1
|
Liu J, Liu D, Zhang J, He W, Guo Y, Li Y, Chen P, DiSanto ME, Zhang X. Expression and functional activity of myosin II in hyperplastic prostates of varying volumes. Cell Signal 2023; 106:110658. [PMID: 36935086 DOI: 10.1016/j.cellsig.2023.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Prostate volume (PV) differs dramatically among benign prostatic hyperplasia (BPH) patients. Estimation of PV is important to guide the most appropriate pharmacologic or interventional treatment approach. However, the underlying pathophysiological mechanisms for the differences in PV remain unknown. We recently found that the myosin II system might participate in the etiology and development of BPH via static and dynamic factors. Our present study aims to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in hyperplastic prostates with varied PV. Human hyperplastic prostates and the testosterone-induced rat BPH model were employed for this study. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. Also, a BPH tissue microarray (TMA) was constructed to determine the correlations between myosin II isoforms with clinical parameters of BPH patients. With the increase of PV, the expression of NMMHC-A, NMMHC-C, SM-A and LC17b isoforms were increased, and the contractility of prostate smooth muscle was enhanced but force developed more slowly. Consistently, NMMHC-A, NMMHC-C, SM-A and LC17b were correlated positively with PV. Similar outcomes were also observed in the BPH rat model with different PVs. Alterations in the expression and function of myosin the II system may be involved in the pathophysiological mechanism of PV differences between BPH patients.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuhang Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Liu L, Kryvokhyzha D, Rippe C, Jacob A, Borreguero-Muñoz A, Stenkula KG, Hansson O, Smith CWJ, Fisher SA, Swärd K. Myocardin regulates exon usage in smooth muscle cells through induction of splicing regulatory factors. Cell Mol Life Sci 2022; 79:459. [PMID: 35913515 PMCID: PMC9343278 DOI: 10.1007/s00018-022-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
AbstractDifferentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3´ exons in MYLK that encode telokin increased relative to 5´ exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.
Collapse
|
3
|
Changes in the expression and functional activities of Myosin II isoforms in human hyperplastic prostate. Clin Sci (Lond) 2021; 135:167-183. [PMID: 33393635 DOI: 10.1042/cs20201283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease among aging males with the etiology remaining unclear. We recently found myosin II was abundantly expressed in rat and cultured human prostate cells with permissive roles in the dynamic and static components. The present study aimed to explore the expression and functional activities of myosin II isoforms including smooth muscle (SM) myosin II (SMM II) and non-muscle myosin II (NMM II) in the hyperplastic prostate. Human prostate cell lines and tissues from normal human and BPH patients were used. Hematoxylin and Eosin (H&E), Masson's trichrome, immunohistochemical staining, in vitro organ bath, RT-polymerase chain reaction (PCR) and Western-blotting were performed. We further created cell models with NMM II isoforms silenced and proliferation, cycle, and apoptosis of prostate cells were determined by cell counting kit-8 (CCK-8) assay and flow cytometry. Hyperplastic prostate SM expressed more SM1 and LC17b isoforms compared with their alternatively spliced counterparts, favoring a slower more tonic-type contraction and greater force generation. For BPH group, blebbistatin (BLEB, a selective myosin II inhibitor), exhibited a stronger effect on relaxing phenylephrine (PE) pre-contracted prostate strips and inhibiting PE-induced contraction. Additionally, NMMHC-A and NMMHC-B were up-regulated in hyperplastic prostate with no change in NMMHC-C. Knockdown of NMMHC-A or NMMHC-B inhibited prostate cell proliferation and induced apoptosis, with no changes in cell cycle. Our novel data demonstrate that expression and functional activities of myosin II isoforms are altered in human hyperplastic prostate, suggesting a new pathological mechanism for BPH. Thus, the myosin II system may provide potential new therapeutic targets for BPH/lower urinary tract symptoms (LUTS).
Collapse
|
4
|
Hashmi SK, Ceron RH, Heuckeroth RO. Visceral myopathy: clinical syndromes, genetics, pathophysiology, and fall of the cytoskeleton. Am J Physiol Gastrointest Liver Physiol 2021; 320:G919-G935. [PMID: 33729000 PMCID: PMC8285581 DOI: 10.1152/ajpgi.00066.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral smooth muscle is a crucial component of the walls of hollow organs like the gut, bladder, and uterus. This specialized smooth muscle has unique properties that distinguish it from other muscle types and facilitate robust dilation and contraction. Visceral myopathies are diseases where severe visceral smooth muscle dysfunction prevents efficient movement of air and nutrients through the bowel, impairs bladder emptying, and affects normal uterine contraction and relaxation, particularly during pregnancy. Disease severity exists along a spectrum. The most debilitating defects cause highly dysfunctional bowel, reduced intrauterine colon growth (microcolon), and bladder-emptying defects requiring catheterization, a condition called megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). People with MMIHS often die early in childhood. When the bowel is the main organ affected and microcolon is absent, the condition is known as myopathic chronic intestinal pseudo-obstruction (CIPO). Visceral myopathies like MMIHS and myopathic CIPO are most commonly caused by mutations in contractile apparatus cytoskeletal proteins. Here, we review visceral myopathy-causing mutations and normal functions of these disease-associated proteins. We propose molecular, cellular, and tissue-level models that may explain clinical and histopathological features of visceral myopathy and hope these observations prompt new mechanistic studies.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,2Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, Philadelphia, Pennsylvania
| | - Rachel Helen Ceron
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,3Department of Physiology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
6
|
Chen P, Xiao H, Huang W, Xu DQ, Guo YM, Wang X, Wang XH, DiSanto ME, Zhang XH. Testosterone regulates myosin II isoforms expression and functional activity in the rat prostate. Prostate 2018; 78:1283-1298. [PMID: 30073674 DOI: 10.1002/pros.23702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/11/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and prostatic volume. At the molecular level, SM myosin II (SMM II) and non-muscle myosin II (NMM II) mediate SM tone and cell proliferation while testosterone (T) plays a permissive role in the development of BPH. AIMS The novel objective of this study was to elucidate the effects of T on the proliferation and apoptosis of rat prostatic cells and SM contractility as well as related regulatory signaling pathways. MATERIALS AND METHODS Briefly, 36 male rats were divided into three groups (sham-operated, surgically castrated, and castrated with T supplementation). In vitro organ bath studies, competitive RT-PCR, Western-blotting analysis, Masson's trichrome staining, and immunofluorescence staining were performed. RESULTS Our data showed that castration dramatically increased prostatic SM contractility and SM MHC immunostaining revealed a relatively increased SM cell numbers in the stroma. T deprivation altered prostate SMM II isoform composition with upregulation of SM-B and SM2 but downregulation of LC17a, favoring a faster more phasic-type contraction. Moreover, protein expressions of MLCK, p-MLCP, RhoB, ROCK1, and ROCK2 increased in castrated rats. Meanwhile NMM II heavy chain isoforms A, B, and C (NMMHC-A, B, and C isoforms) were altered by castration which may be linked to decreased cell proliferation and increased apoptosis. CONCLUSION Our novel data demonstrated T regulates SMM II and NMM II and their functional activities in rat prostate and T ablation not only decreases prostate size (static component) but also changes the prostatic SM tone (dynamic component).
Collapse
Affiliation(s)
- Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Wei Huang
- Department of Urology, People's Hospital of Tuanfeng County, Hubei, China
| | - De-Qiang Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiao Wang
- Department of Urology, People's Hospital of Wuhan University, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Michael E DiSanto
- Departments of Biomedical Sciences and Surgery, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Xin-Hua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
7
|
Blebbistatin modulates prostatic cell growth and contrapctility through myosin II signaling. Clin Sci (Lond) 2018; 132:2189-2205. [PMID: 30279228 DOI: 10.1042/cs20180294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
To investigate the effect of blebbistatin (BLEB, a selective myosin inhibitor) on regulating contractility and growth of prostate cells and to provide insight into possible mechanisms associated with these actions. BLEB was incubated with cell lines of BPH-1 and WPMY-1, and intraprostatically injected into rats. Cell growth was determined by flow cytometry, and in vitro organ bath studies were performed to explore muscle contractility. Smooth muscle (SM) myosin isoform (SM1/2, SM-A/B, and LC17a/b) expression was determined via competitive reverse transcriptase PCR. SM myosin heavy chain (MHC), non-muscle (NM) MHC isoforms (NMMHC-A and NMMHC-B), and proteins related to cell apoptosis were further analyzed via Western blotting. Masson's trichrome staining was applied to tissue sections. BLEB could dose-dependently trigger apoptosis and retard the growth of BPH-1 and WPMY-1. Consistent with in vitro effect, administration of BLEB to the prostate could decrease rat prostatic epithelial and SM cells via increased apoptosis. Western blotting confirmed the effects of BLEB on inducing apoptosis through a mechanism involving MLC20 dephosphorylation with down-regulation of Bcl-2 and up-regulation of BAX and cleaved caspase 3. Meanwhile, NMMHC-A and NMMHC-B, the downstream proteins of MLC20, were found significantly attenuated in BPH-1 and WPMY-1 cells, as well as rat prostate tissues. Additionally, BLEB decreased SM cell number and SM MHC expression, along with attenuated phenylephrine-induced contraction and altered prostate SMM isoform composition with up-regulation of SM-B and down-regulation of LC17a, favoring a faster contraction. Our novel data demonstrate BLEB regulated myosin expression and functional activity. The mechanism involved MLC20 dephosphorylation and altered SMM isoform composition.
