J.R.D.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gary J. Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.O.D.); (J.R.D.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
38
|
Molina-Ruiz FJ, Introna C, Bombau G, Galofre M, Canals JM. Standardization of Cell Culture Conditions and Routine Genomic Screening under a Quality Management System Leads to Reduced Genomic Instability in hPSCs. Cells 2022; 11:cells11131984. [PMID: 35805069 PMCID: PMC9265327 DOI: 10.3390/cells11131984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have generated unprecedented interest in the scientific community, given their potential applications in regenerative medicine, disease modeling, toxicology and drug screening. However, hPSCs are prone to acquire genomic alterations in vitro, mainly due to suboptimal culture conditions and inappropriate routines to monitor genome integrity. This poses a challenge to both the safety of clinical applications and the reliability of basic and translational hPSC research. In this study, we aim to investigate if the implementation of a Quality Management System (QMS) such as ISO9001:2015 to ensure reproducible and standardized cell culture conditions and genomic screening strategies can decrease the prevalence of genomic alterations affecting hPSCs used for research applications. To this aim, we performed a retrospective analysis of G-banding karyotype and Comparative Genomic Hybridization array (aCGH) data generated by our group over a 5-year span of different hESC and hiPSC cultures. This work demonstrates that application of a QMS to standardize cell culture conditions and genomic monitoring routines leads to a striking improvement of genomic stability in hPSCs cultured in vitro, as evidenced by a reduced probability of potentially pathogenic chromosomal aberrations and subchromosomal genomic alterations. These results support the need to implement QMS in academic laboratories performing hPSC research.
Collapse
Affiliation(s)
- Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Clelia Introna
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mireia Galofre
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-035-288
| |
Collapse
|
39
|
Lezmi E, Benvenisty N. The Tumorigenic Potential of Human Pluripotent Stem Cells. Stem Cells Transl Med 2022; 11:791-796. [PMID: 35679163 PMCID: PMC9397652 DOI: 10.1093/stcltm/szac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/24/2022] [Indexed: 11/23/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are currently evaluated for clinical applications due to their proliferation and differentiation capacities, raising the need to both assess and enhance, the safety of hPSC-based treatments. Distinct molecular features contribute to the tumorigenicity of hPSCs, manifested in the formation of teratoma tumors upon transplantation in vivo. Prolonged in vitro culturing of hPSCs can enhance selection for specific genetic aberrations, either at the chromosome or gene level. Some of these aberrations are tightly linked to human tumor pathology and increase the tumorigenic aggressiveness of the abnormal cells. In this perspective, we describe major tumor-associated risk factors entailed in hPSC-based therapy, and present precautionary and safety measures relevant for the development and application of such therapies.
Collapse
Affiliation(s)
- Elyad Lezmi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| |
Collapse
|
40
|
Potential and challenges of placenta-derived decidua stromal cell therapy in inflammation-associated disorders. Hum Immunol 2022; 83:580-588. [DOI: 10.1016/j.humimm.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 01/08/2023]
|
41
|
Mandal G, Moráň L, Pečinka L, Vaňhara P, Havel J. Matrix enrichment by black phosphorus improves ionization and reproducibility of mass spectrometry of intact cells, peptides, and amino acids. Sci Rep 2022; 12:1175. [PMID: 35064192 PMCID: PMC8782824 DOI: 10.1038/s41598-022-05197-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 11/19/2022] Open
Abstract
Intact (whole) cell matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) is an established method for biotyping in clinical microbiology as well as for revealing phenotypic shifts in cultured eukaryotic cells. Intact cell MALDI-TOF MS has recently been introduced as a quality control tool for long-term cultures of pluripotent stem cells. Despite the potential this method holds for revealing minute changes in cells, there is still a need for improving the ionization efficiency or peak reproducibility. Here we report for the first time that supplementation by fine particles of black phosphorus to the standard MALDI matrices, such as sinapinic and α-cyano-4-hydroxycinnamic acids enhance intensities of mass spectra of particular amino acids and peptides, presumably by interactions with aromatic groups within the molecules. In addition, the particles of black phosphorus induce the formation of small and regularly dispersed crystals of sinapinic acid and α-cyano-4-hydroxycinnamic acid with the analyte on a steel MALDI target plate. Patterns of mass spectra recorded from intact cells using black phosphorus-enriched matrix were more reproducible and contained peaks of higher intensities when compared to matrix without black phosphorus supplementation. In summary, enrichment of common organic matrices by black phosphorus can improve discrimination data analysis by enhancing peak intensity and reproducibility of mass spectra acquired from intact cells.
