1
|
Zheng H, Hua M, Jiang M, Jiang C, Xi Y, Deng J, Xu H, Zeng B, Zhou S. Transgenic expression of mAChR-C dsRNA in maize confers efficient locust control. PLANT COMMUNICATIONS 2025; 6:101316. [PMID: 40091346 DOI: 10.1016/j.xplc.2025.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/31/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
Plant-mediated RNA interference (RNAi), in which double-stranded RNAs (dsRNAs) targeting insect genes are expressed in plants for insect ingestion, has shown great potential for the control of herbivorous insect pests. Locusts, which are among the most destructive agricultural insect pests, appear to be resistant to orally delivered naked dsRNA. Moreover, the feasibility of using plant-mediated RNAi to suppress target gene expression in locusts remains unclear. Using the migratory locust Locusta migratoria, we report that the C-type muscarinic acetylcholine receptor (mAChR-C), a G protein-coupled receptor (GPCR) belonging to the bioamine receptor subfamily, plays a pivotal role in chitin metabolism by regulating genes responsible for chitin synthesis and degradation. Knockdown of locust mAChR-C via injection of dsRNA caused defective nymph molting and metamorphosis, accompanied by malformation, arrested development, and impaired motility. Notably, locusts fed transgenic maize expressing locust mAChR-C dsRNAs exhibited defective phenotypes similar to those subjected to mAChR-C dsRNA injection. In contrast, ingestion of transgenic maize expressing locust mAChR-C dsRNA had no significant effects on non-target insects, including the fall armyworm Spodoptera frugiperda, the cotton bollworm Helicoverpa armigera, the Asian corn borer Ostrinia furnacalis, and the oriental armyworm Mythimna separata. Our results suggest that transgenic expression of locust mAChR-C dsRNA is an effective RNAi approach for locust control and offers a promising eco-friendly strategy for locust management.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mengke Hua
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mina Jiang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Chunran Jiang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yuxi Xi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jingcai Deng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Huijing Xu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Baojuan Zeng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
2
|
Hu B, Zhang Y, Xing Z, Chen X, Rao C, Liu K, Tan A, Su J. Two independent regulatory mechanisms synergistically contribute to P450-mediated insecticide resistance in a lepidopteran pest, Spodoptera exigua. BMC Biol 2025; 23:122. [PMID: 40346596 PMCID: PMC12065349 DOI: 10.1186/s12915-025-02228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Cytochrome P450 enzymes play a pivotal role in the detoxification of plant allelochemicals and insecticides. Overexpression of P450 genes has been proven to be involved in insecticide resistance in insects. However, the molecular mechanisms underlying the regulation of P450 genes in insects are poorly understood. RESULTS Here, we determine that upregulation of CYP321B1 confers resistance to organophosphate (chlorpyrifos) and pyrethroid (cypermethrin and deltamethrin) insecticides in the resistant Spodoptera exigua strain. Enhanced expression of transcription factors CncC/Maf contributes to the increase in the expression of CYP321B1 in the resistant strain. Reporter gene assays and site-directed mutagenesis analyses confirm that a specific binding site is crucial for binding CncC/Maf to activate the expression of CYP321B1. In addition, creation of a new binding site resulting from the cis-mutations in the promoter region of CYP321B1 in the resistant strain facilitates the binding of the POU/homeodomain transcription factor Nubbin, and further enhances the expression of this P450 gene. Furthermore, we authenticate that changes in both trans- and cis-regulatory elements in the promoter region of CYP321B1 act in combination to modulate the promoter activity in a synergistic manner. CONCLUSIONS Collectively, these results demonstrate that two distinct but synergistic mechanisms coordinately result in the overexpression of CYP321B1 involved in insecticide resistance in an agriculturally important insect pest, S. exigua. The information on mechanisms of metabolic resistance could help to understand the development of resistance to insecticides by other pests and contribute to designing effective integrated pest management strategies for the pest control.
Collapse
Affiliation(s)
- Bo Hu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Yuting Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Zhiping Xing
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xiangzhu Chen
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Cong Rao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kuitun Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Li Z, Liu J, Nanda S, Zhong Z, Luo X, Zhou X, Zhang Y, Yang C, Pan H. RNAi effect in target and non-target pests correlates with the length of continuous matches in dsRNA sequences. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106381. [PMID: 40262866 DOI: 10.1016/j.pestbp.2025.106381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025]
Abstract
RNA interference (RNAi) has emerged as a promising and environmentally friendly approach for controlling the pest Henosepilachna vigintioctopunctata (Hvig). Identifying lethal target genes in Hvig and evaluating the efficacy of oral dsRNA administration are crucial steps in this process. Additionally, assessing the potential risks of RNAi to non-target organisms (NTOs) is essential to ensure environmental safety. A soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP) is an essential component of membrane fusion machinery, offering as a potential target gene for RNAi-based pest control. This study found that silencing of Hvαsnap with varying dsRNA concentrations (6.25, 12.5, 25, 50, 100, 200 ng/μL) induced 53.33 %-100 % lethality in Hvig, with an LC50 value of 10.15 ng/μL. Feeding the NTO, Propylaea japonica with dsHvαsnap or dsPjαsnap-1 containing 3-21-nt consecutive matches had no notable effects on survival, development, pupal weight, or gene expression. However, injecting these dsRNAs significantly increased P. japonica mortality. A chimeric dsGFP-αsnap-17-nt suppressed Hvαsnap expression and reduced Hvig larval survival but failed to induce RNAi in P. japonica. Overall, this study suggests that different species exhibit varying sensitivities to dsRNA, and increasing the number of consecutive matching bases may enhance RNAi effects in NTOs.
Collapse
Affiliation(s)
- Zhaoyang Li
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Junna Liu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Satyabrata Nanda
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India
| | - Zexin Zhong
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xuming Luo
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xuguo Zhou
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana 61801-3795, USA
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxiao Yang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - Huipeng Pan
- State Key Laboratory of Green Pesticide, Engineering Research Center of Biocontrol, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Wu H, Li Z, Zhong Z, Guo Y, He L, Xu X, Mao Y, Tang D, Zhang W, Jin F, Pang R. Insect Cytochrome P450 Database: An Integrated Resource of Genetic Diversity, Evolution and Function. Mol Ecol Resour 2025; 25:e14070. [PMID: 39776220 DOI: 10.1111/1755-0998.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/16/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Insects, the most numerous and diverse group of animal species on Earth, have important interactions with humans through providing resources, transmitting diseases and damaging agricultural cultivars. Cytochrome P450 monooxygenases (P450s) are one of the most important protein families in insects implicated in the endogenous metabolism and detoxification of xenobiotics, including allelochemicals, insecticides and environmental pollutants. To better understand the evolution and function of insect P450s and support the development and application of insecticides for pest control, an integrated bioinformatics platform is highly desirable. Here, we present the Insect Cytochrome P450 database (ICPD, http://www.insectp450.net/), which contains 66,477 P450s collected from public databases and predicted from the genomes of 682 insect species using a standardised bioinformatics protocol. Phylogenetic relationships between P450 genes are constructed for each species. The structures of all P450 proteins in the database are predicted using ESMFold, then visualised using WeView. Web services, such as BLAST, homogeneous modelling and molecular docking, are provided for determining the catalytic activities of P450 proteins. The ICPD will facilitate systematic investigations of the evolution and functions of the complete insect P450 complement, and represents a powerful tool for guiding insecticide design and application.
Collapse
Affiliation(s)
- Hongxin Wu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhongsheng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zichun Zhong
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yujing Guo
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Liuyan He
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiaoxia Xu
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijun Mao
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Deyu Tang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fengliang Jin
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Rui Pang
- State Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Jiang T, Wang C, Zhang M, Qiao Y, Kang Z, Huang L. The Valsa mali Effector VmSR1 Accelerates the Degradation of Tudor-SN2 to Suppress RNA Silencing and Plant Immunity. MOLECULAR PLANT PATHOLOGY 2025; 26:e70097. [PMID: 40432254 PMCID: PMC12116935 DOI: 10.1111/mpp.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
The apple Valsa canker caused by Valsa mali is one of the most destructive trunk diseases in apple production and disease management. Understanding the interaction between the pathogen and host is a critical foundation for developing durable disease control technologies. In this study, we showed that VmSR1 from V. mali can suppress the plant immune response and promote pathogen infection. VmSR1 associates with the Tudor staphylococcal nuclease 2 (TSN2) proteins in Malus domestica (apple), Arabidopsis thaliana and Nicotiana benthamiana, promotes degradation of TSN2 proteins, and suppresses the abundance of multiple miRNAs an Silencing of TSN2 significantly reduced the abundance of miRNAs and weakened the resistance of apple leaves to V. mali as well as N. benthamiana to Sclerotinia sclerotiorum. These findings expand the understanding of the function of effectors as RNA silencing suppressors during host-pathogen interactions and deepen the understanding of effectors regulating host immunity.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Chengli Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Mian Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
6
|
Wu C, Ma X, Li S, Cui Y, Cui R, Song G. Identification and functional characterization of the SCL gene related to gland formation in upland cotton (Gossypium hirsutum L.). PLANTA 2025; 261:114. [PMID: 40244457 DOI: 10.1007/s00425-025-04691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
MAIN CONCLUSION GoSCL was involved in the regulation of pigment glands in the stem of cotton. In this study, we identified a transcription factor named GoSCL, which was involved in the regulation of pigment gland in the stem. Silencing of GoSCL decreased not only the number of pigment glands but also the accumulation of gossypol in the stem of the treated plants. GoSCL showed a temporal and spatial pattern of expression in various organs of glanded and glandless cotton plants and demonstrated the inducible expression under exogenous ethylene treatment. The relationship between GoSCL and genes involved in gland formation and gossypol synthesis was also discussed. These results advance our understanding of the molecular basis of cotton gland formation and gossypol synthesis and accelerate the molecular breeding of cotton with low-gossypol seeds and high-gossypol plants.
