1
|
Luo P, Zuo X, Bu Y, Qian H, Xu C, Niu S, Lin J, Cui Y. The cytoskeleton controls the dynamics of plasma membrane proteins and facilitates their endocytosis in plants. PLANT PHYSIOLOGY 2024; 196:1813-1825. [PMID: 39077775 DOI: 10.1093/plphys/kiae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024]
Abstract
Plasma membranes (PMs) are highly dynamic structures where lipids and proteins can theoretically diffuse freely. However, reports indicate that PM proteins do not freely diffuse within their planes but are constrained by cytoskeleton networks, though the mechanisms for how the cytoskeleton restricts lateral diffusion of plant PM proteins are unclear. Through single-molecule tracking, we investigated the dynamics of 6 Arabidopsis (Arabidopsis thaliana) PM proteins with diverse structures and found distinctions in sizes and dynamics among these proteins. Moreover, we showed that the cytoskeleton, particularly microtubules, limits the diffusion of PM proteins, including transmembrane and membrane-anchoring proteins. Interestingly, the microfilament skeleton regulates intracellular transport of endocytic cargo. Therefore, these findings indicate that the cytoskeleton controls signal transduction by limiting diffusion of PM proteins in specific membrane compartments and participating in transport of internalized cargo vesicles, thus actively regulating plant signal transduction.
Collapse
Affiliation(s)
- Pengyun Luo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Xinxiu Zuo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Hongping Qian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Changwen Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Bond A, Fiaz S, Rollins K, Nario JEQ, Snyder ET, Atkins DJ, Rosen SJ, Granados A, Dey SS, Wilson MZ, Morrissey MA. Prior Fc receptor activation primes macrophages for increased sensitivity to IgG via long-term and short-term mechanisms. Dev Cell 2024; 59:2882-2896.e7. [PMID: 39137774 PMCID: PMC11537821 DOI: 10.1016/j.devcel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/17/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Macrophages measure the "eat-me" signal immunoglobulin G (IgG) to identify targets for phagocytosis. We tested whether prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc receptor. To temporally control Fc receptor activation, we engineered an Fc receptor that is activated by the light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that subthreshold Fc receptor activation primes mouse bone-marrow-derived macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced subthreshold Fc receptor activation eat more IgG-bound human cancer cells. Increased phagocytosis occurs by two discrete mechanisms-a short- and long-term priming. Long-term priming requires new protein synthesis and Erk activity. Short-term priming does not require new protein synthesis and correlates with an increase in Fc receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kirstin Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Erika T Snyder
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Dixon J Atkins
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Samuel J Rosen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Siddharth S Dey
- Chemical Engineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA; Bioengineering Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
3
|
Mateos N, Gutierrez-Martinez E, Angulo-Capel J, Carlon-Andres I, Padilla-Parra S, Garcia-Parajo MF, Torreno-Pina JA. Early Steps of Individual Multireceptor Viral Interactions Dissected by High-Density, Multicolor Quantum Dot Mapping in Living Cells. ACS NANO 2024; 18:28881-28893. [PMID: 39387532 PMCID: PMC11503779 DOI: 10.1021/acsnano.4c09085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Viral capture and entry to target cells are the first crucial steps that ultimately lead to viral infection. Understanding these events is essential toward the design and development of suitable antiviral drugs and/or vaccines. Viral capture involves dynamic interactions of the virus with specific receptors in the plasma membrane of the target cells. In the last years, single virus tracking has emerged as a powerful approach to assess real time dynamics of viral processes in living cells and their engagement with specific cellular components. However, direct visualization of the early steps of multireceptor viral interactions at the single level has been largely impeded by the technical challenges associated with imaging individual multimolecular systems at relevant spatial (nanometer) and temporal (millisecond) scales. Here, we present a four-color, high-density quantum dot spatiotemporal mapping methodology to capture real-time interactions between individual virus-like-particles (VLPs) and three different viral (co-) receptors on the membrane of primary living immune cells derived from healthy donors. Together with quantitative tools, our approach revealed the existence of a coordinated spatiotemporal diffusion of the three different (co)receptors prior to viral engagement. By varying the temporal-windows of cumulated single-molecule localizations, we discovered that such a concerted diffusion impacts on the residence time of HIV-1 and SARS-CoV-2 VLPs on the host membrane and potential viral infectivity. Overall, our methodology offers the possibility for systematic analysis of the initial steps of viral-host interactions and could be easily implemented for the investigation of other multimolecular systems at the single-molecule level.
Collapse
Affiliation(s)
- Nicolas Mateos
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Enric Gutierrez-Martinez
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Jessica Angulo-Capel
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Irene Carlon-Andres
- Department
of Infectious Diseases, King’s College
London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, United Kingdom
| | - Sergi Padilla-Parra
- Department
of Infectious Diseases, King’s College
London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, United Kingdom
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Maria F. Garcia-Parajo
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Juan A. Torreno-Pina
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
4
|
Adler J, Bernhem K, Parmryd I. Membrane topography and the overestimation of protein clustering in single molecule localisation microscopy - identification and correction. Commun Biol 2024; 7:791. [PMID: 38951588 PMCID: PMC11217499 DOI: 10.1038/s42003-024-06472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
According to single-molecule localisation microscopy almost all plasma membrane proteins are clustered. We demonstrate that clusters can arise from variations in membrane topography where the local density of a randomly distributed membrane molecule to a degree matches the variations in the local amount of membrane. Further, we demonstrate that this false clustering can be differentiated from genuine clustering by using a membrane marker to report on local variations in the amount of membrane. In dual colour live cell single molecule localisation microscopy using the membrane probe DiI alongside either the transferrin receptor or the GPI-anchored protein CD59, we found that pair correlation analysis reported both proteins and DiI as being clustered, as did its derivative pair correlation-photoactivation localisation microscopy and nearest neighbour analyses. After converting the localisations into images and using the DiI image to factor out topography variations, no CD59 clusters were visible, suggesting that the clustering reported by the other methods is an artefact. However, the TfR clusters persisted after topography variations were factored out. We demonstrate that membrane topography variations can make membrane molecules appear clustered and present a straightforward remedy suitable as the first step in the cluster analysis pipeline.
Collapse
Affiliation(s)
- Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Bernhem
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Quintanilla MA, Patel H, Wu H, Sochacki KA, Chandrasekar S, Akamatsu M, Rotty JD, Korobova F, Bear JE, Taraska JW, Oakes PW, Beach JR. Local monomer levels and established filaments potentiate non-muscle myosin 2 assembly. J Cell Biol 2024; 223:e202305023. [PMID: 38353656 PMCID: PMC10866686 DOI: 10.1083/jcb.202305023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.
Collapse
Affiliation(s)
- Melissa A. Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Hiral Patel
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kem A. Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shreya Chandrasekar
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Matthew Akamatsu
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Jeremy D. Rotty
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Farida Korobova
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Justin W. Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jordan R. Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
6
|
Dukhno O, Ghosh S, Greiner V, Bou S, Godet J, Muhr V, Buchner M, Hirsch T, Mély Y, Przybilla F. Targeted Single Particle Tracking with Upconverting Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11217-11227. [PMID: 38386424 DOI: 10.1021/acsami.3c17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Single particle tracking (SPT) is a powerful technique for real-time microscopic visualization of the movement of individual biomolecules within or on the surface of living cells. However, SPT often suffers from the suboptimal performance of the photon-emitting labels used to tag the biomolecules of interest. For example, fluorescent dyes have poor photostability, while quantum dots suffer from blinking that hampers track acquisition and interpretation. Upconverting nanoparticles (UCNPs) have recently emerged as a promising anti-Stokes luminescent label for SPT. In this work, we demonstrated targeted SPT using UCNPs. For this, we synthesized 30 nm diameter doped UCNPs and coated them with amphiphilic polymers decorated with polyethylene glycol chains to make them water-dispersible and minimize their nonspecific interactions with cells. Coated UCNPs highly homogeneous in brightness (as confirmed by a single particle investigation) were functionalized by immunoglobulin E (IgE) using a biotin-streptavidin strategy. Using these IgE-UCNP SPT labels, we tracked high-affinity IgE receptors (FcεRI) on the membrane of living RBL-2H3 mast cells at 37 °C in the presence and absence of antigen and obtained good agreement with the literature. Moreover, we used the FcεRI-IgE receptor-antibody system to directly compare the performance of UCNP-based SPT labels to organic dyes (AlexaFluor647) and quantum dots (QD655). Due to their photostability as well as their backgroundless and continuous luminescence, SPT trajectories obtained with UCNP labels are no longer limited by the photophysics of the label but only by the dynamics of the system and, in particular, the movement of the label out of the field of view and/or focal plane.
