1
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
2
|
Metkari AS, Witt RL, Cognetti DM, Dhong C, Jia X. Promoting Polarization and Differentiation of Primary Human Salivary Gland Stem/Progenitor Cells in Protease-Degradable Hydrogels via ROCK Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.625065. [PMID: 39651209 PMCID: PMC11623551 DOI: 10.1101/2024.11.24.625065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Towards the goal of in vitro engineering of functional salivary gland tissues, we cultured primary human salivary stem/progenitor cells (hS/PCs) in hyaluronic acid-based matrices with varying percentages of proteolytically degradable crosslinks in the presence of Rho kinase (ROCK) inhibitor. Single cells encapsulated in the hydrogel grew into organized multicellular structures by day 15, and over 60% of the structures developed in the non-degradable and 50% degradable hydrogels contained a central lumen. Importantly, ROCK inhibition led to the establishment of multicellular structures that were correctly polarized, as evidenced by apical localization of a Golgi marker GM130, apical/lateral localization of tight junction protein zonula occludens-1 (ZO-1), and basal localization of integrin β1 and basement membrane proteins laminin α1 and collagen IV. Cultures maintained in 50% degradable gels with ROCK inhibition exhibited an increased expression of acinar markers AQP5 and SLC12A2 (at the transcript level) and AQP5 and NKCC1 (at the protein level) as compared to those without ROCK inhibition. Upon stimulation with isoproterenol, α-amylase secretion into the lumen was observed. Particle-tracking microrheology was employed to analyze the stiffness of cells using mitochondria as the passive tracer particles. Our results indicated that cells grown in 100% degradable gels were stiffer than those maintained in non-degradable gels, and cells cultured with the ROCK inhibitor were softer than those maintained without the inhibitor. We conclude that reducing cellular contractility via ROCK inhibition while retaining some degree of matrix confinement promotes the establishment of multicellular structures containing pro-acinar cells with correct apicobasal polarization.
Collapse
|
3
|
Harikumar H, van Royen ME, van Leenders GJ. 4D pathology: translating dynamic epithelial tubulogenesis to prostate cancer pathology. Histopathology 2024. [PMID: 39428716 DOI: 10.1111/his.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The Gleason score is the gold standard for grading of prostate cancer (PCa) and is assessed by assigning specific grades to different microscopical growth patterns. Aside from the Gleason grades, individual growth patterns such as cribriform architecture were recently shown to have independent prognostic value for disease outcome. PCa grading is performed on static tissue samples collected at one point in time, whereas in vivo epithelial tumour structures are dynamically invading, branching and expanding into the surrounding stroma. Due to the lack of models that are able to track human PCa microscopical developments over time, our understanding of underlying tissue dynamics is sparse. We postulate that human PCa expansion utilizes embryonic and developmental tubulogenetic pathways. The aim of this study is to provide a comprehensive overview of developmental pathways of normal epithelial tubule formation, elongation, and branching, and relate those to the static microscopical PCa growth patterns observed in daily clinical practise. This study could provide a rationale for the discerned pathological interobserver variability and the clinical outcome differences between PCa growth patterns.
Collapse
Affiliation(s)
- Hridya Harikumar
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Geert Jlh van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Horikawa M, Hayase J, Kamakura S, Kohda A, Nakamura M, Sumimoto H. The scaffold protein IQGAP1 promotes reorientation of epithelial cell polarity at the two-cell stage for cystogenesis. Genes Cells 2024. [PMID: 39377417 DOI: 10.1111/gtc.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
A single epithelial cell embedded in extracellular matrix (ECM) can proliferate to form an apical lumen-harboring cyst, whose formation is a fundamental step in epithelial organ development. At an early two-cell stage after cell division, the cell doublet typically displays "inverted" polarity, with apical and basolateral proteins being located to the ECM-facing and cell-cell-contacting plasma membranes, respectively. Correct cystogenesis requires polarity reorientation, a process containing apical protein endocytosis from the ECM-abutting periphery and subsequent apical vesicle delivery to a cell-cell contact site for lumen formation. Here, we show that downstream of the ECM-signal-transducer β1-integrin, Rac1, and its effector IQGAP1 promote apical protein endocytosis, contributing to polarity reorientation of mammalian epithelial Madin-Darby canine kidney (MDCK) cells at a later two-cell stage in three-dimensional culture. Rac1-GTP facilitates IQGAP1 interaction with the Rac-specific activator Tiam1, which also contributes to the endocytosis and enhances the effect of IQGAP1. These findings suggest that Tiam1 and IQGAP1 form a positive feedback loop to activate Rac1. With Rac1-GTP, IQGAP1 also binds to AP2α, an adaptor protein subunit for clathrin-mediated endocytosis; depletion of the AP2 complex impairs apical protein endocytosis in MDCK doublets. Thus, Rac1 likely participates in polarity reorientation at the two-cell stage via its interaction with IQGAP1.
Collapse
Affiliation(s)
- Michihiro Horikawa
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
5
|
Rijns L, Hagelaars MJ, van der Tol JJB, Loerakker S, Bouten CVC, Dankers PYW. The Importance of Effective Ligand Concentration to Direct Epithelial Cell Polarity in Dynamic Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300873. [PMID: 37264535 DOI: 10.1002/adma.202300873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Epithelial cysts and organoids are multicellular hollow structures formed by correctly polarized epithelial cells. Important in steering these cysts from single cells is the dynamic regulation of extracellular matrix presented ligands, and matrix dynamics. Here, control over the effective ligand concentration is introduced, decoupled from bulk and local mechanical properties, in synthetic dynamic supramolecular hydrogels formed through noncovalent crosslinking of supramolecular fibers. Control over the effective ligand concentration is realized by 1) keeping the ligand concentration constant, but changing the concentration of nonfunctionalized molecules or by 2) varying the ligand concentration, while keeping the concentration of non-functionalized molecules constant. The results show that in 2D, the effective ligand concentration within the supramolecular fibers rather than gel stiffness (from 0.1 to 8 kPa) regulates epithelial polarity. In 3D, increasing the effective ligand concentration from 0.5 × 10-3 to 2 × 10-3 m strengthens the effect of increased gel stiffness from 0.1 to 2 kPa, to synergistically yield more correctly polarized cysts. Through integrin manipulation, it is shown that epithelial polarity is regulated by tension-based homeostasis between cells and matrix. The results reveal the effective ligand concentration as influential factor in regulating epithelial polarity and provide insights on engineering of synthetic biomaterials for cell and organoid culture.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Maria J Hagelaars
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Joost J B van der Tol
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Lee JH, LeCher JC, Parigoris E, Shinagawa N, Sentosa J, Manfredi C, Goh SL, De R, Tao S, Zandi K, Amblard F, Sorscher EJ, Spence JR, Tirouvanziam R, Schinazi RF, Takayama S. Development of robust antiviral assays using relevant apical-out human airway organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573939. [PMID: 38260306 PMCID: PMC10802305 DOI: 10.1101/2024.01.02.573939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
While breakthroughs with organoids have emerged as next-generation in vitro tools, standardization for drug discovery remains a challenge. This work introduces human airway organoids with reversed biopolarity (AORBs), cultured and analyzed in a high-throughput, single-organoid-per-well format, enabling milestones towards standardization. AORBs exhibit a spatio-temporally stable apical-out morphology, facilitating high-yield direct intact-organoid virus infection. Single-cell RNA sequencing and immunohistochemistry confirm the physiologically relevant recapitulation of differentiated human airway epithelia. The cellular tropism of five severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains along with host response differences between Delta, Washington, and Omicron variants, as observed in transcriptomic profiles, also suggest clinical relevance. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds (remdesivir, bemnifosbuvir, and nirmatrelvir) demonstrates that AORBs efficiently predict human efficacy, comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). This combination of throughput and relevance allows AORBs to robustly detect false negative results in efficacy, preventing irretrievable loss of promising lead compounds. While this work leverages the SARS-CoV-2 study as a proof-of-concept application, the standardization capacity of AORB holds broader implications in line with regulatory efforts to push alternatives to animal studies.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Julia C. LeCher
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Noriyuki Shinagawa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Jason Sentosa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Candela Manfredi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Shu Ling Goh
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ramyani De
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sijia Tao
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keivan Zandi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric J. Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Rabindra Tirouvanziam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Center for Cystic Fibrosis & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Raymond F. Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Rosner M, Hengstschläger M. Oct4 controls basement membrane development during human embryogenesis. Dev Cell 2024; 59:1439-1456.e7. [PMID: 38579716 DOI: 10.1016/j.devcel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive. Using the post-implantation amniotic sac embryoid (PASE), we delineate BM assembly upon post-implantation development and BM disassembly during primitive streak (PS) cell dissemination. Further, we show that the transcription factor Oct4 regulates the expression of BM structural components and receptors and controls BM development by regulating Akt signaling and the small GTPase Rac1. These results represent a relevant step toward a more comprehensive understanding of early human development.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
8
|
Guo D, Liu S, Zhang J, Gu X, Shi L, Su Y, Xu S, Ju R, Wei Y, Liu C. Prickle1-driven basement membrane deposition of the iPSC-derived embryoid bodies is separable from the establishment of apicobasal polarity. Cell Prolif 2024; 57:e13595. [PMID: 38185785 PMCID: PMC11150132 DOI: 10.1111/cpr.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Basement membrane (BM) component deposition is closely linked to the establishment of cell polarity. Previously, we showed that Prickle1 is crucial for BM deposition and cell polarity events in tear duct elongation. To gain a deeper understanding of the intimate relationship between BM formation and cell polarity, we generated induced pluripotent stem cells (iPSCs)-derived embryoid bodies (EBs) with a basement membrane separating the visceral endoderm (VE) and inner EB cell mass. We found that Prickle1 was highly expressed in VE of the normal EBs, and the Prickle1 mutant EBs displayed severely impaired BM. Notably, the formation of the basement membrane appeared to rely on the proper microtubule network of the VE cells, which was disrupted in the Prickle1 mutant EBs. Moreover, disruption of vesicle trafficking in the VE hindered BM secretion. Furthermore, reintroducing Prickle1 in the mutant EBs completely rescued BM formation but not the apicobasal cell polarity of the VE. Our data, in conjunction with studies by others, highlight the conserved role of Prickle1 in directing the secretion of BM components of the VE cells during embryonic germ layer differentiation, even in the absence of established general polarity machinery. Our study introduces a novel system based on iPSCs-derived EBs for investigating cellular and molecular events associated with cell polarity.