Collapse
|
8
|
Issouf M, Vargas A, Boivin R, Lavoie J. SRSF6 is upregulated in asthmatic horses and involved in the MYH11 SMB expression. Physiol Rep 2018; 6:e13896. [PMID: 30350466 PMCID: PMC6198134 DOI: 10.14814/phy2.13896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle has a central role in bronchospasm-induced airway obstruction in asthma. Alternative mRNA splicing of the smooth muscle myosin heavy chain (myh11) gene produces four different isoforms, one of which (SMB) is characterized by the inclusion of the exon5b, which doubles the smooth muscle cells contraction velocity. Deciphering the regulation of the expression levels of the SMB isoform would represent a major step for the understanding of the triggers and pathways leading to airway smooth muscle contraction in asthma. Our objective was therefore, to study the splicing regulation mechanisms of the exon5b in airway smooth muscle cells. Bioinformatics analysis was performed to identify the cis-regulatory elements present in the exon5b using HSF finder 3 tool. The expression of the corresponding serine/arginine rich protein (SR) genes thus identified was evaluated by quantitative RT-PCR (qPCR). SRSF1, SRSF6, and hnRNPA1 cis-acting elements were identified by in silico analysis of the exon5b sequence as splicing regulator candidates. QPCR analyses showed that SRSF1 and SRSF6 are upregulated in ASM cells from asthmatic horses in exacerbation (n = 5) compared to controls (n = 5). The inhibition of the identified splicing factors by small interfering RNA allowed identifying the regulation of the SMB isoform by SRSF6. Our results implicate for the first time the upregulation of SRSF6 and SRSF1 in the asthmatic ASM cells and indicate that SRSF6 induces the exon5b inclusion. This study provides an important first step for the understanding of the triggers and pathways leading to ASM hypercontraction and identifies a possible new target for asthma.
Collapse
Affiliation(s)
- Mohamed Issouf
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversité de MontréalSaint‐HyacintheQuebecCanada
| | - Amandine Vargas
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversité de MontréalSaint‐HyacintheQuebecCanada
| | - Roxane Boivin
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversité de MontréalSaint‐HyacintheQuebecCanada
| | - Jean‐Pierre Lavoie
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversité de MontréalSaint‐HyacintheQuebecCanada
| |
Collapse
|
9
|
Li M, Li S, Rao Y, Cui S, Gou K. Loss of smooth muscle myosin heavy chain results in the bladder and stomach developing lesion during foetal development in mice. J Genet 2018. [DOI: 10.1007/s12041-018-0930-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Chen P, Yin J, Guo YM, Xiao H, Wang XH, DiSanto ME, Zhang XH. The expression and functional activities of smooth muscle myosin and non-muscle myosin isoforms in rat prostate. J Cell Mol Med 2017; 22:576-588. [PMID: 28990332 PMCID: PMC5742693 DOI: 10.1111/jcmm.13345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and volume. SM myosin (SMM) and non-muscle myosin (NMM) play important roles in mediating SM tone and cell proliferation, but these molecules have been less studied in the prostate. Rat prostate and cultured primary human prostate SM and epithelial cells were utilized. In vitro organ bath studies were performed to explore contractility of rat prostate. SMM isoforms, including SM myosin heavy chain (MHC) isoforms (SM1/2 and SM-A/B) and myosin light chain 17 isoforms (LC17a/b ), and isoform ratios were determined via competitive RT-PCR. SM MHC and NM MHC isoforms (NMMHC-A, NMMHC-B and NMMHC-C) were further analysed via Western blotting and immunofluorescence microscopy. Prostatic SM generated significant force induced by phenylephrine with an intermediate tonicity between phasic bladder and tonic aorta type contractility. Correlating with this kind of intermediate tonicity, rat prostate mainly expressed LC17a and SM1 but with relatively equal expression of SM-A/SM-B at the mRNA level. Meanwhile, isoforms of NMMHC-A, B, C were also abundantly present in rat prostate with SMM present only in the stroma, while NMMHC-A, B, C were present both in the stroma and endothelial. Additionally, the SMM selective inhibitor blebbistatin could potently relax phenylephrine pre-contracted prostate SM. In conclusion, our novel data demonstrated the expression and functional activities of SMM and NMM isoforms in the rat prostate. It is suggested that the isoforms of SMM and NMM could play important roles in BPH development and bladder outlet obstruction.
Collapse
Affiliation(s)
- Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences of Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xin-Hua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
12
|
Basu S, Proweller A. Autoregulatory Control of Smooth Muscle Myosin Light Chain Kinase Promoter by Notch Signaling. J Biol Chem 2015; 291:2988-99. [PMID: 26703474 DOI: 10.1074/jbc.m115.679803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle myosin light chain kinase (SM-MLCK) is the key enzyme responsible for phosphorylation of regulatory myosin light chain (MLC20), resulting in actin-myosin cross-bridging and force generation in vascular smooth muscle required for physiological vasoreactivity and blood pressure control. In this study, we investigated the combinatorial role of myocardin/serum response factor (SRF) and Notch signaling in the transcriptional regulation of MLCK gene expression. Promoter reporter analyses in rat A10 smooth muscle cells revealed a bimodal pattern of MLCK promoter activity and gene expression upon stimulation with constitutively active Notch1 in presence of myocardin or by Jagged1 ligand stimulation. An initial Notch1-induced increase in MLCK transcription was followed by loss in promoter sensitivity, which could be restored with further Notch1 dose escalation. Real-time PCR analyses revealed that endogenous levels of Hairy Related Transcription (HRT) factor 2 (HRT2) peaked concurrently with inhibitory concentrations of Notch1. Forced expression of HRT2 demonstrated simultaneous repression of both myocardin- and Notch1-induced MLCK promoter activity. HRT2-mediated repression was further confirmed by HRT2 truncations and siHRT2 treatments that rescued MLCK promoter activity and gene expression. Chromatin immunoprecipitation studies revealed both Jagged1 ligand- and Notch1-enhanced myocardin/SRF complex formation at the promoter CArG element. In contrast, heightened levels of HRT2 concomitantly disrupted myocardin/SRF and Notch transcription complex formation at respective CArG and CSL binding elements. Taken together, SM-MLCK promoter activity appears highly sensitive to the relative levels of Notch1 signaling, HRT2, and myocardin. These findings identify a novel Notch-dependent HRT2 autoregulatory circuit coordinating transcriptional regulation of SM-MLCK.
Collapse
Affiliation(s)
- Sanchita Basu
- From the Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio 44106
| | - Aaron Proweller
- From the Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
13
|
Myocardin is required for maintenance of vascular and visceral smooth muscle homeostasis during postnatal development. Proc Natl Acad Sci U S A 2015; 112:4447-52. [PMID: 25805819 DOI: 10.1073/pnas.1420363112] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myocardin is a muscle-restricted transcriptional coactivator that activates a serum response factor (SRF)-dependent gene program required for cardiogenesis and embryonic survival. To identify myocardin-dependent functions in smooth muscle cells (SMCs) during postnatal development, mice harboring a SMC-restricted conditional, inducible Myocd null mutation were generated and characterized. Tamoxifen-treated SMMHC-Cre(ERT2)/Myocd(F/F) conditional mutant mice die within 6 mo of Myocd gene deletion, exhibiting profound derangements in the structure of great arteries as well as the gastrointestinal and genitourinary tracts. Conditional mutant mice develop arterial aneurysms, dissection, and rupture, recapitulating pathology observed in heritable forms of thoracic aortic aneurysm and dissection (TAAD). SMCs populating arteries of Myocd conditional mutant mice modulate their phenotype by down-regulation of SMC contractile genes and up-regulation of extracellular matrix proteins. Surprisingly, this is accompanied by SMC autonomous activation of endoplasmic reticulum (ER) stress and autophagy, which over time progress to programmed cell death. Consistent with these observations, Myocd conditional mutant mice develop remarkable dilation of the stomach, small intestine, bladder, and ureters attributable to the loss of visceral SMCs disrupting the muscularis mucosa. Taken together, these data demonstrate that during postnatal development, myocardin plays a unique, and important, role required for maintenance and homeostasis of the vasculature, gastrointestinal, and genitourinary tracts. The loss of myocardin in SMCs triggers ER stress and autophagy, which transitions to apoptosis, revealing evolutionary conservation of myocardin function in SMCs and cardiomyocytes.
Collapse
|
14
|
Lentle RG, Reynolds GW, Janssen PWM. Gastrointestinal tone; its genesis and contribution to the physical processes of digestion. Neurogastroenterol Motil 2013; 25:931-42. [PMID: 24028606 DOI: 10.1111/nmo.12223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Myogenic tone has long been recognised as an important component of gastrointestinal motility. Recent work has clarified the cellular mechanisms that engender tone and the neurogenic and mechanical stimuli that modulate it but has also highlighted cellular and regional specialisation in these mechanisms within the GI tract. Smooth muscle in all segments of the gut has the capability of latching, i.e. can generate ongoing specific rather than tetanic tone. This is likely modulated by both direct and indirect input from agonists such as acetylcholine and mechanoreceptors, the latter originating in ICC-IM, smooth muscle cells or elements of the ENS. Tonic contraction can occur in the absence of phasic contractions or concurrent with them, and it can modulate wall compliance and the capacity of particular segments, thereby affecting the level of on-flow and mixing, both luminal and adjacent to the mucosa. PURPOSE The review seeks to provide an overview of our understanding of the mechanism by which tone is generated and maintained, highlighting its modulation by neurogenic and mechanical stimuli, its mechanical consequences in the walls of the various segments of the gastrointestinal tract and its contribution to flow and mixing of contained digesta.