Collapse
Affiliation(s)
- Chaofeng Wu
- Anyang Institute of Technology, Anyang, 455000, Henan, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
| | - Xuemei Ma
- Anyang Institute of Technology, Anyang, 455000, Henan, China.
| | - Shuyan Li
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yupeng Cui
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ruifeng Cui
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Guoli Song
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| |
Collapse
|
7
|
Zhang M, Zhang X, Chen T, Liao Y, Yang B, Wang G. RNAi-mediated pest control targeting the Troponin I (wupA) gene in sweet potato weevil, Cylas formicarius. INSECT SCIENCE 2025; 32:631-648. [PMID: 38863245 DOI: 10.1111/1744-7917.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
The sweet potato weevil (Cylas formicarius) is a critical pest producing enormous global losses in sweet potato crops. Traditional pest management approaches for sweet potato weevil, primarily using chemical pesticides, causes pollution, food safety issues, and harming natural enemies. While RNA interference (RNAi) is a promising environmentally friendly approach to pest control, its efficacy in controlling the sweet potato weevil has not been extensively studied. In this study, we selected a potential target for controlling C. formicarius, the Troponin I gene (wupA), which is essential for musculature composition and crucial for fundamental life activities. We determined that wupA is abundantly expressed throughout all developmental stages of the sweet potato weevil. We evaluated the efficiency of double-stranded RNAs in silencing the wupA gene via microinjection and oral feeding of sweet potato weevil larvae at different ages. Our findings demonstrate that both approaches significantly reduced the expression of wupA and produced high mortality. Moreover, the 1st instar larvae administered dswupA exhibited significant growth inhibition. We assessed the toxicity of dswupA on the no-target insect silkworm and assessed its safety. Our study indicates that wupA knockdown can inhibit the growth and development of C. formicarius and offer a potential target gene for environmentally friendly control.
Collapse
Affiliation(s)
- Mengjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaxuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Tingting Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonglin Liao
- Institute of Plant Protection, Guangdong Academy of Agricultural Science, Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Tao XY, Feng SL, Li XJ, Li YJ, Wang W, Gilliham M, Chen ZH, Xu SC. TTLOC: A Tn5 transposase-based approach to localize T-DNA integration sites. PLANT PHYSIOLOGY 2025; 197:kiaf102. [PMID: 40131780 PMCID: PMC11961865 DOI: 10.1093/plphys/kiaf102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025]
Abstract
Thermal asymmetric interlaced-polymerase chain reaction-based and whole-genome sequencing-based T-DNA localization approaches have been developed for the recovery of T-DNA integration sites (TISs). Nevertheless, a low-cost and high-throughput technique for the detection of TISs, which would facilitate the identification of genetically engineered plants, is in high demand for rapid crop breeding and plant synthetic biology. Here, we present Tn5 transposase-based T-DNA integration site localization (TTLOC), a Tn5-based approach for TIS localization. TTLOC employs specialized adaptor-assembled Tn5 transposases for genomic DNA tagmentation. TTLOC library construction is straightforward, involving only six steps that requires two and a half hours to complete. The resulting pooled library is compatible with next-generation sequencing, which enables high-throughput determination. We demonstrate the ability of TTLOC to recover 95 non-redundant TISs from 65 transgenic Arabidopsis (Arabidopsis thaliana) lines, and 37 non-redundant TISs from the genomes of transgenic rice (Oryza sativa), soybean (Glycine max), tomato (Solanum lycopersicum), potato (Solanum tuberosum), and from the large hexaploid wheat (Triticum aestivum) genome. TTLOC is a cost-effective method, as 1 to 2 Gb of raw data for each multiplexing library are sufficient for efficient TIS calling, independent of the genome size. Our results establish TTLOC as a promising strategy for evaluation of genome engineered plants and for selecting genome safe harbors for trait stacking in crop breeding and plant synthetic biology.
Collapse
Affiliation(s)
- Xiao-Yuan Tao
- Biotechnology Institute, Xianghu Laboratory, Hangzhou 311231, China
| | - Shou-Li Feng
- Biotechnology Institute, Xianghu Laboratory, Hangzhou 311231, China
| | - Xin-Jia Li
- Biotechnology Institute, Xianghu Laboratory, Hangzhou 311231, China
| | - Yan-Jun Li
- Biotechnology Institute, Xianghu Laboratory, Hangzhou 311231, China
| | - Wei Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University/Zhongshan Biological Breeding Laboratory/Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing, Jiangsu 210095, China
| | - Matthew Gilliham
- ARC Centre of Excellence Plants for Space, School of Agriculture, Food and Wine, Waite Research Precinct, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sheng-Chun Xu
- Biotechnology Institute, Xianghu Laboratory, Hangzhou 311231, China
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Chen C, Imran M, Feng X, Shen X, Sun Z. Spray-induced gene silencing for crop protection: recent advances and emerging trends. FRONTIERS IN PLANT SCIENCE 2025; 16:1527944. [PMID: 40051878 PMCID: PMC11882566 DOI: 10.3389/fpls.2025.1527944] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
The RNA-based spray-induced gene silencing (SIGS) technology represents an ecologically sustainable approach to crop protection and pathogen management. Following the recent approval of Ledprona as the first sprayable double-stranded RNA (dsRNA) biopesticide by the EPA at the end of 2023, SIGS has emerged as a focal point in both academic and industrial sectors. This review analyzes recent advances and emerging trends in SIGS. The application of SIGS for crop protection, including the control of insects, fungal pathogens, and viruses, is briefly summarized. Distinguishing this review from others, we delve into practical aspects of the technology, such as the selection and screening of target genes, large-scale production methods, and delivery systems, highlighting major advancements in these areas and also addressing the remaining questions and issues, particularly concerning safety concerns and controlling harmful weeds. Finally, this review emphasizes the emerging trends in SIGS technology, particularly its integration with nanotechnology and other methodologies. Collectively, the rapid progress in SIGS studies is poised to accelerate the maturation and application of this technology.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory of Plant Genetics and Molecular Breeding, Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Muhammad Imran
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xianyang Feng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
10
|
Wang W, Ghafar MA, Liuyang L, Haq IU, Cui L, Yuan H, Wang L. Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cycloxaprid and Pooled siRNAs to Enhance Control Efficacy in Diaphorina citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3353-3362. [PMID: 39886846 DOI: 10.1021/acs.jafc.4c08172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
RNA pesticides have emerged as a promising alternative to conventional chemical pesticides due to their high specificity and minimal environmental impact. However, the instability of RNA molecules in the environment and the challenges associated with their effective delivery to target pests limit their broader application. This study addresses these challenges by developing a dual delivery system using chitosan (CS) and Metal-Organic Frameworks (MOFs) to enhance the delivery and efficacy of double-stranded RNA (dsRNA) and cycloxaprid against Diaphorina citri, a vector of citrus greening disease. The CS-MOF nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and dynamic light scattering (DLS). Insect bioassays demonstrated that the codelivery system significantly improved insecticidal activity, achieving over 80% mortality in D. citri within 2 days. The results indicate that the encapsulation of dsRNA within MOFs enhances its stability, while the controlled release properties of the nanoparticles improve the efficacy of cycloxaprid. This novel approach shows great potential in overcoming the limitations of RNA pesticides and offers a sustainable solution for pest management in agriculture. Future research should optimize the delivery system, conduct field trials, and explore its applicability to other agricultural pests.
Collapse
Affiliation(s)
- Wenjie Wang
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Muhammad Adeel Ghafar
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liuyang
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Inzamam Ul Haq
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liande Wang
- China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Wu J, Zhang ZF, Cao HH, Liu TX. Transcriptional and physiological plasticity of the green peach aphid (Hemiptera: Aphididae) to cabbage and pepper plants. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:416-429. [PMID: 39450760 DOI: 10.1093/jee/toae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Defensive metabolites and nutrient restriction of host plants are 2 major obstacles to the colonization of insect herbivores. The green peach aphid (GPA) Myzus persicae (Sulzer) broadly colonizes plants with diverse nutritional and defensive traits. However, how GPA adapts to nutritional and defensive traits within different plants remains largely unknown. To elucidate this, we first investigated the performances and transcriptomes of GPA feeding on cabbage Brassica oleracea and pepper Capsicum annuum. The green peach aphid had lower weight and fecundity when feeding on cabbage than on pepper. The transcriptomic analysis found 824 differentially expressed genes (DEGs), and 13 of the top 20 Kyoto Encyclopedia of Genes and Genomes pathways are related to nutrient metabolism, energy metabolism, and detoxification. Specifically, we found 160 DEGs associated with the metabolism of protein and amino acids, sugar and lipids, and xenobiotic substances, 86 upregulated in cabbage-fed GPA. Fourteen cathepsin B genes were strongly upregulated in cabbage-fed GPA, and were enriched in lysosome pathway and 2 dominated gene ontology terms peptidase activity and proteolysis. In addition, cabbage-fed GPA upregulated sugar and lipid digestion, while downregulated lipid biosynthesis processes. Furthermore, 55 metabolic detoxification enzyme genes were differentially expressed between GPA on 2 hosts, and detoxification enzyme activities of GPA indeed changed accordingly to the host. Then, we found that cabbage has lower amino acids nutrition quality for GPA compared to pepper. Our results suggested that adjustment of nitrogen nutrient metabolism, sugar and lipid metabolism, and metabolic detoxification in a host-specific manner play crucial roles in the adaptations of GPA to different host plants.
Collapse
Affiliation(s)
- Jun Wu
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
- Department of Entomology, State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant protection, Northwest A&F University, Yangling, P. R. China
| | - Zhan-Feng Zhang
- Department of Entomology, State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant protection, Northwest A&F University, Yangling, P. R. China
| | - He-He Cao
- Department of Entomology, Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Tong-Xian Liu
- Department of Plant Protection, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, College of Agriculture, Guizhou University, Guiyang, P.R. China
| |
Collapse
|
12
|
Duan Y, Wang Y, Yang F, Gao Y, Liu Z, Zhang P, Lu J, Fan R, Zhou X, Yang J, Ren M. Molecular target for sprayable double-stranded RNA-based biopesticide against Amphitetranychus viennensis (Acari, Tetranychidae). Int J Biol Macromol 2025; 289:138982. [PMID: 39706416 DOI: 10.1016/j.ijbiomac.2024.138982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Amphitetranychus viennensis, a destructive pest mite of fruit plants in Europe and Asia, poses a serious challenge due to its adaptability and resistance to multiple acaricides. RNA interference (RNAi)-based technologies offer a promising alternative to address this emerging issue. In this study, we screened for candidate genes that can be targeted for spray-induced gene silencing (SIGS). Suppression of AvSrp54k, AveIF4A-1, AvHel31B, AvCOPB2 and AvProsbeta5 led to a significantly higher mortality and caused minor damages to leaf discs in comparison to the controls. Among them, AvCOPB2 and AvProsbeta5 were the best candidates with the highest mortality (>95 %) and minimal leaf damages (<13 %). Given that LdProsbeta5 is the active ingredient of the first sprayable dsRNA-based biopesticide, Ledprona, against the Colorado Potato Beetle, Leptinotarsa decemlineata, we examined the suitability of AvProsbeta5 in managing A. viennensis. In comparison to the control, A. viennensis population was suppressed by >95 % at day-17, and the plant defoliation rate decreased to 0 at day-24. Our combined results not only provide two viable molecular targets for sprayable dsRNA-based biopesticides, but also confirm the practical implications of SIGS in managing A. viennensis, one of the most destructive arthropod pests in orchards and ornamental plants.