Collapse
Affiliation(s)
- Dianlei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Sikai Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Lei Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yingchun Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Shujuan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yanhong Wei
- Department of Toxicology, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseGuangzhouChina
| |
Collapse
|
9
|
Hagelaars MJ, Nikolic M, Vermeulen M, Dekker S, Bouten CVC, Loerakker S. A computational analysis of the role of integrins and Rho-GTPases in the emergence and disruption of apical-basal polarization in renal epithelial cells. PLoS Comput Biol 2024; 20:e1012140. [PMID: 38768266 PMCID: PMC11142725 DOI: 10.1371/journal.pcbi.1012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Apical-basal polarization in renal epithelial cells is crucial to renal function and an important trigger for tubule formation in kidney development. Loss of polarity can induce epithelial-to-mesenchymal transition (EMT), which can lead to kidney pathologies. Understanding the relative and combined roles of the involved proteins and their interactions that govern epithelial polarity may provide insights for controlling the process of polarization via chemical or mechanical manipulations in an in vitro or in vivo setting. Here, we developed a computational framework that integrates several known interactions between integrins, Rho-GTPases Rho, Rac and Cdc42, and polarity complexes Par and Scribble, to study their mutual roles in the emergence of polarization. The modeled protein interactions were shown to induce the emergence of polarized distributions of Rho-GTPases, which in turn led to the accumulation of apical and basal polarity complexes Par and Scribble at their respective poles, effectively recapitulating polarization. Our multiparametric sensitivity analysis suggested that polarization depends foremost on the mutual inhibition between Rac and Rho. Next, we used the computational framework to investigate the role of integrins and GTPases in the generation and disruption of polarization. We found that a minimum concentration of integrins is required to catalyze the process of polarization. Furthermore, loss of polarization was found to be only inducible via complete degradation of the Rho-GTPases Rho and Cdc42, suggesting that polarization is fairly stable once it is established. Comparison of our computational predictions against data from in vitro experiments in which we induced EMT in renal epithelial cells while quantifying the relative Rho-GTPase levels, displayed that EMT coincides with a large reduction in the Rho-GTPase Rho. Collectively, these results demonstrate the essential roles of integrins and Rho-GTPases in the establishment and disruption of apical-basal polarity and thereby provide handles for the in vitro or in vivo regulation of polarity.
Collapse
Affiliation(s)
- Maria J. Hagelaars
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Milica Nikolic
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Maud Vermeulen
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Sylvia Dekker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Bock F, Dong X, Li S, Viquez OM, Sha E, Tantengco M, Hennen EM, Plosa E, Ramezani A, Brown KL, Whang YM, Terker AS, Arroyo JP, Harrison DG, Fogo A, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. SCIENCE ADVANCES 2024; 10:eadi7840. [PMID: 38324689 PMCID: PMC10849615 DOI: 10.1126/sciadv.adi7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Sha
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Tantengco
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erin Plosa
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alireza Ramezani
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young Mi Whang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cord H. Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
11
|
Sandegaard SL, Riishede A, Birn H, Damkier HH, Praetorius J. The Cyst Epithelium in Polycystic Kidney Disease Patients Displays Normal Apical-Basolateral Cell Polarity. Int J Mol Sci 2024; 25:1904. [PMID: 38339183 PMCID: PMC10855726 DOI: 10.3390/ijms25031904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The main characteristic of polycystic kidney disease is the development of multiple fluid-filled renal cysts. The discovery of mislocalized sodium-potassium pump (Na,K-ATPase) in the apical membrane of cyst-lining epithelia alluded to reversal of polarity as a possible explanation for the fluid secretion. The topic of apical Na,K-ATPase in cysts remains controversial. We investigated the localization of the Na,K-ATPase and assessed the apical-basolateral polarization of cyst-lining epithelia by means of immunohistochemistry in kidney tissue from six polycystic kidney disease patients undergoing nephrectomy. The Na,K-ATPase α1 subunit was conventionally situated in the basolateral membrane of all immunoreactive cysts. Proteins of the Crumbs and partitioning defective (Par) complexes were localized to the apical membrane domain in cyst epithelial cells. The apical targeting protein Syntaxin-3 also immunolocalized to the apical domain of cyst-lining epithelial cells. Proteins of the basolateral Scribble complex immunolocalized to the basolateral domain of cysts. Thus, no deviations from the typical epithelial distribution of basic cell polarity proteins were observed in the cysts from the six patients. Furthermore, we confirmed that cysts can originate from virtually any tubular segment with preserved polarity. In conclusion, we find no evidence of a reversal in apical-basolateral polarity in cyst-lining epithelia in polycystic kidney disease.
Collapse
Affiliation(s)
- Samuel Loft Sandegaard
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
| | - Andreas Riishede
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
| | - Henrik Birn
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
- Department of Clinical Medicine, Health Faculty, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Helle Hasager Damkier
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
| | - Jeppe Praetorius
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
| |
Collapse
|
12
|
Chen YP, Shao Y, Chen PC, Li K, Li JY, Meng J, Lv CL, Liu HY, Lv C, Feng XQ, Li B. Substrate nesting guides cyst morphogenesis of human pluripotent stem cells without 3D extracellular matrix overlay. Acta Biomater 2023; 170:519-531. [PMID: 37659729 DOI: 10.1016/j.actbio.2023.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Understanding the principles underlying the self-organization of stem cells into tissues is fundamental for deciphering human embryo development. Here, we report that, without three-dimensional (3D) extracellular matrix (ECM) overlay, human pluripotent stem cells (hPSCs) cultured on two-dimensional soft elastic substrates can self-organize into 3D cysts resembling the human epiblast sac in a stiffness-dependent manner. Our theoretical modeling predicts that this cyst organization is facilitated and guided by the spontaneous nesting of the soft substrate, which results from the adhesion-dependent mechanical interaction between cells and substrate. Such substrate nesting is sufficient for the 3D assembly and polarization of hPSCs required for cyst organization, even without 3D ECM overlay. Furthermore, we identify that the reversible substrate nesting and cyst morphogenesis also require appropriate activation of ROCK-Myosin II pathway. This indicates a unique set of tissue morphomechanical signaling mechanisms that clearly differ from the canonical cystogenic mechanism previously reported in 3D ECM. Our findings highlight an unanticipated synergy between mechanical microenvironment and mechanotransduction in controlling tissue morphogenesis and suggest a mechanics-based strategy for generation of hPSCs-derived models for early human embryogenesis. STATEMENT OF SIGNIFICANCE: Soft substrates can induce the self-organization of human pluripotent stem cells (hPSCs) into cysts without three-dimensional (3D) extracellular matrix (ECM) overlay. However, the underlying mechanisms by which soft substrate guides cystogenesis are largely unknown. This study shows that substrate nesting, resulting from cell-substrate interaction, plays an important role in cyst organization, including 3D assembly and apical-basal polarization. Additionally, actomyosin contractility mediated by the ROCK-Myosin II pathway also contributes to the substrate deformation and cyst morphology. These findings demonstrate the interplay between the mechanical microenvironment and cells in tissue morphogenesis, suggesting a mechanics-based strategy in building hPSC-derived models for early human embryo development.