Collapse
Affiliation(s)
- R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
15
|
Al-Shboul O, Mahavadi S, Sriwai W, Grider JR, Murthy KS. Differential expression of multidrug resistance protein 5 and phosphodiesterase 5 and regulation of cGMP levels in phasic and tonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2013; 305:G314-24. [PMID: 23764893 PMCID: PMC3891211 DOI: 10.1152/ajpgi.00457.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have identified differences in the expression of proteins that regulate myosin light chain phosphorylation and contraction in tonic and phasic smooth muscle. cGMP plays a critical role in smooth muscle relaxation and is important for optimal function of phasic and tonic smooth muscle. The intracellular cGMP levels are regulated by its hydrolysis via phosphodiesterase 5 (PDE5) and efflux via novel multidrug resistance protein 5 (MRP5). In the present study we tested the hypothesis that the differences in the phasic and tonic behavior of smooth muscles may be related to differences in mechanisms that terminate cGMP signaling. Expression of PDE5 and MRP5 was significantly (more than 2-fold) higher in fundus compared with antrum. The NO donor S-nitrosoglutathione (GSNO) caused an increase in PDE5 activity and intra- and extracellular cGMP levels in both fundus and antrum. Stimulation of PDE5 activity and increase in extracellular cGMP were significantly higher in fundus, whereas increase in intracellular cGMP was significantly higher in antrum. GSNO-induced increase in extracellular cGMP was blocked in dispersed cells by the cyclic nucleotide export blocker probenecid and in cultured muscle cells by depletion of ATP or suppression of MRP5 by siRNA, providing evidence that cGMP efflux was mediated by ATP-dependent export via MRP5. Consistent with the higher expression and activity levels of PDE5 and MRP5, GSNO-induced PKG activity and muscle relaxation were significantly lower in muscle cells from fundus compared with antrum. Thus higher expression of PDE5 and MRP5 in muscle cells from fundus correlates with tonic phenotype of muscle.
Collapse
Affiliation(s)
- Othman Al-Shboul
- Dept. of Physiology and Biophysics, Virginia Commonwealth Univ., Richmond, VA 23298-0711.
| | | | | | | | | |
Collapse
|
16
|
He W, Qiao Y, Peng Y, Zha J, Zhang C, Chen C, Chen C, Wang P, Yang X, Li C, Kamm KE, Stull JT, Zhu M. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology 2013; 144:1456-65, 1465.e1-5. [PMID: 23499953 PMCID: PMC3782749 DOI: 10.1053/j.gastro.2013.02.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS The regulatory subunit of myosin light chain phosphatase, MYPT1, has been proposed to control smooth muscle contractility by regulating phosphorylation of the Ca(2+)-dependent myosin regulatory light chain. We generated mice with a smooth muscle-specific deletion of MYPT1 to investigate its physiologic role in intestinal smooth muscle contraction. METHODS We used the Cre-loxP system to establish Mypt1-floxed mice, with the promoter region and exon 1 of Mypt1 flanked by 2 loxP sites. These mice were crossed with SMA-Cre transgenic mice to generate mice with smooth muscle-specific deletion of MYPT1 (Mypt1(SMKO) mice). The phenotype was assessed by histologic, biochemical, molecular, and physiologic analyses. RESULTS Young adult Mypt1(SMKO) mice had normal intestinal motility in vivo, with no histologic abnormalities. On stimulation with KCl or acetylcholine, intestinal smooth muscles isolated from Mypt1(SMKO) mice produced robust and increased sustained force due to increased phosphorylation of the myosin regulatory light chain compared with muscle from control mice. Additional analyses of contractile properties showed reduced rates of force development and relaxation, and decreased shortening velocity, compared with muscle from control mice. Permeable smooth muscle fibers from Mypt1(SMKO) mice had increased sensitivity and contraction in response to Ca(2+). CONCLUSIONS MYPT1 is not essential for smooth muscle function in mice but regulates the Ca(2+) sensitivity of force development and contributes to intestinal phasic contractile phenotype. Altered contractile responses in isolated tissues could be compensated by adaptive physiologic responses in vivo, where gut motility is affected by lower intensities of smooth muscle stimulation for myosin phosphorylation and force development.
Collapse
Affiliation(s)
- Wei–Qi He
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Yan–Ning Qiao
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Ya–Jing Peng
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Juan–Min Zha
- Department of Gerontology, The First Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Cheng–Hai Zhang
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Chen Chen
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Cai–Ping Chen
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Pei Wang
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing, China
| | - Chao–Jun Li
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China,School of Medicine, Nanjing University, Nanjing, China
| | - Kristine E. Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James T. Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Min–Sheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China,Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, China
| |
Collapse
|
17
|
Guo H, Huang R, Semba S, Kordowska J, Huh YH, Khalina-Stackpole Y, Mabuchi K, Kitazawa T, Wang CLA. Ablation of smooth muscle caldesmon affects the relaxation kinetics of arterial muscle. Pflugers Arch 2012; 465:283-94. [PMID: 23149489 DOI: 10.1007/s00424-012-1178-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 01/04/2023]
Abstract
Smooth muscle caldesmon (h-CaD) is an actin- and myosin-binding protein that reversibly inhibits the actomyosin ATPase activity in vitro. To test the function of h-CaD in vivo, we eliminated its expression in mice. The h-CaD-null animals appeared normal and fertile, although the litter size was smaller. Tissues from the homozygotes lacked h-CaD and exhibited upregulation of the non-muscle isoform, l-CaD, in visceral, but not vascular tonic smooth muscles. While the Ca(2+) sensitivity of force generation of h-CaD-deficient smooth muscle remained largely unchanged, the kinetic behavior during relaxation in arteries was different. Both intact and permeabilized arterial smooth muscle tissues from the knockout animals relaxed more slowly than those of the wild type. Since this difference occurred after myosin dephosphorylation was complete, the kinetic effect most likely resulted from slower detachment of unphosphorylated crossbridges. Detailed analyses revealed that the apparently slower relaxation of h-CaD-null smooth muscle was due to an increase in the amplitude of a slower component of the biphasic tension decay. While the identity of this slower process has not been unequivocally determined, we propose it reflects a thin filament state that elicits fewer re-attached crossbridges. Our finding that h-CaD modulates the rate of smooth muscle relaxation clearly supports a role in the control of vascular tone.
Collapse
Affiliation(s)
- Hongqiu Guo
- Boston Biomedical Research Institute, Watertown, MA, 02472, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang Q, Babu GJ, Periasamy M, Eddinger TJ. SMB myosin heavy chain knockout enhances tonic contraction and reduces the rate of force generation in ileum and stomach antrum. Am J Physiol Cell Physiol 2012; 304:C194-206. [PMID: 23135699 DOI: 10.1152/ajpcell.00280.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of SMA and SMB smooth muscle myosin heavy chain (MHC) isoforms in tonic and phasic contractions was studied in phasic (longitudinal ileum and stomach circular antrum) and tonic (stomach circular fundus) smooth muscle tissues of SMB knockout mice. Knocking out the SMB MHC gene eliminated SMB MHC protein expression and resulted in upregulation of the SMA MHC protein without altering the total MHC protein level. Switching from SMB to SMA MHC protein expression decreased the rate of the force transient and increased the sustained tonic force in SMB((-/-)) ileum and antrum with high potassium (KPSS) but not with carbachol (CCh) stimulation. The increased tonic contraction under the depolarized condition was not through changes in second messenger signaling pathways (PKC/CPI-17 or Rho/ROCK signaling pathway) or LC(20) phosphorylation. Biochemical analyses showed that the expression of contractile regulatory proteins (MLCK, MLCP, PKCδ, and CPI-17) did not change significantly in tissues tested except for PKCα protein expression being significantly decreased in the SMB((-/-)) antrum. However, specifically activating PKCα with phorbol dibutyrate (PDBu) was not significantly different in knockout and wild-type tissues, with total force being a fraction of the force generation with KPSS or CCh stimulation in SMB((-/-)) ileum and antrum. Taken together, these data show removing the SMB MHC protein expression with a compensatory increase in the SMA MHC protein results in enhanced sustained KPSS-induced tonic contraction with a reduced rate of force generation in these phasic tissues.
Collapse
Affiliation(s)
- Qian Huang
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | | | | | | |
Collapse
|
19
|
Functional phenotype of airway myocytes from asthmatic airways. Pulm Pharmacol Ther 2012; 26:95-104. [PMID: 22921313 DOI: 10.1016/j.pupt.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
In asthma, the airway smooth muscle (ASM) cell plays a central role in disease pathogenesis through cellular changes which may impact on its microenvironment and alter ASM response and function. The answer to the long debated question of what makes a 'healthy' ASM cell become 'asthmatic' still remains speculative. What is known of an 'asthmatic' ASM cell, is its ability to contribute to the hallmarks of asthma such as bronchoconstriction (contractile phenotype), inflammation (synthetic phenotype) and ASM hyperplasia (proliferative phenotype). The phenotype of healthy or diseased ASM cells or tissue for the most part is determined by expression of key phenotypic markers. ASM is commonly accepted to have different phenotypes: the contractile (differentiated) state versus the synthetic (dedifferentiated) state (with the capacity to synthesize mediators, proliferate and migrate). There is now accumulating evidence that the synthetic functions of ASM in culture derived from asthmatic and non-asthmatic donors differ. Some of these differences include an altered profile and increased production of extracellular matrix proteins, pro-inflammatory mediators and adhesion receptors, collectively suggesting that ASM cells from asthmatic subjects have the capacity to alter their environment, actively participate in repair processes and functionally respond to changes in their microenvironment.
Collapse
|
20
|
Zderic SA, Chacko S. Alterations in the contractile phenotype of the bladder: lessons for understanding physiological and pathological remodelling of smooth muscle. J Cell Mol Med 2012; 16:203-17. [PMID: 21707917 PMCID: PMC3289974 DOI: 10.1111/j.1582-4934.2011.01368.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The contractile properties of the urinary bladder are changed by the conditions of normal development and partial bladder outlet obstruction. This change in the contractile phenotype is accompanied by changes in the regulatory cascades and filaments that regulate contractility. This review focuses on such changes during the course of normal development and in response to obstruction. Our goal is to discuss the experimental evidence that has accumulated from work in animal models and correlate these findings with the human voiding phenotype.