Collapse
Affiliation(s)
- Oleksii Dukhno
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Srijayee Ghosh
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Vanille Greiner
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Sophie Bou
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Julien Godet
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
- IMAGeS team at ICube, UMR 7357, CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Verena Muhr
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Markus Buchner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Yves Mély
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Frédéric Przybilla
- Laboratory of Biomaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg 67000, France
| |
Collapse
|
7
|
Bond A, Fiaz S, Rollins KR, Nario JEQ, Rosen SJ, Granados A, Wilson MZ, Morrissey MA. Prior Fc Receptor activation primes macrophages for increased sensitivity to IgG via long term and short term mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567059. [PMID: 38014172 PMCID: PMC10680729 DOI: 10.1101/2023.11.14.567059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Macrophages measure the 'eat-me' signal IgG to identify targets for phagocytosis. We wondered if prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc Receptor. To temporally control Fc Receptor activation, we engineered an Fc Receptor that is activated by light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that Fc Receptor activation primes macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced Fc Receptor activation eat more IgG-bound cancer cells. Increased phagocytosis occurs by two discrete mechanisms - a short- and long-term priming. Long term priming requires new protein synthesis and Erk activity. Short term priming does not require new protein synthesis and correlates with an increase in Fc Receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Sareen Fiaz
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Kirstin R Rollins
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Jazz Elaiza Q Nario
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Samuel J Rosen
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Alyssa Granados
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Maxwell Z Wilson
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
- Lead contact
| |
Collapse
|
8
|
Fazel M, Grussmayer KS, Ferdman B, Radenovic A, Shechtman Y, Enderlein J, Pressé S. Fluorescence Microscopy: a statistics-optics perspective. ARXIV 2023:arXiv:2304.01456v3. [PMID: 37064525 PMCID: PMC10104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Modeling these features is ever more important in quantitatively interpreting microscopy images collected at scales on par or smaller than light's wavelength. Here we review the optics responsible for generating fluorescent images, fluorophore properties, microscopy modalities leveraging properties of both light and fluorophores, in addition to the necessarily probabilistic modeling tools imposed by the stochastic nature of light and measurement.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| | - Kristin S Grussmayer
- Department of Bionanoscience, Faculty of Applied Science and Kavli Institute for Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Boris Ferdman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yoav Shechtman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
9
|
Einen C, Price SEN, Ulvik K, Gjennestad MA, Hansen R, Kjelstrup S, Davies CDL. Nanoparticle Dynamics in Composite Hydrogels Exposed to Low-Frequency Focused Ultrasound. Gels 2023; 9:771. [PMID: 37888344 PMCID: PMC10606116 DOI: 10.3390/gels9100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Pulsed focused ultrasound (FUS) in combination with microbubbles has been shown to improve delivery and penetration of nanoparticles in tumors. To understand the mechanisms behind this treatment, it is important to evaluate the contribution of FUS without microbubbles on increased nanoparticle penetration and transport in the tumor extracellular matrix (ECM). A composite agarose hydrogel was made to model the porous structure, the acoustic attenuation and the hydraulic conductivity of the tumor ECM. Single-particle tracking was used as a novel method to monitor nanoparticle dynamics in the hydrogel during FUS exposure. FUS exposure at 1 MHz and 1 MPa was performed to detect any increase in nanoparticle diffusion or particle streaming at acoustic parameters relevant for FUS in combination with microbubbles. Results were compared to a model of acoustic streaming. The nanoparticles displayed anomalous diffusion in the hydrogel, and FUS with a duty cycle of 20% increased the nanoparticle diffusion coefficient by 23%. No increase in diffusion was found for lower duty cycles. FUS displaced the hydrogel itself at duty cycles above 10%; however, acoustic streaming was found to be negligible. In conclusion, pulsed FUS alone cannot explain the enhanced penetration of nanoparticles seen when using FUS and microbubbles for nanoparticle delivery, but it could be used as a tool to enhance diffusion of particles in the tumor ECM.
Collapse
Affiliation(s)
- Caroline Einen
- Porelab and Department of Physics, The Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Sebastian E. N. Price
- Porelab and Department of Chemistry, The Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Kim Ulvik
- Department of Physics, The Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | - Rune Hansen
- Department of Health Research at SINTEF, 7465 Trondheim, Norway
- Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Signe Kjelstrup
- Porelab and Department of Chemistry, The Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Catharina de Lange Davies
- Department of Physics, The Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
10
|
Dasgupta A, Ngo HT, Tschoerner D, Touret N, da Rocha-Azevedo B, Jaqaman K. Multiscale imaging and quantitative analysis of plasma membrane protein-cortical actin interplay. Biophys J 2023; 122:3798-3815. [PMID: 37571825 PMCID: PMC10541498 DOI: 10.1016/j.bpj.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. However, this has been shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins' actin binding ability, diffusion type, and local CA density. Combining SMI-FSM with subcellular region analysis revealed differences in CA dynamics that were predictive of differences in PM protein mobility near ruffly cell edges versus closer to the cell center. SMI-FSM also highlighted the complexity of cell-wide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and that the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Huong-Tra Ngo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deryl Tschoerner
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bruno da Rocha-Azevedo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
11
|
Campos Muñiz C, Fernández Perrino FJ. Evolution of the Concepts of Architecture and Supramolecular Dynamics of the Plasma Membrane. MEMBRANES 2023; 13:547. [PMID: 37367751 DOI: 10.3390/membranes13060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
The plasma membrane (PM) has undergone important conceptual changes during the history of scientific research, although it is undoubtedly a cellular organelle that constitutes the first defining characteristic of cellular life. Throughout history, the contributions of countless scientists have been published, each one of them with an enriching contribution to the knowledge of the structure-location and function of each structural component of this organelle, as well as the interaction between these and other structures. The first published contributions on the plasmatic membrane were the transport through it followed by the description of the structure: lipid bilayer, associated proteins, carbohydrates bound to both macromolecules, association with the cytoskeleton and dynamics of these components.. The data obtained experimentally from each researcher were represented in graphic configurations, as a language that facilitates the understanding of cellular structures and processes. This paper presents a review of some of the concepts and models proposed about the plasma membrane, emphasizing the components, the structure, the interaction between them and the dynamics. The work is illustrated with resignified 3D diagrams to visualize the changes that occurred during the history of the study of this organelle. Schemes were redrawn in 3D from the original articles...
Collapse
Affiliation(s)
- Carolina Campos Muñiz
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico City 09340, Mexico
| | - Francisco José Fernández Perrino
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
12
|
Abstract
Super-resolution fluorescence microscopy allows the investigation of cellular structures at nanoscale resolution using light. Current developments in super-resolution microscopy have focused on reliable quantification of the underlying biological data. In this review, we first describe the basic principles of super-resolution microscopy techniques such as stimulated emission depletion (STED) microscopy and single-molecule localization microscopy (SMLM), and then give a broad overview of methodological developments to quantify super-resolution data, particularly those geared toward SMLM data. We cover commonly used techniques such as spatial point pattern analysis, colocalization, and protein copy number quantification but also describe more advanced techniques such as structural modeling, single-particle tracking, and biosensing. Finally, we provide an outlook on exciting new research directions to which quantitative super-resolution microscopy might be applied.
Collapse
Affiliation(s)
- Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - P L Colosi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , ,
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Yang Q, Miao Y, Banerjee P, Hourwitz MJ, Hu M, Qing Q, Iglesias PA, Fourkas JT, Losert W, Devreotes PN. Nanotopography modulates intracellular excitable systems through cytoskeleton actuation. Proc Natl Acad Sci U S A 2023; 120:e2218906120. [PMID: 37126708 PMCID: PMC10175780 DOI: 10.1073/pnas.2218906120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023] Open
Abstract
Cellular sensing of most environmental cues involves receptors that affect a signal-transduction excitable network (STEN), which is coupled to a cytoskeletal excitable network (CEN). We show that the mechanism of sensing of nanoridges is fundamentally different. CEN activity occurs preferentially on nanoridges, whereas STEN activity is constrained between nanoridges. In the absence of STEN, waves disappear, but long-lasting F-actin puncta persist along the ridges. When CEN is suppressed, wave propagation is no longer constrained by nanoridges. A computational model reproduces these experimental observations. Our findings indicate that nanotopography is sensed directly by CEN, whereas STEN is only indirectly affected due to a CEN-STEN feedback loop. These results explain why texture sensing is robust and acts cooperatively with multiple other guidance cues in complex, in vivo microenvironments.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Physics, University of Maryland, College Park, MD20742
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Yuchuan Miao
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Matt J. Hourwitz
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD20742
| | - Minxi Hu
- School of Molecular Sciences, Arizona State University, Tempe, AZ85287
| | - Quan Qing
- Department of Physics, Arizona State University, Tempe, AZ85287
- Biodesign Institute, Arizona State University, Tempe, AZ85287
| | - Pablo A. Iglesias
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD21218
| | - John T. Fourkas
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD20742
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, MD20742
- Institute of Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Peter N. Devreotes
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
14
|
Quintanilla MA, Patel H, Wu H, Sochacki KA, Akamatsu M, Rotty JD, Korobova F, Bear JE, Taraska JW, Oakes PW, Beach JR. Local Monomer Levels and Established Filaments Potentiate Non-Muscle Myosin 2 Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538303. [PMID: 37162845 PMCID: PMC10168331 DOI: 10.1101/2023.04.26.538303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ability to dynamically assemble contractile networks is required throughout cell physiology, yet the biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the actin architecture plays a minimal direct role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes sub-resolution filament stacks prior to partitioning into clusters that feed higher-order networks. Together these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.