Collapse
Affiliation(s)
- Yun-Ping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Kun Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jing-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jie Meng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Cheng-Lin Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hao-Yu Liu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Cunjing Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Naturale VF, Pickett MA, Feldman JL. Persistent cell contacts enable E-cadherin/HMR-1- and PAR-3-based symmetry breaking within a developing C. elegans epithelium. Dev Cell 2023; 58:1830-1846.e12. [PMID: 37552986 PMCID: PMC10592304 DOI: 10.1016/j.devcel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/10/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Tissue-wide patterning is essential to multicellular development, requiring cells to individually generate polarity axes and coordinate them in space and time with neighbors. Using the C. elegans intestinal epithelium, we identified a patterning mechanism that is informed by cell contact lifetime asymmetry and executed via the scaffolding protein PAR-3 and the transmembrane protein E-cadherin/HMR-1. Intestinal cells break symmetry as PAR-3 and HMR-1 recruit apical determinants into punctate "local polarity complexes" (LPCs) at homotypic contacts. LPCs undergo an HMR-1-based migration to a common midline, thereby establishing tissue-wide polarity. Thus, symmetry breaking results from PAR-3-dependent intracellular polarization coupled to HMR-1-based tissue-level communication, which occurs through a non-adhesive signaling role for HMR-1. Differential lifetimes between homotypic and heterotypic cell contacts are created by neighbor exchanges and oriented divisions, patterning where LPCs perdure and thereby breaking symmetry. These cues offer a logical and likely conserved framework for how epithelia without obvious molecular asymmetries can polarize.
Collapse
Affiliation(s)
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Narayanan V, Purkayastha P, Yu B, Pendyala K, Chukkapalli S, Cabe JI, Dickinson RB, Conway DE, Lele TP. Rho activation drives luminal collapse and eversion in epithelial acini. Biophys J 2023; 122:3630-3645. [PMID: 36617192 PMCID: PMC10541472 DOI: 10.1016/j.bpj.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/30/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Epithelial cells lining a gland and cells grown in a soft extracellular matrix polarize with apical proteins exposed to the lumen and basal proteins in contact with the extracellular matrix. Alterations to polarity, including an apical-out polarity, occur in human cancers. Although some aberrant polarity states may result from altered protein trafficking, recent observations of an extraordinary tissue-level inside-out unfolding suggest an alternative pathway for altered polarity. Because mechanical alterations are common in human cancer, including an upregulation of RhoA-mediated actomyosin tension in acinar epithelia, we explored whether perturbing mechanical homeostasis could cause apical-out eversion. Acinar eversion was robustly induced by direct activation of RhoA in normal and tumor epithelial acini, or indirect activation of RhoA through blockage of β1-integrins, disruption of the LINC complex, oncogenic Ras activation, or Rac1 inhibition. Furthermore, laser ablation of a portion of the untreated acinus was sufficient to induce eversion. Analyses of acini revealed high curvature and low phosphorylated myosin in the apical cell surfaces relative to the basal surfaces. A vertex-based mathematical model that balances tension at cell-cell interfaces revealed a fivefold greater basal cell surface tension relative to the apical cell surface tension. The model suggests that the difference in surface energy between the apical and basal surfaces is the driving force for acinar eversion. Our findings raise the possibility that a loss of mechanical homeostasis may cause apical-out polarity states in human cancers.
Collapse
Affiliation(s)
- Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Purboja Purkayastha
- Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Kavya Pendyala
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Sasanka Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Jolene I Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida.
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio.
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas; Department of Chemical Engineering, Texas A&M University, College Station, Texas; Department of Translational Medical Sciences, Texas A&M University, College Station, Texas.
| |
Collapse
|
15
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Rincón-Ortega L, Valencia-Expósito A, Kabanova A, González-Reyes A, Martin-Bermudo MD. Integrins control epithelial stem cell proliferation in the Drosophila ovary by modulating the Notch pathway. Front Cell Dev Biol 2023; 11:1114458. [PMID: 36926523 PMCID: PMC10011466 DOI: 10.3389/fcell.2023.1114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Cell proliferation and differentiation show a remarkable inverse relationship. The temporal coupling between cell cycle withdrawal and differentiation of stem cells (SCs) is crucial for epithelial tissue growth, homeostasis and regeneration. Proliferation vs. differentiation SC decisions are often controlled by the surrounding microenvironment, of which the basement membrane (BM; a specialized form of extracellular matrix surrounding cells and tissues), is one of its main constituents. Years of research have shown that integrin-mediated SC-BM interactions regulate many aspects of SC biology, including the proliferation-to-differentiation switch. However, these studies have also demonstrated that the SC responses to interactions with the BM are extremely diverse and depend on the cell type and state and on the repertoire of BM components and integrins involved. Here, we show that eliminating integrins from the follicle stem cells (FSCs) of the Drosophila ovary and their undifferentiated progeny increases their proliferation capacity. This results in an excess of various differentiated follicle cell types, demonstrating that cell fate determination can occur in the absence of integrins. Because these phenotypes are similar to those found in ovaries with decreased laminin levels, our results point to a role for the integrin-mediated cell-BM interactions in the control of epithelial cell division and subsequent differentiation. Finally, we show that integrins regulate proliferation by restraining the activity of the Notch/Delta pathway during early oogenesis. Our work increases our knowledge of the effects of cell-BM interactions in different SC types and should help improve our understanding of the biology of SCs and exploit their therapeutic potential.
Collapse
Affiliation(s)
- Lourdes Rincón-Ortega
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | | | - Anna Kabanova
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | - Maria D Martin-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| |
Collapse
|
17
|
Naturale VF, Pickett MA, Feldman JL. Context matters: Lessons in epithelial polarity from the Caenorhabditis elegans intestine and other tissues. Curr Top Dev Biol 2023; 154:37-71. [PMID: 37100523 DOI: 10.1016/bs.ctdb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epithelia are tissues with diverse morphologies and functions across metazoans, ranging from vast cell sheets encasing internal organs to internal tubes facilitating nutrient uptake, all of which require establishment of apical-basolateral polarity axes. While all epithelia tend to polarize the same components, how these components are deployed to drive polarization is largely context-dependent and likely shaped by tissue-specific differences in development and ultimate functions of polarizing primordia. The nematode Caenorhabditis elegans (C. elegans) offers exceptional imaging and genetic tools and possesses unique epithelia with well-described origins and roles, making it an excellent model to investigate polarity mechanisms. In this review, we highlight the interplay between epithelial polarization, development, and function by describing symmetry breaking and polarity establishment in a particularly well-characterized epithelium, the C. elegans intestine. We compare intestinal polarization to polarity programs in two other C. elegans epithelia, the pharynx and epidermis, correlating divergent mechanisms with tissue-specific differences in geometry, embryonic environment, and function. Together, we emphasize the importance of investigating polarization mechanisms against the backdrop of tissue-specific contexts, while also underscoring the benefits of cross-tissue comparisons of polarity.
Collapse
Affiliation(s)
- Victor F Naturale
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA, United States; Department of Biological Sciences, San José State University, San José, CA, United States
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
18
|
Hamed MM, Taniguchi K, Duncan MC. Monitoring Effects of Membrane Traffic Via Changes in Cell Polarity and Morphogenesis in Three-Dimensional Human Pluripotent Stem Cell Cysts. Methods Mol Biol 2023; 2557:83-98. [PMID: 36512211 PMCID: PMC10276343 DOI: 10.1007/978-1-0716-2639-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane traffic at the Golgi and endosomes plays many critical roles in the polarization and the morphogenesis of epithelial tissues. Studies into the roles of traffic in morphogenesis in mammals are often complicated by early embryonic lethality of mutations in membrane traffic as well as the inherent difficulty in imaging developing embryos posed by their size and location. Increasingly, human pluripotent stem cell (hPSC)-derived embryo- and organ-like systems (e.g., embryoids, organoids) provide a useful platform to illuminate the requirements of traffic in human embryonic tissue morphogenesis because these in vitro models are highly amenable to fluorescence microscopy and provide the ability to examine the role of essential genes not possible with animal studies. Here, we present a method to generate hPSC-cysts, a 3-D hPSC-based model of human epiblast lumen formation. This system provides unique opportunities to examine the role of membrane traffic during epithelial morphogenesis. We also present methods to process hPSC-cysts for immunofluorescence and staining with commonly used fluorescence labels useful for detecting defects in polarization and morphogenesis caused by defects in membrane traffic.