Collapse
Affiliation(s)
- Stephen A Zderic
- The John W Duckett Jr Center for Pediatric Urology at The Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
21
|
Ho D, Chen L, Zhao X, Durham N, Pannirselvam M, Vatner DE, Morgans DJ, Malik FI, Vatner SF, Shen YT. Smooth muscle myosin inhibition: a novel therapeutic approach for pulmonary hypertension. PLoS One 2012; 7:e36302. [PMID: 22563487 PMCID: PMC3341368 DOI: 10.1371/journal.pone.0036302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/02/2012] [Indexed: 12/01/2022] Open
Abstract
Objective Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165) ameliorates pulmonary hypertension. Materials and Methods Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 µg/kg/min, i.v.). In rats, chronic pulmonary hypertension was induced by monocrotaline. Results CK-165 (4 mg/kg, i.v.) reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01), while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05) while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8%) reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%). Conclusion Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- David Ho
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Li Chen
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Xin Zhao
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Nicquanna Durham
- Cytokinetics, Inc., South San Francisco, California, United States of America
| | - Malar Pannirselvam
- Cytokinetics, Inc., South San Francisco, California, United States of America
| | - Dorothy E. Vatner
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - David J. Morgans
- Cytokinetics, Inc., South San Francisco, California, United States of America
| | - Fady I. Malik
- Cytokinetics, Inc., South San Francisco, California, United States of America
| | - Stephen F. Vatner
- CV Dynamics, Inc., North Brunswick, New Jersey, United States of America
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| | - You-Tang Shen
- CV Dynamics, Inc., North Brunswick, New Jersey, United States of America
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
22
|
McGonagle E, Smith A, Butler S, Sliwoski J, Valentino R, Canning D, Zderic SA. Water avoidance stress results in an altered voiding phenotype in male mice. Neurourol Urodyn 2012; 31:1185-9. [PMID: 22473515 DOI: 10.1002/nau.22207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 01/10/2012] [Indexed: 11/07/2022]
Abstract
AIMS We set out to characterize the voiding phenotypes of male mice to a water avoidance stress (WAS) protocol and compare the molecular changes with those induced by surgically induced partial bladder outlet obstruction (pBOO). METHODS Six-week-old male Swiss Webster mice housed with sibling littermates were individually placed on a platform centered in the middle of a water filled basin for 1 hr daily for 4 weeks. A non stressed cohort of sibling littermates served as controls. Measured end points included voiding frequency, voided volume, bladder mass, and in vivo cystometry. Molecular end points included myosin heavy chain (MHC) isoform distribution by PCR, and nuclear translocation of hypoxia inducible factor (HIF1α) and the nuclear factor of activated T-cells (NFAT) by gel shift assay. These molecular endpoints were compared with samples from male mice undergoing anatomic pBOO. RESULTS WAS resulted in increased average voided volumes and bladder mass, and a decrease in voiding frequency (P < 0.05). The slower MHC A isoform was only expressed in the pBOO group that developed severe hypertrophy. Gel shift assays revealed substantial increases in HIF1-α nuclear translocation in the group subjected to pBOO that developed severe hypertrophy but minimal changes in the pBOO group that developed minimal hypertrophy and the swim stress groups. CONCLUSIONS The WAS model induces moderate bladder wall hypertrophy in the absence of any surgical manipulation.
Collapse
Affiliation(s)
- Erin McGonagle
- John W. Duckett Center for Pediatric Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang X, Kanika ND, Melman A, DiSanto ME. Smooth muscle myosin expression, isoform composition, and functional activities in rat corpus cavernosum altered by the streptozotocin-induced type 1 diabetes. Am J Physiol Endocrinol Metab 2012; 302:E32-42. [PMID: 21917637 PMCID: PMC3328089 DOI: 10.1152/ajpendo.00231.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diabetes mellitus (DM) is a quite common chronic disease, and the prevalence of erectile dysfunction (ED) is three times higher in this large population. Although diabetes-related ED has been studied extensively, the actin-myosin contractile apparatus was not examined. The mRNAs encoding smooth muscle myosin (SMM) heavy chains (MHC) and essential light chains (LC(17)) exist as several different alternatively spliced isoforms with distinct contractile properties. Recently, we provided novel data that blebbistatin (BLEB), a specific myosin II inhibitor, potently relaxed corpus cavernosum smooth muscle (CCSM). In this study, we examine whether diabetes alters SMM expression, alternative splicing, and/or functional activities, including sensitivity to BLEB. By using streptozotocin (STZ)-induced 2-mo diabetic rats, functional activities were tested in vivo by intracavernous pressure (ICP) recording during cavernous nerve stimulation and in vitro via organ bath contractility studies. SMM isoform composition was analyzed by competitive RT-PCR and total SMM, myocardin, and embryonic SMM (SMemb) expression by real-time RT-PCR. Results revealed that the blood glucose level of STZ rats was 407.0 vs. 129.5 mg/dl (control). STZ rats exhibited ED confirmed by significantly increased CCSM contractile response to phenylephrine and decreased ICP response. For STZ rats, SM-B, LC(17a) and SM2 isoforms, total SMM, and myocardin expression increased, whereas SM-A, LC(17b), and SM1 isoforms were decreased, with SMemb unchanged. BLEB was significantly more effective in relaxing STZ CCSM both in vitro and in vivo. Thus we demonstrated a novel diabetes-specific effect on alternative splicing of the SMM heavy chain and essential light chain genes to a SMM isoform composition favoring a heightened contractility and ED. A switch to a more contractile phenotype was supported further by total SMM expression increase. Moreover, the change in CCSM phenotype was associated with an increased sensitivity to BLEB, which may serve as a novel pharmacotherapy for ED.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
24
|
Blebbistain, a myosin II inhibitor, as a novel strategy to regulate detrusor contractility in a rat model of partial bladder outlet obstruction. PLoS One 2011; 6:e25958. [PMID: 22016792 PMCID: PMC3189232 DOI: 10.1371/journal.pone.0025958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022] Open
Abstract
Partial bladder outlet obstruction (PBOO), a common urologic pathology mostly caused by benign prostatic hyperplasia, can coexist in 40–45% of patients with overactive bladder (OAB) and is associated with detrusor overactivity (DO). PBOO that induces DO results in alteration in bladder myosin II type and isoform composition. Blebbistatin (BLEB) is a myosin II inhibitor we recently demonstrated potently relaxed normal detrusor smooth muscle (SM) and reports suggest varied BLEB efficacy for different SM myosin (SMM) isoforms and/or SMM vs nonmuscle myosin (NMM). We hypothesize BLEB inhibition of myosin II as a novel contraction protein targeted strategy to regulate DO. Using a surgically-induced male rat PBOO model, organ bath contractility, competitive and Real-Time-RT-PCR were performed. It was found that obstructed-bladder weight significantly increased 2.74-fold while in vitro contractility of detrusor to various stimuli was impaired ∼50% along with decreased shortening velocity. Obstruction also altered detrusor spontaneous activities with significantly increased amplitude but depressed frequency. PBOO switched bladder from a phasic-type to a more tonic-type SM. Expression of 5’ myosin heavy chain (MHC) alternatively spliced isoform SM-A (associated with tonic-type SM) increased 3-fold while 3’ MHC SM1 and essential light chain isoform MLC17b also exhibited increased relative expression. Total SMMHC expression was decreased by 25% while the expression of NMM IIB (SMemb) was greatly increased by 4.5-fold. BLEB was found to completely relax detrusor strips from both sham-operated and PBOO rats pre-contracted with KCl, carbachol or electrical field stimulation although sensitivity was slightly decreased (20%) only at lower doses for PBOO. Thus we provide the first thorough characterization of the response of rat bladder myosin to PBOO and demonstrate complete BLEB-induced PBOO bladder SM relaxation. Furthermore, the present study provides valuable evidence that BLEB may be a novel type of potential therapeutic agent for regulation of myogenic and nerve-evoked DO in OAB.
