1
|
Wang W, Rui M. Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development. J Genet Genomics 2024:S1673-8527(24)00152-8. [PMID: 38925347 DOI: 10.1016/j.jgg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wanting Wang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
2
|
Chen M, Xu L, Wu Y, Soba P, Hu C. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Genes Dis 2023; 10:2425-2442. [PMID: 37554209 PMCID: PMC10404969 DOI: 10.1016/j.gendis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Meilan Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Lu Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yi Wu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Bonn 53115, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| |
Collapse
|
3
|
Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints. Nat Commun 2022; 13:2969. [PMID: 35624178 PMCID: PMC9142503 DOI: 10.1038/s41467-022-30689-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/12/2022] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic cells are used as cell factories to produce and secrete multitudes of recombinant pharmaceutical proteins, including several of the current top-selling drugs. Due to the essential role and complexity of the secretory pathway, improvement for recombinant protein production through metabolic engineering has traditionally been relatively ad-hoc; and a more systematic approach is required to generate novel design principles. Here, we present the proteome-constrained genome-scale protein secretory model of yeast Saccharomyces cerevisiae (pcSecYeast), which enables us to simulate and explain phenotypes caused by limited secretory capacity. We further apply the pcSecYeast model to predict overexpression targets for the production of several recombinant proteins. We experimentally validate many of the predicted targets for α-amylase production to demonstrate pcSecYeast application as a computational tool in guiding yeast engineering and improving recombinant protein production. Due to the complexity of the protein secretory pathway, strategy suitable for the production of a certain recombination protein cannot be generalized. Here, the authors construct a proteome-constrained genome-scale protein secretory model for yeast and show its application in the production of different misfolded or recombinant proteins.
Collapse
|
4
|
de Los Ángeles Juricic Urzúa M, Gallardo Rojas J, Couve Correa A, Cerda M, Härtel Gründler S, González-Silva C. The Dendritic Ergic: Microtubule And Actin Cytoskeletons Participate In Stop-And-Go Movement Of Mobile Carriers Between Stable Structures. Traffic 2022; 23:174-187. [PMID: 35075729 DOI: 10.1111/tra.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
The ER-to-Golgi intermediate compartment (ERGIC) is a membranous organelle that mediates protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus. In neurons, clusters of these vesiculotubular structures are situated throughout the cell in proximity to the ER, passing cargo to the cis-Golgi cisternae, located mainly in the perinuclear region. Although ERGIC markers have been identified in neurons, the distribution and dynamics of neuronal ERGIC structures have not been characterized yet. Here, we show that long-distance ERGIC transport occurs via an intermittent mechanism in dendrites, with mobile elements moving between stationary structures. Slow and fast live-cell imaging have captured stable ERGIC structures remaining in place over long periods of time, as well as mobile ERGIC structures advancing very short distances along dendrites. These short distances have been consistent with the lengths between the stationary ERGIC structures. Kymography revealed ERGIC elements that moved intermittently, emerging from and fusing with stationary ERGIC structures. Interestingly, this movement apparently depends not only on the integrity of the microtubule cytoskeleton, as previously reported, but on the actin cytoskeleton as well. Our results indicate that the dendritic ERGIC has a dual nature, with both stationary and mobile structures. The neural ERGIC network transports proteins via a stop-and-go movement in which both the microtubule and the actin cytoskeletons participate. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María de Los Ángeles Juricic Urzúa
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Javiera Gallardo Rojas
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Andrés Couve Correa
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Mauricio Cerda
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Steffen Härtel Gründler
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.,Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina González-Silva
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| |
Collapse
|
5
|
Pereira C, Di Sansebastiano GP. Mechanisms of membrane traffic in plant cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:102-111. [PMID: 34775176 DOI: 10.1016/j.plaphy.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The organelles of the secretory pathway are characterized by specific organization and function but they communicate in different ways with intense functional crosstalk. The best known membrane-bound transport carriers are known as protein-coated vesicles. Other traffic mechanisms, despite the intense investigations, still show incongruences. The review intends to provide a general view of the mechanisms involved in membrane traffic. We evidence that organelles' biogenesis involves mechanisms that actively operate during the entire cell cycle and the persistent interconnections between the Endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN) and endosomes, the vacuolar complex and the plasma membrane (PM) may be seen as a very dynamic membrane network in which vesicular traffic is part of a general maturation process.
Collapse
Affiliation(s)
- Cláudia Pereira
- GreenUPorto-Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, S/nº, 4169-007, Porto, Portugal.
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, Campus ECOTEKNE, 73100, Lecce, Italy.
| |
Collapse
|
6
|
Huang B, Li X, Zhu X. The Role of GM130 in Nervous System Diseases. Front Neurol 2021; 12:743787. [PMID: 34777211 PMCID: PMC8581157 DOI: 10.3389/fneur.2021.743787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Golgi matrix protein 130 (GM130) is a Golgi-shaping protein located on the cis surface of the Golgi apparatus (GA). It is one of the most studied Golgin proteins so far. Its biological functions are involved in many aspects of life processes, including mitosis, autophagy, apoptosis, cell polarity, and directed migration at the cellular level, as well as intracellular lipid and protein transport, microtubule formation and assembly, lysosome function maintenance, and glycosylation modification. Mutation inactivation or loss of expression of GM130 has been detected in patients with different diseases. GM130 plays an important role in the development of the nervous system, but the studies on it are limited. This article reviewed the current research progress of GM130 in nervous system diseases. It summarized the physiological functions of GM130 in the occurrence and development of Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), microcephaly (MCPH), sepsis associated encephalopathy (SAE), and Ataxia, aiming to provide ideas for the further study of GM130 in nervous system disease detection and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
7
|
Fabbretti E, Antognolli G, Tongiorgi E. Amyloid-β Impairs Dendritic Trafficking of Golgi-Like Organelles in the Early Phase Preceding Neurite Atrophy: Rescue by Mirtazapine. Front Mol Neurosci 2021; 14:661728. [PMID: 34149353 PMCID: PMC8209480 DOI: 10.3389/fnmol.2021.661728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Neurite atrophy with loss of neuronal polarity is a pathological hallmark of Alzheimer's disease (AD) and other neurological disorders. While there is substantial agreement that disruption of intracellular vesicle trafficking is associated with axonal pathology in AD, comparatively less is known regarding its role in dendritic atrophy. This is a significant gap of knowledge because, unlike axons, dendrites are endowed with the complete endomembrane system comprising endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), Golgi apparatus, post-Golgi vesicles, and a recycling-degradative route. In this study, using live-imaging of pGOLT-expressing vesicles, indicative of Golgi outposts and satellites, we investigate how amyloid-β (Aβ) oligomers affect the trafficking of Golgi-like organelles in the different dendritic compartments of cultured rat hippocampal neurons. We found that short-term (4 h) treatment with Aβ led to a decrease in anterograde trafficking of Golgi vesicles in dendrites of both resting and stimulated (with 50 mM KCl) neurons. We also characterized the ability of mirtazapine, a noradrenergic and specific serotonergic tetracyclic antidepressant (NaSSA), to rescue Golgi dynamics in dendrites. Mirtazapine treatment (10 μM) increased the number and both anterograde and retrograde motility, reducing the percentage of static Golgi vesicles. Finally, mirtazapine reverted the neurite atrophy induced by 24 h treatment with Aβ oligomers, suggesting that this drug is able to counteract the effects of Aβ by improving the dendritic trafficking of Golgi-related vesicles.