Collapse
Affiliation(s)
- Maha M Hamed
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
20
|
Rac1 deficiency impairs postnatal development of the renal papilla. Sci Rep 2022; 12:20310. [PMID: 36434091 PMCID: PMC9700760 DOI: 10.1038/s41598-022-24462-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Development of the renal medulla continues after birth to form mature renal papilla and obtain urine-concentrating ability. Here, we found that a small GTPase, Rac1, plays a critical role in the postnatal development of renal papilla. Mice with distal tubule-specific deletion of Rac1 reached adulthood but showed polydipsia and polyuria with an impaired ability to concentrate urine. The elongation of renal papilla that occurs in the first weeks after birth was impaired in the Rac1-deficient infants, resulting in shortening and damage of the renal papilla. Moreover, the osmoprotective signaling mediated by nuclear factor of activated T cells 5, which is a key molecule of osmotic response to osmotic stress in renal medulla, was significantly impaired in the kidneys of the Rac1-deficient infants. These results demonstrate that Rac1 plays an important role in the development of renal papilla in the postnatal period, and suggested a potential link between Rac1 and osmotic response.
Collapse
|
21
|
Fuji K, Tanida S, Sano M, Nonomura M, Riveline D, Honda H, Hiraiwa T. Computational approaches for simulating luminogenesis. Semin Cell Dev Biol 2022; 131:173-185. [PMID: 35773151 DOI: 10.1016/j.semcdb.2022.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
Lumens, liquid-filled cavities surrounded by polarized tissue cells, are elementary units involved in the morphogenesis of organs. Theoretical modeling and computations, which can integrate various factors involved in biophysics of morphogenesis of cell assembly and lumens, may play significant roles to elucidate the mechanisms in formation of such complex tissue with lumens. However, up to present, it has not been documented well what computational approaches or frameworks can be applied for this purpose and how we can choose the appropriate approach for each problem. In this review, we report some typical lumen morphologies and basic mechanisms for the development of lumens, focusing on three keywords - mechanics, hydraulics and geometry - while outlining pros and cons of the current main computational strategies. We also describe brief guidance of readouts, i.e., what we should measure in experiments to make the comparison with the model's assumptions and predictions.
Collapse
Affiliation(s)
- Kana Fuji
- Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakurako Tanida
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Masaki Sano
- Institute of Natural Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Makiko Nonomura
- Department of Mathematical Information Engineering, College of Industrial Technology, Nihon University, 1-2-1 Izumicho, Narashino-shi, Chiba 275-8575, Japan
| | - Daniel Riveline
- Laboratory of Cell Physics IGBMC, CNRS, INSERM and Université de Strasbourg, Strasbourg, France
| | - Hisao Honda
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine Kobe University, Kobe, Hyogo, Japan
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore.
| |
Collapse
|
22
|
Parigoris E, Lee JH, Liu AY, Zhao X, Takayama S. Extended longevity geometrically-inverted proximal tubule organoids. Biomaterials 2022; 290:121828. [PMID: 36215909 PMCID: PMC10693433 DOI: 10.1016/j.biomaterials.2022.121828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 01/22/2023]
Abstract
This study reports the cellular self-organization of primary human renal proximal tubule epithelial cells (RPTECs) around a minimal Matrigel scaffold to produce basal-in and apical-out proximal tubule organoids (tubuloids). These tubuloids are produced and maintained in hanging drop cultures for 90+ days, the longest such culture of any kind reported to date. The tubuloids upregulate maturity markers, such as aquaporin-1 (AQP1) and megalin (LRP2), and exhibit less mesenchymal and proliferation markers, such as vimentin and Ki67, compared to 2D cultures. They also experience changes over time as revealed by a comparison of gene expression patterns of cells in 2D culture and in day 31 and day 67 tubuloids. Gene expression analysis and immunohistochemistry reveal an increase in the expression of megalin, an endocytic receptor that can directly bind and uptake protein or potentially assist protein uptake. The tubuloids, including day 90 tubuloids, uptake fluorescent albumin and reveal punctate fluorescent patterns, suggesting functional endocytic uptake through these receptors. Furthermore, the tubuloids release kidney injury molecule-1 (KIM-1), a common biomarker for kidney injury, when exposed to albumin in both dose- and time-dependent manners. While this study focuses on potential applications for modeling proteinuric kidney disease, the tubuloids may have broad utility for studies where apical proximal tubule cell access is required.
Collapse
Affiliation(s)
- Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Amy Yunfan Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
23
|
Onuma K, Inoue M. Abnormality of Apico-Basal Polarity in Adenocarcinoma. Cancer Sci 2022; 113:3657-3663. [PMID: 36047965 PMCID: PMC9633284 DOI: 10.1111/cas.15549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/17/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Apico–basal polarity is a fundamental property of the epithelium that functions as a barrier, holds cells together, and determines the directions of absorption and secretion. Apico–basal polarity is regulated by extracellular matrix‐integrin binding and downstream signaling pathways, including focal adhesion kinase, rouse‐sarcoma oncogene (SRC), and RHO/RHO‐associated kinase (ROCK). Loss of epithelial cell polarity plays a critical role in the progression of cancer cells. However, in differentiated carcinomas, polarity is not completely lost but dysregulated. Recent progress with a three‐dimensional culture of primary cancer cells allowed for studies of the mechanism underlying the abnormality of polarity in differentiated cancers, including flexible switching of polarity status in response to the microenvironment. Invasive micropapillary carcinoma (MPC) is one of the histopathological phenotypes of adenocarcinoma, which is characterized by inverted polarity. Aberrant activation of RHO–ROCK signaling plays a critical role in the MPC phenotype. Establishing in vitro models will contribute to future drug targeting of the abnormal polarity status in cancer.
Collapse
Affiliation(s)
- Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
25
|
Cote LE, Feldman JL. Won't You be My Neighbor: How Epithelial Cells Connect Together to Build Global Tissue Polarity. Front Cell Dev Biol 2022; 10:887107. [PMID: 35800889 PMCID: PMC9253303 DOI: 10.3389/fcell.2022.887107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues form continuous barriers to protect against external environments. Within these tissues, epithelial cells build environment-facing apical membranes, junction complexes that anchor neighbors together, and basolateral surfaces that face other cells. Critically, to form a continuous apical barrier, neighboring epithelial cells must align their apico-basolateral axes to create global polarity along the entire tissue. Here, we will review mechanisms of global tissue-level polarity establishment, with a focus on how neighboring epithelial cells of different origins align their apical surfaces. Epithelial cells with different developmental origins and/or that polarize at different times and places must align their respective apico-basolateral axes. Connecting different epithelial tissues into continuous sheets or tubes, termed epithelial fusion, has been most extensively studied in cases where neighboring cells initially dock at an apical-to-apical interface. However, epithelial cells can also meet basal-to-basal, posing several challenges for apical continuity. Pre-existing basement membrane between the tissues must be remodeled and/or removed, the cells involved in docking are specialized, and new cell-cell adhesions are formed. Each of these challenges can involve changes to apico-basolateral polarity of epithelial cells. This minireview highlights several in vivo examples of basal docking and how apico-basolateral polarity changes during epithelial fusion. Understanding the specific molecular mechanisms of basal docking is an area ripe for further exploration that will shed light on complex morphogenetic events that sculpt developing organisms and on the cellular mechanisms that can go awry during diseases involving the formation of cysts, fistulas, atresias, and metastases.
Collapse
|
26
|
Loss of KAP3 decreases intercellular adhesion and impairs intracellular transport of laminin in signet ring cell carcinoma of the stomach. Sci Rep 2022; 12:5050. [PMID: 35322078 PMCID: PMC8943207 DOI: 10.1038/s41598-022-08904-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Signet-ring cell carcinoma (SRCC) is a unique subtype of gastric cancer that is impaired for cell-cell adhesion. The pathogenesis of SRCC remains unclear. Here, we show that expression of kinesin-associated protein 3 (KAP3), a cargo adaptor subunit of the kinesin superfamily protein 3 (KIF3), a motor protein, is specifically decreased in SRCC of the stomach. CRISPR/Cas9-mediated gene knockout experiments indicated that loss of KAP3 impairs the formation of circumferential actomyosin cables by inactivating RhoA, leading to the weakening of cell-cell adhesion. Furthermore, in KAP3 knockout cells, post-Golgi transport of laminin, a key component of the basement membrane, was inhibited, resulting in impaired basement membrane formation. Together, these findings uncover a potential role for KAP3 in the pathogenesis of SRCC of the stomach.