Collapse
Affiliation(s)
- Yuanpeng Duan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Yifei Wang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Fan Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Yue Gao
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Zhongfang Liu
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Pengjiu Zhang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Junjiao Lu
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Renjun Fan
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jing Yang
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China.
| | - Meifeng Ren
- College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
13
|
Bardapurkar R, Binayak G, Pandit S. Trophic microRNA: Post-transcriptional regulation of target genes and larval development impairment in Plutella xylostella upon precursor and mature microRNA ingestion. INSECT MOLECULAR BIOLOGY 2025; 34:52-64. [PMID: 39049812 DOI: 10.1111/imb.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool. However, systematic studies enabling comparisons of pre- and mature forms, dosages, administration times and instar-wise effects on target transcripts and phenotypes, which can help develop a miRNA administration method, are unavailable due to the different focuses of the previous investigations. We investigated the impact of trophically delivered Px-let-7 miRNA on the lepidopteran pest Plutella xylostella, to compare the efficacies of its pre- and ds-mature forms. Continuous feeding on the miRNA-supplemented diet suppressed expressions of FTZ-F1 and E74, the target ecdysone pathway genes. Both the pre-let-7 and mature let-7 miRNA forms similarly downregulated the target transcripts in all four larval instars. Pre-let-7 and let-7 ingestions decreased larval mass and instar duration and increased mortality in all instars, exhibiting adverse effects on larval growth and development. miRNA processing Dicer-1 and AGO-1's upregulations upon miRNA ingestion denoted the systemic miRNA spread in larval tissues. The scrambled sequence controls did not affect the target transcripts, suggesting the sequence-specific targeting by the mature miRNA and hairpin cassette's non-involvement in the target downregulation. This work provides a framework for miRNA and target gene function analyses and potentiates the trophic miRNA's utility in pest management.
Collapse
Affiliation(s)
- Rutwik Bardapurkar
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Gauri Binayak
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sagar Pandit
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
14
|
Buer B, Dönitz J, Milner M, Mehlhorn S, Hinners C, Siemanowski‐Hrach J, Ulrich JK, Großmann D, Cedden D, Nauen R, Geibel S, Bucher G. Superior target genes and pathways for RNAi-mediated pest control revealed by genome-wide analysis in the beetle Tribolium castaneum. PEST MANAGEMENT SCIENCE 2025; 81:1026-1036. [PMID: 39498580 PMCID: PMC11716340 DOI: 10.1002/ps.8505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND An increasing human population, the emergence of resistances against pesticides and their potential impact on the environment call for the development of new eco-friendly pest control strategies. RNA interference (RNAi)-based pesticides have emerged as a new option with the first products entering the market. Essentially, double-stranded RNAs targeting essential genes of pests are either expressed in the plants or sprayed on their surface. Upon feeding, pests mount an RNAi response and die. However, it has remained unclear whether RNAi-based insecticides should target the same pathways as classic pesticides or whether the different mode-of-action would favor other processes. Moreover, there is no consensus on the best genes to be targeted. RESULTS We performed a genome-wide screen in the red flour beetle to identify 905 RNAi target genes. Based on a validation screen and clustering, we identified the 192 most effective target genes in that species. The transfer to oral application in other beetle pests revealed a list of 34 superior target genes, which are an excellent starting point for application in other pests. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses of our genome-wide dataset revealed that genes with high efficacy belonged mainly to basic cellular processes such as gene expression and protein homeostasis - processes not targeted by classic insecticides. CONCLUSION Our work revealed the best target genes and target processes for RNAi-based pest control and we propose a procedure to transfer our short list of superior target genes to other pests. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Benjamin Buer
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Jürgen Dönitz
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Martin Milner
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Sonja Mehlhorn
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Claudia Hinners
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Janna Siemanowski‐Hrach
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Julia K. Ulrich
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Daniela Großmann
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Doga Cedden
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| | - Ralf Nauen
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Sven Geibel
- Crop Science Division, Bayer AG, R&D, Pest ControlMonheimGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental GeneticsUniversity of Göttingen, Johann‐Friedrich‐Blumenbach Institute, GZMBGöttingenGermany
| |
Collapse
|
15
|
Yang L, Ye S, Liu H, Yin Y, Yang Y, Wang C, Ma T, Zhang G, Han X. Oxidative metabolism mechanism of terpenoid compound ZQ-8 by cytochrome P450 enzyme in Helicoverpa armigera. Int J Biol Macromol 2025; 290:138989. [PMID: 39710025 DOI: 10.1016/j.ijbiomac.2024.138989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
In our previous research, we identified that treatment of Helicoverpa armigera with ZQ-8 led to upregulation of CYP450 genes. To clarify the metabolic pathway of ZQ-8, this study analyzed the expression of CYP450 genes and proteins in H. armigera after ZQ-8 treatment through transcriptomics and proteomics. Molecular docking, recombinant protein expression, and surface plasmon resonance techniques were employed to investigate the interactions between ZQ-8 and P450 proteins. The oxidative reduction related pathways were significantly enriched in H. armigera larvae treated with ZQ-8, with an increase in the expression of CYP6B2 and CYP6B6 genes. The CYP6B2 and CYP6B6 proteins exhibited significant expression following ZQ-8 treatment. ZQ-8 demonstrated rapid binding and stable dissociation characteristics with CYP6B6, characterized by a dissociation constant (KD) of 88.15 μM. In contrast, ZQ-8 also showed rapid binding and dissociation with CYP6B2, but with a lower KD of 74.77 μM indicating that CYP6B2 has a stronger binding affinity for ZQ-8 compared to CYP6B6, and is capable of oxidizing ZQ-8 to the corresponding carboxylic acid. This study provides a reference for the metabolism and mechanism of action of ZQ-8 as a potential drug molecule, laying the foundation for future drug design and optimization, paving the way for environmentally sustainable pest control strategies and reducing reliance on traditional chemical pesticides.
Collapse
Affiliation(s)
- Longfei Yang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Siying Ye
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Hao Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Yuelan Yin
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Yuting Yang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Chunjuan Wang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Ting Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Guoqiang Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China.
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832002, China.
| |
Collapse
|
16
|
Lin K, Yue L, Yuan L, Kang K, Zhang Y, Pang R, Zhang W. Alanine metabolism mediates energy allocation of the brown planthopper to adapt to resistant rice. J Adv Res 2025; 67:25-41. [PMID: 38246245 PMCID: PMC11725158 DOI: 10.1016/j.jare.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION During the adaptation to host plant resistance, herbivorous insects faced the challenge of overcoming plant defenses while ensuring their own development and reproductive success. To achieve this, a strategic allocation of energy resources for detoxification and ecological fitness maintenance became essential. OBJECTIVE This study aimed to elucidate the intricate energy allocation mechanisms involved in herbivore adaptation that are currently poorly understood. METHODS The rice Oryza sativa and its monophagous pest, the brown planthopper (BPH), Nilaparvata lugens were used as a model system. An integrated analysis of metabolomes and transcriptomes from different BPH populations were conducted to identify the biomarkers. RNA interference of key genes and exogenous injection of key metabolites were performed to validate the function of biomarkers. RESULTS We found that alanine was one of the key biomarkers of BPH adaptation to resistant rice variety IR36. We also found that alanine flow determined the adaptation of BPH to IR36 rice. The alanine aminotransferase (ALT)-mediated alanine transfer to pyruvate was necessary and sufficient for the adaptation. This pathway may be conserved, at least to some extent, in BPH adaptation to multiple rice cultivars with different resistance genes. More importantly, ALT-mediated alanine metabolism is the foundation of downstream energy resource allocation for the adaptation. The adapted BPH population exhibited a significantly higher level of energy reserves in the fat body and ovary when fed with IR36 rice, compared to the unadapted population. This rendered the elevated detoxification in the adapted BPH and their ecological fitness recovery. CONCLUSION Overall, our findings demonstrated the crucial role of ALT-mediated alanine metabolism in energy allocation during the adaptation to resistant rice in BPH. This will provide novel knowledge regarding the co-evolutionary mechanisms between herbivores and their host plants.
Collapse
Affiliation(s)
- Kai Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Life Sciences, Hebei University, Baoding 071002, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yibing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Pang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
17
|
Zhao J, Yin J, Wang Z, Shen J, Dong M, Yan S. Complicated gene network for regulating feeding behavior: novel efficient target for pest management. PEST MANAGEMENT SCIENCE 2025; 81:10-21. [PMID: 39390706 DOI: 10.1002/ps.8459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Feeding behavior is a fundamental activity for insects, which is essential for their growth, development and reproduction. The regulation of their feeding behavior is a complicated process influenced by a variety of factors, including external stimuli and internal physiological signals. The current review introduces the signaling pathways in brain, gut and fat body involved in insect feeding behavior, and provides a series of target genes for developing RNA pesticides. Additionally, this review summaries the current challenges for the identification and application of functional genes involved in feeding behavior, and finally proposes the future research direction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Zhao
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiaming Yin
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Min Dong
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Pan-Pan Guo, Yang XB, Yang H, Zhou C, Long GY, Jin DC. Knockdown of the β-N-acetylhexosaminidase genes by RNA interference inhibited the molting and increased the mortality of the white-backed planthopper, Sogatella furcifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 207:106216. [PMID: 39672650 DOI: 10.1016/j.pestbp.2024.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
β-N-Acetylglucosaminidases and/or β-N-acetylhexosaminidases (NAGs / Hexes) are crucial exonucleases, playing a crucial role in the insect molting process. SfHex3 and SfHex4 contain conserved catalytic domains of GH20 and GH20b, clustered into NAG2 and NAG1 group, respectively. SfHex3 and SfHex4 were mainly highly expressed in the 4th-5th instar nymphs, as well as in the integument and ovary. The expression level of SfHex3 gradually decreased in male and female adults, and SfHex4 on the first day of female was significantly higher than that on the first day of male. In addition, RNA interference (RNAi) results demonstrated that the downregulation of SfHex3 and SfHex4 expression in 5th-instar nymphs resulted in failed molting, and a high mortality. Furthermore, after RNAi with SfHex3 and SfHex4, the transcript levels on key genes of the chitin metabolism pathway (SfCHS1, SfCHS1a, SfCHS1b, SfTRE1, SfTRE2, SfCht5, and SfCht7) were significantly decreased compared to the control group. Meanwhile the expression levels of SfHex3 and SfHex4 were up-regulated after 6 h and 12 h of 20E treatment. And the transcription levels of SfHex3 and SfHex4 were significantly inhibited at nitenpyram LC20, LC50, and LC90 after 96 h of treatment, in 3rd nymphs of Sogatella furcifera. In conclusion, SfHex3 and SfHex4 play important roles in the nymphal development of S. furcifera, contributing to the molting process from nymph to adult. This study not only enhances our understanding of the nitenpyram in pest control, but also provides a foundation for the development of new control strategies using RNAi to targeting SfHex3 and SfHex4.
