1
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Song M, Qu Y, Jia H, Zhang Y, Liu S, Laster KV, Choi BY, Tian J, Gu T, Chen H, Liu K, Lee MH, Dong Z. Targeting TAOK1 with resveratrol inhibits esophageal squamous cell carcinoma growth in vitro and in vivo. Mol Carcinog 2024; 63:991-1008. [PMID: 38376345 DOI: 10.1002/mc.23703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
The worldwide incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have increased over the last decade. Moreover, molecular targets that may benefit the therapeutics of patients with ESCC have not been fully characterized. Our study discovered that thousand and one amino-acid protein kinase 1 (TAOK1) is highly expressed in ESCC tumor tissues and cell lines. Knock-down of TAOK1 suppresses ESCC cell proliferation in vitro and patient-derived xenograft or cell-derived xenograft tumors growth in vivo. Moreover, TAOK1 overexpression promotes ESCC growth in vitro and in vivo. Additionally, we identified that the natural small molecular compound resveratrol binds to TAOK1 directly and diminishes the kinase activity of TAOK1. Targeting TAOK1 directly with resveratrol significantly inhibits cell proliferation, induces cell cycle arrest and apoptosis, and suppresses tumor growth in ESCC. Furthermore, the silencing of TAOK1 or the application of resveratrol attenuated the activation of TAOK1 downstream signaling effectors. Interestingly, combining resveratrol with paclitaxel, cisplatin, or 5-fluorouracil synergistically enhanced their therapeutic effects against ESCC. In conclusion, this work illustrates the underlying oncogenic function of TAOK1 and provides a theoretical basis for the application of targeting TAOK1 therapy to the clinical treatment of ESCC.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingzi Qu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Huajie Jia
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunqing Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Shihui Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, South Korea
| | - Jie Tian
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingxuan Gu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
3
|
Byeon S, Yadav S. Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Sci Signal 2024; 17:eadg0876. [PMID: 38166033 DOI: 10.1126/scisignal.adg0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024]
Abstract
Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Margoliash J, Fuchs S, Li Y, Zhang X, Massarat A, Goren A, Gymrek M. Polymorphic short tandem repeats make widespread contributions to blood and serum traits. CELL GENOMICS 2023; 3:100458. [PMID: 38116119 PMCID: PMC10726533 DOI: 10.1016/j.xgen.2023.100458] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Short tandem repeats (STRs) are genomic regions consisting of repeated sequences of 1-6 bp in succession. Single-nucleotide polymorphism (SNP)-based genome-wide association studies (GWASs) do not fully capture STR effects. To study these effects, we imputed 445,720 STRs into genotype arrays from 408,153 White British UK Biobank participants and tested for association with 44 blood phenotypes. Using two fine-mapping methods, we identify 119 candidate causal STR-trait associations and estimate that STRs account for 5.2%-7.6% of causal variants identifiable from GWASs for these traits. These are among the strongest associations for multiple phenotypes, including a coding CTG repeat associated with apolipoprotein B levels, a promoter CGG repeat with platelet traits, and an intronic poly(A) repeat with mean platelet volume. Our study suggests that STRs make widespread contributions to complex traits, provides stringently selected candidate causal STRs, and demonstrates the need to consider a more complete view of genetic variation in GWASs.
Collapse
Affiliation(s)
- Jonathan Margoliash
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shai Fuchs
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yang Li
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuan Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arya Massarat
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alon Goren
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
6
|
TAOK1 Promotes Proliferation and Invasion of Non-Small-Cell Lung Cancer Cells by Inhibition of WWC1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3157448. [PMID: 36158126 PMCID: PMC9499761 DOI: 10.1155/2022/3157448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022]
Abstract
Background For patients with advanced non-small-cell lung cancer (NSCLC), targeted therapy significantly improves the therapeutic effect of NSCLC patients. With the development of molecular targeted therapy, more and more NSCLC-related genes have been found. Thousand and one amino-acid kinase 1 (TAOK1) has been identified as a potential target for drug research in various cancers. The main objective of this study was to explore the expression and function of TAOK1 in NSCLC. Methods Western blotting was employed to assess TAOK1 expression in NSCLC cell lines. The effects of TAOK1 on biological behaviors, including proliferation, invasion, and apoptosis of NSCLC cells, were assessed. The relationship between TAOK1 and WW and C2 domain containing 1 (WWC1) was assessed by Co-IP assay. The subcutaneous injection of tumor cells in nude mice was used to verify it in vivo. Results As expected, TAOK1 was increased in NSCLC cell lines. Following TAOK1 knockdown, NSCLC cells exhibited a significant decrease in the invasion and increased apoptosis in vitro. Instead, the TAOK1 elevation showed the opposite results. The Co-IP assay identified that TAOK1 specifically interacted with WWC1. Knockdown of WWC1 overturned TAOK1 silencing-mediated malignant phenotype of NSCLC cells. Additionally, subcutaneous tumorigenesis assays in nude mice confirmed that TAOK1 knockdown markedly restrained the proliferation capacity of NSCLC cells in vivo. Conclusion Surprisingly, TAOK1 overexpression in NSCLC promotes tumor cell growth and invasion, which is associated with downregulation of its downstream protein WWC1, and this result might provide a robust research basis to inquire about the precise therapeutic targets for NSCLC.
Collapse
|
7
|
Yu L, Yang C, Shang N, Ding H, Zhu J, Zhu Y, Tan H, Zhang Y. Paternal De Novo Variant of TAOK1 in a Fetus With Structural Brain Abnormalities. Front Genet 2022; 13:836853. [PMID: 35928450 PMCID: PMC9343781 DOI: 10.3389/fgene.2022.836853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
A dilated lateral ventricle is a relatively common finding on prenatal ultrasound, and the causes are complex. We aimed to explore the etiology of a fetus with a dilated lateral ventricle. Trio whole-exome sequencing was performed to detect causative variants. A de novo variant of TAOK1 (NM_020791.2: c.227A>G) was detected in the proband and evaluated for potential functional impacts using a variety of prediction tools. Droplet digital polymerase chain reaction was used to exclude the parental mosaicism and to verify the phasing of the de novo variant. Based on peripheral blood analysis, the parents did not exhibit mosaicism at this site, and the de novo variant was paternally derived. Here, we describe a fetus with a de novo likely pathogenic variant of TAOK1 who had a dilated lateral ventricle and a series of particular phenotypes. This case expands the clinical spectrum of TAOK1-associated disorders. We propose a method for solving genetic disorders in which the responsible genes have not yet gone through ClinGen curation, particularly for prenatal cases.
Collapse
Affiliation(s)
- Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ning Shang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Juan Zhu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuanyuan Zhu
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Haowen Tan
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
8
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Nosratpour S, Ndiaye K. Ankyrin-repeat and SOCS box-containing protein 9 (ASB9) regulates ovarian granulosa cells function and MAPK signaling. Mol Reprod Dev 2021; 88:830-843. [PMID: 34476862 DOI: 10.1002/mrd.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 11/05/2022]
Abstract
Ankyrin-repeat and SOCS box-containing proteins (ASB) interact with the elongin B-C adapter via their SOCS box domain and with the cullin and ring box proteins to form E3 ubiquitin ligase complexes within the protein ubiquitination pathway. ASB9 in particular is a differentially expressed gene in ovulatory follicles (OFs) induced by the luteinizing hormone (LH) surge or hCG injection in ovarian granulosa cells (GC) while downregulated in growing dominant follicles. Although ASB9 has been involved in biological processes such as protein modification, the signaling network associated with ASB9 in GC is yet to be fully defined. We previously identified and reported ASB9 interactions and binding partners in GC including PAR1, TAOK1, and TNFAIP6/TSG6. Here, we further investigate ASB9 effects on target binding partners regulation and signaling in GC. CRISPR/Cas9-induced inhibition of ASB9 revealed that ASB9 regulates PAR1, TAOK1, TNFAIP6 as well as genes associated with proliferation and cell cycle progression such as PCNA, CCND2, and CCNE2 while CCNA2 was not affected. Inhibition of ASB9 was also associated with increased GC number and decreased caspase3/7 activity, CASP3 expression, and BAX/BCL2 ratio. Furthermore, ASB9 induction in OF in vivo 24 h post-hCG is concomitant with a significant decrease in phosphorylation levels of MAPK3/1 while pMAPK3/1 levels increased following ASB9 inhibition in GC in vitro. Together, these results provide strong evidence for ASB9 as a regulator of GC activity and function by modulating MAPK signaling likely through specific binding partners such as PAR1, therefore controlling GC proliferation and contributing to GC differentiation into luteal cells.