Collapse
|
27
|
Hagelaars MJ, Yousef Yengej FA, Verhaar MC, Rookmaaker MB, Loerakker S, Bouten CVC. Substrate Stiffness Determines the Establishment of Apical-Basal Polarization in Renal Epithelial Cells but Not in Tubuloid-Derived Cells. Front Bioeng Biotechnol 2022; 10:820930. [PMID: 35299632 PMCID: PMC8923587 DOI: 10.3389/fbioe.2022.820930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 11/15/2022] Open
Abstract
Mechanical guidance of tissue morphogenesis is an emerging method of regenerative medicine that can be employed to steer functional kidney architecture for the purpose of bioartificial kidney design or renal tissue engineering strategies. In kidney morphogenesis, apical-basal polarization of renal epithelial cells is paramount for tubule formation and subsequent tissue functions like excretion and resorption. In kidney epithelium, polarization is initiated by integrin-mediated cell-matrix adhesion at the cell membrane. Cellular mechanobiology research has indicated that this integrin-mediated adhesion is responsive to matrix stiffness, raising the possibility to use matrix stiffness as a handle to steer cell polarization. Herein, we evaluate apical-basal polarization in response to 2D substates of different stiffness (1, 10, 50 kPa and glass) in Madin Darby Canine Kidney cells (MDCKs), a classic canine-derived cell model of epithelial polarization, and in tubuloid-derived cells, established from human primary cells derived from adult kidney tissue. Our results show that sub-physiological (1 kPa) substrate stiffness with low integrin-based adhesion induces polarization in MDCKs, while MDCKs on supraphysiological (>10 kPa) stiffness remain unpolarized. Inhibition of integrin, indeed, allows for polarization on the supraphysiological substrates, suggesting that increased cellular adhesion on stiff substrates opposes polarization. In contrast, tubuloid-derived cells do not establish apical-basal polarization on 2D substrates, irrespective of substrate stiffness, despite their ability to polarize in 3D environments. Further analysis implies that the 2D cultured tubuloid-derived cells have a diminished mechanosensitive capacity when presented with different substrate stiffnesses due to immature focal adhesions and the absence of a connection between focal adhesions and the cytoskeleton. Overall, this study demonstrates that apical-basal polarization is a complex process, where cell type, the extracellular environment, and both the mechanical and chemical aspects in cell-matrix interactions performed by integrins play a role.
Collapse
Affiliation(s)
- Maria J. Hagelaars
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sandra Loerakker
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Carlijn V. C. Bouten
- Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
- *Correspondence: Carlijn V. C. Bouten,
| |
Collapse
|
28
|
SUGINO Y, SATO T, YAMAMOTO Y, KIMURA K. Evaluation of bovine uterine gland functions in 2D and 3D culture system. J Reprod Dev 2022; 68:254-261. [PMID: 35644574 PMCID: PMC9334319 DOI: 10.1262/jrd.2022-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In ruminants, uterine glands play key roles in the establishment of pregnancy by secreting various factors into the uterine lumen. Although a three-dimensional (3D) culture system has been
used for investigating cellular functions in vitro, the detailed functions of uterine gland have not been fully elucidated. In this study, we examined the benefits of 3D
culture system to examine the innate functions of bovine uterine glands. Isolated bovine uterine glands were cultured on Matrigel (2D) or in Matrigel (3D), respectively, and the mRNA levels
of secreted proteins (SERPINA14, MEP1B, APOA1, ARSA, CTGF, and SPP1) were measured in
isolated and cultured uterine glands. The protein expression of estrogen receptor β (ERβ) and progesterone receptor (PR) and the establishment of apico-basal polarity were examined. In
isolated uterine glands, the mRNA levels of secreted proteins changed during the estrous cycle. Although uterine glands cultured in both 2D and 3D expressed ERβ and PR, progesterone did not
affect SERPINA14 mRNA expression. The expression of APOA1 mRNA in 2D cultured uterine glands did not respond to estrogen and progesterone. Additionally, the
mRNA levels of secreted proteins in the 3D culture system were significantly higher than those in the 2D culture system, which might be attributed to the different cellular morphology
between them. The locations of ZO-1 and β-catenin in 2D cultured uterine glands were disordered compared with 3D cultured uterine glands. These results showed that the hormonal
responsiveness of secreted factor expression and cellular morphology were different between 2D and 3D cultured bovine uterine glands.
Collapse
Affiliation(s)
- Yosuke SUGINO
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Taiki SATO
- Laboratory of Reproductive Physiology, Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Yuki YAMAMOTO
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Koji KIMURA
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
29
|
Bock F, Elias BC, Dong X, Parekh DV, Mernaugh G, Viquez OM, Hassan A, Amara VR, Liu J, Brown KL, Terker AS, Chiusa M, Gewin LS, Fogo AB, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct integrity by limiting actomyosin activity. J Cell Biol 2021; 220:e202103080. [PMID: 34647970 PMCID: PMC8563289 DOI: 10.1083/jcb.202103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
A polarized collecting duct (CD), formed from the branching ureteric bud (UB), is a prerequisite for an intact kidney. The small Rho GTPase Rac1 is critical for actin cytoskeletal regulation. We investigated the role of Rac1 in the kidney collecting system by selectively deleting it in mice at the initiation of UB development. The mice exhibited only a mild developmental phenotype; however, with aging, the CD developed a disruption of epithelial integrity and function. Despite intact integrin signaling, Rac1-null CD cells had profound adhesion and polarity abnormalities that were independent of the major downstream Rac1 effector, Pak1. These cells did however have a defect in the WAVE2-Arp2/3 actin nucleation and polymerization apparatus, resulting in actomyosin hyperactivity. The epithelial defects were reversible with direct myosin II inhibition. Furthermore, Rac1 controlled lateral membrane height and overall epithelial morphology by maintaining lateral F-actin and restricting actomyosin. Thus, Rac1 promotes CD epithelial integrity and morphology by restricting actomyosin via Arp2/3-dependent cytoskeletal branching.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bertha C. Elias
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Diptiben V. Parekh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anjana Hassan
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Venkateswara Rao Amara
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jiageng Liu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs Hospital, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
30
|
Vasquez CG, Vachharajani VT, Garzon-Coral C, Dunn AR. Physical basis for the determination of lumen shape in a simple epithelium. Nat Commun 2021; 12:5608. [PMID: 34556639 PMCID: PMC8460836 DOI: 10.1038/s41467-021-25050-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
The formation of a hollow lumen in a formerly solid mass of cells is a key developmental process whose dysregulation leads to diseases of the kidney and other organs. Hydrostatic pressure has been proposed to drive lumen expansion, a view that is supported by experiments in the mouse blastocyst. However, lumens formed in other tissues adopt irregular shapes with cell apical faces that are bowed inward, suggesting that pressure may not be the dominant contributor to lumen shape in all cases. Here we use live-cell imaging to study the physical mechanism of lumen formation in Madin-Darby Canine Kidney cell spheroids, a canonical cell-culture model for lumenogenesis. We find that in this system, lumen shape reflects basic geometrical considerations tied to the establishment of apico-basal polarity. A physical model incorporating both cell geometry and intraluminal pressure can account for our observations as well as cases in which pressure plays a dominant role.
Collapse
Affiliation(s)
| | | | | | - Alexander R Dunn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Pierreux CE. Shaping the thyroid: From peninsula to de novo lumen formation. Mol Cell Endocrinol 2021; 531:111313. [PMID: 33961919 DOI: 10.1016/j.mce.2021.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/06/2023]
Abstract
A challenging and stimulating question in biology deals with the formation of organs from groups of undifferentiated progenitor cells. Most epithelial organs indeed derive from the endodermal monolayer and evolve into various shape and tridimensional organization adapted to their specialized adult function. Thyroid organogenesis is no exception. In most mammals, it follows a complex and sequential process initiated from the endoderm and leading to the development of a multitude of independent closed spheres equipped and optimized for the synthesis, storage and production of thyroid hormones. The first sign of thyroid organogenesis is visible as a thickening of the anterior foregut endoderm. This group of thyroid progenitors then buds and detaches from the foregut to migrate caudally and then laterally. Upon reaching their final destination in the upper neck region on both sides of the trachea, thyroid progenitors mix with C cell progenitors and finally organize into hormone-producing thyroid follicles. Intrinsic and extrinsic factors controlling thyroid organogenesis have been identified in several species, but the fundamental cellular processes are not sufficiently considered. This review focuses on the cellular aspects of the key morphogenetic steps during thyroid organogenesis and highlights similarities and common mechanisms with developmental steps elucidated in other endoderm-derived organs, despite different final architecture and functions.
Collapse
|
32
|
Pitsidianaki I, Morgan J, Adams J, Campbell K. Mesenchymal-to-epithelial transitions require tissue-specific interactions with distinct laminins. THE JOURNAL OF CELL BIOLOGY 2021; 220:212200. [PMID: 34047771 PMCID: PMC8167899 DOI: 10.1083/jcb.202010154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Mesenchymal-to-epithelial transition (MET) converts cells from migratory mesenchymal to polarized epithelial states. Despite its importance for both normal and pathological processes, very little is known about the regulation of MET in vivo. Here we exploit midgut morphogenesis in Drosophila melanogaster to investigate the mechanisms underlying MET. We show that down-regulation of the EMT transcription factor Serpent is required for MET, but not sufficient, as interactions with the surrounding mesoderm are also essential. We find that midgut MET relies on the secretion of specific laminins via the CopII secretory pathway from both mesoderm and midgut cells. We show that secretion of the laminin trimer containing the Wingblister α-subunit from the mesoderm is an upstream cue for midgut MET, leading to basal polarization of αPS1 integrin in midgut cells. Polarized αPS1 is required for the formation of a monolayered columnar epithelium and for the apical polarization of αPS3, Baz, and E-Cad. Secretion of a distinct LamininA-containing trimer from midgut cells is required to reinforce the localization of αPS1 basally, and αPS3 apically, for robust repolarization. Our data suggest that targeting these MET pathways, in conjunction with therapies preventing EMT, may present a two-pronged strategy toward blocking metastasis in cancer.