Collapse
Affiliation(s)
- Pan-Pan Guo
- Institute of Entomology, Guizhou University, China; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang 550025, China
| | - Xi-Bin Yang
- Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou Province, Guiyang 550001, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, China; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang 550025, China.
| | - Cao Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Gui-Yun Long
- School of Chinese Ethnic Medicine, Guizhou Minzu University, China; Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang 550025, China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, China; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang 550025, China.
| |
Collapse
|
19
|
Venu E, Ramya A, Babu PL, Srinivas B, Kumar S, Reddy NK, Babu YM, Majumdar A, Manik S. Exogenous dsRNA-Mediated RNAi: Mechanisms, Applications, Delivery Methods and Challenges in the Induction of Viral Disease Resistance in Plants. Viruses 2024; 17:49. [PMID: 39861836 PMCID: PMC11769437 DOI: 10.3390/v17010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs). Key advancements in dsRNA production, including cost-effective microbial synthesis and in vitro methods, are examined alongside delivery techniques such as spray-induced gene silencing (SIGS) and nanocarrier-based systems. Strategies for enhancing dsRNA stability, including the use of nanomaterials like layered double hydroxide nanosheets and carbon dots, are discussed to address environmental degradation challenges. Practical applications of this technology against various plant viruses and its potential to ensure food security are emphasized. The review also delves into regulatory considerations, risk assessments, and the challenges associated with off-target effects and pathogen resistance. By evaluating both opportunities and limitations, this review underscores the role of exogenous dsRNA as a sustainable solution for achieving viral disease resistance in plants.
Collapse
Affiliation(s)
- Emmadi Venu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Akurathi Ramya
- Department of Plant Pathology, Junagadh Agricultural University, Junagadh 362001, India
| | - Pedapudi Lokesh Babu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Bhukya Srinivas
- Department of Plant Pathology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Sathiyaseelan Kumar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Namburi Karunakar Reddy
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, India;
| | - Yeluru Mohan Babu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Anik Majumdar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Suryakant Manik
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| |
Collapse
|
20
|
Joshi J, Coffin R, Barrett R, Wang-Pruski G. Gene Silencing via Ingestion of Double-Stranded RNA in Wireworm of Agriotes Species. INSECTS 2024; 15:983. [PMID: 39769585 PMCID: PMC11679789 DOI: 10.3390/insects15120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Wireworms are the most destructive soil insect pests affecting horticultural crops. The damage often renders them unsuitable for commercial purposes, resulting in substantial economic losses. RNA interference (RNAi) has been broadly used to inhibit gene functions to control insect populations. It employs double-stranded RNA (dsRNA) to knockdown essential genes in target organisms, rendering them incapable of development or survival. Although it is a robust approach, the primary challenges are identifying effective target genes and delivering their dsRNA into wireworms. Thus, the present study established a liquid ingestion methodology that efficiently delivers dsRNA into wireworms. We then investigated the effects of four target genes on wireworm mortality. The highest mortality rate reached 50% when the gene encoding vacuolar ATPase subunit A was targeted. Its transcript content in the fed wireworms was also significantly reduced. The mortality rates of the other three target genes of vacuolar ATPase subunit E, beta-actin, and chitin synthase 1 were 28%, 33%, and 35%, respectively. This is the first report demonstrating an efficient feeding methodology and the silencing of target genes in wireworms. Our findings indicate that RNAi is an effective alternative method for controlling the wireworm pest, and can be used to develop field treatment strategies.
Collapse
Affiliation(s)
- Jyoti Joshi
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | | | - Ryan Barrett
- Prince Edward Island Potato Board, Charlottetown, PE C1E 2C6, Canada;
| | - Gefu Wang-Pruski
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| |
Collapse
|
21
|
Arora AK, Kang DS. Efficacy and Fate of RNA Interference Molecules in the Green Pea Aphid, Acyrthosiphon pisum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70018. [PMID: 39726327 DOI: 10.1002/arch.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest. The application of these RNA biopesticides generally falls under two methods: foliar sprays and expression of RNAi constructs within transgenic plants. Here, we provide evidence supporting feasibility of using transgenic plants to deliver RNAi-based biopesticides against their aphid pests. Our findings suggest that, under the Cucumis melo galactinol synthase 1 promoter, the companion cells of transformed Arabidopsis thaliana plants express dsRNAs but not siRNAs at detectable levels. Further, oral application of either siRNAs or dsRNAs is equally effective in reducing the expression of transcripts of the integral membrane protein aquaporin 1 in Acyrthosiphon pisum pea aphids. We did not find any dsRNAs or siRNAs remaining in the insects or honeydew 48 h post-exposure, suggesting a low risk of contamination of these molecules beyond the target phloem-piercing insect pests.
Collapse
Affiliation(s)
- Arinder K Arora
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - David S Kang
- Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA
| |
Collapse
|
22
|
Li T, Yuan L, Jiang D, Yan S. HcCYP6AE178 plays a crucial role in facilitating Hyphantria cunea's adaptation to a diverse range of host plants. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106194. [PMID: 39672613 DOI: 10.1016/j.pestbp.2024.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 12/15/2024]
Abstract
Strong multi-host adaptability significantly contributes to the rapid dissemination of Hyphantria cunea. The present study explores the involvement of cytochrome P450 monooxygenase (P450) in the multi-host adaptation of H. cunea and aims to develop RNA pesticides targeting essential P450 genes to disrupt this adaptability. The results showed that inhibiting P450 activity notably reduced larval weight and food-intake across seven plants groups. The P450 gene HcCYP6AE178 was highly upregulated in H. cunea larvae from medium- and low-preference host plant groups. Silencing HcCYP6AE178 significantly decreased H. cunea larval body weight, increased larval mortality, inhibited energy metabolism genes expression and interfered with growth regulatory genes expression. Overexpression of HcCYP6AE178 enhanced the tolerance of Drosophila and Sf9 cells to the plant defensive substances cytisine and coumarin. The RNA pesticide CS-dsHcCYP6AE178 constructed using chitosan (CS) exhibited remarkable stability. Treatment with CS-dsHcCYP6AE178 effectively reduced H. cunea larval body weight, heightened larval mortality, and disrupted growth regulatory genes expression in low-preference host plant groups. Combined treatment of CS-dsHcCYP6AE178 and coumarin significantly elevated H. cunea larval mortality compared to coumarin alone, accompanied by the inhibition of growth regulatory genes expression and an abnormal increase in energy metabolism genes expression. Taken together, HcCYP6AE178 is essential for the adaptation of H. cunea to multiple host plants, and RNA pesticides targeting HcCYP6AE178 can effectively impair the performance of H. cunea in different host plants.
Collapse
Affiliation(s)
- Tao Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lisha Yuan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
23
|
Ziemke T, Wang P, Duplais C. The fate of a Solanum steroidal alkaloid toxin in the cabbage looper (Trichoplusia ni). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104205. [PMID: 39454684 DOI: 10.1016/j.ibmb.2024.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Plants produce complex chemical defenses against herbivores, resulting in the emergence of detoxification strategies in phytophagous insects. While enzymatic detoxification and target site mutagenesis are well-documented, the quantitative contribution of excretion remains less studied. We focus on the cabbage looper (Trichoplusia ni), a generalist herbivore, to elucidate the detoxification of a steroidal alkaloid, solanidine, produced in potato (Solanum tuberosum). Through larval feeding experiments and chemical analysis of metabolites using high-resolution mass spectrometry, we identify solanidine 3-O-β-glucopyranoside and solanidine 3-phosphate as major metabolization products of solanidine. Glycosylation and phosphorylation reactions have not previously been observed in cabbage looper. Modified solanidine derivatives exhibit reduced lipophilicity, preventing passive transport as predicted by physicochemical analyses, and only solanidine was detected in body tissue. In addition, the metabolism of solanidine in a T. ni mutant strain with midgut cadherin protein knocked out was also investigated to examine the potential role of the cadherin, an important receptor for Bt toxins, in steroidal alkaloid detoxification. T. ni cadherin-knockout strain showed lower solanidine conversion (33.9% ± 2.2) and uptake (27.41 ± 0.49 nmol/g) compared to the wild-type strain (51.3% ± 4.1, 33.66 ± 2.48 nmol/g) but similar excretion kinetics. Although solanidine negatively impacted the feeding performance of both strains the cadherin-knockout does not affect the feeding performance. Our study expands the metabolization enzyme repertoire in cabbage loopers, emphasizing the complexity of detoxification mechanisms in generalist herbivores.
Collapse
Affiliation(s)
- Tobias Ziemke
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA
| | - Ping Wang
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, 14464, Geneva, NY, USA.
| |
Collapse
|
24
|
Ou Z, Zhang Y, Wu Q, Wang K, Zhang G, Qiao X, Yan Y, Qian W, Wan F, Liu B. Silencing of the MP Gene via dsRNA Affects Root Development and Growth in the Invasive Weed Mikania micrantha. Int J Mol Sci 2024; 25:12678. [PMID: 39684389 DOI: 10.3390/ijms252312678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Mikania micrantha ("mile-a-minute" weed) is a global invasive alien weed that can cause severe damage to agroforestry ecosystems and significant agricultural losses worldwide. Although chemical, manual, or mechanical control methods are widely used to control M. micrantha, RNA interference (RNAi)-based biocontrol methods have rarely been reported for this species. The MONOPTEROS (MP) gene, encoding an auxin response factor, plays an essential role in embryonic root initiation in Arabidopsis thaliana. In this study, we identified the MP gene from M. micrantha via orthologous gene analysis. A total of 37 MP orthologous genes was identified in 4 plants, including 9 MP candidate genes in M. micrantha, 13 in Helianthus annuus, 6 in Chrysanthemum nankingense, and 9 in Lactuca sativa. Phylogenetic analysis revealed that an MP candidate gene in M. micrantha (Mm01G000655, named MmMP) was clustered into one clade with the MP gene in A. thaliana (AtMP). In addition, both MmMP and AtMP contain a B3-DNA binding domain that is shared by transcription factors that regulate plant embryogenesis. To study gene function, dsRNA against MmMP (dsMmMP) was applied to the roots of M. micrantha. Compared with those of the controls, the expression of MmMP was reduced by 43.3%, 22.1%, and 26.2% on the first, third, and fifth days after dsMmMP treatment, respectively. The dsMmMP-treated plants presented several morphological defects, mostly in the roots. Compared with water-treated plants, the dsMmMP-treated plants presented reduced developmental parameters, including root length, number of adventitious roots, root fresh and dry weights, plant height, and aboveground biomass. Additionally, safety assessment suggested that this dsMmMP treatment did not silence MP genes from non-target plants, including rice and tomato; nor did it inhibit root growth in those species. Collectively, these results suggest that MmMP plays an important role in root development in M. micrantha and provides a potential target for the development of species-specific RNAi-based herbicides.