Collapse
Affiliation(s)
- Melissa A Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Hiral Patel
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Jeremy D Rotty
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Farida Korobova
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| |
Collapse
|
15
|
Dasgupta A, Ngo HT, Tschoerner D, Touret N, da Rocha-Azevedo B, Jaqaman K. Multiscale imaging and quantitative analysis of plasma membrane protein-cortical actin interplay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525112. [PMID: 36747866 PMCID: PMC9900770 DOI: 10.1101/2023.01.22.525112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. This was however shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins’ actin binding ability, diffusion type and local CA density. It also highlighted the complexity of cell wide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes, such as cell migration. Significance Plasma membrane protein organization, an important factor for shaping cellular behaviors, is influenced by cortical actin, the subset of the actin cytoskeleton near the plasma membrane. Yet it is challenging to directly and quantitatively probe this influence. Here, we developed an imaging and analysis approach that combines single-molecule imaging, fluorescent speckle microscopy and computational statistical analysis to characterize and correlate the spatiotemporal organization of plasma membrane proteins and cortical actin. Our approach revealed different relationships between different proteins and cortical actin, and highlighted the complexity of interpreting cell wide actin perturbation experiments. We expect this approach to be widely used to study the influence of cortical actin on different plasma membrane components, especially in actin-dependent processes.
Collapse
Affiliation(s)
- Aparajita Dasgupta
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Huong-Tra Ngo
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Deryl Tschoerner
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta; Edmonton, AB, Canada
| | - Bruno da Rocha-Azevedo
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center; Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center; Dallas, TX, USA
| |
Collapse
|
16
|
Bag N, London E, Holowka DA, Baird BA. Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation Spectroscopy. J Phys Chem B 2022; 126:2325-2336. [PMID: 35294838 DOI: 10.1021/acs.jpcb.2c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma membranes host numerous receptors, sensors, and ion channels involved in cellular signaling. Phase separation within the plasma membrane has emerged as a key biophysical regulator of signaling reactions in multiple physiological and pathological contexts. There is much evidence that plasma membrane composition supports the coexistence of liquid-ordered (Lo) and liquid-disordered (Ld) phases or domains at physiological conditions. However, this phase/domain separation is nanoscopic and transient in live cells. It has been recently proposed that transbilayer coupling between the inner and outer leaflets of the plasma membrane is driven by their asymmetric lipid distribution and by dynamic cytoskeleton-lipid composites that contribute to the formation and transience of Lo/Ld phase separation in live cells. In this Perspective, we highlight new approaches to investigate how transbilayer coupling may influence phase separation. For quantitative evaluation of the impact of these interactions, we introduce an experimental strategy centered around Imaging Fluorescence Correlation Spectroscopy (ImFCS), which measures membrane diffusion with very high precision. To demonstrate this strategy, we choose two well-established model systems for transbilayer interactions: cross-linking by multivalent antigen of immunoglobulin E bound to receptor FcεRI and cross-linking by cholera toxin B of GM1 gangliosides. We discuss emerging methods to systematically perturb membrane lipid composition, particularly exchange of outer leaflet lipids with exogenous lipids using methyl alpha cyclodextrin. These selective perturbations may be quantitatively evaluated with ImFCS and other high-resolution biophysical tools to discover novel principles of lipid-mediated phase separation in live cells in the context of their pathophysiological relevance.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Nagata Y, Suzuki R. FcεRI: A Master Regulator of Mast Cell Functions. Cells 2022; 11:cells11040622. [PMID: 35203273 PMCID: PMC8870323 DOI: 10.3390/cells11040622] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Mast cells (MCs) perform multiple functions thought to underlie different manifestations of allergies. Various aspects of antigens (Ags) and their interactions with immunoglobulin E (IgE) cause diverse responses in MCs. FcεRI, a high-affinity IgE receptor, deciphers the Ag–IgE interaction and drives allergic responses. FcεRI clustering is essential for signal transduction and, therefore, determines the quality of MC responses. Ag properties precisely regulate FcεRI dynamics, which consequently initiates differential outcomes by switching the intracellular-signaling pathway, suggesting that Ag properties can control MC responses, both qualitatively and quantitatively. Thus, the therapeutic benefits of FcεRI-targeting strategies have long been examined. Disrupting IgE–FcεRI interactions is a potential therapeutic strategy because the binding affinity between IgE and FcεRI is extremely high. Specifically, FcεRI desensitization, due to internalization, is also a potential therapeutic target that is involved in the mechanisms of allergen-specific immunotherapy. Several recent findings have suggested that silent internalization is strongly associated with FcεRI dynamics. A comprehensive understanding of the role of FcεRI may lead to the development of novel therapies for allergies. Here, we review the qualitatively diverse responses of MCs that impact the attenuation/development of allergies with a focus on the role of FcεRI toward Ag exposure.
Collapse
|
18
|
Cytokine receptor cluster size impacts its endocytosis and signaling. Proc Natl Acad Sci U S A 2021; 118:2024893118. [PMID: 34504012 DOI: 10.1073/pnas.2024893118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
The interleukin-2 receptor (IL-2R) is a cytokine receptor essential for immunity that transduces proliferative signals regulated by its uptake and degradation. IL-2R is a well-known marker of clathrin-independent endocytosis (CIE), a process devoid of any coat protein, raising the question of how the CIE vesicle is generated. Here, we investigated the impact of IL-2Rγ clustering in its endocytosis. Combining total internal reflection fluorescence (TIRF) live imaging of a CRISPR-edited T cell line endogenously expressing IL-2Rγ tagged with green fluorescent protein (GFP), with multichannel imaging, single-molecule tracking, and quantitative analysis, we were able to decipher IL-2Rγ stoichiometry at the plasma membrane in real time. We identified three distinct IL-2Rγ cluster populations. IL-2Rγ is secreted to the cell surface as a preassembled small cluster of three molecules maximum, rapidly diffusing at the plasma membrane. A medium-sized cluster composed of four to six molecules is key for IL-2R internalization and is promoted by interleukin 2 (IL-2) binding, while larger clusters (more than six molecules) are static and inefficiently internalized. Moreover, we identified membrane cholesterol and the branched actin cytoskeleton as key regulators of IL-2Rγ clustering and IL-2-induced signaling. Both cholesterol depletion and Arp2/3 inhibition lead to the assembly of large IL-2Rγ clusters, arising from the stochastic interaction of receptor molecules in close correlation with their enhanced lateral diffusion at the membrane, thus resulting in a default in IL-2R endocytosis. Despite similar clustering outcomes, while cholesterol depletion leads to a sustained IL-2-dependent signaling, Arp2/3 inhibition prevents signal initiation. Taken together, our results reveal the importance of cytokine receptor clustering for CIE initiation and signal transduction.
Collapse
|
19
|
Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc Natl Acad Sci U S A 2021; 118:2026583118. [PMID: 34433665 DOI: 10.1073/pnas.2026583118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-FcεRI) complexes in mast cells stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered FcεRI by lipid-anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn and FcεRI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn binds directly to cytosolic segments of FcεRI that it initially phosphorylates for amplified activity. Net phosphorylation above a nonfunctional threshold is achieved in the stimulated state but not in the resting state, and current evidence supports the hypothesis that this relies on Ag crosslinking to disrupt a balance between Lyn and tyrosine phosphatase activities. However, the structural interactions that underlie the stimulation process remain poorly defined. This study evaluates the relative contributions and functional importance of different types of interactions leading to suprathreshold phosphorylation of Ag-crosslinked IgE-FcεRI in live rat basophilic leukemia mast cells. Our high-precision diffusion measurements by imaging fluorescence correlation spectroscopy on multiple structural variants of Lyn and other lipid-anchored probes confirm subtle, stimulated stabilization of the Lo-like nanodomains in the membrane inner leaflet and concomitant sharpening of segregation from liquid disordered (Ld)-like regions. With other structural variants, we determine that lipid-based interactions are essential for access by Lyn, leading to phosphorylation of and protein-based binding to clustered FcεRI. By contrast, TM tyrosine phosphatase, PTPα, is excluded from these regions due to its Ld-preference and steric exclusion of TM segments. Overall, we establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM signaling in mast cells.