Collapse
Affiliation(s)
- Ioanna Pitsidianaki
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Jason Morgan
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Jamie Adams
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Kyra Campbell
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield, UK
| |
Collapse
|
33
|
Granata S, Bruschi M, Deiana M, Petretto A, Lombardi G, Verlato A, Elia R, Candiano G, Malerba G, Gambaro G, Zaza G. Sphingomyelin and Medullary Sponge Kidney Disease: A Biological Link Identified by Omics Approach. Front Med (Lausanne) 2021; 8:671798. [PMID: 34124100 PMCID: PMC8187918 DOI: 10.3389/fmed.2021.671798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Molecular biology has recently added new insights into the comprehension of the physiopathology of the medullary sponge kidney disease (MSK), a rare kidney malformation featuring nephrocalcinosis and recurrent renal stones. Pathogenesis and metabolic alterations associated to this disorder have been only partially elucidated. Methods: Plasma and urine samples were collected from 15 MSK patients and 15 controls affected by idiopathic calcium nephrolithiasis (ICN). Plasma metabolomic profile of 7 MSK and 8 ICN patients was performed by liquid chromatography combined with electrospray ionization tandem mass spectrometry (UHPLC–ESI-MS/MS). Subsequently, we reinterrogated proteomic raw data previously obtained from urinary microvesicles of MSK and ICN focusing on proteins associated with sphingomyelin metabolism. Omics results were validated by ELISA in the entire patients' cohort. Results: Thirteen metabolites were able to discriminate MSK from ICN (7 increased and 6 decreased in MSK vs. ICN). Sphingomyelin reached the top level of discrimination between the two study groups (FC: −1.8, p < 0.001). Ectonucleotide pyrophophatase phosphodiesterase 6 (ENPP6) and osteopontin (SPP1) resulted the most significant deregulated urinary proteins in MSK vs. ICN (p < 0.001). ENPP6 resulted up-regulated also in plasma of MSK by ELISA. Conclusion: Our data revealed a specific high-throughput metabolomics signature of MSK and indicated a pivotal biological role of sphingomyelin in this disease.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, Istituto Pediatrico di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Michela Deiana
- Section of Biology and Genetics, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Petretto
- Core Facilities - Clinical Proteomics and Metabolomics, Istituto Pediatrico di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Gianmarco Lombardi
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Alberto Verlato
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Rossella Elia
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, Istituto Pediatrico di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Malerba
- Section of Biology and Genetics, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
34
|
Schindler M, Siriwardena D, Kohler TN, Ellermann AL, Slatery E, Munger C, Hollfelder F, Boroviak TE. Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells. Stem Cell Reports 2021; 16:1347-1362. [PMID: 33979603 PMCID: PMC8185981 DOI: 10.1016/j.stemcr.2021.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Human periimplantation development requires the transformation of the naive pluripotent epiblast into a polarized epithelium. Lumenogenesis plays a critical role in this process, as the epiblast undergoes rosette formation and lumen expansion to form the amniotic cavity. Here, we present a high-throughput in vitro model for epiblast morphogenesis. We established a microfluidic workflow to encapsulate human pluripotent stem cells (hPSCs) into monodisperse agarose microgels. Strikingly, hPSCs self-organized into polarized epiblast spheroids that could be maintained in self-renewing and differentiating conditions. Encapsulated primed hPSCs required Rho-associated kinase inhibition, in contrast to naive hPSCs. We applied microgel suspension culture to examine the lumen-forming capacity of hPSCs and reveal an increase in lumenogenesis during the naive-to-primed transition. Finally, we demonstrate the feasibility of co-encapsulating cell types across different lineages and species. Our work provides a foundation for stem cell-based embryo models to interrogate the critical components of human epiblast self-organization and morphogenesis.
Collapse
Affiliation(s)
- Magdalena Schindler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Timo N Kohler
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Erin Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK.
| |
Collapse
|
35
|
Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021; 22:ijms22094821. [PMID: 34062912 PMCID: PMC8124465 DOI: 10.3390/ijms22094821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Jacob A. Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Greg M. Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-(513)-556-4167
| |
Collapse
|
36
|
Kondo A, Kaestner KH. FoxL1 + mesenchymal cells are a critical source of Wnt5a for midgut elongation during mouse embryonic intestinal development. Cells Dev 2021; 165:203662. [PMID: 33993983 PMCID: PMC7988427 DOI: 10.1016/j.cdev.2021.203662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
Wnt5a is a non-canonical Wnt ligand that is essential for normal embryonic development in mammals. The role of Wnt5a in early intestinal development has been examined in gene ablation models, where Wnt5a-/- mice exhibit strikingly shortened intestines. However, the exact cellular source of Wnt5a has remained elusive, until a recent study found that FoxL1-expressing mesenchymal cells (FoxL1+ cells), which are localized directly beneath the intestinal epithelium, express Wnt5a. To determine whether FoxL1+ cells are a required source of Wnt5a during intestinal development, we derived FoxL1-Cre; Wnt5af/f mice, which is the first mouse model to ablate Wnt5a in a cell type-specific manner in the intestine in vivo. Our results show that Wnt5a deletion in FoxL1+ cells during fetal life causes a shortened gut phenotype in neonatal mice, and that our model is sufficient to increase rate of apoptosis in the elongating epithelium, thus explaining the shortened gut phenotype. However, in contrast to previous studies using Wnt5a null mice, we did not observe dysregulation of epithelial structure or apical-basal protein localization. Altogether, our findings establish a developmental role for FoxL1+ mesenchymal cells in controlling non-canonical Wnt signaling during midgut elongation.
Collapse
Affiliation(s)
- Ayano Kondo
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Ouyang M, Yu JY, Chen Y, Deng L, Guo CL. Cell-extracellular matrix interactions in the fluidic phase direct the topology and polarity of self-organized epithelial structures. Cell Prolif 2021; 54:e13014. [PMID: 33615615 PMCID: PMC8016639 DOI: 10.1111/cpr.13014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction In vivo, cells are surrounded by extracellular matrix (ECM). To build organs from single cells, it is generally believed that ECM serves as scaffolds to coordinate cell positioning and differentiation. Nevertheless, how cells utilize cell‐ECM interactions for the spatiotemporal coordination to different ECM at the tissue scale is not fully understood. Methods Here, using in vitro assay with engineered MDCK cells expressing H2B‐mCherry (nucleus) and gp135/Podocalyxin‐GFP (apical marker), we show in multi‐dimensions that such coordination for epithelial morphogenesis can be determined by cell‐soluble ECM interaction in the fluidic phase. Results The coordination depends on the native topology of ECM components such as sheet‐like basement membrane (BM) and type I collagen (COL) fibres: scaffold formed by BM (COL) facilitates a close‐ended (open‐ended) coordination that leads to the formation of lobular (tubular) epithelium. Further, cells form apicobasal polarity throughout the entire lobule/tubule without a complete coverage of ECM at the basal side, and time‐lapse two‐photon scanning imaging reveals the polarization occurring early and maintained through the lobular expansion. During polarization, gp135‐GFP was converged to the apical surface collectively in the lobular/tubular structures, suggesting possible intercellular communications. Under suspension culture, the polarization was impaired with multi‐lumen formation in the tubules, implying the importance of ECM biomechanical microenvironment. Conclusion Our results suggest a biophysical mechanism for cells to form polarity and coordinate positioning at tissue scale, and in engineering epithelium through cell‐soluble ECM interaction and self‐assembly.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Pharmacy & School of Medicine, Changzhou University, Changzhou, China.,Department of Bioengineering, California Institute of Technology, Pasadena, USA
| | - Jiun-Yann Yu
- Department of Bioengineering, California Institute of Technology, Pasadena, USA
| | - Yenyu Chen
- Department of Bioengineering, California Institute of Technology, Pasadena, USA
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Pharmacy & School of Medicine, Changzhou University, Changzhou, China
| | - Chin-Lin Guo
- Department of Bioengineering, California Institute of Technology, Pasadena, USA
| |
Collapse
|
38
|
Vong KI, Ma TC, Li B, Leung TCN, Nong W, Ngai SM, Hui JHL, Jiang L, Kwan KM. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci U S A 2021; 118:e2009568118. [PMID: 33526661 PMCID: PMC8017668 DOI: 10.1073/pnas.2009568118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The choroid plexus (CP) is an extensively vascularized neuroepithelial tissue that projects into the brain ventricles. The restriction of transepithelial transport across the CP establishes the blood-cerebrospinal fluid (CSF) barrier that is fundamental to the homeostatic regulation of the central nervous system microenvironment. However, the molecular mechanisms that control this process remain elusive. Here we show that the genetic ablation of Sox9 in the hindbrain CP results in a hyperpermeable blood-CSF barrier that ultimately upsets the CSF electrolyte balance and alters CSF protein composition. Mechanistically, SOX9 is required for the transcriptional up-regulation of Col9a3 in the CP epithelium. The reduction of Col9a3 expression dramatically recapitulates the blood-CSF barrier defects of Sox9 mutants. Loss of collagen IX severely disrupts the structural integrity of the epithelial basement membrane in the CP, leading to progressive loss of extracellular matrix components. Consequently, this perturbs the polarized microtubule dynamics required for correct orientation of apicobasal polarity and thereby impedes tight junction assembly in the CP epithelium. Our findings reveal a pivotal cascade of SOX9-dependent molecular events that is critical for construction of the blood-CSF barrier.