Collapse
Affiliation(s)
- Soma Nosratpour
- Centre de Recherche en Reproduction et Fertilité (CRRF), Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Kalidou Ndiaye
- Centre de Recherche en Reproduction et Fertilité (CRRF), Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
10
|
van Woerden GM, Bos M, de Konink C, Distel B, Avagliano Trezza R, Shur NE, Barañano K, Mahida S, Chassevent A, Schreiber A, Erwin AL, Gripp KW, Rehman F, Brulleman S, McCormack R, de Geus G, Kalsner L, Sorlin A, Bruel AL, Koolen DA, Gabriel MK, Rossi M, Fitzpatrick DR, Wilkie AOM, Calpena E, Johnson D, Brooks A, van Slegtenhorst M, Fleischer J, Groepper D, Lindstrom K, Innes AM, Goodwin A, Humberson J, Noyes A, Langley KG, Telegrafi A, Blevins A, Hoffman J, Guillen Sacoto MJ, Juusola J, Monaghan KG, Punj S, Simon M, Pfundt R, Elgersma Y, Kleefstra T. TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Hum Mutat 2021; 42:445-459. [PMID: 33565190 PMCID: PMC8248425 DOI: 10.1002/humu.24176] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/29/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.
Collapse
Affiliation(s)
- Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Melanie Bos
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Ben Distel
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Natasha E Shur
- Division of Genetics and Metabolism, Rare Disease Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | - Kristin Barañano
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Angelika L Erwin
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Fatima Rehman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Saskia Brulleman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Róisín McCormack
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Gwynna de Geus
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Louisa Kalsner
- Departments of Neurology and Pediatrics, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Arthur Sorlin
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares «Anomalies du Développement et syndromes malformatifs», Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares «Anomalies du Développement et syndromes malformatifs», Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Melissa K Gabriel
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, USA
| | - Mari Rossi
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, USA
| | | | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Oxford Craniofacial Unit, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Julie Fleischer
- Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA
| | - Daniel Groepper
- Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Allison Goodwin
- VCU Medical Center, Clinical Genetics Services, Richmond, Virginia, USA
| | - Jennifer Humberson
- Division of Pediatric Genetics, Department of Pediatrics, University of Virginia Medical Center, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Maier B, Lorenzen S, Finger AM, Herzel H, Kramer A. Searching Novel Clock Genes Using RNAi-Based Screening. Methods Mol Biol 2021; 2130:103-114. [PMID: 33284439 DOI: 10.1007/978-1-0716-0381-9_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
RNA interference (RNAi) allows for the selective downregulation of gene expression by neutralizing targeted mRNA molecules and has frequently been used in high-throughput screening endeavors. Here, we describe a protocol for the highly parallel RNAi-mediated downregulation of gene expression in order to search for components involved in circadian rhythm generation. We use lentiviral gene transfer to deliver shRNA expressing plasmids into circadian reporter cells ensuring for efficient and stable knockdown. Circadian rhythms are monitored using live-cell bioluminescence recording of synchronized reporter cells over several days. In addition, we present a new software tool (ChronoStar) for efficient, parallel time-series analysis to extract rhythm parameters such as period, phase, amplitude, and damping.
Collapse
Affiliation(s)
- Bert Maier
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Lorenzen
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernhard-Nocht-Institut, Hamburg, Germany
| | - Anna-Marie Finger
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep 2020; 39:220733. [PMID: 31652447 PMCID: PMC6822489 DOI: 10.1042/bsr20190749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Birth hypoxia causes neonatal mortality and morbidity. Hypoxia/ischemia can facilitate brain damage, causing various kinds of diseases, such as ischemic stroke. It is necessary to understand the potential underlying mechanisms of ischemic stroke. Previous studies revealed the involvement of thousand and one kinase 1 (TAOK1) in many cellular processes. Methods: Herein, middle cerebral artery (MCA) occlusion (MCAO) was performed in rats to establish ischemic stroke in the animal model, and cortical neural stem cells from rats were treated with oxygen-glucose deprivation (OGD) to induce ischemic stroke cell model. The animal model of ischemic stroke was validated by Bederson and Zea-Longa neurological deficit scores and rotarod test. TAOK1 expression was examined by quantitative real-time PCR (qRT-PCR), Western blot, and immunofluorescent staining both in vivo and in vitro. Result: Compared with sham animals, the MCAO rats showed a significant increase in the neurological scores, and obvious motor behavioral deficits. Meanwhile, there was increased apoptosis and inflammatory response in the model group. TAOK1 overexpression reversed the OGD-induced cell injury, while TAOK1 knockdown exhibited the opposing effects. On the mechanism, the OGD-induced suppression of PI3K/AKT, and activation of mitogen-activated protein kinase (MAPK) signaling pathways were abolished by TAOK1 overexpression, and aggravated by TAOK1 knockdown in vitro. Moreover, we proved that the inhibitory effect of TAOK1 on OGD-induced apoptosis was dependent on the intracellular kinase activity. Conclusion: TAOK1 protected MCAO-induced cerebral ischemic stroke by decreasing the pro-inflammatory factors and apoptosis via PI3K/AKT and MAPK signaling pathways.
Collapse
|
13
|
Zhou L, Jilderda LJ, Foijer F. Exploiting aneuploidy-imposed stresses and coping mechanisms to battle cancer. Open Biol 2020; 10:200148. [PMID: 32873156 PMCID: PMC7536071 DOI: 10.1098/rsob.200148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Aneuploidy, an irregular number of chromosomes in cells, is a hallmark feature of cancer. Aneuploidy results from chromosomal instability (CIN) and occurs in almost 90% of all tumours. While many cancers display an ongoing CIN phenotype, cells can also be aneuploid without displaying CIN. CIN drives tumour evolution as ongoing chromosomal missegregation will yield a progeny of cells with variable aneuploid karyotypes. The resulting aneuploidy is initially toxic to cells because it leads to proteotoxic and metabolic stress, cell cycle arrest, cell death, immune cell activation and further genomic instability. In order to overcome these aneuploidy-imposed stresses and adopt a malignant fate, aneuploid cancer cells must develop aneuploidy-tolerating mechanisms to cope with CIN. Aneuploidy-coping mechanisms can thus be considered as promising therapeutic targets. However, before such therapies can make it into the clinic, we first need to better understand the molecular mechanisms that are activated upon aneuploidization and the coping mechanisms that are selected for in aneuploid cancer cells. In this review, we discuss the key biological responses to aneuploidization, some of the recently uncovered aneuploidy-coping mechanisms and some strategies to exploit these in cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
14
|
Zhu L, Yu Q, Gao P, Liu Q, Luo X, Jiang G, Ji R, Yang R, Ma X, Xu J, Yuan H, Zhou J, An H. TAOK1 positively regulates TLR4-induced inflammatory responses by promoting ERK1/2 activation in macrophages. Mol Immunol 2020; 122:124-131. [PMID: 32344244 DOI: 10.1016/j.molimm.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/19/2022]
Abstract
Thousand and one amino acid kinase 1 (TAOK1) is a member of Ste20-like kinases, but its function in regulating inflammatory responses remains largely unknown. In this study, we identify TAOK1 as a positive regulator of TLR4-triggered inflammatory responses in macrophages. TAOK1 increases LPS-induced production of pro-inflammatory cytokine such as IL-6, TNF-α and IL12p40 in macrophages. TAOK1 deficient mice showed decreased susceptibility to endotoxin shock, with less pro-inflammatory cytokine production than control mice. TAOK1 promotes LPS-induced activation of ERK1/2 by constitutively interacting with TRAF6 and TPL2. These finding unravel the important role of TAOK1 as a positive regulator of TLR4-induced inflammatory responses.