Collapse
Affiliation(s)
- Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, Atasoy D, Bezprozvanny I, Kavalali ET. Presynaptic store-operated Ca 2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. Neuron 2021; 109:1314-1332.e5. [PMID: 33711258 PMCID: PMC8068669 DOI: 10.1016/j.neuron.2021.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Store-operated calcium entry (SOCE) is activated by depletion of Ca2+ from the endoplasmic reticulum (ER) and mediated by stromal interaction molecule (STIM) proteins. Here, we show that in rat and mouse hippocampal neurons, acute ER Ca2+ depletion increases presynaptic Ca2+ levels and glutamate release through a pathway dependent on STIM2 and the synaptic Ca2+ sensor synaptotagmin-7 (syt7). In contrast, synaptotagmin-1 (syt1) can suppress SOCE-mediated spontaneous release, and STIM2 is required for the increase in spontaneous release seen during syt1 loss of function. We also demonstrate that chronic ER stress activates the same pathway leading to syt7-dependent potentiation of spontaneous glutamate release. During ER stress, inhibition of SOCE or syt7-driven fusion partially restored basal neurotransmission and decreased expression of pro-apoptotic markers, indicating that these processes participate in the amplification of ER-stress-related damage. Taken together, we propose that presynaptic SOCE links ER stress and augmented spontaneous neurotransmission, which may, in turn, facilitate neurodegeneration.
Collapse
Affiliation(s)
- Natali L. Chanaday
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Elena Nosyreva
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ok-Ho Shin
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Hua Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA,FOE Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Ilya Bezprozvanny
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.,Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Ege T. Kavalali
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37240-7933, USA.,Vanderbilt Brain Institute.,Corresponding author: Ege T. Kavalali, Ph.D., Department of Pharmacology, Vanderbilt University, 465 21st Avenue South, 7130A MRBIII, PMB407933 Nashville, TN 37240-7933, phone: 615-343-5480,
| |
Collapse
|
9
|
Wang J, Fourriere L, Gleeson PA. Local Secretory Trafficking Pathways in Neurons and the Role of Dendritic Golgi Outposts in Different Cell Models. Front Mol Neurosci 2020; 13:597391. [PMID: 33324160 PMCID: PMC7726432 DOI: 10.3389/fnmol.2020.597391] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
A fundamental characteristic of neurons is the relationship between the architecture of the polarized neuron and synaptic transmission between neurons. Intracellular membrane trafficking is paramount to establish and maintain neuronal structure; perturbation in trafficking results in defects in neurodevelopment and neurological disorders. Given the physical distance from the cell body to the distal sites of the axon and dendrites, transport of newly synthesized membrane proteins from the central cell body to their functional destination at remote, distal sites represents a conundrum. With the identification of secretory organelles in dendrites, including endoplasmic reticulum (ER) and Golgi outposts (GOs), recent studies have proposed local protein synthesis and trafficking distinct from the conventional anterograde transport pathways of the cell body. A variety of different model organisms, including Drosophila, zebrafish, and rodents, have been used to probe the organization and function of the local neuronal secretory network. Here, we review the evidence for local secretory trafficking pathways in dendrites in a variety of cell-based neuronal systems and discuss both the similarities and differences in the organization and role of the local secretory organelles, especially the GOs. In addition, we identify the gaps in the current knowledge and the potential advances using human induced pluripotent stem cells (iPSCs) in defining local membrane protein trafficking in human neurons and in understanding the molecular basis of neurological diseases.
Collapse
Affiliation(s)
- Jingqi Wang
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Lou Fourriere
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Rui M, Bu S, Chew LY, Wang Q, Yu F. The membrane protein Raw regulates dendrite pruning via the secretory pathway. Development 2020; 147:dev.191155. [PMID: 32928906 DOI: 10.1242/dev.191155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Neuronal pruning is essential for proper wiring of the nervous systems in invertebrates and vertebrates. Drosophila ddaC sensory neurons selectively prune their larval dendrites to sculpt the nervous system during early metamorphosis. However, the molecular mechanisms underlying ddaC dendrite pruning remain elusive. Here, we identify an important and cell-autonomous role of the membrane protein Raw in dendrite pruning of ddaC neurons. Raw appears to regulate dendrite pruning via a novel mechanism, which is independent of JNK signaling. Importantly, we show that Raw promotes endocytosis and downregulation of the conserved L1-type cell-adhesion molecule Neuroglian (Nrg) prior to dendrite pruning. Moreover, Raw is required to modulate the secretory pathway by regulating the integrity of secretory organelles and efficient protein secretion. Mechanistically, Raw facilitates Nrg downregulation and dendrite pruning in part through regulation of the secretory pathway. Thus, this study reveals a JNK-independent role of Raw in regulating the secretory pathway and thereby promoting dendrite pruning.
Collapse
Affiliation(s)
- Menglong Rui
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604.,Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Liang Yuh Chew
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604.,Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Qiwei Wang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604.,Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604 .,Department of Biological Sciences, National University of Singapore, Singapore 117543.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117456
| |
Collapse
|
11
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
12
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Ligon C, Cai Y, Buch S, Arikkath J. A selective role for a component of the autophagy pathway in coupling the Golgi apparatus to dendrite polarity in pyramidal neurons. Neurosci Lett 2020; 730:135048. [PMID: 32439477 DOI: 10.1016/j.neulet.2020.135048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Pyramidal neurons have a characteristic morphology that is critical to their ability to integrate into functional neural circuits. In addition to axon dendrite polarity, pyramidal neurons also exhibit dendritic polarity such that apical and basolateral dendrites differ in size, structure and inputs. Dendrite polarity in pyramidal neurons coincides with polarity of the Golgi apparatus, a key feature relevant to directed secretory trafficking, both in vitro and in vivo. We identify a novel autophagy based mechanism that uncouples the polarity of the Golgi apparatus from dendrite polarity. Autophagy is a universal cellular pathway that promotes cellular homeostasis via degradation of cellular components. Our data indicate that knockdown of ATG7, a key component of the autophagy mechanism, disrupts the polarity of the Golgi apparatus without impacting dendritic polarity in primary pyramidal neurons, providing the first evidence that dendrite polarity can be uncoupled from Golgi polarity. Interestingly, these effects are restricted to ATG7 knockdown and are not replicated by the knockdown of ATG16L1, another component of the autophagy mechanism. We propose that cellular mechanisms exist to couple Golgi polarity to dendrite polarity. Components of the autophagy mechanism are leveraged to actively couple Golgi polarity to dendrite polarity, thus impacting secretory trafficking into individual dendrites in pyramidal neurons.