Collapse
|
25
|
Nagai R. [108th Scientific Meeting of the Japanese Society of Internal Medicine: presidential lecture: medical research in elements and systems: from the standpoint of disease biology of the cardiovascular, metabolic and immune systems, and large-scale health record data systems]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2011; 100:2383-2401. [PMID: 22117328 DOI: 10.2169/naika.100.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Ryozo Nagai
- Department of Cardiovascular Medicine, The University of Tokyo, Japan
| |
Collapse
|
26
|
Zhao X, Ho D, Abarzúa P, Dhar SK, Wang X, Jia Z, Pannirselvam M, Morgans DJ, Malik FI, Vatner SF. Inhibition of smooth muscle myosin as a novel therapeutic target for hypertension. J Pharmacol Exp Ther 2011; 339:307-12. [PMID: 21784887 DOI: 10.1124/jpet.111.182402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined a novel therapeutic approach for hypertension, a small-molecule direct inhibitor of smooth muscle myosin, CK-2018448 (CK-448), which is an N,N'-alkylurea (U.S. Patent Publication 2009-0275537 A1) in conscious dogs with renal hypertension and compared its efficacy with that of a calcium channel blocker, amlodipine. Dogs were instrumented with a miniature left ventricular pressure gauge, an aortic pressure catheter, and ultrasonic flow probes in the ascending aorta and renal and iliac arteries for measurement of cardiac output and regional blood flow. In the hypertensive state, mean arterial pressure increased from 101 ± 3.8 to 142 ± 1.9 mm Hg. At the doses selected, CK-448 and amlodipine increased cardiac output similarly (30 ± 11% versus 33 ± 6.4%) and similarly reduced mean arterial pressure (-22 ± 3.6% versus -16 ± 3.4%) and total peripheral resistance (-36 ± 5.9% versus -37 ± 5.8%). CK-448 had the greatest vasodilator effect in the renal bed, where renal blood flow increased by 46 ± 9.0%, versus 11 ± 3.4% for amlodipine (p < 0.01). CK-488 produced significantly less vasodilation in the limb, where iliac blood flow did not change; in contrast, it rose by 48 ± 12% with amlodipine (p < 0.01). The minimal effects on limb blood flow could limit the development of peripheral edema, an adverse side effect of Ca(2+) channel blockers. In addition, in a rodent model of hypertension, oral administration of a smooth muscle myosin inhibitor resulted in a sustained antihypertensive effect. Thus, the smooth muscle myosin inhibitor's preferential effect on renal blood flow makes this drug mechanism particularly appealing, because many patients with hypertension have renal insufficiency, and patients with heart failure could benefit from afterload reduction coupled with enhanced renal blood flow.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Cell Biology and Molecular Medicine and the Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chang AY, Sliwoski J, Butler S, Hearn G, Lassmann J, Chacko S, Canning DA, Zderic SA. Calcineurin mediates bladder wall remodeling secondary to partial outlet obstruction. Am J Physiol Renal Physiol 2011; 301:F813-22. [PMID: 21775483 DOI: 10.1152/ajprenal.00586.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We hypothesized that the calcineurin-nuclear factor of activated T-cells (NFAT) pathway is activated following partial bladder outlet obstruction (pBOO), which would allow for pharmacologic treatment to prevent the ensuing bladder wall hypertrophy. Using a model of pBOO in male mice, we were able to demonstrate increased nuclear importation of the transcription factors NFAT and myocyte enhanching factor 2 both of which are under control of calcineurin in both the whole bladder wall as well as the urothelium. We further confirmed that this pathway was activated using transgenic mice containing an NFAT-luciferase reporter construct. Mice were randomized following pBOO to treatment with or without cyclosporine A (CsA), a known inhibitor of calcineurin. The bladder-to-body mass ratio (mg bladder wt/g body wt) of 0.95 ± 0.03 in shams increased to 3.1 ± 0.35 following pBOO, and it dropped back to 1.7 ± 0.22 in the CsA+ group (P < 0.001). Luciferase values (RLU) of 1,130 ± 133 in shams increased to 2,010 ± 474 following pBOO and were suppressed to 562 ± 177 in the CsA+ group (P < 0.05). The myosin heavy chain mRNA (A/B) isoform ratio of 0.07 ± 0.03 in shams increased to 1.04 ± 0.19 following pBOO but it diminished to 0.24 ± 0.1 in the CsA+ group (P < 0.001). In vitro whole organ physiology studies demonstrated improved responses in those bladders from mice treated with CsA. The mRNAs for all four known calcineurin-responsive NFAT isoforms are expressed in the bladder wall, although NFATc(3) and NFATc(4) predominate. Both NFATc3 and NFATc4 are expressed in urothelial as well as smooth muscle cells. We conclude that pBOO activates the calcineurin-NFAT pathway and that CsA treatment decreased bladder hypertrophy, shifted the pattern of myosin isoform mRNA expression back toward that seen in normal controls, and resulted in improved in vitro whole organ performance.
Collapse
Affiliation(s)
- Andy Y Chang
- John W. Duckett Jr. Center for Pediatric Urology at The Children's Hospital of Philadelphia 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch Biochem Biophys 2011; 510:160-73. [DOI: 10.1016/j.abb.2011.02.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 12/19/2022]
|
29
|
The mechanical properties of Drosophila jump muscle expressing wild-type and embryonic Myosin isoforms. Biophys J 2010; 98:1218-26. [PMID: 20371321 DOI: 10.1016/j.bpj.2009.11.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022] Open
Abstract
Transgenic Drosophila are highly useful for structure-function studies of muscle proteins. However, our ability to mechanically analyze transgenically expressed mutant proteins in Drosophila muscles has been limited to the skinned indirect flight muscle preparation. We have developed a new muscle preparation using the Drosophila tergal depressor of the trochanter (TDT or jump) muscle that increases our experimental repertoire to include maximum shortening velocity (V(slack)), force-velocity curves and steady-state power generation; experiments not possible using indirect flight muscle fibers. When transgenically expressing its wild-type myosin isoform (Tr-WT) the TDT is equivalent to a very fast vertebrate muscle. TDT has a V(slack) equal to 6.1 +/- 0.3 ML/s at 15 degrees C, a steep tension-pCa curve, isometric tension of 37 +/- 3 mN/mm(2), and maximum power production at 26% of isometric tension. Transgenically expressing an embryonic myosin isoform in the TDT muscle increased isometric tension 1.4-fold, but decreased V(slack) 50% resulting in no significant difference in maximum power production compared to Tr-WT. Drosophila expressing embryonic myosin jumped <50% as far as Tr-WT that, along with comparisons to frog jump muscle studies, suggests fast muscle shortening velocity is relatively more important than high tension generation for Drosophila jumping.
Collapse
|
30
|
von der Weid PY, Muthuchamy M. Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. PATHOPHYSIOLOGY 2010; 17:263-76. [DOI: 10.1016/j.pathophys.2009.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/10/2009] [Accepted: 10/23/2009] [Indexed: 11/15/2022] Open
|
31
|
Abstract
The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts.
Collapse
Affiliation(s)
- Steven A Fisher
- Department of Medicine, and Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106-7290, USA.
| |
Collapse
|
32
|
Chacko S, Chang S, Hypolite J, Disanto M, Wein A. Alteration of contractile and regulatory proteins following partial bladder outlet obstruction. ACTA ACUST UNITED AC 2009:26-36. [PMID: 15545194 DOI: 10.1080/03008880410015147] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper reviews the contractility and the expression of contractile and regulatory proteins in the detrusor smooth muscle (DSM) following partial bladder outlet obstruction (PBOO) in rabbits. PBOO was surgically induced by partial ligation of the urethra in adult male New Zealand White rabbits. The force generated by DSM strips from normal and obstructed bladders which showed bladder dysfunction, despite detrusor hypertrophy (decompensated bladder, DB) was measured. The expression of contractile and regulatory proteins was analyzed by reverse transcriptase-polymerase chain reaction and Western blotting. The DSM from obstructed DB revealed an overexpression of SM-A myosin heavy chain isoform (associated with decreased maximum velocity of shortening). DSM from sham-operated rabbits showed phasic contractions, whereas the detrusor from DB was tonic, exhibiting slow development of force, a longer duration of force maintenance, and slow relaxation. Rho-kinase inhibitor Y-27632 enhanced the relaxation of precontracted (with 125 mM KCl) DSM strips from DB. The enhancement of relaxation of DB by Y-27632 was associated with dephosphorylation of myosin light chain. The detrusor from normal bladders expresses predominantly the smooth muscle caldesmon (h-CaD), a thin filament-associated protein. However, the DSM from DB shows an overexpression of l-CaD, the non-muscle isoform of CaD. The l-CaD colocalizes with myosin in the cytoplasmic filaments in myocytes. These results show that the alteration of contractility of the detrusor following PBOO is associated with changes in the expression of proteins that form the contractile apparatus and regulate the actomyosin ATPase activity and contraction.
Collapse
Affiliation(s)
- Samuel Chacko
- Department of Pathobiology, University of Pennsylvania, Philadelphia, 19104, USA.
| | | | | | | | | |
Collapse
|
33
|
Hypolite JA, Chang S, LaBelle E, Babu GJ, Periasamy M, Wein AJ, Chacko S. Deletion of SM-B, the high ATPase isoform of myosin, upregulates the PKC-mediated signal transduction pathway in murine urinary bladder smooth muscle. Am J Physiol Renal Physiol 2008; 296:F658-65. [PMID: 19052105 DOI: 10.1152/ajprenal.90221.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Detrusor smooth muscle (DSM) hypertrophy induced by partial bladder outlet obstruction (PBOO) is associated with changes in the NH2-terminal myosin heavy chain isoform from predominantly SM-B to SM-A, alteration in the Ca2+ sensitization pathway, and the contractile characteristics from phasic to tonic in rabbits. We utilized the SM-B knockout (KO) mouse to determine whether a shift from SM-B to SM-A without PBOO is associated with changes in the signal transduction pathway mediated via PKC and CPI-17, which keeps the myosin phosphorylation (MLC20) level high by inhibiting the myosin phosphatase. DSM strips from SM-B KO mice generated more force in response to electrical field stimulation, KCl, carbachol, and phorbol 12,13-dibutyrate than that of age-matched wild-type mice. There was no difference in the ED50 for carbachol but the maximum response was greater for the SM-B KO mice. DSM from SM-B KO mice revealed increased mass and hypertrophy. The KO mice also showed an overexpression of PKC-alpha, increased levels of phospho-CPI-17, and an elevated level of IP3 and DAG upon stimulation with carbachol. Two-dimensional gel electrophoresis revealed an increased level of MLC20 phosphorylation in response to carbachol. Together, these changes may be responsible for the higher level of force generation and maintenance by the DSM from the SM-B KO bladders. In conclusion, our data show that ablation of SM-B is associated with alteration of PKC-mediated signal transduction and CPI-17-mediated Ca2+ sensitization pathway that regulate smooth muscle contraction. Interestingly, similar changes are also present in PBOO-induced DSM compensatory response in the rabbit model in which SM-B is downregulated.