Collapse
|
42
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
43
|
Abstract
The possibility of reprogramming human somatic cells to pluripotency has opened unprecedented opportunities for creating genuinely human experimental models of disease. Inborn errors of metabolism (IEMs) constitute a greatly heterogeneous class of diseases that appear, in principle, especially suited to be modeled by iPSC-based technology. Indeed, dozens of IEMs have already been modeled to some extent using patient-specific iPSCs. Here, we review the advantages and disadvantages of iPSC-based disease modeling in the context of IEMs, as well as particular challenges associated to this approach, together with solutions researchers have proposed to tackle them. We have structured this review around six lessons that we have learnt from those previous modeling efforts, and that we believe should be carefully considered by researchers wishing to embark in future iPSC-based models of IEMs.
Collapse
Affiliation(s)
- Rubén Escribá
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Raquel Ferrer-Lorente
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain.
- Program for Clinical Translation of Regenerative Medicine in Catalonia - P-[CMRC], L'Hospitalet de Llobregat, Spain.
- Center for Networked Biomedical Research On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
44
|
Changes in Methylation Patterns of Tumor Suppressor Genes during Extended Human Embryonic Stem Cell Cultures. Stem Cells Int 2021; 2021:5575185. [PMID: 34552632 PMCID: PMC8452414 DOI: 10.1155/2021/5575185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
While studies on embryonic stem cells have been actively conducted, little is known about the epigenetic mechanisms in human embryonic stem cells (hESCs) in extended culture systems. Here, we investigated whether CpG island (CGI) methylation patterns of 24 tumor suppressor genes could be maintained during extended hESC cultures. In total, 10 hESC lines were analyzed. For each cell line, genomic DNA was extracted from early and late passages of cell cultures. CGI methylation levels of 24 tumor suppressor genes were analyzed using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), pyrosequencing, and real-time polymerase chain reaction (PCR). Different CGI methylation patterns of CASP8, FHIT, and CHFR genes were identified in between early and late passages in some hESC lines. CGI methylation levels of CASP8 significantly increased at late passage in CHA-36, CHA-40, and CHA-42 cell lines compared to those at early passage. The CGI methylation of the FHIT gene was higher at late passage than at early passage in CHA-15, CHA-31, CHA-32, and iPS (FS)-1 cell lines but decreased at the late passage in CHA-20 and H1 cell lines. Different CGI methylation patterns were detected for the CHFR gene only in iPS (FS)-1, and the level significantly increased at late passage. Thus, our findings show that CGI methylation patterns could be altered during prolonged ESC cultures and examining these epigenetic changes is important to assess the maintenance, differentiation, and clinical usage of stem cells.
Collapse
|
45
|
Price CJ, Stavish D, Gokhale PJ, Stevenson BA, Sargeant S, Lacey J, Rodriguez TA, Barbaric I. Genetically variant human pluripotent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell competition. Dev Cell 2021; 56:2455-2470.e10. [PMID: 34407428 PMCID: PMC8443275 DOI: 10.1016/j.devcel.2021.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/09/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The appearance of genetic changes in human pluripotent stem cells (hPSCs) presents a concern for their use in research and regenerative medicine. Variant hPSCs that harbor recurrent culture-acquired aneuploidies display growth advantages over wild-type diploid cells, but the mechanisms that yield a drift from predominantly wild-type to variant cell populations remain poorly understood. Here, we show that the dominance of variant clones in mosaic cultures is enhanced through competitive interactions that result in the elimination of wild-type cells. This elimination occurs through corralling and mechanical compression by faster-growing variants, causing a redistribution of F-actin and sequestration of yes-associated protein (YAP) in the cytoplasm that induces apoptosis in wild-type cells. YAP overexpression or promotion of YAP nuclear localization in wild-type cells alleviates their "loser" phenotype. Our results demonstrate that hPSC fate is coupled to mechanical cues imposed by neighboring cells and reveal that hijacking this mechanism allows variants to achieve clonal dominance in cultures.