Collapse
Affiliation(s)
- Lingxi Zhu
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Qingzhuo Yu
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Peng Gao
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Qianru Liu
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Luo
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guixian Jiang
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Ruihua Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianwei Ma
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Jing Xu
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jun Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Huazhang An
- Clinical Cancer Institute, Translational Medicine Center, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
15
|
Singh SP, Raja S, Mahalingam S. Viral protein X unlocks the nuclear pore complex through a human Nup153-dependent pathway to promote nuclear translocation of the lentiviral genome. Mol Biol Cell 2020; 31:304-317. [PMID: 31913756 PMCID: PMC7183765 DOI: 10.1091/mbc.e19-08-0438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Simian immunodeficiency virus (SIV) and human immunodeficiency virus 2 (HIV-2) display unique ability to infect nondividing target cells. Viral protein X (Vpx) of HIV-2/SIV is known to be involved in the nuclear import of viral genome in nondividing cells, but the mechanism remains poorly understood. In the present investigation for the first time we provide evidence that Vpx of SIVsmPBj1.9 physically interacts with human nucleoporin 153 (Nup153), which is known to provide a docking site for protein-cargo complexes at the nuclear pore complex (NPC). Results from superresolution-structured illumination microscopy studies reveal that Vpx interaction with NPC-associated Nup153 is critical for its efficient nuclear translocation. Virion-associated MAPK/ERK-2-mediated phosphorylation of Vpx plays a critical role in its interaction with human Nup153 and this interaction was found to be evolutionarily conserved in various SIV isolates and HIV-2. Interestingly, MAPK/ERK-2 packaging defective SIV failed to promote the efficient nuclear import of viral genome and suggests that MAPK/ERK-2-mediated Vpx phosphorylation is important for its interaction with Nup153, which is critical for lentiviruses to establish infection in nondividing target cells. Together, our data elucidate the mechanism by which Vpx orchestrates the challenging task of nuclear translocation of HIV-2/SIV genome in nondividing target cells.
Collapse
Affiliation(s)
- Satya Prakash Singh
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India.,National Cancer Tissue Biobank, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
16
|
Dulovic-Mahlow M, Trinh J, Kandaswamy KK, Braathen GJ, Di Donato N, Rahikkala E, Beblo S, Werber M, Krajka V, Busk ØL, Baumann H, Al-Sannaa NA, Hinrichs F, Affan R, Navot N, Al Balwi MA, Oprea G, Holla ØL, Weiss ME, Jamra RA, Kahlert AK, Kishore S, Tveten K, Vos M, Rolfs A, Lohmann K. De Novo Variants in TAOK1 Cause Neurodevelopmental Disorders. Am J Hum Genet 2019; 105:213-220. [PMID: 31230721 DOI: 10.1016/j.ajhg.2019.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
De novo variants represent a significant cause of neurodevelopmental delay and intellectual disability. A genetic basis can be identified in only half of individuals who have neurodevelopmental disorders (NDDs); this indicates that additional causes need to be elucidated. We compared the frequency of de novo variants in patient-parent trios with (n = 2,030) versus without (n = 2,755) NDDs. We identified de novo variants in TAOK1 (thousand and one [TAO] amino acid kinase 1), which encodes the serine/threonine-protein kinase TAO1, in three individuals with NDDs but not in persons who did not have NDDs. Through further screening and the use of GeneMatcher, five additional individuals with NDDs were found to have de novo variants. All eight variants were absent from gnomAD (Genome Aggregation Database). The variant carriers shared a non-specific phenotype of developmental delay, and six individuals had additional muscular hypotonia. We established a fibroblast line of one mutation carrier, and we demonstrated that reduced mRNA levels of TAOK1 could be increased upon cycloheximide treatment. These results indicate nonsense-mediated mRNA decay. Further, there was neither detectable phosphorylated TAO1 kinase nor phosphorylated tau in these cells, and mitochondrial morphology was altered. Knockdown of the ortholog gene Tao1 (Tao, CG14217) in Drosophila resulted in delayed early development. The majority of the Tao1-knockdown flies did not survive beyond the third instar larval stage. When compared to control flies, Tao1 knockdown flies revealed changed morphology of the ventral nerve cord and the neuromuscular junctions as well as a decreased number of endings (boutons). Furthermore, mitochondria in mutant flies showed altered distribution and decreased size in axons of motor neurons. Thus, we provide compelling evidence that de novo variants in TAOK1 cause NDDs.
Collapse
|
17
|
Vasudeva K, Munshi A. Genetics of platelet traits in ischaemic stroke: focus on mean platelet volume and platelet count. Int J Neurosci 2018; 129:511-522. [PMID: 30371123 DOI: 10.1080/00207454.2018.1538991] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose/Aim of the study: The aim of this review is to summarize the role of genetic variants affecting mean platelet volume (MPV) and platelet count (PLT) leading to higher platelet reactivity and in turn to thrombotic events like stroke and cardiovascular diseases. MATERIALS AND METHODS A search was conducted in PUBMED, MEDLINE, EMBASE, PROQUEST, Science Direct, Cochrane Library, and Google Scholar related to the studies focussing on genome-wide association studies (GWAS), whole exome sequencing (WES), whole genome sequencing (WGS), phenome-wide association studies (PheWAS) and multi-omic analysis that have been employed to identify the genetic variants influencing MPV and PLT. RESULTS Antiplatelet agents underscore the crucial role of platelets in the pathogenesis of stroke. Higher platelet reactivity in terms of mean platelet volume (MPV) and platelet count (PLT) contributes significantly to the interindividual variation in platelet reaction at the site of vessel wall injury. Some individuals encounter thrombotic events as platelets get occluded at the site of vessel wall injury whereas others heal the injury without occluding the circulation. Evidence suggests that MPV and PLT have a strong genetic component. High throughput techniques including genome-wide association studies (GWAS), whole exome sequencing (WES), whole genome sequencing (WGS), phenome-wide association studies (PheWAS) and multi-omic analysis have identified different genetic variants influencing MPV and PLT. CONCLUSIONS Identification of complex genetic cross talks affecting PLT and MPV might help to develop novel treatment strategies in treating neurovascular diseases like stroke.
Collapse
Affiliation(s)
- Kanika Vasudeva
- a Department of Human Genetics and Molecular Medicine , Central University of Punjab Bathinda , Punjab , India
| | - Anjana Munshi
- a Department of Human Genetics and Molecular Medicine , Central University of Punjab Bathinda , Punjab , India
| |
Collapse
|
18
|
Yang S, Liao Y, Zhao Q, Xie Y, Zheng A, Wan H. Heparanase Is a Critical Regulator of Mitotic Spindles Required for Maintaining Chromosome Stability. DNA Cell Biol 2018; 37:291-297. [PMID: 29431512 DOI: 10.1089/dna.2017.3990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Shuo Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yong Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Chengdu Newgenegle Biotech Co. Ltd., Chengdu, People's Republic of China
| | - Qi Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuqin Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ai Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Huajing Wan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, People's Republic of China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
- Chengdu Newgenegle Biotech Co. Ltd., Chengdu, People's Republic of China
| |
Collapse
|
19
|
TAOK1 negatively regulates IL-17-mediated signaling and inflammation. Cell Mol Immunol 2018; 15:794-802. [PMID: 29400705 DOI: 10.1038/cmi.2017.158] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin 17 (IL-17) is an important cytokine that can induce tissue inflammation and is involved in the pathogenesis of numerous autoimmune diseases. However, the regulation of its signaling transduction has not been well described. In this study, we report that thousand and one kinase 1 (TAOK1) functions as a negative regulator of IL-17-mediated signal transduction and inflammation. TAOK1 knockdown promotes IL-17-induced cytokine and chemokine expression and the activation of mitogen-activated protein kinases and nuclear factor-κB. We further demonstrate that TAOK1 interacts with IL-17 receptor A (IL-17RA) independent of its kinase activity, and TAOK1 dose-dependently prevents the formation of the IL-17R-Act1 (nuclear factor activator 1, also known as tumor necrosis factor receptor-associated factor 3 interacting protein 2) complex. Consistent with this, TAOK1 deficiency exacerbates colitis in the 2,4,6-trinitrobenzenesulfonic acid)-induced experimental model of inflammatory bowel disease, likely by its promotion of the IL-17-mediated signaling pathway. TAOK1 expression is decreased in the colons of ulcerative colitis patients. In conclusion, these findings suggest that TAOK1 is involved in the development of IL-17-related autoimmune disorders.