Collapse
Affiliation(s)
- Cheryl Ligon
- Developmental Neuroscience, Munroe-Meyer Institute, United States
| | - Yu Cai
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jyothi Arikkath
- Department of Anatomy, Howard University, Washington D.C, 20059, United States.
| |
Collapse
|
14
|
Cornejo VH, González C, Campos M, Vargas-Saturno L, Juricic MDLÁ, Miserey-Lenkei S, Pertusa M, Madrid R, Couve A. Non-conventional Axonal Organelles Control TRPM8 Ion Channel Trafficking and Peripheral Cold Sensing. Cell Rep 2020; 30:4505-4517.e5. [DOI: 10.1016/j.celrep.2020.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/07/2019] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
|
15
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
16
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Zhang F, Wang Y, Wang T, Yao L, Lam SM, Huang X, Fan J, Wang Q, Liu L, Jiang Y, Zhang H, Shi L, Yu M, Shui G, Wang Y, Gao F, Zhang X, Xu Z. cTAGE5/MEA6 plays a critical role in neuronal cellular components trafficking and brain development. Proc Natl Acad Sci U S A 2018; 115:E9449-E9458. [PMID: 30224460 PMCID: PMC6176567 DOI: 10.1073/pnas.1804083115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Normal neural development is essential for the formation of neuronal networks and brain function. Cutaneous T cell lymphoma-associated antigen 5 (cTAGE5)/meningioma expressed antigen 6 (MEA6) plays a critical role in the secretion of proteins. However, its roles in the transport of nonsecretory cellular components and in brain development remain unknown. Here, we show that cTAGE5/MEA6 is important for brain development and function. Conditional knockout of cTAGE5/MEA6 in the brain leads to severe defects in neural development, including deficits in dendrite outgrowth and branching, spine formation and maintenance, astrocyte activation, and abnormal behaviors. We reveal that loss of cTAGE5/MEA6 affects the interaction between the coat protein complex II (COPII) components, SAR1 and SEC23, leading to persistent activation of SAR1 and defects in COPII vesicle formation and transport from the endoplasmic reticulum to the Golgi, as well as disturbed trafficking of membrane components in neurons. These defects affect not only the transport of materials required for the development of dendrites and spines but also the signaling pathways required for neuronal development. Because mutations in cTAGE5/MEA6 have been found in patients with Fahr's disease, our study potentially also provides insight into the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Tao Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875 Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Junwan Fan
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Qin Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Yisheng Jiang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Hongsheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Mei Yu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875 Beijing, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China;
- University of Chinese Academy of Sciences, 100101 Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, 100101 Beijing, China
| |
Collapse
|
18
|
Jacobi E, von Engelhardt J. AMPA receptor complex constituents: Control of receptor assembly, membrane trafficking and subcellular localization. Mol Cell Neurosci 2018; 91:67-75. [DOI: 10.1016/j.mcn.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 11/29/2022] Open
|
19
|
Ribeiro LF, Verpoort B, de Wit J. Trafficking mechanisms of synaptogenic cell adhesion molecules. Mol Cell Neurosci 2018; 91:34-47. [PMID: 29631018 DOI: 10.1016/j.mcn.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023] Open
Abstract
Nearly every aspect of neuronal function, from wiring to information processing, critically depends on the highly polarized architecture of neurons. Establishing and maintaining the distinct molecular composition of axonal and dendritic compartments requires precise control over the trafficking of the proteins that make up these cellular domains. Synaptic cell adhesion molecules (CAMs), membrane proteins with a critical role in the formation, differentiation and plasticity of synapses, require targeting to the correct pre- or postsynaptic compartment for proper functioning of neural circuits. However, the mechanisms that control the polarized trafficking, synaptic targeting, and synaptic abundance of CAMs are poorly understood. Here, we summarize current knowledge about the sequential trafficking events along the secretory pathway that control the polarized surface distribution of synaptic CAMs, and discuss how their synaptic targeting and abundance is additionally influenced by post-secretory determinants. The identification of trafficking-impairing mutations in CAMs associated with various neurodevelopmental disorders underscores the importance of correct protein trafficking for normal brain function.
Collapse
Affiliation(s)
- Luís F Ribeiro
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Ben Verpoort
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Golgi fragmentation induced by overactivated cyclin-dependent kinase 5 is associated with isoflurane-induced neurotoxicity. Neuroreport 2018; 29:241-246. [PMID: 29227343 DOI: 10.1097/wnr.0000000000000931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Overactivated cyclin-dependent kinase 5 (Cdk5) induces Golgi fragmentation, which interrupts the processing and trafficking of secretory cargo and subsequently synaptic plasticity and synaptogenesis, and even leads to neuronal cell death. Cdk5 overactivation and subsequent Golgi fragmentation are involved in many neurodegenerative diseases. However, whether isoflurane-induced neurotoxicity is relevant to aberrant Cdk5 activation and subsequent Golgi fragmentation remains unknown. In the present study, we explored the underlying molecular mechanisms of isoflurane-induced neurotoxicity in primary cultured hippocampal neurons. After treatment with 2% isoflurane for 6 h, immunofluorescence staining and transmission electron microscopy were used to examine the Golgi structure. Neuronal viability was evaluated using the 3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and TUNEL staining. Cdk5 activity was assessed using histone H1 as a substrate. Our results showed that Cdk5 activity and the number of fragmented Golgi increased significantly after isoflurane exposure. This was accompanied by an increase in neuronal death. Meanwhile, pharmacological inhibition of Cdk5 activity by 8 µM roscovitine alleviated isoflurane-induced Golgi fragmentation and neurotoxicity. Cumulatively, this study shows that aberrant Cdk5 activation-induced Golgi fragmentation is relevant to isoflurane neurotoxicity and indicates that a Cdk5 inhibitor may be a potential therapeutic candidate for the prevention of isoflurane-induced neurotoxicity. Video abstract: http://links.lww.com/WNR/A445.