Collapse
Affiliation(s)
- Keng Ioi Vong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Tsz Ching Ma
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Baiying Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Thomas Chun Ning Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Sai Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jerome Ho Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China;
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
39
|
Abdul L, Rajasekar S, Lin DSY, Venkatasubramania Raja S, Sotra A, Feng Y, Liu A, Zhang B. Deep-LUMEN assay - human lung epithelial spheroid classification from brightfield images using deep learning. LAB ON A CHIP 2020; 20:4623-4631. [PMID: 33151236 DOI: 10.1039/d0lc01010c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) tissue models such as epithelial spheroids or organoids have become popular for pre-clinical drug studies. In contrast to 2D monolayer culture, the characterization of 3D tissue models from non-invasive brightfield images is a significant challenge. To address this issue, here we report a deep-learning uncovered measurement of epithelial networks (Deep-LUMEN) assay. Deep-LUMEN is an object detection algorithm that has been fine-tuned to automatically uncover subtle differences in epithelial spheroid morphology from brightfield images. This algorithm can track changes in the luminal structure of tissue spheroids and distinguish between polarized and non-polarized lung epithelial spheroids. The Deep-LUMEN assay was validated by screening for changes in spheroid epithelial architecture in response to different extracellular matrices and drug treatments. Specifically, we found the dose-dependent toxicity of cyclosporin can be underestimated if the effect of the drug on tissue morphology is not considered. Hence, Deep-LUMEN could be used to assess drug effects and capture morphological changes in 3D spheroid models in a non-invasive manner.
Collapse
Affiliation(s)
- Lyan Abdul
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Shravanthi Rajasekar
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Dawn S Y Lin
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | | | - Alexander Sotra
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Yuhang Feng
- Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Amy Liu
- Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada and Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
40
|
Cells into tubes: Molecular and physical principles underlying lumen formation in tubular organs. Curr Top Dev Biol 2020; 143:37-74. [PMID: 33820625 DOI: 10.1016/bs.ctdb.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tubular networks, such as the vascular and respiratory systems, transport liquids and gases in multicellular organisms. The basic units of these organs are tubes formed by single or multiple cells enclosing a luminal cavity. The formation and maintenance of correctly sized and shaped lumina are fundamental steps in organogenesis and are essential for organismal homeostasis. Therefore, understanding how cells generate, shape and maintain lumina is crucial for understanding normal organogenesis as well as the basis of pathological conditions. Lumen formation involves polarized membrane trafficking, cytoskeletal dynamics, and the influence of intracellular as well as extracellular mechanical forces, such as cortical tension, luminal pressure or blood flow. Various tissue culture and in vivo model systems, ranging from MDCK cell spheroids to tubular organs in worms, flies, fish, and mice, have provided many insights into the molecular and cellular mechanisms underlying lumenogenesis and revealed key factors that regulate the size and shape of cellular tubes. Moreover, the development of new experimental and imaging approaches enabled quantitative analyses of intracellular dynamics and allowed to assess the roles of cellular and tissue mechanics during tubulogenesis. However, how intracellular processes are coordinated and regulated across scales of biological organization to generate properly sized and shaped tubes is only beginning to be understood. Here, we review recent insights into the molecular, cellular and physical mechanisms underlying lumen formation during organogenesis. We discuss how these mechanisms control lumen formation in various model systems, with a special focus on the morphogenesis of tubular organs in Drosophila.
Collapse
|
41
|
Díaz-Díaz C, Baonza G, Martín-Belmonte F. The vertebrate epithelial apical junctional complex: Dynamic interplay between Rho GTPase activity and cell polarization processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183398. [DOI: 10.1016/j.bbamem.2020.183398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
42
|
Xu Z, Han Y, Li X, Yang R, Song L. Molecular cloning and characterization of DjRac1, a novel small G protein gene from planarian Dugesia japonica. Biochem Biophys Res Commun 2020; 526:865-870. [PMID: 32278548 DOI: 10.1016/j.bbrc.2020.03.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 01/13/2023]
Abstract
Rac proteins are classified as a subfamily of the Rho family of small G proteins. They are important molecular switches which act as key signal transducers regulating a wide variety of processes in the cell. DjRac1, a novel Rac gene from planarian Dugesia japonica was cloned by RACE method and characterized. This cDNA contains 851 bp with a putative open reading frame of 190 amino acids. It has a predicted molecular mass of 21.12 kDa and an isoelectric point of 8.42. Whole-mount in situ hybridization and relative quantitative real-time PCR were used to study the spatial and temporal expression pattern of DjRac1 from 1 to 7 days in the regenerating planarians. Results showed that the expression of DjRac1 was concentrated in the blastema and the transcription level of DjRac1 was significantly upregulated after amputation within three days, suggesting DjRac1 might participate in the process of regeneration in planarian.
Collapse
Affiliation(s)
- Zhenbiao Xu
- College of Life Science, Shandong University of Technology, China
| | - Yahong Han
- College of Life Science, Shandong University of Technology, China
| | - Xiaomin Li
- College of Life Science, Shandong University of Technology, China
| | - Rui Yang
- College of Life Science, Shandong University of Technology, China
| | - Linxia Song
- College of Life Science, Shandong University of Technology, China.
| |
Collapse
|
43
|
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183206. [PMID: 31991120 PMCID: PMC7063833 DOI: 10.1016/j.bbamem.2020.183206] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
The integrin family of transmembrane adhesion receptors is essential for sensing and adhering to the extracellular environment. Integrins are heterodimers composed of non-covalently associated α and β subunits that engage extracellular matrix proteins and couple to intracellular signaling and cytoskeletal complexes. Humans have 24 different integrin heterodimers with differing ligand binding specificities and non-redundant functions. Complex structural rearrangements control the ability of integrins to engage ligands and to activate diverse downstream signaling networks, modulating cell adhesion and dynamics, processes which are crucial for metazoan life and development. Here we review the structural and signaling functions of integrins focusing on recent advances which have enhanced our understanding of how integrins are activated and regulated, and the cytoplasmic signaling networks downstream of integrins.
Collapse
Affiliation(s)
- Yasmin A Kadry
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, United States of America..
| |
Collapse
|
44
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
45
|
3D multicellular models to study the regulation and roles of acid-base transporters in breast cancer. Biochem Soc Trans 2019; 47:1689-1700. [PMID: 31803922 DOI: 10.1042/bst20190131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
As a result of elevated metabolic rates and net acid extrusion in the rapidly proliferating cancer cells, solid tumours are characterized by a highly acidic microenvironment, while cancer cell intracellular pH is normal or even alkaline. Two-dimensional (2D) cell monocultures, which have been used extensively in breast cancer research for decades, cannot precisely recapitulate the rich environment and complex processes occurring in tumours in vivo. The use of such models can consequently be misleading or non-predictive for clinical applications. Models mimicking the tumour microenvironment are particularly pivotal for studying tumour pH homeostasis, which is profoundly affected by the diffusion-limited conditions in the tumour. To advance the understanding of the mechanisms and consequences of dysregulated acid-base homeostasis in breast cancer, clinically relevant models that incorporate the unique microenvironment of these tumours are required. The development of three-dimensional (3D) cell cultures has provided new tools for basic research and pre-clinical approaches, allowing the culture of breast cancer cells under conditions that closely resemble tumour growth in a living organism. Here we provide an overview of the main 3D techniques relevant for breast cancer cell culture. We discuss the advantages and limitations of the classical 3D models as well as recent advances in 3D culture techniques, focusing on how these culture methods have been used to study acid-base transport in breast cancer. Finally, we outline future directions of 3D culture technology and their relevance for studies of acid-base transport.