Collapse
|
20
|
Dou YD, Huang T, Wang Q, Shu X, Zhao SG, Li L, Liu T, Lu G, Chan WY, Liu HB. Integrated microRNA and mRNA signatures in peripheral blood lymphocytes of familial epithelial ovarian cancer. Biochem Biophys Res Commun 2018; 496:191-198. [DOI: 10.1016/j.bbrc.2018.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 01/28/2023]
|
21
|
Arbesu I, Jilma B, Maurer G, Lang IM, Mannhalter C, Siller-Matula JM. Association between the rs342293 polymorphism and adverse cardiac events in patients undergoing percutaneous coronary intervention. Thromb Haemost 2017; 111:1060-6. [DOI: 10.1160/th13-09-0757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/16/2014] [Indexed: 01/05/2023]
Abstract
SummaryThe single nucleotide polymorphism (SNP) rs342293 has been shown to influence platelet number and mean platelet volume (MPV). We investigated the association between the rs342293 polymorphism and cardiovascular outcome in a prospective cohort study. The rs342293 polymorphism was analysed in 404 patients with coronary artery disease undergoing percutaneous coronary intervention. The rates of cardiac adverse events were recorded during two years of follow-up. The polymorphism was associated with MPV (median 10.1 fL, interquartile range [IQR]: 9.6 to 10.6 in patients with the CC-allele vs 10.4 fL, IQR: 9.9 to 11.1 in G>C SNP carriers; p<0.001), but not with platelet count. Survival analysis indicated that carriers of the rs342293 G variant had a substantially higher risk to develop cardiac adverse events compared with wild type carriers during two years of follow-up (33% vs 22%; adjusted hazard ratio = 1.63, 95% confidence interval = 1.06–2.52, p=0.027). The rs342293 SNP could explain 2.9% of the variability in MPV (p=0.01). In conclusion, patients undergoing coronary stenting who carry the G-variant of the rs342293 SNP which is associated with larger MPV are at higher risk for adverse cardiovascular outcome.
Collapse
|
22
|
Agosto-Arroyo E, Isayeva T, Wei S, Almeida JS, Harada S. Differential Gene Expression in Ductal Carcinoma In Situ of the Breast Based on ERBB2 Status. Cancer Control 2017; 24:102-110. [PMID: 28178722 DOI: 10.1177/107327481702400117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The molecular signature of ductal carcinoma in situ (DCIS) in the breast is not well understood. Erb-b2 receptor tyrosine kinase 2 (ERBB2 [formerly known as HER2/neu]) positivity in DCIS is predictive of coexistent early invasive breast carcinoma. The aim of this study is to identify the gene-expression signature profiles of estrogen receptor (ER)/progesterone receptor (PR)-positive, ERBB2, and triple-negative subtypes of DCIS. METHODS Based on ER, PR, and ERBB2 status, a total of 18 high nuclear grade DCIS cases with no evidence of invasive breast carcinoma were selected along with 6 non-neoplastic controls. The 3 study groups were defined as ER/PR-positive, ERBB2, and triple-negative subtypes. RESULTS A total of 49 genes were differentially expressed in the ERBB2 subtype compared with the ER/PR-positive and triple-negative groups. PROM1 was overexpressed in the ERBB2 subtype compared with ER/PR-positive and triple-negative subtypes. Other genes differentially expressed included TAOK1, AREG, AGR3, PEG10, and MMP9. CONCLUSIONS Our study identified unique gene signatures in ERBB2-positive DCIS, which may be associated with the development of invasive breast carcinoma. The results may enhance our understanding of the progression of breast cancer and become the basis for developing new predictive biomarkers and therapeutic targets for DCIS.
Collapse
Affiliation(s)
| | - Tatyana Isayeva
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jonas S Almeida
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Shuko Harada
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
23
|
Singleton KR, Earley KT, Heasley LE. Analysis of Drug Resistance Using Kinome-Wide Functional Screens. Methods Mol Biol 2017; 1636:163-177. [PMID: 28730479 DOI: 10.1007/978-1-4939-7154-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The clinical success of tyrosine kinase inhibitors specific for BCR-ABL-, EGFR-, ALK-, and ROS1-driven cancers continues to spur the quest to match specific oncogene-defined tumor types with an appropriate molecularly targeted therapy. Unfortunately, responses to these agents are not durable with intrinsic or acquired resistance limiting benefit. Additionally, efforts to identify the appropriate targets of new drugs have focused on nonfunctional assays such as large-scale sequencing for somatic mutations or analysis of gene copy number. Acknowledging both the problem of resistance and the shortcomings of the current methods for detecting appropriate drug targets, much interest has been focused on RNAi-based screens. These screens utilize a library of shRNAs targeting the whole genome or a subset of genes and provide a high-throughput and unbiased means to functionally assess genes impacting various aspects of tumor biology, especially proliferation and survival. The function of genes can be measured in the context of a specific drug treatment, termed a synthetic lethal screen, or genes may be assessed for their individual dependency, termed an essential gene screen. Here, we describe a method for performing both of these types of screens using a kinome-targeted shRNA library in human cancer cell lines.
Collapse
Affiliation(s)
- Katherine R Singleton
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave., MS-8120, Aurora, CO, 80045, USA
| | - Keith T Earley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave., MS-8120, Aurora, CO, 80045, USA
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 E. 17th Ave., MS-8120, Aurora, CO, 80045, USA.
| |
Collapse
|
24
|
A novel de novo microdeletion at 17q11.2 adjacent to NF1 gene associated with developmental delay, short stature, microcephaly and dysmorphic features. Mol Cytogenet 2016; 9:41. [PMID: 27247625 PMCID: PMC4886423 DOI: 10.1186/s13039-016-0251-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022] Open
Abstract
Background Microdeletions at 17q11.2 often encompass NF1 gene, is the cause for NF1 microdeletion syndrome. Microdeletion at 17q11.2 without the involvement of NF1 gene is rarely reported. Case presentation Here we reported a patient carrying a novel de novo deletion at 17q11.2 adjacent to NF1 gene, who presented with developmental delay, short stature, postnatal microcephaly, underweight and dysmorphic features including flat facial profile, dolicocephaly, hypertelorism, short philtrum, flat nasal bridge and posteriorly rotated and low set ears. Chromosomal microarray analysis revealed a 1.69 Mb de novo deletion at 17q11.2 adjacent to NF1 gene, which involves 43 RefSeq genes. We compared this with four overlapping deletions at this interval. Conclusions A rare de novo microdeletion at 17q11.2 not involving NF1 gene is associated with developmental delay and dysmorphic features. Seven genes, TAOK1, PHF12, NUFIP2, SLC26A4, SEZ6, GIT1 and TRAF4 are possible candidates for the clinical features of our patient. The delineation of this rare deletion and description of associated clinical phenotypes will help to understand the genotype-phenotype correlation of genomic imbalances at this locus.