Collapse
Affiliation(s)
- Zhenghui Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuantong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kangkang Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangzhong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394 Giessen, Germany
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
25
|
Xu L, Zheng J, Zhou Y, Jia C. dsRNAPredictor-II: An improved predictor of identifying dsRNA and its silencing efficiency for Tribolium castaneum based on sequence length distribution. Methods 2024; 232:129-138. [PMID: 39528092 DOI: 10.1016/j.ymeth.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
RNA interference (RNAi) has been widely utilized to investigate gene functions and has significant potential for control of pest insects. However, recent studies have revealed that the target insect species, dsRNA molecule length, target genes, and other experimental factors can affect the efficiency of RNAi mediated control, restricting the further development and application of this technology. Therefore, the aim of this study was to establish a deep learning model using bioinformatics to help researchers identify dsRNA fragments with the highest RNAi efficiency. In this study, we optimized an existing model, namely, dsRNAPredictor, by designing sub-models based on different sequence lengths. Accordingly, the data were divided into two groups: 130-399 bp and 400-616 bp long sequences. Then, one-hot encoding was employed to extract sequence information. The convolutional neural network framework comprising three convolutional layers, three average pooling layers, a flattened layer, and three dense layers was employed as the classifier. By adjusting the parameters, we established two sub-models for different sequence distributions. Using multiple independent test datasets and conducting hypothesis testing, we demonstrated that our model exhibits superior performance and strong robustness to dsRNAPredictor, respectively. Therefore, our model may help design dsRNAs with pre-screening potential and facilitate further research and applications.
Collapse
Affiliation(s)
- Liping Xu
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Jia Zheng
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Yetong Zhou
- School of Science, Dalian Maritime University, Dalian 116026, PR China
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| |
Collapse
|
26
|
Zhang H, Gao H, Lin X, Yang B, Wang J, Yuan X, Zhang Z, He T, Liu Z. Akt-FoxO signaling drives co-adaptation to insecticide and host plant stresses in an herbivorous insect. J Adv Res 2024:S2090-1232(24)00498-3. [PMID: 39510378 DOI: 10.1016/j.jare.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Ongoing interactions between host and herbivorous insect trigger a co-evolutionary arms race. Genetic diversity within insects facilitates their adaptation to phytochemicals and their derivatives, including plant-derived insecticides. Cytochrome P450s play important roles in metabolizing phytochemicals and insecticides, due to their diversity and almost perfect evolution. OBJECTIVES This study aims to uncover a common molecular mechanism in herbivorous insects by investigating the role of kinase-transcription factor regulation of P450s in conferring tolerance to both insecticides and phytochemicals. METHODS RNA interference, transcriptome sequencing, insecticide, and phytochemical bioassays were conducted to validate the functions of Akt, FoxO, and candidate P450s. Dual-luciferase activity assays were employed to identify the regulation of P450s by the Akt-FoxO signaling pathway. Recombinant P450 enzymes were utilized to investigate the metabolism of insecticides and phytochemicals. RESULTS We identified an Akt-FoxO signaling cascade, a representative of kinase-transcription factor pathways. This cascade mediates the expression of eight P450 enzymes involved in the metabolism of insecticides and phytochemicals in Nilaparvata lugens. These P450s are from different families and with different substrate selectivity, enabling them to respectively metabolize insecticides and phytochemicals with structure diversity. Nevertheless, the eight P450 genes were up-regulated by FoxO, which was inhibited in a higher cascade by Akt through phosphorylation. The discovery of the Akt-FoxO signaling pathway regulating a series of P450 genes elucidates the finely tuned regulatory mechanism in insects for adapting to phytochemicals and insecticides. CONCLUSION These finding sheds light on the physiological balance maintained by these regulatory processes. The work provides the experimental evidence of co-adaptation to the stresses imposed by host plant and insecticide within the model of the kinase-TF involving various P450s. This model provides a comprehensive view of how pests adapt to multiple environmental stresses.
Collapse
Affiliation(s)
- Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Baojun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Stadium 359, Hangzhou 310006, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhen Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
27
|
Jinshi Z, Mei L, Jinjin L, Weilin Z. Genome-wide selection of potential target candidates for RNAi against Nilaparvata lugens. BMC Genomics 2024; 25:1036. [PMID: 39501148 PMCID: PMC11536790 DOI: 10.1186/s12864-024-10940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Nilaparvata lugens is one of the most destructive pests of rice. RNAi-based N. lugens control offers one alternative strategy to traditional chemical insecticides. However, selection of potential target for RNAi against N. lugens remains a major challenge. Only two target genes for nuclear transgenic N. lugens-resistant plants have been screened. Importantly, only one or few potential target genes against N. lugens were screened every time by knowledge of essential genes from model organisms in previous study. RESULTS Here, in silico genome-wide selection of potential target genes against N. lugens through homology comparison was performed. Through genome synteny comparisons, about 3.5% of Drosophila melanogaster genome was found to have conserved genomic synteny with N. lugens genome. By using N. lugens proteins to search D. melanogaster homologs defining lethal or sterile phenotype, 358 N. lugens genes were first screened as putative target genes. Transgenic rice lines expressing dsRNA of randomly selected gene (NlRan or NlSRP54) from 358 putative target genes enhanced resistance to N. lugens. After expression check and safety check, 115 N. lugens genes were screened as potential target candidates. CONCLUSION The combined efforts in this study firstly provide one in silico genome-wide homology-based screening approach for RNAi-based target genes against N. lugens, which not only offer one new opportunity to batch select potential target candidates in pests of interest, but also will facilitate the selection of RNAi target in many pest species by providing more than one hundred potential target candidates.
Collapse
Affiliation(s)
- Zhang Jinshi
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Li Mei
- Analysis Center of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lian Jinjin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhang Weilin
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China.
| |
Collapse
|
28
|
Mu YP, Chen DY, Liu YJ, Zhu MY, Zhang X, Tang Y, Lin JL, Wang MY, Shangguan XX, Chen XY, Wang C, Mao YB. Mirids secrete a TOPLESS targeting protein to enhance JA-mediated defense and gossypol accumulation for antagonizing cotton bollworms on cotton plants. MOLECULAR PLANT 2024; 17:1687-1701. [PMID: 39318096 DOI: 10.1016/j.molp.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Most coexisting insect species exhibit stunted growth compared to individual species on plants. This phenomenon reflects an interspecific antagonism drawing extensive attention, while the underlying mechanisms remain largely uncharacterized. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common cotton pests. We identified a secretory protein, ASP1, from the oral secretion of mirids, found in the nucleus of mirid-infested cotton leaves. ASP1 specifically targets the transcriptional co-repressor TOPLESS (TPL) and inhibits NINJA-mediated recruitment of TPL, promoting plant defense response and gossypol accumulation in cotton glands. ASP1-enhanced defense inhibits the growth of cotton bollworms on cotton plants, while having limited impact on mirids. The mesophyll-feeding characteristic allows mirids to avoid most cotton glands, invalidating cotton defense. Our investigation reveals the molecular mechanism by which mirids employ cotton defense to selectively inhibit the feeding of cotton bollworms.
Collapse
Affiliation(s)
- Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dian-Yang Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming-Yu Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yin Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Ling Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Xia Shangguan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
29
|
Wang Y, Zhu C, Chen G, Li X, Zhu M, Alariqi M, Hussian A, Ma W, Lindsey K, Zhang X, Nie X, Jin S. Cotton Bollworm (H. armigera) Effector PPI5 Targets FKBP17-2 to Inhibit ER Immunity and JA/SA Responses, Enhancing Insect Feeding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407826. [PMID: 39352314 PMCID: PMC11600268 DOI: 10.1002/advs.202407826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Indexed: 11/28/2024]
Abstract
The cotton bollworm causes severe mechanical damage to plants during feeding and leaves oral secretions (OSs) at the mechanical wounds. The role these OSs play in the invasion of plants is still largely unknown. Here, a novel H. armigera effector peptidyl prolyl trans-isomerase 5 (PPI5) was isolated and characterized. PPI5 induces the programmed cell death (PCD) due to the unfolded protein response (UPR) in tobacco leaf. We reveal that PPI5 is important for the growth and development of cotton bollworm on plants, as it renders plants more susceptible to feeding. The GhFKBP17-2, was identified as a host target for PPI5 with peptidyl-prolyl isomerase (PPIase) activity. CRISPR/Cas9 knock-out cotton mutant (CR-GhFKBP17-1/3), VIGS (TRV: GhFKBP17-2) and overexpression lines (OE-GhFKBP17-1/3) were created and the data indicate that GhFKBP17-2 positively regulates endoplasmic reticulum (ER) stress-mediated plant immunity in response to cotton bollworm infestation. We further confirm that PPI5 represses JA and SA levels by downregulating the expression of JA- and SA-associated genes, including JAZ3/9, MYC2/3, JAR4, PR4, LSD1, PAD4, ICS1 and PR1/5. Taken together, our results reveal that PPI5 reduces plant defense responses and makes plants more susceptible to cotton bollworm infection by targeting and suppressing GhFKBP17-2 -mediated plant immunity.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Chuanying Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Gefei Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xuke Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Mingjv Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussian
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weihua Ma
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction CorpsAgricultural CollegeShihezi UniversityShiheziXinjiang832003P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
30
|
Li N, Xu X, Li J, Hull JJ, Chen L, Liang G. A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR. Int J Biol Macromol 2024; 281:136503. [PMID: 39395517 DOI: 10.1016/j.ijbiomac.2024.136503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Although RNAi-based pest management holds great potential as an alternative to traditional chemical control, its efficiency is restricted by dsRNA instability and limited cellular uptake. Using nanomaterials to facilitate dsRNA delivery has shown promise in solving these challenges. In this study, we firstly used RNAi to investigate the role of the juvenile hormone and ecdysteroid signaling pathways genes in reproduction of Spodoptera frugiperda, the fall armyworm. Females in knocked-down treatments of any of the Met, EcR, and USP genes had greatly reduced fertility with the most pronounced inhibitory effects on oviposition observed following EcR knockdown, and thus the dsEcR could be a candidate target for RNAi-based oviposition inhibitory agency. Then a combinatorial spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) approach that targeted EcR was conducted. At 72 h post-spay, the transcript levels of EcR and the oviposition were successfully reduced and inhibited. These findings support the groundwork for further developing novel RNAi-based pest management strategies for S. frugiperda.