Collapse
Affiliation(s)
- Joseph A Hypolite
- Division of Urology and Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Yang C, Ramanath S, Kronert WA, Bernstein SI, Maughan DW, Swank DM. Alternative versions of the myosin relay domain differentially respond to load to influence Drosophila muscle kinetics. Biophys J 2008; 95:5228-37. [PMID: 18805920 PMCID: PMC2586575 DOI: 10.1529/biophysj.108.136192] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 08/19/2008] [Indexed: 11/18/2022] Open
Abstract
We measured the influence of alternative versions of the Drosophila melanogaster myosin heavy chain relay domain on muscle mechanical properties. We exchanged relay domain regions (encoded by alternative versions of exon 9) between an embryonic (EMB) isoform and the indirect flight muscle isoform (IFI) of myosin. Previously, we observed no effect of exchanging the EMB relay domain region into the flight muscle isoform (IFI-9b) on in vitro actin motility velocity or solution ATPase measurements compared to IFI. However, in indirect flight muscle fibers, IFI-9b exhibited decreased maximum power generation (P(max)) and optimal frequency of power generation (f(max)) to 70% and 83% of IFI fiber values. The decrease in muscle performance reduced the flight ability and wing-beat frequency of IFI-9b Drosophila compared to IFI Drosophila. Previously, we found that exchanging the flight muscle specific relay domain into the EMB isoform (EMB-9a) prevented actin movement in the in vitro motility assay compared to EMB, which does support actin movement. However, in indirect flight muscle fibers EMB-9a was a highly effective motor, increasing P(max) and f(max) 2.5-fold and 1.4-fold, respectively, compared to fibers expressing EMB. We propose that the oscillatory load EMB-9a experiences in the muscle fiber reduces a high activation energy barrier between two strongly bound states of the cross-bridge cycle, thereby promoting cross-bridge cycling. The IFI relay domain's enhanced sensitivity to load increases cross-bridge kinetics, whereas the EMB version is less load-sensitive.
Collapse
Affiliation(s)
- Chaoxing Yang
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | | | | | | | | |
Collapse
|
35
|
Léguillette R, Laviolette M, Bergeron C, Zitouni N, Kogut P, Solway J, Kachmar L, Hamid Q, Lauzon AM. Myosin, transgelin, and myosin light chain kinase: expression and function in asthma. Am J Respir Crit Care Med 2008; 179:194-204. [PMID: 19011151 DOI: 10.1164/rccm.200609-1367oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. OBJECTIVES We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. METHODS We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. MEASUREMENTS AND MAIN RESULTS We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. CONCLUSIONS Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma.
Collapse
Affiliation(s)
- Renaud Léguillette
- Meakins-Christie Laboratories, McGill University, 3626 St-Urbain street, Montreal, PQ, H2X 2P2 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ablation of smooth muscle myosin heavy chain SM2 increases smooth muscle contraction and results in postnatal death in mice. Proc Natl Acad Sci U S A 2008; 105:18614-8. [PMID: 19011095 DOI: 10.1073/pnas.0808162105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The physiological relevance of smooth muscle myosin isoforms SM1 and SM2 has not been understood. In this study we generated a mouse model specifically deficient in SM2 myosin isoform but expressing SM1, using an exon-specific gene targeting strategy. The SM2 homozygous knockout (SM2(-/-)) mice died within 30 days after birth, showing pathologies including segmental distention of alimentary tract, retention of urine in renal pelvis, distension of bladder, and the development of end-stage hydronephrosis. In contrast, the heterozygous (SM2(+/-)) mice appeared normal and reproduced well. In SM2(-/-) bladder smooth muscle the loss of SM2 myosin was accompanied by a concomitant down-regulation of SM1 and a reduced number of thick filaments. However, muscle strips from SM2(-/-) bladder showed increased contraction to K(+) depolarization or in response to M3 receptor agonist Carbachol. An increase of contraction was also observed in SM2(-/-) aorta. However, the SM2(-/-) bladder was associated with unaltered regulatory myosin light chain (MLC20) phosphorylation. Moreover, other contractile proteins, such as alpha-actin and tropomyosin, were not altered in SM2(-/-) bladder. Therefore, the loss of SM2 myosin alone could have induced hypercontractility in smooth muscle, suggesting that distinctly from SM1, SM2 may negatively modulate force development during smooth muscle contraction. Also, because SM2(-/-) mice develop lethal multiorgan dysfunctions, we propose this regulatory property of SM2 is essential for normal contractile activity in postnatal smooth muscle physiology.
Collapse
|
37
|
Rensen SS, Niessen PM, van Deursen JM, Janssen BJ, Heijman E, Hermeling E, Meens M, Lie N, Gijbels MJ, Strijkers GJ, Doevendans PA, Hofker MH, De Mey JGR, van Eys GJ. Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice. Circulation 2008; 118:828-36. [PMID: 18678771 DOI: 10.1161/circulationaha.107.743690] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Smoothelins are actin-binding proteins that are abundantly expressed in healthy visceral (smoothelin-A) and vascular (smoothelin-B) smooth muscle. Their expression is strongly associated with the contractile phenotype of smooth muscle cells. Analysis of mice lacking both smoothelins (Smtn-A/B(-/-) mice) previously revealed a critical role for smoothelin-A in intestinal smooth muscle contraction. Here, we report on the generation and cardiovascular phenotype of mice lacking only smoothelin-B (Smtn-B(-/-)). METHODS AND RESULTS Myograph studies revealed that the contractile capacity of the saphenous and femoral arteries was strongly reduced in Smtn-B(-/-) mice, regardless of the contractile agonist used to trigger contraction. Arteries from Smtn-A/B(-/-) compound mutant mice exhibited a similar contractile deficit. Smtn-B(-/-) arteries had a normal architecture and expressed normal levels of other smooth muscle cell-specific genes, including smooth muscle myosin heavy chain, alpha-smooth muscle actin, and smooth muscle-calponin. Decreased contractility of Smtn-B(-/-) arteries was paradoxically accompanied by increased mean arterial pressure (20 mm Hg) and concomitant cardiac hypertrophy despite normal parasympathetic and sympathetic tone in Smtn-B(-/-) mice. Magnetic resonance imaging experiments revealed that cardiac function was not changed, whereas distension of the proximal aorta during the cardiac cycle was increased in Smtn-B(-/-) mice. However, isobaric pulse wave velocity and pulse pressure measurements indicated normal aortic distensibility. CONCLUSIONS Collectively, our results identify smoothelins as key determinants of arterial smooth muscle contractility and cardiovascular performance. Studies on mutations in the Smtn gene or alterations in smoothelin levels in connection to hypertension in humans are warranted.
Collapse
Affiliation(s)
- Sander S Rensen
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Muthuchamy M, Zawieja D. Molecular regulation of lymphatic contractility. Ann N Y Acad Sci 2008; 1131:89-99. [PMID: 18519962 DOI: 10.1196/annals.1413.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The lymphatic system plays critical roles in body fluid and macromolecular homeostasis, lipid absorption, immune function, and metastasis. To accomplish these tasks, the lymphatics must move lymph and its contents from the interstitial space through the lymph vessels and nodes and into the great veins. Contrary to popular belief, lymph does not passively "drain" down this pathway, because the net pressure gradients oppose flow. Instead, the lymphatics must act as both the conduits that direct and regulate lymph flow and the pumps that generate the lymph flow. Thus, to regulate lymph transport and function, both lymphatic pumping and flow resistance must be controlled. Both of these processes occur via regulation of lymphatic muscle contractions, which are classically thought to occur via the interaction of cell calcium with regulatory and contractile proteins. However, our knowledge of this regulation of lymphatic contractile function is far from complete. In this chapter we review our understanding of the important molecular mechanisms, the calcium regulation, and the contractile/regulatory proteins that control lymphatic contractions. A better understanding of these mechanisms could provide the basis for the development of better diagnostic and treatment modalities for lymphatic dysfunction. While progress has been made in our understanding of the molecular biology of lymphangiogenesis as a result of the development of potential lymphangiogenic therapeutic targets, there are currently no therapeutic agents that specifically modulate lymphatic pump function and lymph flow via lymphatic muscle. However, their development will not be possible until the molecular basis of lymphatic contractility is more fully understood.
Collapse
Affiliation(s)
- Mariappan Muthuchamy
- Department of Systems Biology and Translational Medicine, College of Medicine, Cardiovascular Research Institute Division of Lymphatic Biology, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
39
|
Lassmann J, Sliwoski J, Chang A, Canning DA, Zderic SA. Deletion of one SERCA2 allele confers protection against bladder wall hypertrophy in a murine model of partial bladder outlet obstruction. Am J Physiol Regul Integr Comp Physiol 2008; 294:R58-65. [DOI: 10.1152/ajpregu.00477.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase2 (SERCA2) is downregulated in cardiac hypertrophy with decompensation. We sought to determine whether mice heterozygous for the SERCA2 allele would develop greater bladder hypertrophy and decompensation than their wild-type littermates following partial bladder outlet obstruction (pBOO). We found that following 4 wk of surgically created pBOO, SERCA2 heterozygous murine bladders showed significantly less hypertrophy, improved in vitro cystometry performance, diminished expression of the slow myosin isoform A analyzed by RT-PCR, a significant drop in nuclear translocation of nuclear factor of activated T cells by EMSA, and decreased cell proliferation within the smooth muscle layer following 5-bromo-2′-deoxyuridine labeling compared with their wild-type littermates. Thus, in contrast to cardiac muscle, deletion of a SERCA2 allele confers protection against bladder hypertrophy in a murine model of pBOO. Compensatory mechanisms in heterozygous mice seem to be related to the calcineurin pathway. Further studies are underway to better define the molecular basis of this observation, which has potential clinical applications.