Collapse
|
25
|
Kück U, Beier AM, Teichert I. The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genet Biol 2015; 90:31-38. [PMID: 26439752 DOI: 10.1016/j.fgb.2015.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is a highly conserved eukaryotic protein complex that was recently described for diverse animal and fungal species. Here, we summarize our current knowledge about the composition and function of the STRIPAK complex from the ascomycete Sordaria macrospora, which we discovered by investigating sexually sterile mutants (pro), having a defect in fruiting body development. Mass spectrometry and yeast two-hybrid analysis defined core subunits of the STRIPAK complex, which have structural homologs in animal and other fungal organisms. These subunits (and their mammalian homologs) are PRO11 (striatin), PRO22 (STRIP1/2), SmMOB3 (Mob3), PRO45 (SLMAP), and PP2AA, the structural, and PP2Ac, the catalytic subunits of protein phosphatase 2A (PP2A). Beside fruiting body formation, the STRIPAK complex controls vegetative growth and hyphal fusion in S. macrospora. Although the contribution of single subunits to diverse cellular and developmental processes is not yet fully understood, functional analysis has already shown that mammalian homologs are able to substitute the function of distinct fungal STRIPAK subunits. This underscores the view that fungal model organisms serve as useful tools to get a molecular insight into cellular and developmental processes of eukaryotes in general. Future work will unravel the precise localization of single subunits within the cell and decipher their STRIPAK-related and STRIPAK-independent functions. Finally, evidence is accumulating that there is a crosstalk between STRIPAK and various signaling pathways, suggesting that eukaryotic development is dependent on STRIPAK signaling.
Collapse
Affiliation(s)
- Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Anna M Beier
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
26
|
Mason JM, Dusad K, Wright WD, Grubb J, Budke B, Heyer WD, Connell PP, Weichselbaum RR, Bishop DK. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic Acids Res 2015; 43:3180-96. [PMID: 25765654 PMCID: PMC4381078 DOI: 10.1093/nar/gkv175] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors.
Collapse
Affiliation(s)
- Jennifer M Mason
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Kritika Dusad
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - William Douglass Wright
- Department of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616, USA
| | - Jennifer Grubb
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Brian Budke
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Wolf-Dietrich Heyer
- Department of Molecular and Cellular Biology, University of California, Davis, Davis CA 95616, USA Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Philip P Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, University of Chicago, Cummings Life Science Center, Box 13, 920 East 58th St., Chicago, IL 60637, USA Department of Microbiology and Molecular Genetics, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
27
|
Santos A, Wernersson R, Jensen LJ. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 2014; 43:D1140-4. [PMID: 25378319 PMCID: PMC4383920 DOI: 10.1093/nar/gku1092] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The eukaryotic cell division cycle is a highly regulated process that consists of a complex series of events and involves thousands of proteins. Researchers have studied the regulation of the cell cycle in several organisms, employing a wide range of high-throughput technologies, such as microarray-based mRNA expression profiling and quantitative proteomics. Due to its complexity, the cell cycle can also fail or otherwise change in many different ways if important genes are knocked out, which has been studied in several microscopy-based knockdown screens. The data from these many large-scale efforts are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase--available at http://www.cyclebase.org--an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In Cyclebase version 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNA and protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web interface, designed around an overview figure that summarizes all the cell-cycle-related data for a gene.
Collapse
Affiliation(s)
- Alberto Santos
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rasmus Wernersson
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark Intomics A/S, 2800 Lyngby, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
28
|
Seo M, Lee S, Kim JH, Lee WH, Hu G, Elledge SJ, Suk K. RNAi-based functional selection identifies novel cell migration determinants dependent on PI3K and AKT pathways. Nat Commun 2014; 5:5217. [PMID: 25347953 PMCID: PMC6581447 DOI: 10.1038/ncomms6217] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022] Open
Abstract
Lentiviral short hairpin RNA (shRNA)-mediated genetic screening is a powerful tool for identifying loss-of-function phenotype in mammalian cells. Here, we report the identification of 91 cell migration-regulating genes using unbiased genome-wide functional genetic selection. Individual knockdown or cDNA overexpression of a set of 10 candidates reveals that most of these cell migration determinants are strongly dependent on the PI3K/PTEN/AKT pathway and on their downstream signals, such as FOXO1 and p70S6K1. ALK, one of the cell migration promoting genes, uniquely uses p55γ regulatory subunit of PI3K, rather than more common p85 subunit, to trigger the activation of the PI3K-AKT pathway. Our method enables the rapid and cost-effective genome-wide selection of cell migration regulators. Our results emphasize the importance of the PI3K/PTEN/AKT pathway as a point of convergence for multiple regulators of cell migration.
Collapse
Affiliation(s)
- Minchul Seo
- 1] Department of Pharmacology, Brain Science &Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea [2] College of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Shinrye Lee
- 1] Department of Pharmacology, Brain Science &Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea [2] Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science &Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Guang Hu
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health and Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Stephen J Elledge
- Department of Genetics, Howard Hughes Medical Institute, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science &Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
29
|
Chapard C, Meraldi P, Gleich T, Bachmann D, Hohl D, Huber M. TRAIP is a regulator of the spindle assembly checkpoint. J Cell Sci 2014; 127:5149-56. [PMID: 25335891 DOI: 10.1242/jcs.152579] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Accurate chromosome segregation during mitosis is temporally and spatially coordinated by fidelity-monitoring checkpoint systems. Deficiencies in these checkpoint systems can lead to chromosome segregation errors and aneuploidy, and promote tumorigenesis. Here, we report that the TRAF-interacting protein (TRAIP), a ubiquitously expressed nucleolar E3 ubiquitin ligase important for cellular proliferation, is localized close to mitotic chromosomes. Its knockdown in HeLa cells by RNA interference (RNAi) decreased the time of early mitosis progression from nuclear envelope breakdown (NEB) to anaphase onset and increased the percentages of chromosome alignment defects in metaphase and lagging chromosomes in anaphase compared with those of control cells. The decrease in progression time was corrected by the expression of wild-type but not a ubiquitin-ligase-deficient form of TRAIP. TRAIP-depleted cells bypassed taxol-induced mitotic arrest and displayed significantly reduced kinetochore levels of MAD2 (also known as MAD2L1) but not of other spindle checkpoint proteins in the presence of nocodazole. These results imply that TRAIP regulates the spindle assembly checkpoint, MAD2 abundance at kinetochores and the accurate cellular distribution of chromosomes. The TRAIP ubiquitin ligase activity is functionally required for the spindle assembly checkpoint control.
Collapse
Affiliation(s)
- Christophe Chapard
- Service of Dermatology, Lausanne University Hospital, CHUV, 1011 Lausanne, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | - Tobias Gleich
- Service of Dermatology, Lausanne University Hospital, CHUV, 1011 Lausanne, Switzerland
| | - Daniel Bachmann
- Service of Dermatology, Lausanne University Hospital, CHUV, 1011 Lausanne, Switzerland
| | - Daniel Hohl
- Service of Dermatology, Lausanne University Hospital, CHUV, 1011 Lausanne, Switzerland
| | - Marcel Huber
- Service of Dermatology, Lausanne University Hospital, CHUV, 1011 Lausanne, Switzerland
| |
Collapse
|
30
|
Shrestha RL, Tamura N, Fries A, Levin N, Clark J, Draviam VM. TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes. Open Biol 2014; 4:130108. [PMID: 24898139 PMCID: PMC4077056 DOI: 10.1098/rsob.130108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 05/09/2014] [Indexed: 12/19/2022] Open
Abstract
Chromosomal instability can arise from defects in chromosome-microtubule attachment. Using a variety of drug treatments, we show that TAO1 kinase is required for ensuring the normal congression of chromosomes. Depletion of TAO1 reduces the density of growing interphase and mitotic microtubules in human cells, showing TAO1's role in controlling microtubule dynamics. We demonstrate the aneugenic nature of chromosome-microtubule attachment defects in TAO1-depleted cells using an error-correction assay. Our model further strengthens the emerging paradigm that microtubule regulatory pathways are important for resolving erroneous kinetochore-microtubule attachments and maintaining the integrity of the genome, regardless of the spindle checkpoint status.