Collapse
Affiliation(s)
- Ningning Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaona Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jiwen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Maricopa, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
31
|
Pasculli E, Gadaleta RM, Arconzo M, Cariello M, Moschetta A. The Role of Exogenous microRNAs on Human Health: The Plant-Human Trans-Kingdom Hypothesis. Nutrients 2024; 16:3658. [PMID: 39519491 PMCID: PMC11547593 DOI: 10.3390/nu16213658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs (miRNAs) are small, endogenous, single-stranded RNAs that act on gene silencing at the post-transcriptional level by binding to a target messenger RNA (mRNA), leading to its degradation or inhibiting translation into functional proteins. The key role of miRNAs in development, proliferation, differentiation andapoptosis has been deeply investigated, revealing that deregulation in their expression is critical in various diseases, such as metabolic disorders and cancer. Since these small molecules initially evolved as a mechanism of protection against viruses and transposable elements, the fascinating hypothesis that they can move between organisms both of the same or different species has been postulated. Trans-kingdom is the term used to define the migration that occurs between species. This mechanism has been well analyzed between plants and their pests, in order to boost defense and increase pathogenicity, respectively. Intriguingly, in the last decades, the plant-human trans-kingdom migration via food intake hypothesis arose. In particular, various studies highlighted the ability of exogenous miRNAs, abundant in the mainly consumed plant-derived food, to enter the human body affecting gene expression. Notably, plant miRNAs can resist the strict conditions of the gastrointestinal tract through a methylation step that occurs during miRNA maturation, conferring high stability to these small molecules. Recent studies observed the anti-tumoral, immune modulator and anti-inflammatory abilities of trans-kingdom interaction between plant and human. Here, we depict the existing knowledge and discuss the fascinating plant-human trans-kingdom interaction, highlighting first the eventual role of plant miRNAs from foods on our somatic gene identity card and then the potential impact of using plant miRNAs as novel therapeutic avenues.
Collapse
Affiliation(s)
- Emanuela Pasculli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (E.P.); (R.M.G.); (M.A.)
- INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
32
|
Cedden D, Bucher G. The quest for the best target genes for RNAi-mediated pest control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39450789 DOI: 10.1111/imb.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.
Collapse
Affiliation(s)
- Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Guo X, Shang Z, Li Q, Wang L, Zhang Y, Liu S, Cao Y, Dong B. Whole-genome sequencing and assessment of a novel protein- and gossypol-degrading Bacillus subtilis strain isolated from intestinal digesta of Tibetan Pigs. BMC Microbiol 2024; 24:424. [PMID: 39438803 PMCID: PMC11495092 DOI: 10.1186/s12866-024-03588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND With the rapid development of animal husbandry, the demand for protein feed resources is increasing. Cottonseed meal (CSM) and soybean meal (SBM) are rich sources of protein. However, their application is limited due to the existence of anti-nutrients, which can be harmful to the digestion and absorption. A strain of Bacillus subtilis (Mafic-Y7) was isolated from digesta of intestines of Tibetan pigs. The strain showed high protease activity, which helps in degrading proteinic anti-nutritional factors in grain meal and in vitro degradation of free gossypol. In order to better understand this isolated strain, whole genome of Mafic-Y7 strain was sequenced and analyzed. Different effects on various grain meals were identified. RESULT The GC-depth Poisson distributions showed no bias suggesting high-quality genome assembly of Mafic-Y7. The whole genome sequencing showed that one chromosome with 4,248,845 base pairs(bp)and the genes total length with 3,736,524 bp was predicted in Mafic-Y7. Additionally, Mafic-Y7 possessed 4,254 protein-coding genes, and several protease genes were annotated by aligning them with databases. There are 55 protease genes, one phytase gene and one laccase gene were annotated in the gene sequence of Mafic-Y7. The average nucleotide identity between Mafic-Y7 and the GCA-000009045.1 homologous genome was 0.9938, suggesting a close genetic relationship between them at the species level. Compared with the closest four whole genomes, Mafic-Y7 was annotated the most abundant of protease genes (55 genes). The fermentation supernatant of Mafic-Y7 could increase the content of small peptides, water-soluble proteins, and acid-soluble proteins in vitro by 411%, 281% and 317% in SBM and 420%, 257% and 338% in CSM. After fermentation in grain meal by Mafic-Y7, the degradation rate of anti-nutritional factors in SBM, such as trypsin inhibitor, glycinin, and β-conglycinin was greater than 70%, and lectin was greater than 30%. The degradation rates of anti-nutritional factors in CSM, such as gossypol and phytic acid, were 82% and 26%, respectively.
Collapse
Affiliation(s)
- Xiangyue Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenda Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Qianxi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lixue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, 960000, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- Sanya Institute of China Agricultural University, Sanya, 572025, People's Republic of China
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
34
|
Joshi J, Wang-Pruski G. De novo transcriptome assembly and differential gene expression analysis in different developmental stages of Agriotes sputator (click beetle). Sci Rep 2024; 14:24451. [PMID: 39424855 PMCID: PMC11489763 DOI: 10.1038/s41598-024-74495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
Wireworms, the larva of click beetle (Agriotes species), are one of the most destructive pests of horticultural crops in North America, responsible for considerable economic losses in Canada. Agriotes sputator (A. sputator) species is a predominant wireworm pest attacking potato fields in Eastern Canada. However, no information about its genome-wide gene expression profile, specifically for the genes involved with development is available to date. Therefore, we generated the transcriptome profile of A. sputator during five developmental stages, including the three larval stages and adult male and female click beetle. Out of 714.7 million raw reads, de novo assembly generated 564,561 transcripts. The data were subjected to differential expression analysis using DESeq2, gene ontology, annotation, and pathway analyses. A total of 34,709 differentially expressed genes (DEGs) were significant (log2 fold change > 2, padj < 0.05) across the developmental stages. Functional analysis of DEGs identified development signaling, metabolism, transport, cellular mechanisms, and drug metabolism (cytochrome p450) pathways. This study provides comprehensive sequence resources and potential gene differences at different developmental stages of A. sputator. These findings will represent a major step towards developing sustainable methods to control this widely distributed pest in agricultural fields.
Collapse
Affiliation(s)
- Jyoti Joshi
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Gefu Wang-Pruski
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
35
|
Li H, Huang X, Yang L, Liu H, Liu B, Lu Y. Behavioral, Physiological, and Molecular Mechanisms Underlying the Adaptation of Helicoverpa armigera to the Fruits of a Marginal Host: Walnut ( Juglans regia). PLANTS (BASEL, SWITZERLAND) 2024; 13:2761. [PMID: 39409631 PMCID: PMC11478790 DOI: 10.3390/plants13192761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
In northwest China, changes in cultivation patterns and the scarcity of preferred hosts have forced Helicoverpa armigera to feed on the marginal host walnut (Juglans regia). However, the mechanisms allowing this adaptation remain poorly understood. Here, we investigated the behavioral, physiological, and molecular mechanisms underlying the local adaptation of this pest to walnut fruits. The green husk and shell generally contained higher levels of phytochemicals than the kernel. Bioassays revealed that the phytochemical-rich green husk and shell were less preferred, reduced larval fitness and growth, and elevated the activity of detoxification enzymes compared to the nutrient-rich kernel, which were further supported by a larger number of upregulated detoxification genes in insects fed green husks or shells based on transcriptome sequencing. Together, these data suggest that P450 genes (LOC110371778) may be crucial to H. armigera adaptation to the phytochemicals of walnuts. Our findings provide significant insight into the adaptation of H. armigera to walnut, an alternative host of lower quality. Meanwhile, our study provides a theoretical basis for managing resistance to H. armigera larvae in walnut trees and is instrumental in developing comprehensive integrated pest management strategies for this pest in walnut orchards and other agricultural systems.
Collapse
Affiliation(s)
- Haiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
- Scientific Observing Experimental Station of Crop Pest in Korla, Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Long Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Haining Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.L.); (L.Y.); (B.L.)
| |
Collapse
|
36
|
Rakesh V, Singh A, Ghosh A. Suppression of Thrips palmi population by spray-on application of dsRNA targeting V-ATPase-B. Int J Biol Macromol 2024; 280:135576. [PMID: 39270896 DOI: 10.1016/j.ijbiomac.2024.135576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The RNA interference (RNAi)-based gene silencing technique has enormous potential as a non-chemical and eco-friendly alternative to hazardous pesticides. This study reports a spray-induced gene silencing (SIGS) approach for managing Thrips palmi by lowering survival and offspring development. Vacuolar ATP synthases (V-ATPases) are responsible for survival, egg-laying, and viability of eggs in insects. In the current study, T. palmi V-ATPase-B was targeted to suppress the pest population by spray-on application of double-stranded RNA (dsRNA). Silencing of V-ATPase-B was first validated by oral administration of dsV-ATPase-B. The expression of V-ATPase-B was reduced by 5.40-fold post-dsRNA feeding leading to increased mortality (57.03 %) and reduced reproductive fitness (67.73 %). Spray-on application of naked dsV-ATPase-B at concentrations of 3.0 μg/mL and 5.0 μg/mL effectively suppressed the population by 30.00 % and 43.33 %, respectively. The expression of the target gene was downregulated by up to 4.24-fold. Two consecutive sprays at a concentration of 5.0 μg/mL provided substantial protection against the fresh release of T. palmi for up to 10 days. The spray-on application of dsV-ATPase-B would be an eco-friendly alternative for managing T. palmi populations thereby reducing crop damage and limiting the spread of orthotospoviruses.
Collapse
Affiliation(s)
- V Rakesh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi -110012, India; Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi -110012, India
| | - Anupma Singh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi -110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi -110012, India.
| |
Collapse
|
37
|
Zhang Y, Ke Z, Xu L, Yang Y, Chang L, Zhang J. A faster killing effect of plastid-mediated RNA interference on a leaf beetle through induced dysbiosis of the gut bacteria. PLANT COMMUNICATIONS 2024; 5:100974. [PMID: 38751119 DOI: 10.1016/j.xplc.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
The expression of double-stranded RNAs (dsRNAs) from the plastid genome has been proven to be an effective method for controlling herbivorous pests by targeting essential insect genes. However, there are limitations to the efficiency of plastid-mediated RNA interference (PM-RNAi) due to the initial damage caused by the insects and their slow response to RNA interference. In this study, we developed transplastomic poplar plants that express dsRNAs targeting the β-Actin (dsACT) and Srp54k (dsSRP54K) genes of Plagiodera versicolora. Feeding experiments showed that transplastomic poplar plants can cause significantly higher mortality in P. versicolora larvae compared with nuclear transgenic or wild-type poplar plants. The efficient killing effect of PM-RNAi on P. versicolora larvae was found to be dependent on the presence of gut bacteria. Importantly, foliar application of a gut bacterial strain, Pseudomonas putida, will induce dysbiosis in the gut bacteria of P. versicolora larvae, leading to a significant acceleration in the speed of killing by PM-RNAi. Overall, our findings suggest that interfering with gut bacteria could be a promising strategy to enhance the effectiveness of PM-RNAi for insect pest control, offering a novel and effective approach for crop protection based on RNAi technology.