Collapse
|
21
|
BIG2-ARF1-RhoA-mDia1 Signaling Regulates Dendritic Golgi Polarization in Hippocampal Neurons. Mol Neurobiol 2018; 55:7701-7716. [PMID: 29455446 DOI: 10.1007/s12035-018-0954-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Proper dendrite development is essential for establishing neural circuitry, and Rho GTPases play key regulatory roles in this process. From mouse brain lysates, we identified Brefeldin A-inhibited guanine exchange factor 2 (BIG2) as a novel Rho GTPase regulatory protein involved in dendrite growth and maintenance. BIG2 was highly expressed during early development, and knockdown of the ARFGEF2 gene encoding BIG2 significantly reduced total dendrite length and the number of branches. Expression of the constitutively active ADP-ribosylation factor 1 ARF1 Q71L rescued the defective dendrite morphogenesis of ARFGEF2-null neurons, indicating that BIG2 controls dendrite growth and maintenance by activating ARF1. Moreover, BIG2 co-localizes with the Golgi apparatus and is required for Golgi deployment into major dendrites in cultured hippocampal neurons. Simultaneous overexpression of BIG2 and ARF1 activated RhoA, and treatment with the RhoA activator lysophosphatidic acid in neurons lacking BIG2 or ARF1 increased the number of cells with dendritic Golgi, suggesting that BIG2 and ARF1 activate RhoA to promote dendritic Golgi polarization. mDia1 was identified as a downstream effector of BIG2-ARF1-RhoA axis, mediating Golgi polarization and dendritic morphogenesis. Furthermore, in utero electroporation of ARFGEF2 shRNA into the embryonic mouse brain confirmed an in vivo role of BIG2 for Golgi deployment into the apical dendrite. Taken together, our results suggest that BIG2-ARF1-RhoA-mDia1 signaling regulates dendritic Golgi polarization and dendrite growth and maintenance in hippocampal neurons.
Collapse
|
22
|
Nikoletopoulou V, Tavernarakis N. The PMR1 pump in alpha-synuclein toxicity and neurodegeneration. Neurosci Lett 2018; 663:66-71. [DOI: 10.1016/j.neulet.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
|
23
|
Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochem Res 2017; 44:572-584. [PMID: 29270706 PMCID: PMC6420428 DOI: 10.1007/s11064-017-2450-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Kainate receptors (KARs) are glutamate-gated ion channels that play fundamental roles in regulating neuronal excitability and network function in the brain. After being cloned in the 1990s, important progress has been made in understanding the mechanisms controlling the molecular and cellular properties of KARs, and the nature and extent of their regulation of wider neuronal activity. However, there have been significant recent advances towards understanding KAR trafficking through the secretory pathway, their precise synaptic positioning, and their roles in synaptic plasticity and disease. Here we provide an overview highlighting these new findings about the mechanisms controlling KARs and how KARs, in turn, regulate other proteins and pathways to influence synaptic function.
Collapse
|
24
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
26
|
Kannan R, Giniger E. New perspectives on the roles of Abl tyrosine kinase in axon patterning. Fly (Austin) 2017; 11:260-270. [PMID: 28481649 DOI: 10.1080/19336934.2017.1327106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The Abelson tyrosine kinase (Abl) lies at the heart of one of the small set of ubiquitous, conserved signal transduction pathways that do much of the work of development and physiology. Abl signaling is essential to epithelial integrity, motility of autonomous cells such as blood cells, and axon growth and guidance in the nervous system. However, though Abl was one of the first of these conserved signaling machines to be identified, it has been among the last to have its essential architecture elucidated. Here we will first discuss some of the challenges that long delayed the dissection of this pathway, and what they tell us about the special problems of investigating dynamic processes like motility. We will then describe our recent experiments that revealed the functional organization of the Abl pathway in Drosophila neurons. Finally, in the second part of the review we will introduce a different kind of complexity in the role of Abl in motility: the discovery of a previously unappreciated function in protein secretion and trafficking. We will provide evidence that the secretory function of Abl also contributes to its role in axon growth and guidance, and finally end with a discussion of the challenges that Abl pleiotropy provide for the investigator, but the opportunities that it provides for coordinating biological regulation.
Collapse
Affiliation(s)
- Ramakrishnan Kannan
- a Neurobiology Research Center (NRC), Department of Psychiatry , National Institute of Mental Health and Neurosciences , Bangalore , India
| | - Edward Giniger
- b National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda , MD
| |
Collapse
|
27
|
Wang Y, Zhang H, Shi M, Liou YC, Lu L, Yu F. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons. Development 2017; 144:1851-1862. [DOI: 10.1242/dev.146175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/29/2017] [Indexed: 01/20/2023]
Abstract
Pruning, whereby neurons eliminate their exuberant neurites, is central for the maturation of the nervous system. In Drosophila, sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell adhesion molecule Neuroglian (Nrg).
Collapse
Affiliation(s)
- Yan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
| | - Heng Zhang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
| | - Meng Shi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Yih-Cherng Liou
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, 117604
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore, 117456
- Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857
| |
Collapse
|
28
|
Loss of the golgin GM130 causes Golgi disruption, Purkinje neuron loss, and ataxia in mice. Proc Natl Acad Sci U S A 2016; 114:346-351. [PMID: 28028212 DOI: 10.1073/pnas.1608576114] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus lies at the heart of the secretory pathway where it is required for secretory trafficking and cargo modification. Disruption of Golgi architecture and function has been widely observed in neurodegenerative disease, but whether Golgi dysfunction is causal with regard to the neurodegenerative process, or is simply a manifestation of neuronal death, remains unclear. Here we report that targeted loss of the golgin GM130 leads to a profound neurological phenotype in mice. Global KO of mouse GM130 results in developmental delay, severe ataxia, and postnatal death. We further show that selective deletion of GM130 in neurons causes fragmentation and defective positioning of the Golgi apparatus, impaired secretory trafficking, and dendritic atrophy in Purkinje cells. These cellular defects manifest as reduced cerebellar size and Purkinje cell number, leading to ataxia. Purkinje cell loss and ataxia first appear during postnatal development but progressively worsen with age. Our data therefore indicate that targeted disruption of the mammalian Golgi apparatus and secretory traffic results in neuronal degeneration in vivo, supporting the view that Golgi dysfunction can play a causative role in neurodegeneration.
Collapse
|
29
|
Chomiak T, Hung J, Nguyen MD, Hu B. Somato-dendritic decoupling as a novel mechanism for protracted cortical maturation. BMC Biol 2016; 14:48. [PMID: 27328836 PMCID: PMC4916537 DOI: 10.1186/s12915-016-0270-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Both human and animal data indicate that disruption of the endogenously slow maturation of temporal association cortical (TeA) networks is associated with abnormal higher order cognitive development. However, the neuronal mechanisms underlying the endogenous maturation delay of the TeA are poorly understood. RESULTS Here we report a novel form of developmental plasticity that is present in the TeA. It was found that deep layer TeA neurons, but not hippocampal or primary visual neurons, exist in a protracted 'embryonic-like' state through a mechanism involving reduced somato-dendritic communication and a non-excitable somatic membrane. This mechanism of neural inactivity is present in intact tissue and shows a remarkable transition into an active somato-dendritically coupled state. The quantity of decoupled cells diminishes in a protracted and age-dependent manner, continuing into adolescence. CONCLUSIONS Based on our data, we propose a model of neural plasticity through which protracted compartmentalization and decoupling in somato-dendritic signalling plays a key role in controlling how excitable neurons are incorporated into recurrent cortical networks independent of neurogenesis.