Collapse
|
20
|
Spendier K, Olesnicky EC, Forand D, Wolf M, Killian DJ. CPB-3 and CGH-1 localize to motile particles within dendrites in C. elegans PVD sensory neurons. BMC Res Notes 2021; 14:311. [PMID: 34391474 PMCID: PMC8364092 DOI: 10.1186/s13104-021-05730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE RNA-binding proteins (RBPs) are important regulators of gene expression that influence mRNA splicing, stability, localization, transport, and translational control. In particular, RBPs play an important role in neurons, which have a complex morphology. Previously, we showed that there are many RBPs that play a conserved role in dendrite development in Drosophila dendritic arborization neurons and Caenorhabditis elegans (C. elegans) PVD neurons including the cytoplasmic polyadenylation element binding proteins (CPEBs), Orb in Drosophila and CPB-3 in C. elegans, and the DEAD box RNA helicases, Me31B in Drosophila and CGH-1 in C. elegans. During these studies, we observed that fluorescently-labeled CPB-3 and CGH-1 localize to cytoplasmic particles that are motile, and our research aims to further characterize these RBP-containing particles in live neurons. RESULTS Here we extend on previous work to show that CPB-3 and CGH-1 localize to motile particles within dendrites that move at a speed consistent with microtubule-based transport. This is consistent with a model in which CPB-3 and CGH-1 influence dendrite development through the transport and localization of their mRNA targets. Moreover, CPB-3 and CGH-1 rarely localize to the same particles suggesting that these RBPs function in discrete ribonucleoprotein particles (RNPs) that may regulate distinct mRNAs.
Collapse
Affiliation(s)
- Kathrin Spendier
- Physics Department and Center for the Biofrontiers Institute, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA.
| |
Collapse
|
21
|
Freeman S, Grinstein S. Promoters and Antagonists of Phagocytosis: A Plastic and Tunable Response. Annu Rev Cell Dev Biol 2021; 37:89-114. [PMID: 34152790 DOI: 10.1146/annurev-cellbio-120219-055903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent observations indicate that, rather than being an all-or-none response, phagocytosis is finely tuned by a host of developmental and environmental factors. The expression of key phagocytic determinants is regulated via transcriptional and epigenetic means that confer memory on the process. Membrane traffic, the cytoskeleton, and inside-out signaling control the activation of phagocytic receptors and their ability to access their targets. An exquisite extra layer of complexity is introduced by the coexistence of distinct "eat-me" and "don't-eat-me" signals on targets and of corresponding "eat" and "don't-eat" receptors on the phagocyte surface. Moreover, assorted physical barriers constitute "don't-come-close-to-me" hurdles that obstruct the engagement of ligands by receptors. The expression, mobility, and accessibility of all these determinants can be modulated, conferring extreme plasticity on phagocytosis and providing attractive targets for therapeutic intervention in cancer, atherosclerosis, and dementia. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Spencer Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G0A4, Canada; , .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario M5G0A4, Canada; , .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
22
|
Lazki-Hagenbach P, Klein O, Sagi-Eisenberg R. The actin cytoskeleton and mast cell function. Curr Opin Immunol 2021; 72:27-33. [PMID: 33765561 DOI: 10.1016/j.coi.2021.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The application of high and super-resolution microscopy techniques has extended the possibilities of studying actin dynamics in mast cells (MCs). These studies demonstrated the close correlation between actin-driven changes in cell morphology and the functions that MC perform during their life cycle. Dynamic conversions between actin polymerization and depolymerization support MC degranulation and leading to the release of the preformed, secretory granule (SG)-contained, inflammatory mediators. Cell flattening inflicting an actin porous geometry and clearing of cortical actin, characterize the secretory actin phenotype. In contrast, pericentral actin clusters, that entrap the SGs, characterize the migratory actin phenotype, which supports MC migration, but restricts MC degranulation. Multiple actin binding and actin interacting proteins regulate these actin rearrangements, in compliance with the signals elicited by the respective activating receptors. Here, we review recent findings on the interplay between the actin cytoskeleton and MC migration and degranulation.
Collapse
Affiliation(s)
- Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
Effect of Xingbi Gel Nasal Drops on Fyn-STAT5 Pathway in Nasal Mucosa Fibroblasts of Guinea Pigs with Allergic Rhinitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6686815. [PMID: 33824677 PMCID: PMC8007362 DOI: 10.1155/2021/6686815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/18/2022]
Abstract
Fyn-STAT5 is considered to be the frontier signaling pathway of IgE-mediated allergic reactions related to mast cell activation, but research on allergic rhinitis (AR) has been rarely reported. Xingbi gel nasal drops (XGND) are a compound preparation of traditional Chinese medicine, which has the exact therapeutic efficacy on AR. The current study aimed to observe the effects of XGND on Fyn-STAT5 pathway in AR guinea pig nasal mucosal fibroblasts in vitro and further illuminate the possible therapeutic mechanism of XGND on AR. The isolated and cultured nasal mucosa fibroblasts from AR guinea pigs were identified by immunocytochemical staining. Real-time PCR and western blot were performed to detect the mRNA and protein levels of the Fyn-STAT5 pathway and related cytokines in AR guinea pig nasal mucosal fibroblasts. The results indicated that XGND may interfere with the Fyn-STAT5 pathway by reducing the expression of Fyn and SCF and upregulating STAT5 and IL-10, thereby inhibiting proliferation and degranulation of mast cells, correcting Th1/Th2 immune imbalance, and then alleviating the immune response of AR fibroblasts. Our study revealed the possible regulatory mechanism of XGND in AR and laid an experimental foundation for improving the clinical efficacy of AR and enriching the clinical medication for AR.
Collapse
|
24
|
Zhu TF, Shi YH, Li MY, Chen J. RGD-binding integrins mediated phagocytosis involved in the entry of Edwardsiella tarda into mudskipper MO/MФ. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103960. [PMID: 33301793 DOI: 10.1016/j.dci.2020.103960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The versatile fish pathogen Edwardsiella tarda is an intracellular pathogen with the ability to invade and replicate in host phagocytes. However, the mechanism mediating the uptake of E. tarda in fish monocytes/macrophages (MO/MΦ) is not yet understood. Generating mudskipper kidney-derived MO/MФ transcriptomic resources from mudskipper challenged by E. tarda is crucial for understanding the molecular mechanisms underlying the mudskipper invasion process. In the present study, a total of 1185 up-regulated and 885 down-regulated differentially expressed genes (DEGs) were identified using RNA-seq. Enrichment and pathway analysis of DEGs revealed the centrality of the phagosome and regulation of actin cytoskeleton pathways in pathogen entry. The progress of phagosome formation was observed by transmission electron microscopy. Eight conserved integrin (ITG) subunit genes, belonging to the phagocytic receptors, were found in the transcriptomic sequence data. Additionally, quantitative real-time PCR showed that the mRNA expressions of most ITG subunit genes were related to the different infection times of E. tarda and the different bacterial pathogens. Further assays demonstrated that phagocytosis of FITC-labeled E. tarda by mudskipper MO/MФ was significantly reduced by the tetrapeptide Asp-Gly-Arg-Ser (RGDS). In summary, phagocytosis is one of the entry pathways into mudskipper MO/MΦ, and RGD-binding ITGs are involved in the phagosome formation process.
Collapse
Affiliation(s)
- Ting-Fang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yu-Hong Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
25
|
Gesper A, Wennmalm S, Hagemann P, Eriksson SG, Happel P, Parmryd I. Variations in Plasma Membrane Topography Can Explain Heterogenous Diffusion Coefficients Obtained by Fluorescence Correlation Spectroscopy. Front Cell Dev Biol 2020; 8:767. [PMID: 32903922 PMCID: PMC7443568 DOI: 10.3389/fcell.2020.00767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 01/18/2023] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is frequently used to study diffusion in cell membranes, primarily the plasma membrane. The diffusion coefficients reported in the plasma membrane of the same cell type and even within single cells typically display a large spread. We have investigated whether this spread can be explained by variations in membrane topography throughout the cell surface, that changes the amount of membrane in the FCS focal volume at different locations. Using FCS, we found that diffusion of the membrane dye DiI in the apical plasma membrane was consistently faster above the nucleus than above the cytoplasm. Using live cell scanning ion conductance microscopy (SICM) to obtain a topography map of the cell surface, we demonstrate that cell surface roughness is unevenly distributed with the plasma membrane above the nucleus being the smoothest, suggesting that the difference in diffusion observed in FCS is related to membrane topography. FCS modeled on simulated diffusion in cell surfaces obtained by SICM was consistent with the FCS data from live cells and demonstrated that topography variations can cause the appearance of anomalous diffusion in FCS measurements. Furthermore, we found that variations in the amount of the membrane marker DiD, a proxy for the membrane, but not the transmembrane protein TCRζ or the lipid-anchored protein Lck, in the FCS focal volume were related to variations in diffusion times at different positions in the plasma membrane. This relationship was seen at different positions both at the apical cell and basal cell sides. We conclude that it is crucial to consider variations in topography in the interpretation of FCS results from membranes.