Collapse
Affiliation(s)
- Yiqiu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zebin Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
38
|
Li YQ, Huang A, Li XJ, Edwards MG, Gatehouse AMR. RNAi targeting Na v and CPR via leaf delivery reduces adult emergence and increases the susceptibility to λ-cyholthin in Tuta absoluta (Meyrick). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106089. [PMID: 39277402 DOI: 10.1016/j.pestbp.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The tomato leafminer, Tuta absoluta (Meyrick), one of the most economically destructive pests of tomato, causes severe yields losses of tomato production globally. Rapid evolution of insecticide resistance requires the development of alternative control strategy for this pest. RNA interference (RNAi) represents a promising, innovative control strategy against key agricultural insect pests, which has recently been licensed for Colorado Potato Beetle control. Here two essential genes, voltage-gated sodium channel (Nav) and NADPH-cytochrome P450 reductase (CPR) were evaluated as targets for RNAi using an ex vivo tomato leaf delivery system. Developmental stage-dependent expression profiles showed TaNav was most abundant in adult stages, whereas TaCPR was highly expressed in larval and adult stages. T. absoluta larvae feeding on tomato leaflets treated with dsRNA targeting TaNav and TaCPR showed significant knockdown of gene expression, leading to reduction in adult emergence. Additionally, tomato leaves treated with dsRNA targeting these two genes were significantly less damaged by larval feeding and mining. Furthermore, bioassay with LC30 doses of λ-cyholthin showed that silencing TaNav and TaCPR increased T. absoluta mortality about 32.2 and 17.4%, respectively, thus indicating that RNAi targeting TaNav and TaCPR could increase the susceptibility to λ-cyholthin in T. absoluta. This study demonstrates the potential of using RNAi targeting key genes, like TaNav and TaCPR, as an alternative technology for the control of this most destructive tomato pests in the future.
Collapse
Affiliation(s)
- Yong-Qiang Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| | - Anqi Huang
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| | - Xiao-Jie Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| |
Collapse
|
39
|
Chaudhary D, Jeena AS, Rohit, Gaur S, Raj R, Mishra S, Kajal, Gupta OP, Meena MR. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol 2024; 196:5681-5710. [PMID: 38175411 DOI: 10.1007/s12010-023-04850-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.
Collapse
Affiliation(s)
- Divya Chaudhary
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anand Singh Jeena
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Rohit
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Sonali Gaur
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Rishi Raj
- ICAR- Sugarcane Breeding Institute-Regional Centre, Karnal, 132001, Haryana, India
| | | | - Kajal
- Department of Biotechnology, Chandigarh University, Chandigarh, 140143, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India.
| | | |
Collapse
|
40
|
Wang P, Cheng X, Wang P, Zhao X, Liu L, Yu C, Zameer R, Li Z, Song C, Zou C. Gland-specific GhVQ22 negatively regulates gland size and affects secondary metabolic accumulation in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2593-2595. [PMID: 38733106 PMCID: PMC11331774 DOI: 10.1111/pbi.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Peng‐Bao Wang
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Xiang‐Fei Cheng
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Peng‐Yu Wang
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Xiao‐Lin Zhao
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Lu Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Cheng‐De Yu
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Roshan Zameer
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Zhi‐Fang Li
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Chun‐Peng Song
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| | - Chang‐Song Zou
- National Key Laboratory of Cotton Bio‐breeding and Integrated Utilization, School of Life ScienceHenan UniversityKaifengChina
| |
Collapse
|
41
|
Li SP, Chen ZX, Gao G, Bao YQ, Fang WY, Zhang YN, Liu WX, Lorenzen M, Wiegmann BM, Xuan JL. Development of an agroinfiltration-based transient hairpin RNA expression system in pak choi leaves (Brassica rapa ssp. chinensis) for RNA interference against Liriomyza sativae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106091. [PMID: 39277418 DOI: 10.1016/j.pestbp.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The vegetable leafminer (Liriomyza sativae) is a devastating invasive pest of many vegetable crops and horticultural plants worldwide, causing serious economic loss. Conventional control strategy against this pest mainly relies on the synthetic chemical pesticides, but widespread use of insecticides easily causes insecticide resistance development and is harmful to beneficial organisms and environment. In this context, a more environmentally friendly pest management strategy based on RNA interference (RNAi) has emerged as a powerful tool to control of insect pests. Here we report a successful oral RNAi in L. sativae after feeding on pak choi (Brassica rapa ssp. chinensis) that transiently express hairpin RNAs targeting vital genes in this pest. First, potentially lethal genes are identified by searching an L. sativae transcriptome for orthologs of the widely used V-ATPase A and actin genes, then expression levels are assessed during different life stages and in different adult tissues. Interestingly, the highest expression levels for V-ATPase A are observed in the adult heads (males and females) and for actin in the abdomens of adult females. We also assessed expression patterns of the target hairpin RNAs in pak choi leaves and found that they reach peak levels 72 h post agroinfiltration. RNAi-mediated knockdown of each target was then assessed by letting adult L. sativae feed on agroinfiltrated pak choi leaves. Relative transcript levels of each target gene exhibit significant reductions over the feeding time, and adversely affect survival of adult L. sativae at 24 h post infestation in genetically unmodified pak choi plants. These results demonstrate that the agroinfiltration-mediated RNAi system has potential for advancing innovative environmentally safe pest management strategies for the control of leaf-mining species.
Collapse
Affiliation(s)
- Shu-Peng Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; Anhui Watermelon and Melon Biological Breeding Engineering Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zi-Xu Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ge Gao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Qi Bao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Ying Fang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Wiegmann
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jing-Li Xuan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
42
|
Zhang X, Li P, Tang Y, Mu YP, Liu J, Wang MY, Wang W, Mao YB. The proteomic landscape of fall armyworm oral secretion reveals its role in plant adaptation. PEST MANAGEMENT SCIENCE 2024; 80:4175-4185. [PMID: 38587094 DOI: 10.1002/ps.8117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The fall armyworm (FAW, Spodoptera frugiperda (J.E. Smith)) is a polyphagous agricultural pest with rapidly evolving adaptations to host plants. We found the oral secretion (OS) of FAW from different plants influences plant defense response differentially, suggesting its role in adapting to host plants. However, the protein expression profile of FAW OS respond to different plants is largely unknown. RESULTS Here, from the mass spectrometry assay, we identified a total of 256 proteins in the OS of FAW fed on cotton (Gossypium hirsutum L.), tobacco (Nicotiana benthamiana Domin), maize (Zea mays L.) and artificial diet. The FAW OS primarily comprise of 60 proteases, 32 esterases and 92 non-enzymatic proteins. It displays high plasticity across different diets. We found that more than half of the esterases are lipases which have been reported as insect elicitors to enhance plant defense response. The lipase accumulation in cotton-fed larvae was the highest, followed by maize-fed larvae. In the presence of lipase inhibitors, the enhanced induction on defense genes in wounded leaves by OS was attenuated. However, the putative effectors were most highly accumulated in the OS from FAW larvae fed on maize compared to those fed on other diets. We identified that one of them (VRLP4) reduces the OS-mediated induction on defense genes in wounded leaves. CONCLUSION Together, our investigation presents the proteomic landscape of the OS of FAW influenced by different diets and reveals diet-mediated plasticity of OS is involved in FAW adaptation to host plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xian Zhang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Pai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Yin Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
43
|
Gu N, Chen YW, Ma S, Liu Q, Li JQ, Yang SH, Zhu WW, Li JB, Zhu XY, Li XM, Zhang YN. Chemosensory protein 22 in Riptortus pedestris is involved in the recognition of three soybean volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106101. [PMID: 39277423 DOI: 10.1016/j.pestbp.2024.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
Riptortus pedestris (Hemiptera: Alydidae), a common agricultural pest, is the major causative agent of "soybean staygreen." However, the interactions between chemosensory proteins (CSPs) in R. pedestris and host plant volatiles have yet to be comprehensively studied. In this study, we performed real-time fluorescence quantitative polymerase chain reaction (PCR) to analyze the antennal expression of RpedCSP22 and subsequently analyzed the interactions between 21 soybean volatiles, five aggregation pheromones, and RpedCSP22 protein in vitro using a protein expression system, molecular docking, site-directed mutagenesis, and fluorescence competitive binding experiments. The RpedCSP22 protein showed binding affinity to three soybean volatiles (benzaldehyde, 4-ethylbenzaldehyde, and 1-octene-3-ol), with optimal binding observed under neutral pH conditions, and lost binding ability after site-directed mutagenesis. In subsequent RNA interference (RNAi) studies, gene silencing was more than 90 %, and in silenced insects, electroantennographic responses were reduced by more than 75 % compared to non-silenced insects. Moreover, Y-tube olfactory behavioral assessments revealed that the attraction of R. pedestris to the three soybean volatiles was significantly attenuated. These findings suggest that RpedCSP22 plays an important role in the recognition of host plant volatiles by R. pedestris andprovides a theoretical basis for the development of novel inhibitors targeting pest behavior.
Collapse
Affiliation(s)
- Nan Gu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yu-Wen Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jian-Qiao Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Shu-Han Yang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Wen Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiao-Ming Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
44
|
Miyashita R, Ugajin A, Oda H, Ozaki K. Identification and in vivo functional analysis of furanocoumarin-responsive cytochrome P450s in a Rutaceae-feeding Papilio butterfly. J Exp Biol 2024; 227:jeb247791. [PMID: 39054940 DOI: 10.1242/jeb.247791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The Order Lepidoptera contains nearly 160,000 described species and most of them are specialist herbivores that use restricted plant species as hosts. Speciation that originated from host shift is one of the important factors for the diversification of Lepidoptera. Because plants prepare secondary metabolites for defense against herbivores, with varying profiles of the components among different plant taxa, the specialist herbivores need to be adapted to the toxic substances unique to their host plants. Swallowtail butterflies of the genus Papilio consist of over 200 species. Approximately 80% of them utilize Rutaceae plants, and among the remaining species, a specific subgroup uses phylogenetically distant Apiaceae plants as larval hosts. Rutaceae and Apiaceae commonly contain toxic secondary metabolites, furanocoumarins, and molecular phylogenetic studies support the concept that Apiaceae feeders were derived from Rutaceae feeders. Molecular mechanisms underlying furanocoumarin tolerance in Papilio butterflies have been investigated almost exclusively in an Apiaceae feeder by an in vitro assay. In contrast, there is little information regarding the Rutaceae feeders. Here, we focused on a Rutaceae feeder, Papilio xuthus, and identified two furanocoumarin-responsive cytochrome P450-6B (CYP6B) genes, of which one was an ortholog of a furanocoumarin-metabolizing enzyme identified in the Apiaceae-feeding Papilio while the other was previously unreported. We further conducted in vivo functional analysis using the CRISPR/Cas9 system, revealing a contribution of these CYP6Bs to furanocoumarin tolerance of P. xuthus larvae. Our findings suggest that co-option of furanocoumarin-metabolizing CYP6B enzymes at least partially contributed to the host shift from Rutaceae to Apiaceae in Papilio butterflies.