Collapse
Affiliation(s)
- Roshan L Shrestha
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Naoka Tamura
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Anna Fries
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Nicolas Levin
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Joanna Clark
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Viji M Draviam
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
31
|
Wang X, Qi M, Li J, Ji Z, Hu Y, Bao F, Mahalingam R, He Y. The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2093-106. [PMID: 24700621 PMCID: PMC3991745 DOI: 10.1093/jxb/eru082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The moss Physcomitrella patens is an ideal model plant to study plant developmental processes. To better understand the mechanism of protoplast regeneration, a phosphoproteome analysis was performed. Protoplasts were prepared from protonemata. By 4 d of protoplast regeneration, the first cell divisions had ensued. Through a highly selective titanium dioxide (TiO2)-based phosphopeptide enrichment method and mass spectrometric technology, more than 300 phosphoproteins were identified as protoplast regeneration responsive. Of these, 108 phosphoproteins were present on day 4 but not in fresh protoplasts or those cultured for 2 d. These proteins are catalogued here. They were involved in cell-wall metabolism, transcription, signal transduction, cell growth/division, and cell structure. These protein functions are related to cell morphogenesis, organogenesis, and development adjustment. This study presents a comprehensive analysis of phosphoproteome involved in protoplast regeneration and indicates that the mechanism of plant protoplast regeneration is similar to that of postembryonic development.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Key Laboratory of Urban Agriculture (North) Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meiyan Qi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jingyun Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhongzhong Ji
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ramamurthy Mahalingam
- Department of Biochemistry and Molecular Biology, Oklahoma State University, OK 74078, USA
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
32
|
Shrestha R, Draviam V. Lateral to end-on conversion of chromosome-microtubule attachment requires kinesins CENP-E and MCAK. Curr Biol 2013; 23:1514-26. [PMID: 23891108 PMCID: PMC3748344 DOI: 10.1016/j.cub.2013.06.040] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Proper attachment of chromosomes to microtubules is crucial for the accurate segregation of chromosomes. Human chromosomes attach initially to lateral walls of microtubules. Subsequently, attachments to lateral walls disappear and attachments to microtubule ends (end-on attachments) predominate. While it is known in yeasts that lateral to end-on conversion of attachments occurs through a multistep process, equivalent conversion steps in humans remain unknown. RESULTS By developing a high-resolution imaging assay to visualize intermediary steps of the lateral to end-on conversion process, we show that the mechanisms that bring a laterally bound chromosome and its microtubule end closer to each other are indispensable for proper end-on attachment because laterally attached chromosomes seldom detach. We show that end-on conversion requires (1) the plus-end-directed motor CENP-E to tether the lateral kinetochore onto microtubule walls and (2) the microtubule depolymerizer MCAK to release laterally attached microtubules after a partial end-on attachment is formed. CONCLUSIONS By uncovering a CENP-E mediated wall-tethering event and a MCAK-mediated wall-removing event, we establish that human chromosome-microtubule attachment is achieved through a set of deterministic sequential events rather than stochastic direct capture of microtubule ends.
Collapse
Affiliation(s)
| | - Viji M. Draviam
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| |
Collapse
|
33
|
Chung KS, Choi HE, Shin JS, Cho YW, Choi JH, Cho WJ, Lee KT. 6,7-Dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine induces mitotic arrest and apoptotic cell death through the activation of spindle assembly checkpoint in human cervical cancer cells. Carcinogenesis 2013; 34:1852-60. [DOI: 10.1093/carcin/bgt133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
34
|
Varjosalo M, Sacco R, Stukalov A, van Drogen A, Planyavsky M, Hauri S, Aebersold R, Bennett KL, Colinge J, Gstaiger M, Superti-Furga G. Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods 2013; 10:307-14. [DOI: 10.1038/nmeth.2400] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/29/2013] [Indexed: 12/19/2022]
|
35
|
Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2013; 92:1577-617. [PMID: 23073627 DOI: 10.1152/physrev.00009.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2520, USA
| | | |
Collapse
|
36
|
Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 2012; 23:770-84. [PMID: 22898666 DOI: 10.1016/j.semcdb.2012.07.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/31/2012] [Indexed: 01/30/2023]
Abstract
The "Hippo" signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in Saccharomyces cerevisiae, e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologs Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin, e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP, promotes integrin clustering, actin remodeling and motility while restraining the proliferation of naïve T cells. This review will summarize current knowledge of the structure and regulation of the kinases Hippo/Mst1&2, their noncatalytic binding partners, Salvador and the Rassf polypeptides, and their major substrates Warts/Lats1&2, Trc/ndr1&2, Mats/Mob1 and FOXO.
Collapse
|
37
|
Sugimoto T, Tomita A, Abe A, Iriyama C, Kiyoi H, Naoe T. Chimeric antisense RNA derived from chromosomal translocation modulates target gene expression. Haematologica 2012; 97:1278-80. [PMID: 22491739 PMCID: PMC3409828 DOI: 10.3324/haematol.2011.057869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Takumi Sugimoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Hematology and Oncology, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Akihiro Tomita
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akihiro Abe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Chisako Iriyama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoki Naoe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
38
|
Qayyum R, Snively BM, Ziv E, Nalls MA, Liu Y, Tang W, Yanek LR, Lange L, Evans MK, Ganesh S, Austin MA, Lettre G, Becker DM, Zonderman AB, Singleton AB, Harris TB, Mohler ER, Logsdon BA, Kooperberg C, Folsom AR, Wilson JG, Becker LC, Reiner AP. A meta-analysis and genome-wide association study of platelet count and mean platelet volume in african americans. PLoS Genet 2012; 8:e1002491. [PMID: 22423221 PMCID: PMC3299192 DOI: 10.1371/journal.pgen.1002491] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 12/05/2011] [Indexed: 12/24/2022] Open
Abstract
Several genetic variants associated with platelet count and mean platelet volume (MPV) were recently reported in people of European ancestry. In this meta-analysis of 7 genome-wide association studies (GWAS) enrolling African Americans, our aim was to identify novel genetic variants associated with platelet count and MPV. For all cohorts, GWAS analysis was performed using additive models after adjusting for age, sex, and population stratification. For both platelet phenotypes, meta-analyses were conducted using inverse-variance weighted fixed-effect models. Platelet aggregation assays in whole blood were performed in the participants of the GeneSTAR cohort. Genetic variants in ten independent regions were associated with platelet count (N = 16,388) with p<5×10(-8) of which 5 have not been associated with platelet count in previous GWAS. The novel genetic variants associated with platelet count were in the following regions (the most significant SNP, closest gene, and p-value): 6p22 (rs12526480, LRRC16A, p = 9.1×10(-9)), 7q11 (rs13236689, CD36, p = 2.8×10(-9)), 10q21 (rs7896518, JMJD1C, p = 2.3×10(-12)), 11q13 (rs477895, BAD, p = 4.9×10(-8)), and 20q13 (rs151361, SLMO2, p = 9.4×10(-9)). Three of these loci (10q21, 11q13, and 20q13) were replicated in European Americans (N = 14,909) and one (11q13) in Hispanic Americans (N = 3,462). For MPV (N = 4,531), genetic variants in 3 regions were significant at p<5×10(-8), two of which were also associated with platelet count. Previously reported regions that were also significant in this study were 6p21, 6q23, 7q22, 12q24, and 19p13 for platelet count and 7q22, 17q11, and 19p13 for MPV. The most significant SNP in 1 region was also associated with ADP-induced maximal platelet aggregation in whole blood (12q24). Thus through a meta-analysis of GWAS enrolling African Americans, we have identified 5 novel regions associated with platelet count of which 3 were replicated in other ethnic groups. In addition, we also found one region associated with platelet aggregation that may play a potential role in atherothrombosis.
