1
|
Sou YS, Yamaguchi J, Masuda K, Uchiyama Y, Maeda Y, Koike M. Golgi pH homeostasis stabilizes the lysosomal membrane through N-glycosylation of membrane proteins. Life Sci Alliance 2024; 7:e202402677. [PMID: 39079741 PMCID: PMC11289521 DOI: 10.26508/lsa.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Protein glycosylation plays a vital role in various cellular functions, many of which occur within the Golgi apparatus. The Golgi pH regulator (GPHR) is essential for the proper functioning of the Golgi apparatus. The lysosomal membrane contains highly glycosylated membrane proteins in abundance. This study investigated the role of the Golgi luminal pH in N-glycosylation of lysosomal membrane proteins and the effect of this protein modification on membrane stability using Gphr-deficient MEFs. We showed that Gphr deficiency causes an imbalance in the Golgi luminal pH, resulting in abnormal protein N-glycosylation, indicated by a reduction in sialylated glycans and markedly reduced molecular weight of glycoproteins. Further experiments using FRAP and PLA revealed that Gphr deficiency prevented the trafficking dynamics and proximity condition of glycosyltransferases in the Golgi apparatus. In addition, incomplete N-glycosylation of lysosomal membrane proteins affected lysosomal membrane stability, as demonstrated by the increased susceptibility to lysosomal damage. Thus, this study highlights the critical role of Golgi pH regulation in controlling protein glycosylation and the impact of Golgi dysfunction on lysosomal membrane stability.
Collapse
Affiliation(s)
- Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Keisuke Masuda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Japan
| |
Collapse
|
2
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ exchanger NHE6 governing localization to the endosome compartment. J Biol Chem 2024; 300:107552. [PMID: 39002678 PMCID: PMC11375261 DOI: 10.1016/j.jbc.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Mutations in the endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome, an X-linked neurological disorder. NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl terminus as bait, we identify Golgi-associated, gamma adaptin ear-containing, ADP-ribosylation factor (ARF) binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using: coimmunoprecipitation; overexpressed constructs in mammalian cells; and coimmunoprecipitation of endogenously expressed GGA1 and NHE6 from neuroblastoma cells, as well as from the mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7, and NHE9) and that there is significantly less interaction with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate the cytoplasmic tail of NHE6 interacts most strongly with GGA1. We demonstrate the colocalization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mislocalized in GGA1 KO cells, wherein we find less NHE6 in endosomes, but more NHE6 transport to lysosomes, and more Golgi retention of NHE6, with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mislocalization, and Golgi retention, we find the intraluminal pH in Golgi to be alkalinized in GGA1-null cells. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intracellular NHE to the endosome compartment.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Ravi Kiran Kasula
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
4
|
Kang H, Han AR, Zhang A, Jeong H, Koh W, Lee JM, Lee H, Jo HY, Maria-Solano MA, Bhalla M, Kwon J, Roh WS, Yang J, An HJ, Choi S, Kim HM, Lee CJ. GolpHCat (TMEM87A), a unique voltage-dependent cation channel in Golgi apparatus, contributes to Golgi-pH maintenance and hippocampus-dependent memory. Nat Commun 2024; 15:5830. [PMID: 38992057 PMCID: PMC11239671 DOI: 10.1038/s41467-024-49297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Impaired ion channels regulating Golgi pH lead to structural alterations in the Golgi apparatus, such as fragmentation, which is found, along with cognitive impairment, in Alzheimer's disease. However, the causal relationship between altered Golgi structure and cognitive impairment remains elusive due to the lack of understanding of ion channels in the Golgi apparatus of brain cells. Here, we identify that a transmembrane protein TMEM87A, renamed Golgi-pH-regulating cation channel (GolpHCat), expressed in astrocytes and neurons that contributes to hippocampus-dependent memory. We find that GolpHCat displays unique voltage-dependent currents, which is potently inhibited by gluconate. Additionally, we gain structural insights into the ion conduction through GolpHCat at the molecular level by determining three high-resolution cryogenic-electron microscopy structures of human GolpHCat. GolpHCat-knockout mice show fragmented Golgi morphology and altered protein glycosylation and functions in the hippocampus, leading to impaired spatial memory. These findings suggest a molecular target for Golgi-related diseases and cognitive impairment.