Collapse
Affiliation(s)
| | - Stefan Wennmalm
- SciLifeLab, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | - Ingela Parmryd
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Liu YL, Perillo EP, Ang P, Kim M, Nguyen DT, Blocher K, Chen YA, Liu C, Hassan AM, Vu HT, Chen YI, Dunn AK, Yeh HC. Three-Dimensional Two-Color Dual-Particle Tracking Microscope for Monitoring DNA Conformational Changes and Nanoparticle Landings on Live Cells. ACS NANO 2020; 14:7927-7939. [PMID: 32668152 PMCID: PMC7456512 DOI: 10.1021/acsnano.9b08045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ∼15 nm (for static targets) and ∼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets. Using this technique, we turn a double-stranded DNA (dsDNA)-linked dumbbell-like dimer into a nanoscopic optical ruler to quantify the bending dynamics of nicked or gapped dsDNA molecules in free solution by manipulating the design of dsDNA linkers (1-nick, 3-nt, 6-nt, or 9-nt single-strand gap), and the results show the increase of kon (linear to bent) from 3.2 to 10.7 s-1. The 3D-2C-DPT is then applied to observe translational and rotational motions of the landing of an antibody-conjugated nanoparticle on the plasma membrane of living cells, revealing the reduction of rotations possibly due to interactions with membrane receptors. This study demonstrates that this 3D-2C-DPT technique is a new tool to shed light on the conformational changes of biomolecules and the intermolecular interactions on plasma membrane.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Nanostring Technologies, Seattle, Washington 98109, United States
| | - Phyllis Ang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Computer Science, Duke University, Durham, North Carolina 27705, United States
| | - Mirae Kim
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Duc Trung Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Katherine Blocher
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yu-An Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Cong Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Ahmed M Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Huong T Vu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
28
|
Liu K, Xu C, Liu J. Regulation of cell binding and entry by DNA origami mediated spatial distribution of aptamers. J Mater Chem B 2020; 8:6802-6809. [PMID: 32373880 DOI: 10.1039/d0tb00663g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the effects of surface density and distribution of ligands on their recognition and binding is critical for the regulation of cellular behaviors. However, the correlation of spatial distribution of ligands particularly with cell binding and subsequent entry has been rarely explored. Here, we describe the use of DNA origami mediated spatial distribution of aptamers to regulate receptor ligand binding. Aptamers with tunable yet accurate density and orientation are anchored by virtue of the convenience and precision of DNA origami nanoboxes (DONs) to tailor their attachments. Cell assays demonstrate that the binding of DONs depends on both the density and orientation of aptamers, in which two adjacent aptamers exhibit the highest cellular uptake. The spatial distribution dependent uptake is further validated by utilizing two human cancer cell lines expressed with different levels of membrane receptors. Additionally, anticancer doxorubicin loaded DONs show internalization dependent proliferation inhibition of tumor cells. DNA origami mediated spatial distribution of ligands not only provides a unique method to tune cellular behaviors, but also offers new insights for the optimization of targeted drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Ke Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | | | | |
Collapse
|
29
|
He W, Su Y, Peng HB, Tong P. Dynamic heterogeneity and non-Gaussian statistics for ganglioside GM1s and acetylcholine receptors on live cell membrane. Mol Biol Cell 2020; 31:1380-1391. [PMID: 32348189 PMCID: PMC7353135 DOI: 10.1091/mbc.e19-08-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have carried out a comparative study of the lateral motion of ganglioside GM1, which is a glycosphingolipid residing on the outer leaflet of the plasma membrane, and acetylcholine receptor (AChR), which is a well-characterized ion channel. Both the lipid molecules and the transmembrane proteins reside on the plasma membranes of live Xenopus muscle cells. From a thorough analysis of a large volume of individual molecular trajectories obtained from more than 300 live cells over a wide range of sampling rates and long durations, we find that the GM1s and AChRs share the same dynamic heterogeneity and non-Gaussian statistics. Our measurements with the ATP-depleted cells reveal that the diffusion dynamics of the GM1s and AChRs is uniformly affected by the intracellular ATP level of the living muscle cells, further demonstrating that membrane diffusion is strongly coupled to the dynamics of the underlying cortical actin network, as predicted by the dynamic picket-fence model.
Collapse
Affiliation(s)
- Wei He
- Nano Science and Technology Program, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yun Su
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - H Benjamin Peng
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
30
|
Förster R, Weidlich S, Nissen M, Wieduwilt T, Kobelke J, Goldfain AM, Chiang TK, Garmann RF, Manoharan VN, Lahini Y, Schmidt MA. Tracking and Analyzing the Brownian Motion of Nano-objects Inside Hollow Core Fibers. ACS Sens 2020; 5:879-886. [PMID: 32103665 DOI: 10.1021/acssensors.0c00339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tracking and analyzing the individual diffusion of nanoscale objects such as proteins and viruses is an important methodology in life science. Here, we show a sensor that combines the efficiency of light line illumination with the advantages of fluidic confinement. Tracking of freely diffusing nano-objects inside water-filled hollow core fibers with core diameters of tens of micrometers using elastically scattered light from the core mode allows retrieving information about the Brownian motion and the size of each particle of the investigated ensemble individually using standard tracking algorithms and the mean squared displacement analysis. Specifically, we successfully measure the diameter of every gold nanosphere in an ensemble that consists of several hundreds of 40 nm particles, with an individual precision below 17% (±8 nm). In addition, we confirm the relevance of our approach with respect to bioanalytics by analyzing 70 nm λ-phages. Overall these features, together with the strongly reduced demand for memory space, principally allows us to record thousands of frames and to achieve high frame rates for high precision tracking of nanoscale objects.
Collapse
Affiliation(s)
- Ronny Förster
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Stefan Weidlich
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Mona Nissen
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Torsten Wieduwilt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Jens Kobelke
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Aaron M. Goldfain
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Timothy K. Chiang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Rees F. Garmann
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Vinothan N. Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yoav Lahini
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Markus A. Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| |
Collapse
|
31
|
Stanly TA, Fritzsche M, Banerji S, Shrestha D, Schneider F, Eggeling C, Jackson DG. The cortical actin network regulates avidity-dependent binding of hyaluronan by the lymphatic vessel endothelial receptor LYVE-1. J Biol Chem 2020; 295:5036-5050. [PMID: 32034091 PMCID: PMC7152780 DOI: 10.1074/jbc.ra119.011992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Tess A Stanly
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marco Fritzsche
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom.,Kennedy Institute for Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Suneale Banerji
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Dilip Shrestha
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Christian Eggeling
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom .,Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
| | - David G Jackson
- Medical Research Council Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
32
|
Jiang S, Zhao J, Förster R, Weidlich S, Plidschun M, Kobelke J, Fatobene Ando R, Schmidt MA. Three dimensional spatiotemporal nano-scale position retrieval of the confined diffusion of nano-objects inside optofluidic microstructured fibers. NANOSCALE 2020; 12:3146-3156. [PMID: 31967162 DOI: 10.1039/c9nr10351a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the dynamics of single nano-scale species at high spatiotemporal resolution is of utmost importance within fields such as bioanalytics or microrheology. Here we introduce the concept of axial position retrieval via scattered light at evanescent fields inside a corralled geometry using optofluidic microstructured optical fibers allowing to unlock information about diffusing nano-scale objects in all three spatial dimensions at kHz acquisition rate for several seconds. Our method yields the lateral positions by localizing the particle in a wide-field microscopy image. In addition, the axial position is retrieved via the scattered light intensity of the particle, as a result of the homogenized evanescent fields inside a microchannel running parallel to an optical core. This method yields spatial localization accuracies <3 nm along the transverse and <21 nm along the retrieved directions. Due to its unique properties such as three dimensional tracking, straightforward operation, mechanical flexibility, strong confinement, fast and efficient data recording, long observation times, low background scattering, and compatibility with microscopy and fiber circuitry, our concept represents a new paradigm in light-based nanoscale detection techniques, extending the capabilities of the field of nanoparticle tracking analysis and potentially allowing for the observation of so far inaccessible processes at the nanoscale level.