Collapse
Affiliation(s)
- Rehan Qayyum
- GeneSTAR Research Program, Division of General
Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United
States of America
| | - Beverly M. Snively
- Department of Biostatistical Sciences, Wake
Forest School of Medicine, Winston-Salem, North Carolina, United States of
America
| | - Elad Ziv
- Department of Medicine, University of
California San Francisco, San Francisco, California, United States of
America
| | - Michael A. Nalls
- Laboratory of Neurogenetics, National
Institute on Aging, National Institutes of Health, Bethesda, Maryland, United
States of America
| | - Yongmei Liu
- Department of Epidemiology and Prevention,
Division of Public Health Sciences, Wake Forest University School of Medicine,
Winston-Salem, North Carolina, United States of America
| | - Weihong Tang
- Division of Epidemiology and Community Health,
University of Minnesota School of Public Health, Minneapolis, Minnesota, United
States of America
| | - Lisa R. Yanek
- GeneSTAR Research Program, Division of General
Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United
States of America
| | - Leslie Lange
- Department of Genetics, School of Medicine,
The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,
United States of America
| | - Michele K. Evans
- Health Disparities Research Section, Clinical
Research Branch, National Institute on Aging, National Institutes of Health,
Baltimore, Maryland, United States of America
| | - Santhi Ganesh
- Division of Cardiology, University of Michigan
Health System, Ann Arbor, Michigan, United States of America
| | - Melissa A. Austin
- Department of Epidemiology, University of
Washington, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred
Hutchinson Cancer Research Center, Seattle, Washington, United States of
America
| | | | - Diane M. Becker
- GeneSTAR Research Program, Division of General
Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United
States of America
| | - Alan B. Zonderman
- Laboratory of Personality and Cognition,
National Institute on Aging, National Institutes of Health, Baltimore, Maryland,
United States of America
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National
Institute on Aging, National Institutes of Health, Bethesda, Maryland, United
States of America
| | - Tamara B. Harris
- Laboratory for Epidemiology, Demography, and
Biometry, National Institute on Aging, National Institutes of Health, Baltimore,
Maryland, United States of America
| | - Emile R. Mohler
- Department of Medicine, University of
Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of
America
| | - Benjamin A. Logsdon
- Program in Biostatistics and Biomathematics,
Division of Public Health Sciences, Fred Hutchinson Cancer Research Center,
Seattle, Washington, United States of America
| | - Charles Kooperberg
- Program in Biostatistics and Biomathematics,
Division of Public Health Sciences, Fred Hutchinson Cancer Research Center,
Seattle, Washington, United States of America
| | - Aaron R. Folsom
- Division of Epidemiology and Community Health,
University of Minnesota School of Public Health, Minneapolis, Minnesota, United
States of America
| | - James G. Wilson
- Department of Medicine, University of
Mississippi Medical Center, Jackson, Mississippi, United States of
America
| | - Lewis C. Becker
- GeneSTAR Research Program, Division of General
Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United
States of America
| | - Alexander P. Reiner
- Department of Epidemiology, University of
Washington, Seattle, Washington, United States of America
| |
Collapse
|
39
|
Abstract
The spindle assembly checkpoint controls cell cycle progression during mitosis, synchronizing it with the attachment of chromosomes to spindle microtubules. After the discovery of the mitotic arrest deficient (MAD) and budding uninhibited by benzymidazole (BUB) genes as crucial checkpoint components in 1991, the second decade of checkpoint studies (2001–2010) witnessed crucial advances in the elucidation of the mechanism through which the checkpoint effector, the mitotic checkpoint complex, targets the anaphase-promoting complex (APC/C) to prevent progression into anaphase. Concomitantly, the discovery that the Ndc80 complex and other components of the microtubule-binding interface of kinetochores are essential for the checkpoint response finally asserted that kinetochores are crucial for the checkpoint response. Nevertheless, the relationship between kinetochores and checkpoint control remains poorly understood. Crucial advances in this area in the third decade of checkpoint studies (2011–2020) are likely to be brought about by the characterization of the mechanism of kinetochore recruitment, activation and inactivation of checkpoint proteins, which remains elusive for the majority of checkpoint components. Here, we take a molecular view on the main challenges hampering this task.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
40
|
A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat Cell Biol 2012; 14:318-28. [PMID: 22344029 PMCID: PMC3290715 DOI: 10.1038/ncb2426] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 12/29/2011] [Indexed: 12/21/2022]
Abstract
Repair of DNA double strand breaks is critical to genomic stability and the prevention of developmental disorders and cancer. A central pathway for this repair is homologous recombination (HR). Most knowledge of HR is derived from work in prokaryotic and eukaryotic model organisms. We performed a genome-wide siRNA-based screen in human cells. Among positive regulators of HR we identified networks of DNA damage response and pre-mRNA processing proteins, and among negative regulators we identified a phosphatase network. Three candidate proteins localized to DNA lesions including RBMX, a heterogeneous nuclear ribonucleoprotein that has a role in alternative splicing. RBMX accumulated at DNA lesions via multiple domains in a poly(ADP-ribose) polymerase 1-dependent manner and promoted HR by facilitating proper BRCA2 expression. Our screen also revealed that off-target depletion of Rad51 is a common source of RNAi false-positives, sounding a cautionary note for siRNA screens and RNAi-based studies of HR.
Collapse
|
41
|
Abstract
Because of the association between aberrant nuclear structure and tumour grade, nuclear morphology is an indispensible criterion in the current pathological assessment of cancer. Components of the nuclear envelope environment have central roles in many aspects of cell function that affect tumour development and progression. As the roles of the nuclear envelope components, including nuclear pore complexes and nuclear lamina, are being deciphered in molecular detail there are opportunities to harness this knowledge for cancer therapeutics and biomarker development. In this Review, we summarize the progress that has been made in our understanding of the nuclear envelope and the implications of changes in this environment for cancer biology.
Collapse
Affiliation(s)
- Kin-Hoe Chow
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
42
|
Bansbach CE, Cortez D. Defining genome maintenance pathways using functional genomic approaches. Crit Rev Biochem Mol Biol 2011; 46:327-41. [PMID: 21787120 DOI: 10.3109/10409238.2011.588938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease. Defects in these pathways cause birth defects, neurodegeneration, premature aging, and cancer. Recent technical advances in functional genomic approaches such as expression profiling, proteomics, and RNA interference (RNAi) technologies have rapidly expanded our knowledge of the proteins that work in these pathways. In this review, we examine the use of these high-throughput methodologies in higher eukaryotic organisms for the interrogation of genome maintenance activities.
Collapse
Affiliation(s)
- Carol E Bansbach
- Department of Biochemistry, Vanderbilt University School of Medicine, Light Hall, Nashville, TN 37232, USA
| | | |
Collapse
|
43
|
Rovillain E, Mansfield L, Lord CJ, Ashworth A, Jat PS. An RNA interference screen for identifying downstream effectors of the p53 and pRB tumour suppressor pathways involved in senescence. BMC Genomics 2011; 12:355. [PMID: 21740549 PMCID: PMC3161017 DOI: 10.1186/1471-2164-12-355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 07/08/2011] [Indexed: 12/28/2022] Open
Abstract
Background Cellular senescence is an irreversible cell cycle arrest that normal cells undergo in response to progressive shortening of telomeres, changes in telomeric structure, oncogene activation or oxidative stress and acts as an important tumour suppressor mechanism. Results To identify the downstream effectors of the p53-p21 and p16-pRB tumour suppressor pathways crucial for mediating entry into senescence, we have carried out a loss-of-function RNA interference screen in conditionally immortalised human fibroblasts that can be induced to rapidly undergo senescence, whereas in primary cultures senescence is stochastic and occurs asynchronously. These cells are immortal but undergo a rapid irreversible arrest upon activation of the p53-p21 and p16-pRB pathways that can be readily bypassed upon their inactivation. The primary screen identified 112 known genes including p53 and another 29 shRNAmirs targetting as yet unidentified loci. Comparison of these known targets with genes known to be up-regulated upon senescence in these cells, by micro-array expression profiling, identified 4 common genes TMEM9B, ATXN10, LAYN and LTBP2/3. Direct silencing of these common genes, using lentiviral shRNAmirs, bypassed senescence in the conditionally immortalised cells. Conclusion The senescence bypass screen identified TMEM9B, ATXN10, LAYN and LTBP2/3 as novel downstream effectors of the p53-p21 and p16-pRB tumour suppressor pathways. Although none of them has previously been linked to cellular senescence, TMEM9B has been suggested to be an upstream activator of NF-κB signalling which has been found to have a causal role in promoting senescence. Future studies will focus on determining on how many of the other primary hits also have a casual role in senescence and what is the mechanism of action.