Collapse
Affiliation(s)
- Taylor Chomiak
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | - Johanna Hung
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Minh Dang Nguyen
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Bin Hu
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
30
|
Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, Bronfman FC. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton (Hoboken) 2016; 73:612-628. [PMID: 27223597 DOI: 10.1002/cm.21312] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors TrkB and p75 regulate dendritic and axonal growth during development and maintenance of the mature nervous system; however, the cellular and molecular mechanisms underlying this process are not fully understood. In recent years, several advances have shed new light on the processes behind the regulation of BDNF-mediated structural plasticity including control of neuronal transcription, local translation of proteins, and regulation of cytoskeleton and membrane dynamics. In this review, we summarize recent advances in the field of BDNF signaling in neurons to induce neuronal growth. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andres Gonzalez
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Moya-Alvarado
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Gonzalez-Billaut
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile and Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB and Center for Ageing and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
31
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
32
|
Taverna E, Mora-Bermúdez F, Strzyz PJ, Florio M, Icha J, Haffner C, Norden C, Wilsch-Bräuninger M, Huttner WB. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep 2016; 6:21206. [PMID: 26879757 PMCID: PMC4754753 DOI: 10.1038/srep21206] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change.
Collapse
Affiliation(s)
- Elena Taverna
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Felipe Mora-Bermúdez
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Paulina J Strzyz
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Marta Florio
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Jaroslav Icha
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Christiane Haffner
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Caren Norden
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | - Wieland B Huttner
- Max-Planck Inst. of Mol. Cell Biol. and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
33
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Zhou X, Zeng J, Ouyang C, Luo Q, Yu M, Yang Z, Wang H, Shen K, Shi A. A novel bipartite UNC-101/AP-1 μ1 binding signal mediates KVS-4/Kv2.1 somatodendritic distribution inCaenorhabditis elegans. FEBS Lett 2015; 590:76-92. [DOI: 10.1002/1873-3468.12043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/10/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Zhou
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jia Zeng
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Chenxi Ouyang
- Department of Vascular Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Qianyun Luo
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Miao Yu
- Department of Vascular Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Zhenrong Yang
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Hui Wang
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Kang Shen
- Department of Biology; Howard Hughes Medical Institute; Stanford University; Palo Alto CA USA
| | - Anbing Shi
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan Hubei China
- Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
35
|
Sundaramoorthy V, Sultana JM, Atkin JD. Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences. Front Neurosci 2015; 9:400. [PMID: 26578862 PMCID: PMC4621950 DOI: 10.3389/fnins.2015.00400] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an invariably fatal neurodegenerative disorder, which specifically targets motor neurons in the brain, brain stem and spinal cord. Whilst the etiology of ALS remains unknown, fragmentation of the Golgi apparatus is detected in ALS patient motor neurons and in animal/cellular disease models. The Golgi is a highly dynamic organelle that acts as a dispatching station for the vesicular transport of secretory/transmembrane proteins. It also mediates autophagy and maintains endoplasmic reticulum (ER) and axonal homeostasis. Both the trigger for Golgi fragmentation and the functional consequences of a fragmented Golgi apparatus in ALS remain unclear. However, recent evidence has highlighted defects in vesicular trafficking as a pathogenic mechanism in ALS. This review summarizes the evidence describing Golgi fragmentation in ALS, with possible links to other disease processes including cellular trafficking, ER stress, defective autophagy, and axonal degeneration.
Collapse
Affiliation(s)
- Vinod Sundaramoorthy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney Sydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney Sydney, NSW, Australia ; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| |
Collapse
|
36
|
Valenzuela JI, Perez F. Diversifying the secretory routes in neurons. Front Neurosci 2015; 9:358. [PMID: 26500481 PMCID: PMC4595659 DOI: 10.3389/fnins.2015.00358] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022] Open
Abstract
Nervous system homeostasis and synaptic function need dedicated mechanisms to locally regulate the molecular composition of the neuronal plasma membrane and allow the development, maintenance and plastic modification of the neuronal morphology. The cytoskeleton and intracellular trafficking lies at the core of all these processes. In most mammalian cells, the Golgi apparatus (GA) is at the center of the biosynthetic pathway, located in the proximity of the microtubule-organizing center. In addition to this central localization, the somatic GA in neurons is complemented by satellite Golgi outposts (GOPs) in dendrites, which are essential for dendritic morphogenesis and are emerging like local stations of membranes trafficking to synapses. Largely, GOPs participation in post-ER trafficking has been determined by imaging the transport of the exogenous protein VSVG. Here we review the diversity of neuronal cargoes that traffic through GOPs and the assortment of different biosynthetic routes to synapses. We also analyze the recent advances in understanding the role of cytoskeleton and Golgi matrix proteins in the biogenesis of GOPs and how the diversity of secretory routes can be generated.
Collapse
Affiliation(s)
- José I Valenzuela
- Cell Biology Department, Institut Curie, PSL Research University, UMR144 Paris, France ; Dynamics of Intracellular Organisation, Centre National de la Recherche Scientifique -UMR144 Paris, France
| | - Franck Perez
- Cell Biology Department, Institut Curie, PSL Research University, UMR144 Paris, France ; Dynamics of Intracellular Organisation, Centre National de la Recherche Scientifique -UMR144 Paris, France
| |
Collapse
|
37
|
Arias CI, Siri SO, Conde C. Involvement of SARA in Axon and Dendrite Growth. PLoS One 2015; 10:e0138792. [PMID: 26405814 PMCID: PMC4583221 DOI: 10.1371/journal.pone.0138792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
SARA (Smad Anchor for Receptor Activation) plays a crucial role in Rab5-mediated endocytosis in cell lines localizing to early endosomes where it regulates morphology and function. Here, we analyzed the role of SARA during neuronal development and tested whether it functions as a regulator of endocytic trafficking of selected axonal and membrane proteins. Suppression of SARA perturbs the appearance of juxtanuclear endocytic recycling compartments and the neurons show long axons with large growth cones. Furthermore, surface distribution of the cell adhesion molecule L1 in axons and the fusion of vesicles containing transferring receptor (TfR) in dendrites were increased in neurons where SARA was silenced. Conversely, SARA overexpression generated large early endosomes and reduced neurite outgrowth. Taken together, our findings suggest a significant contribution of SARA to key aspects of neuronal development, including neurite formation.