Collapse
Affiliation(s)
- Rei Miyashita
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Atsushi Ugajin
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
45
|
Zhang S, Li M, Zhao Y, Niu Y, Liu C, Tao J, Zong S. Silencing the odorant co-receptor (Orco) in Anoplophora glabripennis disrupts responses to pheromones and host volatiles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105968. [PMID: 39084809 DOI: 10.1016/j.pestbp.2024.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024]
Abstract
Insects rely primarily on a robust and precise olfactory recognition system to detect chemicals and environmental signals. Olfaction is mediated mainly by various odorant receptors (ORs) expressed on olfactory neurons. The odorant co-receptor (Orco) is a highly conserved and obligatory subunit of ORs, and its combination with conventional ORs to form ligand-gated ion channel heterodimeric complexes plays a crucial role in odor recognition. Anoplophora glabripennis Is a major quarantinable pest that affects broadleaved tree species worldwide. Odorant binding proteins (OBPs) and ORs have been identified in the A. glabripennis genome and the binding properties of some OBPs and their cognate ligands have been clarified. The role of the OR-mediated recognition pathway, however, remains largely uncharacterized. Here, we cloned and sequenced the full-length Orco gene sequence of A. glabripennis and performed structural characterization of the protein. We found that AglaOrco has high sequence homology with Orco from other orders of insects, and that it is highly conserved. Spatio-temporal differential expression analysis revealed that AglaOrco is highly expressed in adult antennae, and that expression at the sexually mature stage is significantly higher than at other developmental stages. There was no significant difference in expression between sexes. Silence AglaOrco using RNAi revealed that expression levels of AglaOrco mRNA fell significantly in both males and females at 72 h post-injection of 5 μg of dsOrco, with no obvious effect on expression of most other olfactory-related genes; however, some were up-or downregulated. For example, silenced Orco-expressing males and females showed a significant reduction in antennal potential responses to the odorants 3-carene, Ocimene, and 4-heptyloxy-1-butanol. Overall, the data suggest that AglaOrco plays an important role in mediating olfactory perception in A. glabripennis, and also identifies potential target genes for environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Meng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Chang Liu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
46
|
Saakre M, Jaiswal S, Rathinam M, Raman KV, Tilgam J, Paul K, Sreevathsa R, Pattanayak D. Host-Delivered RNA Interference for Durable Pest Resistance in Plants: Advanced Methods, Challenges, and Applications. Mol Biotechnol 2024; 66:1786-1805. [PMID: 37523020 DOI: 10.1007/s12033-023-00833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops.
Collapse
Affiliation(s)
- Manjesh Saakre
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Sandeep Jaiswal
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
- ICAR-Research Complex for NEH Region, Umiam, Meghalaya- 793103, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - K Venkat Raman
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Jyotsana Tilgam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Krishnayan Paul
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
47
|
Cedden D, Güney G, Debaisieux X, Scholten S, Rostás M, Bucher G. Effective target genes for RNA interference-based management of the cabbage stem flea beetle. INSECT MOLECULAR BIOLOGY 2024. [PMID: 38970375 DOI: 10.1111/imb.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 07/08/2024]
Abstract
The cabbage stem flea beetle (CSFB, Psylliodes chrysocephala) is a key pest of oilseed rape. The ban on neonicotinoids in the European Union due to environmental concerns and the emergence of pyrethroid-resistant populations have made the control of CSFB extremely challenging. In search of a solution, we have recently shown that RNA interference (RNAi) has potential in the management of CSFB. However, the previously tested target genes for RNAi-mediated pest control (subsequently called target genes) exhibited moderate and slow-acting lethal effects. In this study, 27 double-stranded RNAs (dsRNAs) were orally delivered to identify highly effective target genes in CSFB adults by leveraging the findings of a genome-wide RNAi screen in Tribolium castaneum. Our screen using 500 ng of dsRNA identified 10 moderately effective (> 50% mortality) and 4 highly effective target genes (100% mortality in 8-13 days). The latter mainly included proteasome subunits. Gene expression measurements confirmed target gene silencing and dose-response studies revealed LD50 values as low as ~20 ng in 14 days following a single exposure to dsRNA. Four highly effective dsRNAs also inhibited leaf damage (up to ~75%) and one affected locomotion. The sequences of promising target genes were subjected to in silico target prediction in non-target organisms, for example, beneficials such as honeybees, to design environmentally friendly dsRNAs. Overall, the study provides valuable insights for the development of dsRNA-based insecticides against CSFB.
Collapse
Affiliation(s)
- Doga Cedden
- Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Xavier Debaisieux
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Guan L, Wang X, Wan S, Wang Y, Zhang X, Wang S, Li C, Tang B. The Role of TcCYP6K1 and TcCYP9F2 Influences Trehalose Metabolism under High-CO 2 Stress in Tribolium castaneum (Coleoptera). INSECTS 2024; 15:502. [PMID: 39057235 PMCID: PMC11276637 DOI: 10.3390/insects15070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Cytochrome P450 monooxygenases (CYP), crucial detoxification enzymes in insects, are involved in the metabolism of endogenous substances as well as the activation and degradation of exogenous compounds. In this study, T. castaneum was utilized to investigate the roles of TcCYP6K1 and TcCYP9F2 genes influencing in the trehalose metabolism pathway under high-CO2 stress. By predicting the functional sequences of TcCYP6K1 and TcCYP9F2 genes and analyzing their spatiotemporal expression patterns, it was discovered that both genes belong to the CYP3 group and exhibit high expression levels during the larval stage, decreasing during the pupal stage, while showing high expression in the fatty body, intestine, and malpighian tubules. Furthermore, following the knockdown of TcCYP6K1 and TcCYP9F2 genes in combination with treating larvae with 75% CO2, it was observed that larval mortality increased, and glycogen content significantly decreased, while trehalose content increased significantly. Additionally, membrane-bound trehalase enzyme activity declined, TPS gene expression was significantly upregulated, GS gene expression was significantly downregulated, and ATP content showed a marked decrease. In conclusion, CYP genes are critical responsive genes of T. castaneum to high CO2 levels, potentially impacting the insect's resistance to carbon dioxide through their involvement in the synthesis or breakdown of the carbohydrate metabolism pathway. These findings could serve as a theoretical basis for the utilization of novel pesticides in low-oxygen grain storage techniques and offer new insights for environmentally friendly pest control strategies in grain storage.
Collapse
Affiliation(s)
- Liwen Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Xianzhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Sijing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Yuanyuan Wang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Xinyu Zhang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China; (Y.W.); (X.Z.)
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (L.G.); (X.W.); (S.W.); (S.W.)
| |
Collapse
|
49
|
Xu M, Du Y, Hou X, Zhang Z, Yan N. Chemical structures, biosynthesis, bioactivities, and utilisation values for the diterpenes produced in tobacco trichomes. PHYTOCHEMISTRY 2024; 223:114117. [PMID: 38697243 DOI: 10.1016/j.phytochem.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Cembranoids and labdanes are two important types of diterpenes in tobacco (Nicotiana genus) that are predominantly found in the leaf and flower glandular trichome secretions. This is the first systematic review of the biosynthesis, chemical structures, bioactivities, and utilisation values of cembranoid and labdane diterpenes in tobacco. A total of 131 natural cembranoid diterpenes have been reported in tobacco since 1962; these were summarised and classified according to their chemical structure characteristics as isopropyl cembranoids (1-88), seco-cembranoids (89-103), chain cembranoids (104-123), and polycyclic cembranoids (124-131). Forty natural labdane diterpenes reported since 1961 were also summarised and divided into epoxy side chain labdanes (132-150) and epoxy-free side chain labdanes (151-171). Tobacco cembranoid and labdane diterpenes are both formed via the methylerythritol 4-phosphate pathway and are synthesised from geranylgeranyl diphosphate. Their biosynthetic pathways and the four key enzymes (cembratrienol synthase, cytochrome P450 hydroxylase, copalyl diphosphate synthase, and Z-abienol cyclase) that affect their biosynthesis have been described in detail. A systematic summary of the bioactivity and utilisation values of the cembranoid and labdane diterpenes is also provided. The agricultural bioactivities associated with cembranoid and labdane diterpenes include antimicrobial and insecticidal activities as well as induced resistance, while the medical bioactivities include cytotoxic and neuroprotective activities. Further research into the cembranoid and labdane diterpenes will help to promote their development and utilisation as plant-derived pesticides and medicines.
Collapse
Affiliation(s)
- Minglei Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Xiaodong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
50
|
Vatanparast M, Merkel L, Amari K. Exogenous Application of dsRNA in Plant Protection: Efficiency, Safety Concerns and Risk Assessment. Int J Mol Sci 2024; 25:6530. [PMID: 38928236 PMCID: PMC11204322 DOI: 10.3390/ijms25126530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The use of double-stranded RNA (dsRNA) for plant protection shows great potential as a sustainable alternative to traditional pesticides. This review summarizes the current state of knowledge on using exogenous dsRNA in plant protection and includes the latest findings on the safety and efficiency of this strategy. The review also emphasizes the need for a cautious and comprehensive approach, considering safety considerations such as off-target effects and formulation challenges. The regulatory landscape in different regions is also discussed, underscoring the need for specific guidelines tailored to dsRNA-based pesticides. The review provides a crucial resource for researchers, regulators, and industry stakeholders, promoting a balanced approach incorporating innovation with thorough safety assessments. The continuous dialog emphasized in this review is essential for shaping the future of dsRNA-based plant protection. As the field advances, collaboration among scientists, regulators, and industry partners will play a vital role in establishing guidelines and ensuring the responsible, effective, and sustainable use of dsRNA in agriculture.
Collapse
Affiliation(s)
| | | | - Khalid Amari
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plant, Institute for Biosafety in Plant Biotechnology, D-06484 Quedlinburg, Germany
| |
Collapse
|