Collapse
Affiliation(s)
- Shiqi Jiang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Jiangbo Zhao
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Stefan Weidlich
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Malte Plidschun
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Jens Kobelke
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Ron Fatobene Ando
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany. and Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany and Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| |
Collapse
|
33
|
Gupta A, Korte T, Herrmann A, Wohland T. Plasma membrane asymmetry of lipid organization: fluorescence lifetime microscopy and correlation spectroscopy analysis. J Lipid Res 2020; 61:252-266. [PMID: 31857388 PMCID: PMC6997606 DOI: 10.1194/jlr.d119000364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
A fundamental feature of the eukaryotic cell membrane is the asymmetric arrangement of lipids in its two leaflets. A cell invests significant energy to maintain this asymmetry and uses it to regulate important biological processes, such as apoptosis and vesiculation. The dynamic coupling of the inner or cytoplasmic and outer or exofacial leaflets is a challenging open question in membrane biology. Here, we combined fluorescence lifetime imaging microscopy (FLIM) with imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) to differentiate the dynamics and organization of the two leaflets of live mammalian cells. We characterized the biophysical properties of fluorescent analogs of phosphatidylcholine, sphingomyelin, and phosphatidylserine in the plasma membrane of two mammalian cell lines (CHO-K1 and RBL-2H3). Because of their specific transverse membrane distribution, these probes allowed leaflet-specific investigation of the plasma membrane. We compared the results of the two methods having different temporal and spatial resolution. Fluorescence lifetimes of fluorescent lipid analogs were in ranges characteristic for the liquid ordered phase in the outer leaflet and for the liquid disordered phase in the inner leaflet. The observation of a more fluid inner leaflet was supported by free diffusion in the inner leaflet, with high average diffusion coefficients. The liquid ordered phase in the outer leaflet was accompanied by slower diffusion and diffusion with intermittent transient trapping. Our results show that the combination of FLIM and ITIR-FCS with specific fluorescent lipid analogs is a powerful tool for investigating lateral and transbilayer characteristics of plasma membrane in live cell lines.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences National University of Singapore, Singapore
| | - Thomas Korte
- Institute for Biology/Biophysics, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institute for Biology/Biophysics, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thorsten Wohland
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences National University of Singapore, Singapore
- Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
34
|
Gupta A, Muralidharan S, Torta F, Wenk MR, Wohland T. Long acyl chain ceramides govern cholesterol and cytoskeleton dependence of membrane outer leaflet dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183153. [PMID: 31857071 DOI: 10.1016/j.bbamem.2019.183153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
The spatiotemporal dynamics of the plasma membrane is a consequence of fine-tuned interactions between membrane components. However, the precise identity of molecular factors that maintain this delicate balance, which is lost even in cell membrane derived mimics, remains elusive. Here, we use two cell lines, CHO-K1 and RBL-2H3, which show differences in outer membrane organization, dynamics, and cytoskeleton coupling, to investigate the underlying factors. To our surprise, knock-down of the cytoskeleton-interacting Immunoglobulin E receptor, which is abundant in RBL-2H3 but not in CHO-K1 cells, is not responsible for lipid confinement or cytoskeleton coupling. A subsequent lipidomic analysis of the two cell membranes revealed differences in total membrane ceramide content (C16 to C24). Analysis of the dynamics and organization of ceramide treated live cell membranes by imaging fluorescence correlation spectroscopy demonstrates that C24 and C16 saturated ceramides uniquely alter membrane dynamics by promoting the formation of cholesterol-independent domains and by elevating the inter-leaflet coupling.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore
| | - Sneha Muralidharan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Federico Torta
- Department of Biochemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Markus R Wenk
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Biochemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
35
|
Cohen AE, Shi Z. Do Cell Membranes Flow Like Honey or Jiggle Like Jello? Bioessays 2019; 42:e1900142. [DOI: 10.1002/bies.201900142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Adam E. Cohen
- Departments of Chemistry and Chemical Biology and PhysicsHarvard University Cambridge MA USA
- Howard Hughes Medical Institute Chevy Chase MD USA
| | - Zheng Shi
- Departments of Chemistry and Chemical Biology and PhysicsHarvard University Cambridge MA USA
| |
Collapse
|
36
|
Liu YL, Horning AM, Lieberman B, Kim M, Lin CK, Hung CN, Chou CW, Wang CM, Lin CL, Kirma NB, Liss MA, Vasisht R, Perillo EP, Blocher K, Horng H, Taverna JA, Ruan J, Yankeelov TE, Dunn AK, Huang THM, Yeh HC, Chen CL. Spatial EGFR Dynamics and Metastatic Phenotypes Modulated by Upregulated EphB2 and Src Pathways in Advanced Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121910. [PMID: 31805710 PMCID: PMC6966510 DOI: 10.3390/cancers11121910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported. Using single-particle tracking techniques, we found that highly phosphorylated EGFR in the advanced prostate cancer cell line, PC3, was associated with higher EGFR diffusivity, as compared with LNCaP and less aggressive DU145. The increased EGFR activation and biophysical dynamics were consistent with high proliferation, migration, and invasion. After performing single-cell RNA-seq on prostate cancer cell lines and circulating tumor cells from patients, we identified that upregulated gene expression in the EphB2 and Src pathways are associated with advanced malignancy. After dasatinib treatment or siRNA knockdowns of EphB2 or Src, the PC3 cells exhibited significantly lower EGFR dynamics, cell motility, and invasion. Partial inhibitory effects were also found in DU145 cells. The upregulation of parts of the EphB2 and Src pathways also predicts poor prognosis in the prostate cancer patient cohort of The Cancer Genome Atlas. Our results provide evidence that overexpression of the EphB2 and Src signaling pathways regulate EGFR dynamics and cellular aggressiveness in some advanced prostate cancer cells.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Aaron M. Horning
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Brandon Lieberman
- Department of Biology, Trinity University, San Antonio, TX 78212, USA;
| | - Mirae Kim
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Che-Kuang Lin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chia-Nung Hung
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chih-Wei Chou
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chiou-Miin Wang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Chun-Lin Lin
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Nameer B. Kirma
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Michael A. Liss
- Department of Urology, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Rohan Vasisht
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Evan P. Perillo
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Katherine Blocher
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Hannah Horng
- Department of Bioengineering, the University of Maryland, College Park, MD 20742, USA;
| | - Josephine A. Taverna
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
| | - Tim H.-M. Huang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, Austin, TX 78712, USA; (M.K.); (R.V.); (E.P.P.); (K.B.); (T.E.Y.); (A.K.D.)
- Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA
- Correspondence: (H.-C.Y.); (C.-L.C.); Tel.: +1-512-471-7931 (H.-C.Y.); +1-210-562-4143 (C.-L.C.); Fax: +1-512-471-0616 (H.-C.Y.); +1-210-562-4161 (C.-L.C.)
| | - Chun-Liang Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center, 8210 Floyd Curl Drive, Mail code: 8257, San Antonio, TX 78229, USA; (A.M.H.); (C.-K.L.); (C.-N.H.); (C.-W.C.); (C.-M.W.); (C.-L.L.); (N.B.K.); (T.H.-M.H.)
- Correspondence: (H.-C.Y.); (C.-L.C.); Tel.: +1-512-471-7931 (H.-C.Y.); +1-210-562-4143 (C.-L.C.); Fax: +1-512-471-0616 (H.-C.Y.); +1-210-562-4161 (C.-L.C.)
| |
Collapse
|
37
|
Luo L, Yi M. Quenched trap model on the extreme landscape: The rise of subdiffusion and non-Gaussian diffusion. Phys Rev E 2019; 100:042136. [PMID: 31770896 DOI: 10.1103/physreve.100.042136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 11/07/2022]
Abstract
Non-Gaussian diffusion has been intensively studied in recent years, which reflects the dynamic heterogeneity in the disordered media. The recent study on the non-Gaussian diffusion in a static disordered landscape suggests novel phenomena due to the quenched disorder. In this paper, we further investigate the random walk on this landscape under various effective temperatures μ, which continuously modulate the dynamic heterogeneity. We show in the long-time limit, the trap dynamics on the landscape is equivalent to the quenched trap model in which subdiffusion appears for μ<1. The non-Gaussian distribution of displacement has been analytically estimated for short t of which the stretched exponential tail is expected for μ≠1. Due to the localization in the ensemble of trajectory segments, an additional peak arises in P(x,t) around x=0 even for μ>1. Evolving in different timescales, the peak and the tail of P(x,t) are well split for a wide range of t. This theoretical paper reveals the connections among the subdiffusion, non-Gaussian diffusion, and the dynamic heterogeneity in the static disordered medium. It also offers an insight on how the cell would benefit from the quasistatic disordered structures.
Collapse
Affiliation(s)
- Liang Luo
- Department of Physics, Huazhong Agricultural University, Wuhan 430070, China.,Institute of Applied Physics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
38
|
Bohr SSR, Lund PM, Kallenbach AS, Pinholt H, Thomsen J, Iversen L, Svendsen A, Christensen SM, Hatzakis NS. Direct observation of Thermomyces lanuginosus lipase diffusional states by Single Particle Tracking and their remodeling by mutations and inhibition. Sci Rep 2019; 9:16169. [PMID: 31700110 PMCID: PMC6838188 DOI: 10.1038/s41598-019-52539-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipases are interfacially activated enzymes that catalyze the hydrolysis of ester bonds and constitute prime candidates for industrial and biotechnological applications ranging from detergent industry, to chiral organic synthesis. As a result, there is an incentive to understand the mechanisms underlying lipase activity at the molecular level, so as to be able to design new lipase variants with tailor-made functionalities. Our understanding of lipase function primarily relies on bulk assay averaging the behavior of a high number of enzymes masking structural dynamics and functional heterogeneities. Recent advances in single molecule techniques based on fluorogenic substrate analogues revealed the existence of lipase functional states, and furthermore so how they are remodeled by regulatory cues. Single particle studies of lipases on the other hand directly observed diffusional heterogeneities and suggested lipases to operate in two different modes. Here to decipher how mutations in the lid region controls Thermomyces lanuginosus lipase (TLL) diffusion and function we employed a Single Particle Tracking (SPT) assay to directly observe the spatiotemporal localization of TLL and rationally designed mutants on native substrate surfaces. Parallel imaging of thousands of individual TLL enzymes and HMM analysis allowed us to observe and quantify the diffusion, abundance and microscopic transition rates between three linearly interconverting diffusional states for each lipase. We proposed a model that correlate diffusion with function that allowed us to predict that lipase regulation, via mutations in lid region or product inhibition, primarily operates via biasing transitions to the active states.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Philip M Lund
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Amalie S Kallenbach
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Henrik Pinholt
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Lars Iversen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | - Allan Svendsen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | | | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark.