Collapse
Affiliation(s)
- Christopher J Price
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Dylan Stavish
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Paul J Gokhale
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ben A Stevenson
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Samantha Sargeant
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Joanne Lacey
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tristan A Rodriguez
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
46
|
L- myc Gene Expression in Canine Fetal Fibroblasts Promotes Self-Renewal Capacity but Not Tumor Formation. Cells 2021; 10:cells10081980. [PMID: 34440750 PMCID: PMC8391401 DOI: 10.3390/cells10081980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
Canines are useful in mammalian preclinical studies because they are larger than rodents and share many diseases with humans. Canine fetal fibroblast cells (CFFs) are an easily accessible source of somatic cells. However, they are easily driven to senescence and become unusable with continuous in vitro culture. Therefore, to overcome these deficiencies, we investigated whether tetracycline-inducible L-myc gene expression promotes self-renewal activity and tumorigenicity in the production of induced conditional self-renewing fibroblast cells (iCSFCs). Here, we describe the characterization of a new iCSFC line immortalized by transduction with L-myc that displays in vitro self-renewal ability without tumorigenic capacity. We established conditionally inducible self-renewing fibroblast cells by transducing CFF-3 cells with L-myc under the tetracycline-inducible gene expression system. In the absence of doxycycline, the cells did not express L-myc or undergo self-renewal. The iCSFCs had a fibroblast-like morphology, normal chromosome pattern, and expressed fibroblast-specific genes and markers. However, the iCSFCs did not form tumors in a soft agar colony-forming assay. We observed higher expression of three ES modules (core pluripotency genes, polycomb repressive complex genes (PRC), and MYC-related genes) in the iCSFCs than in the CFF-3 cells; in particular, the core pluripotency genes (OCT4, SOX2, and NANOG) were markedly up-regulated compared with the PRC and MYC module genes. These results demonstrated that, in canine fetal fibroblasts, L-myc tetracycline-inducible promoter-driven gene expression induces self-renewal capacity but not tumor formation. This study suggests that L-myc gene-induced conditional self-renewing fibroblast cells can be used as an in vitro tool in a variety of biomedical studies related to drug screening.
Collapse
|
47
|
Chen KG, Park K, Spence JR. Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol 2021; 23:822-833. [PMID: 34341531 PMCID: PMC8355201 DOI: 10.1038/s41556-021-00721-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Clinical management of patients with severe complications of COVID-19 has been hindered by a lack of effective drugs and a failure to capture the extensive heterogeneity of the disease with conventional methods. Here we review the emerging roles of complex organoids in the study of SARS-CoV-2 infection, modelling of COVID-19 disease pathology and in drug, antibody and vaccine development. We discuss opportunities for COVID-19 research and remaining challenges in the application of organoids.
Collapse
Affiliation(s)
- Kevin G Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Kyeyoon Park
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Riggs MJ, Sheridan SD, Rao RR. ARHGDIA Confers Selective Advantage to Dissociated Human Pluripotent Stem Cells. Stem Cells Dev 2021; 30:705-713. [PMID: 34036793 PMCID: PMC8309423 DOI: 10.1089/scd.2021.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have generated significant interest in the scientific community based on their potential applications in regenerative medicine. However, numerous research groups have reported a propensity for genomic alterations during hPSC culture that poses concerns for basic research and clinical applications. Work from our laboratory and others has demonstrated that amplification of chromosomal regions is correlated with increased gene expression. To date, the phenotypic association of common genomic alterations remains unclear and is a cause for concern during clinical use. In this study, we focus on trisomy 17 and a list of candidate genes with increased gene expression to hypothesize that overexpressing 17q25 located ARHGDIA will confer selective advantage to hPSCs. HPSC lines overexpressing ARHGDIA exhibited culture dominance in co-cultures of overexpression lines with nonoverexpression lines. Furthermore, during low-density seeding, we demonstrate increased clonality of our ARHGDIA lines against matched controls. A striking observation is that we could reduce this selective advantage by varying the hPSC culture conditions with the addition of ROCK inhibitor (ROCKi). This work is unique in (1) demonstrating a novel gene that confers selective advantage to hPSCs when overexpressed and may help explain a common trisomy dominance, (2) providing a selection model for studying culture conditions that reduce the appearance of genomically altered hPSCs, and (3) aiding in elucidation of a mechanism that may act as a molecular switch during culture adaptation.