Collapse
Affiliation(s)
| | - Sebastián Omar Siri
- Laboratorio Neurobiología, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | - Cecilia Conde
- Laboratorio Neurobiología, INIMEC-CONICET, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| |
Collapse
|
38
|
Oswald MCW, West RJH, Lloyd-Evans E, Sweeney ST. Identification of dietary alanine toxicity and trafficking dysfunction in a Drosophila model of hereditary sensory and autonomic neuropathy type 1. Hum Mol Genet 2015; 24:6899-909. [PMID: 26395456 PMCID: PMC4654049 DOI: 10.1093/hmg/ddv390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/15/2015] [Indexed: 01/27/2023] Open
Abstract
Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is characterized by a loss of distal peripheral sensory and motorneuronal function, neuropathic pain and tissue necrosis. The most common cause of HSAN1 is due to dominant mutations in serine palmitoyl-transferase subunit 1 (SPT1). SPT catalyses the condensation of serine with palmitoyl-CoA, the initial step in sphingolipid biogenesis. Identified mutations in SPT1 are known to both reduce sphingolipid synthesis and generate catalytic promiscuity, incorporating alanine or glycine into the precursor sphingolipid to generate a deoxysphingoid base (DSB). Why either loss of function in SPT1, or generation of DSBs should generate deficits in distal sensory function remains unclear. To address these questions, we generated a Drosophila model of HSAN1. Expression of dSpt1 bearing a disease-related mutation induced morphological deficits in synapse growth at the larval neuromuscular junction consistent with a dominant-negative action. Expression of mutant dSpt1 globally was found to be mildly toxic, but was completely toxic when the diet was supplemented with alanine, when DSBs were observed in abundance. Expression of mutant dSpt1 in sensory neurons generated developmental deficits in dendritic arborization with concomitant sensory deficits. A membrane trafficking defect was observed in soma of sensory neurons expressing mutant dSpt1, consistent with endoplasmic reticulum (ER) to Golgi block. We found that we could rescue sensory function in neurons expressing mutant dSpt1 by co-expressing an effector of ER-Golgi function, Rab1 suggesting compromised ER function in HSAN1 affected dendritic neurons. Our Drosophila model identifies a novel strategy to explore the pathological mechanisms of HSAN1.
Collapse
Affiliation(s)
- Matthew C W Oswald
- Department of Biology and Hull-York Medical School, University of York, York YO10 5DD, UK and
| | - Ryan J H West
- Department of Biology and Hull-York Medical School, University of York, York YO10 5DD, UK and
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Sean T Sweeney
- Department of Biology and Hull-York Medical School, University of York, York YO10 5DD, UK and
| |
Collapse
|
39
|
Lin CH, Li H, Lee YN, Cheng YJ, Wu RM, Chien CT. Lrrk regulates the dynamic profile of dendritic Golgi outposts through the golgin Lava lamp. J Cell Biol 2015. [PMID: 26216903 PMCID: PMC4523617 DOI: 10.1083/jcb.201411033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lrrk regulates Golgi outpost (GOP) dynamics in dendrites by antagonizing the interaction between the golgin Lva and dynein heavy chain at GOPs, thereby disrupting minus end–directed transport along dendritic microtubules by dynein. Constructing the dendritic arbor of neurons requires dynamic movements of Golgi outposts (GOPs), the prominent component in the dendritic secretory pathway. GOPs move toward dendritic ends (anterograde) or cell bodies (retrograde), whereas most of them remain stationary. Here, we show that Leucine-rich repeat kinase (Lrrk), the Drosophila melanogaster homologue of Parkinson’s disease–associated Lrrk2, regulates GOP dynamics in dendrites. Lrrk localized at stationary GOPs in dendrites and suppressed GOP movement. In Lrrk loss-of-function mutants, anterograde movement of GOPs was enhanced, whereas Lrrk overexpression increased the pool size of stationary GOPs. Lrrk interacted with the golgin Lava lamp and inhibited the interaction between Lva and dynein heavy chain, thus disrupting the recruitment of dynein to Golgi membranes. Whereas overexpression of kinase-dead Lrrk caused dominant-negative effects on GOP dynamics, overexpression of the human LRRK2 mutant G2019S with augmented kinase activity promoted retrograde movement. Our study reveals a pathogenic pathway for LRRK2 mutations causing dendrite degeneration.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsun Li
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 115, Taiwan
| | - Yi-Nan Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
40
|
Quassollo G, Wojnacki J, Salas DA, Gastaldi L, Marzolo MP, Conde C, Bisbal M, Couve A, Cáceres A. A RhoA Signaling Pathway Regulates Dendritic Golgi Outpost Formation. Curr Biol 2015; 25:971-82. [PMID: 25802147 DOI: 10.1016/j.cub.2015.01.075] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
The neuronal Golgi apparatus (GA) localizes to the perinuclear region and dendrites as tubulo-vesicular structures designated Golgi outposts (GOPs). Current evidence suggests that GOPs shape dendrite morphology and serve as platforms for the local delivery of synaptic receptors. However, the mechanisms underlying GOP formation remain a mystery. Using live-cell imaging and confocal microscopy in cultured hippocampal neurons, we now show that GOPs destined to major "apical" dendrites are generated from the somatic GA by a sequence of events involving: (1) generation of a GA-derived tubule; (2) tubule elongation and deployment into the dendrite; (3) tubule fission; and (4) transport and condensation of the fissioned tubule. A RhoA-Rock signaling pathway involving LIMK1, PKD1, slingshot, cofilin, and dynamin regulates polarized GOP formation by controlling the tubule fission. Our observations identify a mechanism underlying polarized GOP biogenesis and provide new insights regarding involvement of RhoA in dendritic development and polarization.
Collapse
Affiliation(s)
- Gonzalo Quassollo
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Jose Wojnacki
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Daniela A Salas
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Laura Gastaldi
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - María Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo OHiggins 340, 8331010 Santiago, Chile
| | - Cecilia Conde
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Av. Friuli 2786, 5016 Córdoba, Argentina
| | - Mariano Bisbal
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Av. Friuli 2786, 5016 Córdoba, Argentina
| | - Andrés Couve
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Alfredo Cáceres
- Laboratorio Neurobiología, INIMEC-CONICET, Av. Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Av. Friuli 2786, 5016 Córdoba, Argentina.