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
39
|
Tasso M, Pons T, Lequeux N, Nguyen J, Lenkei Z, Zala D. NanoPaint: A Tool for Rapid and Dynamic Imaging of Membrane Structural Plasticity at the Nanoscale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902796. [PMID: 31583817 DOI: 10.1002/smll.201902796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Single-particle tracking with quantum dots (QDs) constitutes a powerful tool to track the nanoscopic dynamics of individual cell membrane components unveiling their membrane diffusion characteristics. Here, the nano-resolved population dynamics of QDs is exploited to reconstruct the topography and structural changes of the cell membrane surface with high temporal and spatial resolution. For this proof-of-concept study, bright, small, and stable biofunctional QD nanoconstructs are utilized recognizing the endogenous neuronal cannabinoid receptor 1, a highly expressed and fast-diffusing membrane protein, together with a commercial point-localization microscope. Rapid QD diffusion on the axonal plasma membrane of cultured hippocampal neurons allows precise reconstruction of the membrane surface in less than 1 min with a spatial resolution of tens of nanometers. Access of the QD nanoconstructs to the synaptic cleft enables rapid 3D topological reconstruction of the entire presynaptic component. Successful reconstruction of membrane nano-topology and deformation at the second time-scale is also demonstrated for HEK293 cell filopodia and axons. Named "nanoPaint," this super-resolution imaging technique amenable to any endogenous transmembrane target represents a versatile platform to rapidly and accurately reconstruct the cell membrane nano-topography, thereby enabling the study of the rapid dynamic phenomena involved in neuronal membrane plasticity.
Collapse
Affiliation(s)
- Mariana Tasso
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Thomas Pons
- LPEM, ESPCI ParisTech, PSL Research University, CNRS UMR 8213, Sorbonne Universités, 10 rue Vauquelin, 75005, Paris, France
| | - Nicolas Lequeux
- LPEM, ESPCI ParisTech, PSL Research University, CNRS UMR 8213, Sorbonne Universités, 10 rue Vauquelin, 75005, Paris, France
| | - Julie Nguyen
- Brain Plasticity Unit, ESPCI ParisTech, PSL Research University, CNRS UMR 8249, 75006, Paris, France
- Institute of Psychiatry and Neuroscience of Paris INSERM U1266, University of Paris, 102-108 rue de la Santé, 75014, Paris, France
| | - Zsolt Lenkei
- Brain Plasticity Unit, ESPCI ParisTech, PSL Research University, CNRS UMR 8249, 75006, Paris, France
- Institute of Psychiatry and Neuroscience of Paris INSERM U1266, University of Paris, 102-108 rue de la Santé, 75014, Paris, France
| | - Diana Zala
- Brain Plasticity Unit, ESPCI ParisTech, PSL Research University, CNRS UMR 8249, 75006, Paris, France
- Institute of Psychiatry and Neuroscience of Paris INSERM U1266, University of Paris, 102-108 rue de la Santé, 75014, Paris, France
| |
Collapse
|
40
|
Drawbond R, Spendier K. TIRF Microscope Image Sequences of Fluorescent IgE-FcεRI Receptor Complexes inside a FcεRI-Centric Synapse in RBL-2H3 Cells. DATA 2019. [PMID: 32704503 DOI: 10.17632/6kvzv95w7r.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Total internal reflection fluorescence (TIRF) microscope image sequences are commonly used to study receptors in live cells. The dataset presented herein facilitates the study of the IgE-FcεRI receptor signaling complex (IgE-RC) in rat basophilic leukemia (RBL-2H3) cells coming into contact with a supported lipid bilayer with 25 mol% N-dinitrophenyl-aminocaproyl phosphatidylethanolamine, modeling an immunological synapse. TIRF microscopy was used to image IgE-RCs within this FcεRI-centric synapse by loading RBL-2H3 cells with fluorescent anti-dinitrophenyl (anti-DNP) immunoglobulin E (IgE) in suspension for 24 h. Fluorescent anti-DNP IgE (IgE488) concentrations of this suspension increased from 10% to 100% and corresponding non-fluorescent anti-DNP IgE concentrations decreased from 90% to 0%. After the removal of unbound anti-DNP IgE, multiple image sequences were taken for each of these ten conditions. Prior to imaging, anti-DNP IgE-primed RBL-2H3 cells were either kept for a few minutes, for about 30 min, or for about one hour in Hanks buffer. The dataset contains 482 RBL-2H3 model synapse image stacks, dark images to correct for background intensity, and TIRF illumination profile images to correct for non-uniform TIRF illumination. After background subtraction, non-uniform illumination correction, and conversion of pixel units from analog-to-digital units to photo electrons, the average pixel intensity was calculated. The average pixel intensity within FcεRI-centric synapses for all three Hanks buffer conditions increased linearly at a rate of 0.42 ± 0.02 photo electrons per pixel per % IgE488 in suspension. RBL-2H3 cell degranulation was tested by detecting β-hexosaminidase activity. Prolonged RBL-2H3 cell exposure to Hanks buffer inhibited exocytosis in RBL-2H3 cells.
Collapse
Affiliation(s)
- Rachel Drawbond
- UCCS Center of the Biofrontiers Institute, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
- Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
| | - Kathrin Spendier
- Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
- Department of Physics and Energy Science, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
41
|
Drawbond R, Spendier K. TIRF Microscope Image Sequences of Fluorescent IgE-FcεRI Receptor Complexes inside a FcεRI-Centric Synapse in RBL-2H3 Cells. DATA 2019; 4:111. [PMID: 32704503 PMCID: PMC7377353 DOI: 10.3390/data4030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Total internal reflection fluorescence (TIRF) microscope image sequences are commonly used to study receptors in live cells. The dataset presented herein facilitates the study of the IgE-FcεRI receptor signaling complex (IgE-RC) in rat basophilic leukemia (RBL-2H3) cells coming into contact with a supported lipid bilayer with 25 mol% N-dinitrophenyl-aminocaproyl phosphatidylethanolamine, modeling an immunological synapse. TIRF microscopy was used to image IgE-RCs within this FcεRI-centric synapse by loading RBL-2H3 cells with fluorescent anti-dinitrophenyl (anti-DNP) immunoglobulin E (IgE) in suspension for 24 h. Fluorescent anti-DNP IgE (IgE488) concentrations of this suspension increased from 10% to 100% and corresponding non-fluorescent anti-DNP IgE concentrations decreased from 90% to 0%. After the removal of unbound anti-DNP IgE, multiple image sequences were taken for each of these ten conditions. Prior to imaging, anti-DNP IgE-primed RBL-2H3 cells were either kept for a few minutes, for about 30 min, or for about one hour in Hanks buffer. The dataset contains 482 RBL-2H3 model synapse image stacks, dark images to correct for background intensity, and TIRF illumination profile images to correct for non-uniform TIRF illumination. After background subtraction, non-uniform illumination correction, and conversion of pixel units from analog-to-digital units to photo electrons, the average pixel intensity was calculated. The average pixel intensity within FcεRI-centric synapses for all three Hanks buffer conditions increased linearly at a rate of 0.42 ± 0.02 photo electrons per pixel per % IgE488 in suspension. RBL-2H3 cell degranulation was tested by detecting β-hexosaminidase activity. Prolonged RBL-2H3 cell exposure to Hanks buffer inhibited exocytosis in RBL-2H3 cells.