Collapse
Affiliation(s)
- Marion J Riggs
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Raj R Rao
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
49
|
Canovas S, Ivanova E, Hamdi M, Perez-Sanz F, Rizos D, Kelsey G, Coy P. Culture Medium and Sex Drive Epigenetic Reprogramming in Preimplantation Bovine Embryos. Int J Mol Sci 2021; 22:ijms22126426. [PMID: 34204008 PMCID: PMC8232708 DOI: 10.3390/ijms22126426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
Assisted reproductive technologies impact transcriptome and epigenome of embryos and can result in long-term phenotypic consequences. Whole-genome DNA methylation profiles from individual bovine blastocysts in vivo- and in vitro-derived (using three sources of protein: reproductive fluids, blood serum and bovine serum albumin) were generated. The impact of in vitro culture on DNA methylation was analyzed, and sex-specific methylation differences at blastocyst stage were uncovered. In vivo embryos showed the highest levels of methylation (29.5%), close to those produced in vitro with serum, whilst embryos produced in vitro with reproductive fluids or albumin showed less global methylation (25-25.4%). During repetitive element analysis, the serum group was the most affected. DNA methylation differences between in vivo and in vitro groups were more frequent in the first intron than in CpGi in promoters. Moreover, hierarchical cluster analysis showed that sex produced a stronger bias in the results than embryo origin. For each group, distance between male and female embryos varied, with in vivo blastocyst showing a lesser distance. Between the sexually dimorphic methylated tiles, which were biased to X-chromosome, critical factors for reproduction, developmental process, cell proliferation and DNA methylation machinery were included. These results support the idea that blastocysts show sexually-dimorphic DNA methylation patterns, and the known picture about the blastocyst methylome should be reconsidered.
Collapse
Affiliation(s)
- Sebastian Canovas
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; (E.I.); (G.K.)
| | - Meriem Hamdi
- Animal Reproduction Department, National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain; (M.H.); (D.R.)
| | - Fernando Perez-Sanz
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
| | - Dimitrios Rizos
- Animal Reproduction Department, National Institute for Agriculture and Food Research and Technology, INIA, 28040 Madrid, Spain; (M.H.); (D.R.)
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK; (E.I.); (G.K.)
| | - Pilar Coy
- Physiology of Reproduction Group, Physiology Department, Mare Nostrum Campus, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, 30120 Murcia, Spain;
- Correspondence:
| |
Collapse
|
50
|
McIntire E, Taapken S, Leonhard K, Larson AL. Genomic Stability Testing of Pluripotent Stem Cells. ACTA ACUST UNITED AC 2021; 52:e107. [PMID: 32105415 DOI: 10.1002/cpsc.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cell (PSC) cultures are subjected to selective pressures that can result in acquisition and expansion of recurrent genetic abnormalities at any time. These recurrent abnormalities enhance the variant cells harboring them with a competitive advantage over wild-type cells. Variant cells can eventually supplant wild-type cells entirely and become fixed in culture. Such variants can impact the efficacy of PSCs in research and clinical applications. Therefore, routine genomic characterization is required for reliable and effective use of PSCs. In this article we describe the capabilities and limitations of several assays commonly used for assessing PSC genomic stability. Based on this analysis, we provide a recommendation for integrating assays into a comprehensive testing regimen that maximizes coverage while minimizing cost. © 2020 by John Wiley & Sons, Inc.
Collapse
|