Collapse
|
46
|
Corkins ME, Krneta-Stankic V, Kloc M, McCrea PD, Gladden AB, Miller RK. Divergent roles of the Wnt/PCP Formin Daam1 in renal ciliogenesis. PLoS One 2019; 14:e0221698. [PMID: 31469868 PMCID: PMC6716777 DOI: 10.1371/journal.pone.0221698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Kidneys are composed of numerous ciliated epithelial tubules called nephrons. Each nephron functions to reabsorb nutrients and concentrate waste products into urine. Defects in primary cilia are associated with abnormal formation of nephrons and cyst formation in a wide range of kidney disorders. Previous work in Xenopus laevis and zebrafish embryos established that loss of components that make up the Wnt/PCP pathway, Daam1 and ArhGEF19 (wGEF) perturb kidney tubulogenesis. Dishevelled, which activates both the canonical and non-canonical Wnt/PCP pathway, affect cilia formation in multiciliated cells. In this study, we investigated the role of the noncanoncial Wnt/PCP components Daam1 and ArhGEF19 (wGEF) in renal ciliogenesis utilizing polarized mammalian kidney epithelia cells (MDCKII and IMCD3) and Xenopus laevis embryonic kidney. We demonstrate that knockdown of Daam1 and ArhGEF19 in MDCKII and IMCD3 cells leads to loss of cilia, and Daam1's effect on ciliogenesis is mediated by the formin-activity of Daam1. Moreover, Daam1 co-localizes with the ciliary transport protein Ift88 and is present in cilia. Interestingly, knocking down Daam1 in Xenopus kidney does not lead to loss of cilia. These data suggests a new role for Daam1 in the formation of primary cilia.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes and Development, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pierre D. McCrea
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrew B. Gladden
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston, Texas, United States of America
| |
Collapse
|
47
|
Pickett MA, Naturale VF, Feldman JL. A Polarizing Issue: Diversity in the Mechanisms Underlying Apico-Basolateral Polarization In Vivo. Annu Rev Cell Dev Biol 2019; 35:285-308. [PMID: 31461314 DOI: 10.1146/annurev-cellbio-100818-125134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polarization along an apico-basolateral axis is a hallmark of epithelial cells and is essential for their selective barrier and transporter functions, as well as for their ability to provide mechanical resiliency to organs. Loss of polarity along this axis perturbs development and is associated with a wide number of diseases. We describe three steps involved in polarization: symmetry breaking, polarity establishment, and polarity maintenance. While the proteins involved in these processes are highly conserved among epithelial tissues and species, the execution of these steps varies widely and is context dependent. We review both theoretical principles underlying these steps and recent work demonstrating how apico-basolateral polarity is established in vivo in different tissues, highlighting how developmental and physiological contexts play major roles in the execution of the epithelial polarity program.
Collapse
Affiliation(s)
- Melissa A Pickett
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Victor F Naturale
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
48
|
Awadia S, Huq F, Arnold TR, Goicoechea SM, Sun YJ, Hou T, Kreider-Letterman G, Massimi P, Banks L, Fuentes EJ, Miller AL, Garcia-Mata R. SGEF forms a complex with Scribble and Dlg1 and regulates epithelial junctions and contractility. J Cell Biol 2019; 218:2699-2725. [PMID: 31248911 PMCID: PMC6683736 DOI: 10.1083/jcb.201811114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/18/2019] [Accepted: 04/12/2019] [Indexed: 01/15/2023] Open
Abstract
The canonical Scribble polarity complex is implicated in regulation of epithelial junctions and apical polarity. Here, we show that SGEF, a RhoG-specific GEF, forms a ternary complex with Scribble and Dlg1, two members of the Scribble complex. SGEF targets to apical junctions in a Scribble-dependent fashion and functions in the regulation of actomyosin-based contractility and barrier function at tight junctions as well as E-cadherin-mediated formation of adherens junctions. Surprisingly, SGEF does not control the establishment of polarity. However, in 3D cysts, SGEF regulates the formation of a single open lumen. Interestingly, SGEF's nucleotide exchange activity regulates the formation and maintenance of adherens junctions, and in cysts the number of lumens formed, whereas SGEF's scaffolding activity is critical for regulation of actomyosin contractility and lumen opening. We propose that SGEF plays a key role in coordinating junctional assembly and actomyosin contractility by bringing together Scribble and Dlg1 and targeting RhoG activation to cell-cell junctions.
Collapse
Affiliation(s)
- Sahezeel Awadia
- Department of Biological Sciences, The University of Toledo, Toledo, OH
| | - Farah Huq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Torey R Arnold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | - Young Joo Sun
- Department of Biochemistry, University of Iowa, Iowa City, IA
| | - Titus Hou
- Department of Biochemistry, University of Iowa, Iowa City, IA
| | | | - Paola Massimi
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
49
|
Søgaard PP, Ito N, Sato N, Fujita Y, Matter K, Itoh Y. Epithelial polarization in 3D matrix requires DDR1 signaling to regulate actomyosin contractility. Life Sci Alliance 2019; 2:2/1/e201800276. [PMID: 30760555 PMCID: PMC6374992 DOI: 10.26508/lsa.201800276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/19/2023] Open
Abstract
For epithelial cells to establish epithelial polarity in a 3D matrix, signaling of a collagen receptor tyrosine kinase, DDR1, plays a crucial role. DDR1 signaling controls actomyosin contractility at the cell–cell junction through suppression of ROCK activity. Epithelial cells form sheets and tubules in various epithelial organs and establish apicobasal polarity and asymmetric vesicle transport to provide functionality in these structures. However, the molecular mechanisms that allow epithelial cells to establish polarity are not clearly understood. Here, we present evidence that the kinase activity of the receptor tyrosine kinase for collagen, discoidin domain receptor 1 (DDR1), is required for efficient establishment of epithelial polarity, proper asymmetric protein secretion, and execution of morphogenic programs. Lack of DDR1 protein or inhibition of DDR1 kinase activity disturbed tubulogenesis, cystogenesis, and the establishment of epithelial polarity and caused defects in the polarized localization of membrane-type 1 matrix metalloproteinase (MT1-MMP), GP135, primary cilia, laminin, and the Golgi apparatus. Disturbed epithelial polarity and cystogenesis upon DDR1 inhibition was caused by excess ROCK (rho-associated, coiled-coil-containing protein kinase)-driven actomyosin contractility, and pharmacological inhibition of ROCK was sufficient to correct these defects. Our data indicate that a DDR1-ROCK signaling axis is essential for the efficient establishment of epithelial polarity.
Collapse
Affiliation(s)
| | - Noriko Ito
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Nanami Sato
- Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Fujita
- Institute for Genetic Medicine, Division of Molecular Oncology, Hokkaido University, Sapporo, Japan
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Myllymäki SM, Kämäräinen UR, Liu X, Cruz SP, Miettinen S, Vuorela M, Varjosalo M, Manninen A. Assembly of the β4-Integrin Interactome Based on Proximal Biotinylation in the Presence and Absence of Heterodimerization. Mol Cell Proteomics 2019; 18:277-293. [PMID: 30404858 PMCID: PMC6356083 DOI: 10.1074/mcp.ra118.001095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/01/2018] [Indexed: 01/19/2023] Open
Abstract
Integrin-mediated laminin adhesions mediate epithelial cell anchorage to basement membranes and are critical regulators of epithelial cell polarity. Integrins assemble large multiprotein complexes that link to the cytoskeleton and convey signals into the cells. Comprehensive proteomic analyses of actin network-linked focal adhesions (FA) have been performed, but the molecular composition of intermediate filament-linked hemidesmosomes (HD) remains incompletely characterized. Here we have used proximity-dependent biotin identification (BioID) technology to label and characterize the interactome of epithelia-specific β4-integrin that, as α6β4-heterodimer, forms the core of HDs. The analysis identified ∼150 proteins that were specifically labeled by BirA-tagged integrin-β4. In addition to known HDs proteins, the interactome revealed proteins that may indirectly link integrin-β4 to actin-connected protein complexes, such as FAs and dystrophin/dystroglycan complexes. The specificity of the screening approach was validated by confirming the HD localization of two candidate β4-interacting proteins, utrophin (UTRN) and ELKS/Rab6-interacting/CAST family member 1 (ERC1). Interestingly, although establishment of functional HDs depends on the formation of α6β4-heterodimers, the assembly of β4-interactome was not strictly dependent on α6-integrin expression. Our survey to the HD interactome sets a precedent for future studies and provides novel insight into the mechanisms of HD assembly and function of the β4-integrin.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland;.
| | - Ulla-Reetta Kämäräinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Xiaonan Liu
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sara Pereira Cruz
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Sini Miettinen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikko Vuorela
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Aki Manninen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland;.
| |
Collapse
|