| |
Collapse
|
41
|
Jones KA, Eng AG, Raval P, Srivastava DP, Penzes P. Scaffold protein X11α interacts with kalirin-7 in dendrites and recruits it to Golgi outposts. J Biol Chem 2014; 289:35517-29. [PMID: 25378388 PMCID: PMC4271236 DOI: 10.1074/jbc.m114.587709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pyramidal neurons in the mammalian forebrain receive their synaptic inputs through their dendritic trees, and dendritic spines are the sites of most excitatory synapses. Dendritic spine structure is important for brain development and plasticity. Kalirin-7 is a guanine nucleotide-exchange factor for the small GTPase Rac1 and is a critical regulator of dendritic spine remodeling. The subcellular localization of kalirin-7 is thought to be important for regulating its function in neurons. A yeast two-hybrid screen has identified the adaptor protein X11α as an interacting partner of kalirin-7. Here, we show that kalirin-7 and X11α form a complex in the brain, and this interaction is mediated by the C terminus of kalirin-7. Kalirin-7 and X11α co-localize at excitatory synapses in cultured cortical neurons. Using time-lapse imaging of fluorescence recovery after photobleaching, we show that X11α is present in a mobile fraction of the postsynaptic density. X11α also localizes to Golgi outposts in dendrites, and its overexpression induces the removal of kalirin-7 from spines and accumulation of kalirin-7 in Golgi outposts. In addition, neurons overexpressing X11α displayed thinner spines. These data support a novel mechanism of regulation of kalirin-7 localization and function in dendrites, providing insight into signaling pathways underlying neuronal plasticity. Dissecting the molecular mechanisms of synaptic structural plasticity will improve our understanding of neuropsychiatric and neurodegenerative disorders, as kalirin-7 has been associated with schizophrenia and Alzheimer disease.
Collapse
Affiliation(s)
| | - Andrew G Eng
- the Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, Illinois 60611, and
| | - Pooja Raval
- the Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 9NU, United Kingdom
| | - Deepak P Srivastava
- From the Departments of Physiology and the Department of Neuroscience and Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 9NU, United Kingdom
| | - Peter Penzes
- From the Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611,
| |
Collapse
|
42
|
Cho HJ, Yu J, Xie C, Rudrabhatla P, Chen X, Wu J, Parisiadou L, Liu G, Sun L, Ma B, Ding J, Liu Z, Cai H. Leucine-rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER-Golgi export. EMBO J 2014; 33:2314-31. [PMID: 25201882 DOI: 10.15252/embj.201487807] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson's disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER-Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER-Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER-Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Hyun Jin Cho
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Jia Yu
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Chengsong Xie
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Parvathi Rudrabhatla
- Laboratory of Neurochemistry and Laboratory of Neurobiology National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Xi Chen
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Junbing Wu
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Loukia Parisiadou
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Guoxiang Liu
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Bo Ma
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| | - Jinhui Ding
- Bioinformatics Core, Laboratory of Neurogenetics National Institute on Aging, Bethesda, MD, USA
| | - Zhihua Liu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases National Institutes of Health, Bethesda, MD, USA Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics National Institute on Aging National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Romero AM, Renau-Piqueras J, Marín MP, Esteban-Pretel G. Chronic alcohol exposure affects the cell components involved in membrane traffic in neuronal dendrites. Neurotox Res 2014; 27:43-54. [PMID: 25022897 DOI: 10.1007/s12640-014-9484-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/13/2014] [Accepted: 07/01/2014] [Indexed: 01/09/2023]
Abstract
The specific traffic of the membrane components in neurons is a major requirement to establish and maintain neuronal domains-the axonal and the somatodendritic domains-and their polarized morphology. Unlike axons, dendrites contain membranous organelles, which are involved in the secretory pathway, including the endoplasmic reticulum, the Golgi apparatus and post-Golgi apparatus carriers, the cytoskeleton, and plasma membrane. A variety of molecules and factors are also involved in this process. Previous studies have shown that chronic alcohol exposure negatively affects several of these cell components, such as the Golgi apparatus or cytoskeleton in neurons. Yet very little information is available on the possible effects of this exposure on the remaining cell elements involved in intracellular trafficking in neurons, particularly in dendrites. By qualitative and quantitative electron microscopy, immunofluorescence and immunoblotting, we herein show that chronic exposure to moderate levels (30 mM) of ethanol in cultured neurons reduces the volume and surface density of the rough endoplasmic reticulum, and increases the levels of GRP78, a chaperone involved in endoplasmic reticulum stress. Ethanol also significantly diminishes the proportion of neurons that show an extension of Golgi into dendrites and dendritic Golgi outposts, a structure present exclusively in longer, thicker apical dendrites. Both Golgi apparatus types were also fragmented into a large number of cells. We also investigated the effect of alcohol on the levels of microtubule-based motor proteins KIF5, KIF17, KIFC2, dynein, and myosin IIb, responsible for transporting different cargoes in dendrites. Of these, alcohol differently affects several of them by lowering dynein and raising KIF5, KIFC2, and myosin IIb. These results, together with other previously published ones, suggest that practically all the protein trafficking steps in dendrites are altered to a greater or lesser extent by chronic alcohol exposure in neuronal cells, which may have negative repercussions for the development and maintenance of their polarized morphology and function.
Collapse
Affiliation(s)
- Ana M Romero
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario ''La Fe'', Avenida Campanar 21, 46009, Valencia, Spain
| | | | | | | |
Collapse
|
44
|
Valenzuela JI, Jaureguiberry-Bravo M, Salas DA, Ramírez OA, Cornejo VH, Lu HE, Blanpied TA, Couve A. Transport along the dendritic endoplasmic reticulum mediates the trafficking of GABAB receptors. J Cell Sci 2014; 127:3382-95. [PMID: 24895402 DOI: 10.1242/jcs.151092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In neurons, secretory organelles within the cell body are complemented by the dendritic endoplasmic reticulum (ER) and Golgi outposts (GOPs), whose role in neurotransmitter receptor trafficking is poorly understood. γ-aminobutyric acid (GABA) type B metabotropic receptors (GABABRs) regulate the efficacy of synaptic transmission throughout the brain. Their plasma membrane availability is controlled by mechanisms involving an ER retention motif and assembly-dependent ER export. Thus, they constitute an ideal molecular model to study ER trafficking, but the extent to which the dendritic ER participates in GABABR biosynthesis has not been thoroughly explored. Here, we show that GABAB1 localizes preferentially to the ER in dendrites and moves long distances within this compartment. Not only diffusion but also microtubule and dynein-dependent mechanisms control dendritic ER transport. GABABRs insert throughout the somatodendritic plasma membrane but dendritic post-ER carriers containing GABABRs do not fuse selectively with GOPs. This study furthers our understanding of the spatial selectivity of neurotransmitter receptors for dendritic organelles.