Collapse
|
40
|
Gil FR, Lauzon AM. Smooth muscle molecular mechanics in airway hyperresponsiveness and asthma. Can J Physiol Pharmacol 2007; 85:133-40. [PMID: 17487252 DOI: 10.1139/y06-096] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Asthma is a respiratory disorder characterized by airway inflammation and hyperresponsiveness associated with reversible airway obstruction. The relative contributions of airway hyperresponsiveness and inflammation are still debated, but ultimately, airway narrowing mediated by airway smooth muscle contraction is the final pathway to asthma. Considerable effort has been devoted towards identifying the factors that lead to the airway smooth muscle hypercontractility observed in asthma, and this will be the focus of this review. Airway remodeling has been observed in severe and fatal asthma. However, it is unclear whether remodeling plays a protective role or worsens airway responsiveness. Smooth muscle plasticity is a mechanism likely implicated in asthma, whereby contractile filament rearrangements lead to maximal force production, independent of muscle length. Increased smooth muscle rate of shortening via altered signaling pathways or altered contractile protein expression has been demonstrated in asthma and in numerous models of airway hyperresponsiveness. Increased rate of shortening is implicated in counteracting the relaxing effect of tidal breathing and deep inspirations, thereby creating a contracted airway smooth muscle steady-state. Further studies are therefore required to understand the numerous mechanisms leading to the airway hyperresponsiveness observed in asthma as well as their multiple interactions.
Collapse
Affiliation(s)
- Fulvio R Gil
- Meakins-Christie Laboratories, McGill University, 3626 St-Urbain Street, Montréal, QC H2X 2P2, Canada
| | | |
Collapse
|
41
|
Eddinger TJ, Meer DP. Myosin II isoforms in smooth muscle: heterogeneity and function. Am J Physiol Cell Physiol 2007; 293:C493-508. [PMID: 17475667 DOI: 10.1152/ajpcell.00131.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both smooth muscle (SM) and nonmuscle class II myosin molecules are expressed in SM tissues comprising hollow organ systems. Individual SM cells may express one or more of multiple myosin II isoforms that differ in myosin heavy chain (MHC) and myosin light chain (MLC) subunits. Although much has been learned, the expression profiles, organization within contractile filaments, localization within cells, and precise roles in various contractile functions of these different myosin molecules are still not well understood. However, data supporting unique physiological roles for certain isoforms continues to build. Isoform differences located in the S1 head region of the MHC can alter actin binding and rates of ATP hydrolysis. Differences located in the MHC tail can alter the formation, stability, and size of the myosin thick filament. In these distinct ways, both head and tail isoform differences can alter force generation and muscle shortening velocities. The MLCs that are associated with the lever arm of the S1 head can affect the flexibility and range of motion of this domain and possibly the motion of the S2 and motor domains. Phosphorylation of MLC(20) has been associated with conformational changes in the S1 and/or S2 fragments regulating enzymatic activity of the entire myosin molecule. A challenge for the future will be delineation of the physiological significance of the heterogeneous expression of these isoforms in developmental, tissue-specific, and species-specific patterns and or the intra- and intercellular heterogeneity of myosin isoform expression in SM cells of a given organ.
Collapse
Affiliation(s)
- Thomas J Eddinger
- Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | | |
Collapse
|
42
|
Martin AF, Bhatti S, Pyne-Geithman GJ, Farjah M, Manaves V, Walker L, Franks R, Strauch AR, Paul RJ. Expression and function of COOH-terminal myosin heavy chain isoforms in mouse smooth muscle. Am J Physiol Cell Physiol 2007; 293:C238-45. [PMID: 17392380 DOI: 10.1152/ajpcell.00567.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoforms of the smooth muscle myosin motor, SM1 and SM2, differ in length at the carboxy terminal tail region. Their proportion changes with development, hormonal status and disease, but their function is unknown. We developed mice carrying the myosin heavy chain (MyHC) transgenes SM1, cMyc-tagged SM1, SM2, and V5-tagged SM2, and all transgenes corresponded to the SMa NH(2)-terminal isoform. Transgene expression was targeted to smooth muscle by the smooth muscle alpha-actin promoter. Immunoblot analysis showed substantial expression of the cMyc-tagged SM1 and V5-tagged SM2 MyHC protein in aorta and bladder and transgene mRNA was expressed in mice carrying unlabeled SM1 or SM2 transgenes. Despite significant protein expression of tagged MyHCs we found only small changes in the SM1:SM2 protein ratio. Significant changes in functional phenotype were observed in mice carrying unlabeled SM1 or SM2 transgenes. Force in aorta and bladder was increased (72 +/- 14%, 92 +/- 11%) in SM1 and decreased to 57 +/- 1% and 80 +/- 3% in SM2 transgenic mice. SM1 transgenic bladders had faster (1.8 +/- 0.3 s) and SM2 slower (7.1 +/- 0.5 s) rates of force redevelopment following a rapid step shortening. We hypothesize that small changes in the SM1:SM2 ratio could be amplified if they are associated with changes in thick filament assembly and underlie the altered contractility. These data provide evidence indicating an in vivo function for the COOH-terminal isoforms of smooth muscle myosin and suggest that the SM1:SM2 ratio is tightly regulated in smooth muscle tissues.
Collapse
Affiliation(s)
- Anne F Martin
- Dept. of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Babu GJ, Celia G, Rhee AY, Yamamura H, Takahashi K, Brozovich FV, Osol G, Periasamy M. Effects of h1-calponin ablation on the contractile properties of bladder versus vascular smooth muscle in mice lacking SM-B myosin. J Physiol 2006; 577:1033-42. [PMID: 16973711 PMCID: PMC1890375 DOI: 10.1113/jphysiol.2006.118828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/07/2006] [Indexed: 12/28/2022] Open
Abstract
The functional significance of smooth muscle-specific h1-calponin up-regulation in the smooth muscle contractility of SM-B null mice was studied by generating double knockout mice lacking both h1-calponin and SM-B myosin. The double knockout mice appear healthy, reproduce well and do not show any smooth muscle pathology. Loss of h1-calponin in the SM-B null mice bladder resulted in increased maximal shortening velocity (V(max)) and steady-state force generation. The force dilatation pressure, which was decreased in the SM-B null mesenteric vessels, was restored to wild-type levels in the double knockout vessels. In contrast, the half-time to maximal constriction was significantly increased in the double knockout vessels similar to that of SM-B null mice and indicating decreased shortening velocity in the double knockout vessels. Biochemical analyses showed that there is a significant reduction in smooth muscle alpha-actin levels, whereas h-caldesmon levels are increased in the double knockout bladder and mesenteric vessels, suggesting that these changes may also partly contribute to the altered contractile function. Taken together, our studies suggest that up-regulation of h1-calponin in the SM-B null mice may be necessary to maintain a reduced level of cross-bridge cycling over time in the absence of SM-B myosin and play an important role in regulating the smooth muscle contraction.
Collapse
Affiliation(s)
- Gopal J Babu
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Public Health, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Koi PT, Milhoua PM, Monrose V, Melman A, DiSanto ME. Expression of myosin isoforms in the smooth muscle of human corpus cavernosum. Int J Impot Res 2006; 19:62-8. [PMID: 16885993 DOI: 10.1038/sj.ijir.3901503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular interaction between smooth muscle (SM) myosin and actin in the corpus cavernosum (CC) determines the erectile state of the penis. A key mechanism regulating this interaction and subsequent development and maintenance of force is alternative splicing of SM myosin heavy chain (MHC) and 17 kDa essential SM myosin light chain (MLC) pre-mRNAs. Our aim was to examine the relative SM myosin isoform composition in human CC. Tissue samples were obtained from 18 patients with erectile dysfunction (ED), Peyronie's disease, or both. One specimen was obtained during a transgender operation. Patients then were stratified according to presence of diabetes mellitus, hypertension, ED, or Peyronie's disease, as well as failure of phosphodiesterase-5 (PDE5) inhibitors and history of previous pelvic or penile surgeries, radiation, or both. Our results revealed that all human CC samples expressed only the SM-A isoform. There was a predominance of SM2 isoform mRNA relative to SM1 across all samples, with a mean of 63.8%, which correlated with protein analysis by gel electrophoresis. A statistically significant difference was found between patients who had undergone previous pelvic surgery, radiation, or both and those who did not. The ratio of LC(17b) to LC(17a) was approximately 1:1 for all patients, with a mean of 48.9% LC(17b). Statistical difference was seen in the relative ratio of LC(17b) to LC(17a) among the group who failed conservative therapy with PDE5 inhibitors compared with all others. In conclusion, we determined the SM myosin isoform composition of human CC and present for the first time differences in relative myosin isoform expression among patients with several risk factors contributing to their cause of ED. Our data reflect the fact that alternative splicing events in the MHC and 17 kDa MLC pre-mRNA may be a possible molecular mechanism involved in the altered contractility of the CCSM in patients with ED.
Collapse
Affiliation(s)
- P T Koi
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
45
|
Basha M, Chang S, Smolock EM, Moreland RS, Wein AJ, Chacko S. Regional differences in myosin heavy chain isoform expression and maximal shortening velocity of the rat vaginal wall smooth muscle. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1076-84. [PMID: 16690774 DOI: 10.1152/ajpregu.00118.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Contractility of the proximal and distal vaginal wall smooth muscle may play distinct roles in the female sexual response and pelvic support. The goal of this study was to determine whether differences in contractile characteristics of smooth muscle from these regions reside in differences in the expression of isoforms of myosin, the molecular motor for muscle contraction. Adult female Sprague-Dawley rats were killed on the day of estrus, and the vagina was dissected into proximal and distal segments. The Vmax at peak force was greater for tissue strips of the proximal vagina compared with that of distal (P < 0.01), although, at steady state, the Vmax for the muscle strips from the two regions was not different. Furthermore, at steady state, muscle stress was higher (P < 0.001) for distal vaginal strips (n = 5). Consistent with the high Vmax for the proximal vaginal strips, RT-PCR results revealed a higher %SM-B (P < 0.001) in the proximal vagina. A greater expression of SM-B protein (P < 0.001) was also detected by Western blotting (n = 4). Interestingly, there was no regional difference noted in SM-1/SM-2 isoforms (n = 6). The proximal vagina had a higher expression of myosin heavy chain protein (P < 0.01) and a greater percentage of smooth muscle bundles (P < 0.001). The results of this study are the first demonstration of a regional heterogeneity in Vmax and myosin isoform distribution in the vagina wall smooth muscle and confirm that the proximal vaginal smooth muscle exhibits phasic contractile characteristics compared with the distal vaginal smooth muscle, which is tonic.