Collapse
Affiliation(s)
- Emilie Rovillain
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | |
Collapse
|
44
|
Huen MSY, Sy SMH, Leung KM, Ching YP, Tipoe GL, Man C, Dong S, Chen J. SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle 2011; 9:2679-85. [PMID: 20581448 DOI: 10.4161/cc.9.13.12151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division.
Collapse
Affiliation(s)
- Michael S Y Huen
- Genome Stability Research Laboratory, The University of Hong Kong, Hong Kong, SAR.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Henise JC, Taunton J. Irreversible Nek2 kinase inhibitors with cellular activity. J Med Chem 2011; 54:4133-46. [PMID: 21627121 DOI: 10.1021/jm200222m] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A structure-based approach was used to design irreversible, cysteine-targeted inhibitors of the human centrosomal kinase, Nek2. Potent inhibition of Nek2 kinase activity in biochemical and cell-based assays required a noncatalytic cysteine residue (Cys22), located near the glycine-rich loop in a subset of human kinases. Elaboration of an oxindole scaffold led to our most selective compound, oxindole propynamide 16 (JH295). Propynamide 16 irreversibly inhibited cellular Nek2 without affecting the mitotic kinases, Cdk1, Aurora B, or Plk1. Moreover, 16 did not perturb bipolar spindle assembly or the spindle assembly checkpoint. To our knowledge, 16 is the first small molecule shown to inactivate Nek2 kinase activity in cells.
Collapse
Affiliation(s)
- Jeffrey C Henise
- Program in Chemistry and Chemical Biology, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
| | | |
Collapse
|
46
|
Pramparo T, Libiger O, Jain S, Li H, Youn YH, Hirotsune S, Schork NJ, Wynshaw-Boris A. Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects. PLoS Genet 2011; 7:e1001331. [PMID: 21423666 PMCID: PMC3053345 DOI: 10.1371/journal.pgen.1001331] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/08/2011] [Indexed: 01/01/2023] Open
Abstract
Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases.
Collapse
Affiliation(s)
- Tiziano Pramparo
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ondrej Libiger
- The Scripps Research Institute and the Scripps Translational Science Institute, La Jolla, California United States of America
| | - Sonia Jain
- Department of Family and Preventive Medicine, Division of Biostatistics and Bioinformatics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hong Li
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yong Ha Youn
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Nicholas J. Schork
- The Scripps Research Institute and the Scripps Translational Science Institute, La Jolla, California United States of America
| | - Anthony Wynshaw-Boris
- Department of Pediatrics and Institute for Human Genetics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Departments of Pediatrics and Medicine, Center for Human Genetics and Genomics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
47
|
Sigoillot FD, King RW. Vigilance and validation: Keys to success in RNAi screening. ACS Chem Biol 2011; 6:47-60. [PMID: 21142076 DOI: 10.1021/cb100358f] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the 12 years since the process of RNA interference (RNAi) was first discovered, great progress has been made in understanding its mechanism and exploiting its ability to silence gene expression to study gene function at a genome-wide level. Its extensive use as a screening method has yielded many published lists of genes that play novel roles in higher eukaryotes. However, the usefulness of this information is potentially limited by the occurrence of unintended off-target effects. Here we review the potential causes of off-target effects and the impact of this phenomenon in interpreting the results of high-throughput RNAi screens. In addition to targeting the intended gene product, artificial short interfering RNAs (siRNAs) can produce off-target effects by down-regulating the expression of multiple mRNAs through microRNA-like targeting of the 3' untranslated region. We examine why this phenomenon can produce high hit rates in siRNA screens and why independent validation of screening results is critical for the approach to yield new biological insights.
Collapse
Affiliation(s)
- Frederic D. Sigoillot
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Randall W. King
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
48
|
High-throughput screens in diploid cells identify factors that contribute to the acquisition of chromosomal instability. Proc Natl Acad Sci U S A 2010; 107:15455-60. [PMID: 20713694 DOI: 10.1073/pnas.1010627107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability and the subsequent genetic mutations are considered to be critical factors in the development of the majority of solid tumors, but the mechanisms by which a stable diploid cell loses the ability to maintain genomic integrity are not well characterized. We have approached this critical issue through the use of high-throughput screens in untransformed diploid epithelial cells. In a screen of a cDNA library, we identified 13 kinases whose overexpression leads to increased ploidy. In a series of shRNA screens, we identified 16 kinases whose loss leads to increased ploidy. In both cDNA and shRNA screens, the majority of hits have not been linked previously to genomic stability. We further show that sustained loss of the shRNA screening hits leads to multipolar spindles and heterogeneous chromosome content, two characteristics of chromosomal instability. Loss of several of the kinases leads to loss of contact inhibition and to anchorage-independent growth, vital traits acquired during tumor development. We anticipate that this work will serve as a template for the comprehensive identification of pathways whose dysregulation can drive tumorigenesis through impaired karyotypic maintenance.
Collapse
|
49
|
Liu T, Rohn JL, Picone R, Kunda P, Baum B. Tao-1 is a negative regulator of microtubule plus-end growth. J Cell Sci 2010; 123:2708-16. [PMID: 20647372 DOI: 10.1242/jcs.068726] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microtubule dynamics are dominated by events at microtubule plus ends as they switch between discrete phases of growth and shrinkage. Through their ability to generate force and direct polar cell transport, microtubules help to organise global cell shape and polarity. Conversely, because plus-end binding proteins render the dynamic instability of individual microtubules sensitive to the local intracellular environment, cyto-architecture also affects the overall distribution of microtubules. Despite the importance of plus-end regulation for understanding microtubule cytoskeletal organisation and dynamics, little is known about the signalling mechanisms that trigger changes in their behaviour in space and time. Here, we identify a microtubule-associated kinase, Drosophila Tao-1, as an important regulator of microtubule stability, plus-end dynamics and cell shape. Active Tao-1 kinase leads to the destabilisation of microtubules. Conversely, when Tao-1 function is compromised, rates of cortical-induced microtubule catastrophe are reduced and microtubules contacting the actin cortex continue to elongate, leading to the formation of long microtubule-based protrusions. These data reveal a role for Tao-1 in controlling the dynamic interplay between microtubule plus ends and the actin cortex in the regulation of cell form.
Collapse
Affiliation(s)
- Tao Liu
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
50
|
Abstract
Genetic and environmental factors contribute to a substantial variation in platelet function seen among normal persons. Candidate gene association studies represent a valiant effort to define the genetic component in an era where genetic tools were limited, but the single nucleotide polymorphisms identified in those studies need to be validated by more objective, comprehensive approaches, such as genome-wide association studies (GWASs) of quantitative functional traits in much larger cohorts of more carefully selected normal subjects. During the past year, platelet count and mean platelet volume, which indirectly affect platelet function, were the subjects of GWAS. The majority of the GWAS signals were located to noncoding regions, a consistent outcome of all GWAS to date, suggesting a major role for mechanisms that alter phenotype at the level of transcription or posttranscriptional modifications. Of 15 quantitative trait loci associated with mean platelet volume and platelet count, one located at 12q24 is also a risk locus for coronary artery disease. In most cases, the effect sizes of individual quantitative trait loci are admittedly small, but the results of these studies have led to new insight into regulators of hematopoiesis and megakaryopoiesis that would otherwise be unapparent and difficult to define.
Collapse
|