Collapse
Affiliation(s)
- José I Valenzuela
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Matías Jaureguiberry-Bravo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Daniela A Salas
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Omar A Ramírez
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Program of Anatomy and Development, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Víctor H Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Hsiangmin E Lu
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| |
Collapse
|
45
|
Ho VM, Dallalzadeh LO, Karathanasis N, Keles MF, Vangala S, Grogan T, Poirazi P, Martin KC. GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci 2014; 61:1-12. [PMID: 24784359 DOI: 10.1016/j.mcn.2014.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/17/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
AMPA-type glutamate receptors mediate fast, excitatory neurotransmission in the brain, and their concentrations at synapses are important determinants of synaptic strength. We investigated the post-transcriptional regulation of GluA2, the calcium-impermeable AMPA receptor subunit, by examining the subcellular distribution of its mRNA and evaluating its translational regulation by microRNA in cultured mouse hippocampal neurons. Using computational approaches, we identified a conserved microRNA-124 (miR-124) binding site in the 3'UTR of GluA2 and demonstrated that miR-124 regulated the translation of GluA2 mRNA reporters in a sequence-specific manner in luciferase assays. While we hypothesized that this regulation might occur in dendrites, our biochemical and fluorescent in situ hybridization (FISH) data indicate that GluA2 mRNA does not localize to dendrites or synapses of mouse hippocampal neurons. In contrast, we detected significant concentrations of miR-124 in dendrites. Overexpression of miR-124 in dissociated neurons results in a 30% knockdown of GluA2 protein, as measured by immunoblot and quantitative immunocytochemistry, without producing any changes in GluA2 mRNA concentrations. While total GluA2 concentrations are reduced, we did not detect any changes in the concentration of synaptic GluA2. We conclude from these results that miR-124 interacts with GluA2 mRNA in the cell body to downregulate translation. Our data support a model in which GluA2 is translated in the cell body and subsequently transported to neuronal dendrites and synapses, and suggest that synaptic GluA2 concentrations are modified primarily by regulated protein trafficking rather than by regulated local translation.
Collapse
Affiliation(s)
- Victoria M Ho
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Liane O Dallalzadeh
- Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Nestoras Karathanasis
- Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Mehmet F Keles
- Interdepartmental Program for Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Sitaram Vangala
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA; Integrated Center for Learning and Memory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.
| |
Collapse
|
46
|
Yamamoto K, Seki T, Yamamoto H, Adachi N, Tanaka S, Hide I, Saito N, Sakai N. Deregulation of the actin cytoskeleton and macropinocytosis in response to phorbol ester by the mutant protein kinase C gamma that causes spinocerebellar ataxia type 14. Front Physiol 2014; 5:126. [PMID: 24744737 PMCID: PMC3978357 DOI: 10.3389/fphys.2014.00126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/13/2014] [Indexed: 11/14/2022] Open
Abstract
Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. γPKC is a neuron-specific member of the classical PKCs and is activated and translocated to subcellular regions as a result of various stimuli, including diacylglycerol synthesis, increased intracellular Ca2+ and phorbol esters. We investigated whether SCA14 mutations affect the γPKC-related functions by stimulating HeLa cells with TPA (12-O-tetradecanoylpholbol 13-acetate), a type of phorbol ester. Wild-type (WT) γPKC-GFP was translocated to the plasma membrane within 10 min of TPA stimulation, followed by its perinuclear translocation and cell shrinkage, in a PKC kinase activity- and microtubule-dependent manner. On the other hand, although SCA14 mutant γPKC-GFP exhibited a similar translocation to the plasma membrane, the subsequent perinuclear translocation and cell shrinkage were significantly impaired in response to TPA. Translocated WT γPKC colocalized with F-actin and formed large vesicular structures in the perinuclear region. The uptake of FITC-dextran, a marker of macropinocytosis, was promoted by TPA stimulation in cells expressing WT γPKC, and FITC-dextran was surrounded by γPKC-positive vesicles. Moreover, TPA induced the phosphorylation of MARCKS, which is a membrane-substrate of PKC, resulting in the translocation of phosphorylated MARCKS to the perinuclear region, suggesting that TPA induces macropinocytosis via γPKC activation. However, TPA failed to activate macropinocytosis and trigger the translocation of phosphorylated MARCKS in cells expressing the SCA14 mutant γPKC. These findings suggest that γPKC is involved in the regulation of the actin cytoskeleton and macropinocytosis in HeLa cells, while SCA14 mutant γPKC fails to regulate these processes due to its reduced kinase activity at the plasma membrane. This property might be involved in pathogenesis of SCA14.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan
| | - Takahiro Seki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan ; Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University Kumamoto, Japan
| | - Hikaru Yamamoto
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan ; Biosignal Research Center, Kobe University Kobe, Japan
| | - Naoko Adachi
- Biosignal Research Center, Kobe University Kobe, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan
| | - Naoaki Saito
- Biosignal Research Center, Kobe University Kobe, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University Hiroshima, Japan
| |
Collapse
|
47
|
Förster E. Reelin, neuronal polarity and process orientation of cortical neurons. Neuroscience 2014; 269:102-11. [PMID: 24657457 DOI: 10.1016/j.neuroscience.2014.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/22/2022]
Abstract
Deficient reelin signaling leads to characteristic layering malformations in the cerebral cortex and causes polarity defects of cortical neurons. Since the discovery of reelin much has been learned about the molecular mechanisms that underlie the characteristic defects of layering defects in the reeler mutant. More recent studies provided insights in the crosstalk between reelin signaling and molecular pathways that control polarity development of radially migrating neurons. The present review summarizes and discusses recent findings on the role of reelin in modulating polarization and process orientation of neurons in the neocortex and hippocampus.
Collapse
Affiliation(s)
- E Förster
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
48
|
Protein kinase LKB1 regulates polarized dendrite formation of adult hippocampal newborn neurons. Proc Natl Acad Sci U S A 2013; 111:469-74. [PMID: 24367100 DOI: 10.1073/pnas.1321454111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult-born granule cells in the dentate gyrus of the rodent hippocampus are important for memory formation and mood regulation, but the cellular mechanism underlying their polarized development, a process critical for their incorporation into functional circuits, remains unknown. We found that deletion of the serine-threonine protein kinase LKB1 or overexpression of dominant-negative LKB1 reduced the polarized initiation of the primary dendrite from the soma and disrupted its oriented growth toward the molecular layer. This abnormality correlated with the dispersion of Golgi apparatus that normally accumulated at the base and within the initial segment of the primary dendrite, and was mimicked by disrupting Golgi organization via altering the expression of Golgi structural proteins GM130 or GRASP65. Thus, besides its known function in axon formation in embryonic pyramidal neurons, LKB1 plays an additional role in regulating polarized dendrite morphogenesis in adult-born granule cells in the hippocampus.
Collapse
|
49
|
Trafficking in neurons: Searching for new targets for Alzheimer's disease future therapies. Eur J Pharmacol 2013; 719:84-106. [DOI: 10.1016/j.ejphar.2013.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/11/2013] [Indexed: 11/22/2022]
|
50
|
Yang G, Zhou X, Zhu J, Liu R, Zhang S, Coquinco A, Chen Y, Wen Y, Kojic L, Jia W, Cynader MS. JNK3 Couples the Neuronal Stress Response to Inhibition of Secretory Trafficking. Sci Signal 2013; 6:ra57. [DOI: 10.1126/scisignal.2003727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|