Collapse
Affiliation(s)
- Maureen Basha
- Division of Urology, University of Pennsylvania, PA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ma X, Kawamoto S, Uribe J, Adelstein RS. Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development. Mol Biol Cell 2006; 17:2138-49. [PMID: 16481398 PMCID: PMC1446101 DOI: 10.1091/mbc.e05-10-0997] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/17/2006] [Accepted: 02/06/2006] [Indexed: 11/11/2022] Open
Abstract
We report that the alternatively spliced isoforms of nonmuscle myosin heavy chain II-B (NHMC II-B) play distinct roles during mouse brain development. The B1-inserted isoform of NMHC II-B, which contains an insert of 10 amino acids near the ATP-binding region (loop 1) of the myosin heavy chain, is involved in normal migration of facial neurons. In contrast, the B2-inserted isoform, which contains an insert of 21 amino acids near the actin-binding region (loop 2), is important for postnatal development of cerebellar Purkinje cells. Deletion of the B1 alternative exon, together with reduced expression of myosin II-B, results in abnormal migration and consequent protrusion of facial neurons into the fourth ventricle. This protrusion is associated with the development of hydrocephalus. Restoring the amount of myosin II-B expression to wild-type levels prevents these defects, showing the importance of total myosin activity in facial neuron migration. In contrast, deletion of the B2 alternative exon results in abnormal development of cerebellar Purkinje cells. Cells lacking the B2-inserted isoform show reduced numbers of dendritic spines and branches. Some of the B2-ablated Purkinje cells are misplaced in the cerebellar molecular layer. All of the B2-ablated mice demonstrated impaired motor coordination.
Collapse
Affiliation(s)
- Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
47
|
Hypolite JA, Chang S, Zheng Y, DiSanto ME, Zderic SA, Wein AJ, Chacko S. Partial Bladder Outlet Obstruction Induces Urethral Smooth Muscle Hypertrophy and Decreased Force Generation. J Urol 2006; 175:777-82. [PMID: 16407049 DOI: 10.1016/s0022-5347(05)00138-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Indexed: 11/26/2022]
Abstract
PURPOSE PBOO leads to increased urinary frequency, decreased void volume, hypertrophy of the detrusor SM, and alterations in contractile and regulatory proteins. This study was done to determine whether PBOO induced increases in urinary frequency and detrusor SM hypertrophy are associated with an alteration in the contractility and expression of myosin isoforms in urethral SM. MATERIALS AND METHODS PBOO was surgically induced in male New Zealand White rabbits, and sham operated rabbits served as controls. After surgery, rabbits were kept 12 days, and prior to sacrifice, urine output and voiding frequency were monitored by keeping the animals in metabolic cages for 24 hours. Animals with increased urinary frequency (mean +/- SEM 43 +/- 12 voids per 24 hours) and sham operated rabbits (6 +/- 3 voids per 24 hours) were used for this study. Morphology of the urethra was studied using light and immunofluorescence microscopy. The expression of myosin isoforms was analyzed at the mRNA and protein levels by RT-PCR and Western blotting. RESULTS The urethral wall and SM of PBOO rabbits showed hypertrophy. The force produced by the longitudinal muscle strips of PBOO animals in response to phenylephrine, KCl, or electrical field stimulation was decreased 50%, 37% and 40%, respectively. Immunofluorescence microscopy revealed a decrease in nerve density. RT-PCR and Western blotting showed a decrease in the expression of myosin isoform SM-B with a concomitant increase in SM-A at the mRNA and protein levels. CONCLUSIONS Our data show hypertrophy of the urethral wall and SM, and alterations in contraction, innervation, and myosin isoforms in PBOO induced detrusor hypertrophy.
Collapse
Affiliation(s)
- Joseph A Hypolite
- Division of Urology and Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Swank DM, Braddock J, Brown W, Lesage H, Bernstein SI, Maughan DW. An alternative domain near the ATP binding pocket of Drosophila myosin affects muscle fiber kinetics. Biophys J 2006; 90:2427-35. [PMID: 16399836 PMCID: PMC1403199 DOI: 10.1529/biophysj.105.075184] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the importance of alternative versions of a region near the ATP binding site of Drosophila myosin heavy chain for muscle mechanical properties. Previously, we exchanged two versions of this region (encoded by alternative exon 7s) between the indirect flight muscle myosin isoform (IFI) and an embryonic myosin isoform (EMB) and found, surprisingly, that in vitro solution actin-activated ATPase rates were increased (higher Vmax) by both exon exchanges. Here we examined the effect of increased ATPase rate on indirect flight muscle (IFM) fiber mechanics and Drosophila locomotion. IFM expressing EMB with the exon 7a domain replaced by the IFM specific exon 7d domain (EMB-7d) exhibited 3.2-fold greater maximum oscillatory power (Pmax) and 1.5-fold greater optimal frequency of power generation (fmax) versus fibers expressing EMB. In contrast, IFM expressing IFI with the exon 7d region replaced by the EMB exon 7a region (IFI-7a), showed no change in Pmax, fmax, step response, or isometric muscle properties compared to native IFI fibers. A slight decrement in IFI-7a flight ability was observed, suggesting a negative influence of the increased ATPase rate on Drosophila locomotion, perhaps due to energy supply constraints. Our results show that exon 7 plays a substantial role in establishing fiber speed and flight performance, and that the limiting step that sets ATPase rate in Drosophila myosin has little to no direct influence in setting fmax for fast muscle fiber types.
Collapse
Affiliation(s)
- Douglas M Swank
- Department of Biology and Center for Biotechnology, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Low R, Léguillette R, Lauzon AM. (+)Insert smooth muscle myosin heavy chain (SM-B): From single molecule to human. Int J Biochem Cell Biol 2006; 38:1862-74. [PMID: 16716643 DOI: 10.1016/j.biocel.2006.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
In smooth muscle, alternative mRNA splicing of a single gene produces four myosin heavy chain (SMMHC) isoforms. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a seven amino acid insert in the motor domain. This insert enhances the kinetic properties of myosin at the molecular level but its exact role at the cell and tissue levels still has to be elucidated. This review focuses on the expression and biological functions of the (+)insert isoform. Current knowledge is summarized regarding its tissue distribution in animals and humans. Studies at the molecular, cellular and tissue levels that aimed at understanding the contribution of this isoform to smooth muscle mechanical function are presented with a particular focus on velocity of shortening. In addition, the altered expression of the (+)insert isoform in diseases and models of diseases and the compensatory mechanisms that occur when the (+)insert is knocked out are discussed. The need for additional studies on the relationship of this isoform to contractile performance and how expression of this isoform is regulated are also considered.
Collapse
Affiliation(s)
- Robert Low
- University of Vermont, Burlington, VT 05405, United States
| | | | | |
Collapse
|
50
|
Patzak A, Petzhold D, Wronski T, Martinka P, Babu GJ, Periasamy M, Haase H, Morano I. Constriction velocities of renal afferent and efferent arterioles of mice are not related to SMB expression. Kidney Int 2005; 68:2726-34. [PMID: 16316347 DOI: 10.1111/j.1523-1755.2005.00743.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Constriction of renal arterioles contributes significantly to the control of perfusion and glomerular filtration. Afferent but not efferent arterioles express smooth muscle myosin heavy chain B (SMB) (with a 5'-insert of seven amino acids). The aim of the present study was to investigate (1) the constriction characteristics of afferent and efferent arterioles under physiologic load and (2) whether expression of SMB may causally contribute to these constriction characteristics. METHODS We compared constriction parameters [constriction amplitude, maximal rate of constriction velocity ("dc/dt(max)"), and time to half-maximal constriction (t(1/2)) of in vitro perfused renal afferent and efferent arterioles of wild-type (smb(+/+)] and homozygous SMB knockout [smb(-/-)] mice upon stimulation with angiotensin II (Ang II) (10(-8) mol/L) and potassium chloride (KCl) (100 mmol/L). SMB expression was investigated by double-labeling immunofluorescence. RESULTS Contraction amplitude and dc/dt(max) of mouse afferent arterioles upon Ang II stimulation were significantly greater compared to efferent arterioles. However, constriction amplitudes, dc/dt(max), and t(1/2) of afferent as well as efferent arterioles upon Ang II stimulation were similar in smb(+/+) and smb(-/-) mice. Constriction amplitudes upon KCl stimulation of afferent arterioles were similar in both smb(+/+) and smb(-/-) mice. Furthermore, KCl-induced dc/dt(max) and t(1/2) of afferent arterioles were similar in both smb(+/+) and smb(-/-) mice. SMB expression could be detected in afferent but not efferent arterioles in smb(+/+) mice. No SMB expression in either arteriole could be observed in smb(-/-) mice. CONCLUSION Our results suggest that the presence of different alternatively 5'-spliced smooth muscle-myosin heavy chain (SM-MHC) isoforms does not dominate the different contractile features of physiologically loaded renal afferent or efferent arterioles.
Collapse
Affiliation(s)
- Andreas Patzak
- University Medicine Charité, Johannes-Müller-Institute for Physiology, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|