Collapse
Affiliation(s)
- Rachel Drawbond
- UCCS Center of the Biofrontiers Institute, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
- Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
| | - Kathrin Spendier
- Department of Mathematics, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
- Department of Physics and Energy Science, University of Colorado at Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
42
|
Liu YL, Chou CK, Kim M, Vasisht R, Kuo YA, Ang P, Liu C, Perillo EP, Chen YA, Blocher K, Horng H, Chen YI, Nguyen DT, Yankeelov TE, Hung MC, Dunn AK, Yeh HC. Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Sci Rep 2019; 9:3395. [PMID: 30833579 PMCID: PMC6399327 DOI: 10.1038/s41598-018-37625-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023] Open
Abstract
Derailed transmembrane receptor trafficking could be a hallmark of tumorigenesis and increased tumor invasiveness, but receptor dynamics have not been used to differentiate metastatic cancer cells from less invasive ones. Using single-particle tracking techniques, we developed a phenotyping asssay named Transmembrane Receptor Dynamics (TReD), studied the dynamics of epidermal growth factor receptor (EGFR) in seven breast epithelial cell lines and developed a phenotyping assay named Transmembrane Receptor Dynamics (TReD). Here we show a clear evidence that increased EGFR diffusivity and enlarged EGFR confinement size in the plasma membrane (PM) are correlated with the enhanced metastatic potential in these cell lines. By comparing the TReD results with the gene expression profiles, we found a clear negative correlation between the EGFR diffusivities and the breast cancer luminal differentiation scores (r = -0.75). Upon the induction of epithelial-mesenchymal transition (EMT), EGFR diffusivity significantly increased for the non-tumorigenic MCF10A (99%) and the non-invasive MCF7 (56%) cells, but not for the highly metastatic MDA-MB-231 cell. We believe that the reorganization of actin filaments during EMT modified the PM structures, causing the receptor dynamics to change. TReD can thus serve as a new biophysical marker to probe the metastatic potential of cancer cells and even to monitor the transition of metastasis.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirae Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Rohan Vasisht
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Phyllis Ang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Cong Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-An Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Katherine Blocher
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hannah Horng
- Department of Bioengineering, The University of Maryland, College Park, MD, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Duc Trung Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, USA
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
43
|
Recent advances in optical microscopic methods for single-particle tracking in biological samples. Anal Bioanal Chem 2019; 411:4445-4463. [PMID: 30790020 DOI: 10.1007/s00216-019-01638-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
With the rapid development of optical microscopic techniques, explorations on the chemical and biological properties of target objects in biological samples at single-molecule/particle level have received great attention recently. In the past decades, various powerful techniques have been developed for single-particle tracking (SPT) in biological samples. In this review, we summarize the commonly used optical microscopic methods for SPT, such as total internal reflection fluorescence microscopy (TIRFM), super-resolution fluorescence microscopy (SRM), dark-field optical microscopy (DFM), total internal reflection scattering microscopy (TIRSM), and differential interference contrast microscopy (DICM). We then discuss the image processing and data analysis methods, including particle localization, trajectory reconstruction, and diffusion behavior analysis. The application of SPT on the cell membrane, within the cell, and the cellular invading process of viruses are introduced. Finally, the challenges and prospects of optical microscopic technologies for SPT are delineated.
Collapse
|
44
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
45
|
Adler J, Sintorn IM, Strand R, Parmryd I. Conventional analysis of movement on non-flat surfaces like the plasma membrane makes Brownian motion appear anomalous. Commun Biol 2019; 2:12. [PMID: 30652124 PMCID: PMC6325064 DOI: 10.1038/s42003-018-0240-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
Cells are neither flat nor smooth, which has serious implications for prevailing plasma membrane models and cellular processes like cell signalling, adhesion and molecular clustering. Using probability distributions from diffusion simulations, we demonstrate that 2D and 3D Euclidean distance measurements substantially underestimate diffusion on non-flat surfaces. Intuitively, the shortest within surface distance (SWSD), the geodesic distance, should reduce this problem. The SWSD is accurate for foldable surfaces but, although it outperforms 2D and 3D Euclidean measurements, it still underestimates movement on deformed surfaces. We demonstrate that the reason behind the underestimation is that topographical features themselves can produce both super- and subdiffusion, i.e. the appearance of anomalous diffusion. Differentiating between topography-induced and genuine anomalous diffusion requires characterising the surface by simulating Brownian motion on high-resolution cell surface images and a comparison with the experimental data.
Collapse
Affiliation(s)
- Jeremy Adler
- Science for Life Laboratory, Medical Cell Biology, Uppsala University, Uppsala University, Box 571, 751 21 Uppsala, Sweden
| | - Ida-Maria Sintorn
- Department of Information Technology, Uppsala University, Box 331, 751 05 Uppsala, Sweden
| | - Robin Strand
- Department of Information Technology, Uppsala University, Box 331, 751 05 Uppsala, Sweden
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University, Uppsala University, Box 571, 751 21 Uppsala, Sweden
- Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
46
|
Olšinová M, Jurkiewicz P, Kishko I, Sýkora J, Sabó J, Hof M, Cwiklik L, Cebecauer M. Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics. iScience 2018; 10:87-97. [PMID: 30508721 PMCID: PMC6277224 DOI: 10.1016/j.isci.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/23/2018] [Accepted: 11/14/2018] [Indexed: 01/23/2023] Open
Abstract
The dynamics of cellular membranes is primarily determined by lipid species forming a bilayer. Proteins are considered mainly as effector molecules of diverse cellular processes. In addition to large assemblies of proteins, which were found to influence properties of fluid membranes, biological membranes are densely populated by small, highly mobile proteins. However, little is known about the effect of such proteins on the dynamics of membranes. Using synthetic peptides, we demonstrate that transmembrane helices interfere with the mobility of membrane components by trapping lipid acyl chains on their rough surfaces. The effect is more pronounced in the presence of cholesterol, which segregates from the rough surface of helical peptides. This may contribute to the formation or stabilization of membrane heterogeneities. Since roughness is a general property of helical transmembrane segments, our results suggest that, independent of their size or cytoskeleton linkage, integral membrane proteins affect local membrane dynamics and organization.
Collapse
Affiliation(s)
- Marie Olšinová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Piotr Jurkiewicz
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Iryna Kishko
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Jan Sýkora
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Ján Sabó
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Lukasz Cwiklik
- Department of Theoretical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| |
Collapse
|
47
|
Sikora G, Wyłomańska A, Krapf D. Recurrence statistics for anomalous diffusion regime change detection. Comput Stat Data Anal 2018. [DOI: 10.1016/j.csda.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Analyzing complex single-molecule emission patterns with deep learning. Nat Methods 2018; 15:913-916. [PMID: 30377349 PMCID: PMC6624853 DOI: 10.1038/s41592-018-0153-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Abstract
A fluorescent emitter simultaneously transmits its identity, location, and cellular context through its emission pattern. We developed smNet, a deep neural network for multiplexed single-molecule analysis to enable retrieving such information with high accuracy. We demonstrate that smNet can extract three-dimensional molecule location, orientation, and wavefront distortion with precision approaching the theoretical limit and therefore will allow multiplexed measurements through the emission pattern of a single molecule. The deep neural network smNet enables extraction of multiplexed parameters such as 3D position, orientation and wavefront distortion from emission patterns of single molecules.
Collapse
|
49
|
Mylvaganam SM, Grinstein S, Freeman SA. Picket-fences in the plasma membrane: functions in immune cells and phagocytosis. Semin Immunopathol 2018; 40:605-615. [DOI: 10.1007/s00281-018-0705-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
|
50
|
Shahinuzzaman M, Khetan J, Barua D. A spatio-temporal model reveals self-limiting Fc ɛRI cross-linking by multivalent antigens. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180190. [PMID: 30839725 PMCID: PMC6170560 DOI: 10.1098/rsos.180190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
Aggregation of cell surface receptor proteins by multivalent antigens is an essential early step for immune cell signalling. A number of experimental and modelling studies in the past have investigated multivalent ligand-mediated aggregation of IgE receptors (FcɛRI) in the plasma membrane of mast cells. However, understanding of the mechanisms of FcɛRI aggregation remains incomplete. Experimental reports indicate that FcɛRI forms relatively small and finite-sized clusters when stimulated by a multivalent ligand. By contrast, modelling studies have shown that receptor cross-linking by a trivalent ligand may lead to the formation of large receptor superaggregates that may potentially give rise to hyperactive cellular responses. In this work, we have developed a Brownian dynamics-based spatio-temporal model to analyse FcɛRI aggregation by a trivalent antigen. Unlike the existing models, which implemented non-spatial simulation approaches, our model explicitly accounts for the coarse-grained site-specific features of the multivalent species (molecules and complexes). The model incorporates membrane diffusion, steric collisions and sub-nanometre-scale site-specific interaction of the time-evolving species of arbitrary structures. Using the model, we investigated temporal evolution of the species and their diffusivities. Consistent with a recent experimental report, our model predicted sharp decay in species mobility in the plasma membrane in response receptor cross-linking by a multivalent antigen. We show that, due to such decay in the species mobility, post-stimulation receptor aggregation may become self-limiting. Our analysis reveals a potential regulatory mechanism suppressing hyperactivation of immune cells in response to multivalent antigens.
Collapse
Affiliation(s)
| | | | - Dipak Barua
- Author for correspondence: Dipak Barua e-mail:
| |
Collapse
|