Collapse
Affiliation(s)
- Hyunji Kang
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Aihua Zhang
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Heejin Jeong
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hayeon Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hee Young Jo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Miguel A Maria-Solano
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jea Kwon
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Woo Suk Roh
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Jimin Yang
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
5
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
6
|
Isaji T, Gu J. Novel regulatory mechanisms of N-glycan sialylation: Implication of integrin and focal adhesion kinase in the regulation. Biochim Biophys Acta Gen Subj 2024; 1868:130617. [PMID: 38614280 DOI: 10.1016/j.bbagen.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level. SCOPE OF REVIEW Recent research has expanded our understanding of sialylation, revealing ST activity changes beyond mRNA level variations. This includes insights into COPI vesicle formation and Golgi apparatus maintenance and identifying specific target proteins of STs that are not predictable through recombinant enzyme assays. MAJOR CONCLUSIONS This review summarizes that Golgi-associated pathways largely influence the regulation of STs. GOLPH3, GORAB, PI4K, and FAK have become critical elements in sialylation regulation. Some STs have been revealed to possess specificity for specific target proteins, suggesting the presence of additional, enzyme-specific regulatory mechanisms. GENERAL SIGNIFICANCE This study enhances our understanding of the molecular interplay in sialylation regulation, mainly focusing on the role of integrin and FAK. It proposes a bidirectional system where sialylations might influence integrins and vice versa. The diversity of STs and their specific linkages offer new perspectives in cancer research, potentially broadening our understanding of cellular mechanisms and opening avenues for new therapeutic approaches in targeting sialylation pathways.
Collapse
Affiliation(s)
- Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
7
|
Kuhn CK, Stenzel U, Berndt S, Liebscher I, Schöneberg T, Horn S. The repertoire and structure of adhesion GPCR transcript variants assembled from publicly available deep-sequenced human samples. Nucleic Acids Res 2024; 52:3823-3836. [PMID: 38421639 DOI: 10.1093/nar/gkae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Udo Stenzel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Department of Biochemistry, School of Medicine, University of Global Health Equity (UGHE), PO Box 6955 Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
8
|
Bui HB, Inaba K. Structures, Mechanisms, and Physiological Functions of Zinc Transporters in Different Biological Kingdoms. Int J Mol Sci 2024; 25:3045. [PMID: 38474291 PMCID: PMC10932157 DOI: 10.3390/ijms25053045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Zinc transporters take up/release zinc ions (Zn2+) across biological membranes and maintain intracellular and intra-organellar Zn2+ homeostasis. Since this process requires a series of conformational changes in the transporters, detailed information about the structures of different reaction intermediates is required for a comprehensive understanding of their Zn2+ transport mechanisms. Recently, various Zn2+ transport systems have been identified in bacteria, yeasts, plants, and humans. Based on structural analyses of human ZnT7, human ZnT8, and bacterial YiiP, we propose updated models explaining their mechanisms of action to ensure efficient Zn2+ transport. We place particular focus on the mechanistic roles of the histidine-rich loop shared by several zinc transporters, which facilitates Zn2+ recruitment to the transmembrane Zn2+-binding site. This review provides an extensive overview of the structures, mechanisms, and physiological functions of zinc transporters in different biological kingdoms.
Collapse
Affiliation(s)
- Han Ba Bui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
9
|
Boyer CK, Blom SE, Machado AE, Rohli KE, Maxson ME, Stephens SB. Loss of the Golgi-localized v-ATPase subunit does not alter insulin granule formation or pancreatic islet β-cell function. Am J Physiol Endocrinol Metab 2024; 326:E245-E257. [PMID: 38265287 PMCID: PMC11193524 DOI: 10.1152/ajpendo.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Delayed Golgi export of proinsulin has recently been identified as an underlying mechanism leading to insulin granule loss and β-cell secretory defects in type 2 diabetes (T2D). Because acidification of the Golgi lumen is critical for proinsulin sorting and delivery into the budding secretory granule, we reasoned that dysregulation of Golgi pH may contribute to proinsulin trafficking defects. In this report, we examined pH regulation of the Golgi and identified a partial alkalinization of the Golgi lumen in a diabetes model. To further explore this, we generated a β-cell specific knockout (KO) of the v0a2 subunit of the v-ATPase pump, which anchors the v-ATPase to the Golgi membrane. Although loss of v0a2 partially neutralized Golgi pH and was accompanied by distension of the Golgi cisternae, proinsulin export from the Golgi and insulin granule formation were not affected. Furthermore, β-cell function was well preserved. β-cell v0a2 KO mice exhibited normal glucose tolerance in both sexes, no genotypic difference to diet-induced obesity, and normal insulin secretory responses. Collectively, our data demonstrate the v0a2 subunit contributes to β-cell Golgi pH regulation but suggest that additional disturbances to Golgi structure and function contribute to proinsulin trafficking defects in diabetes.NEW & NOTEWORTHY Delayed proinsulin export from the Golgi in diabetic β-cells contributes to decreased insulin granule formation, but the underlying mechanisms are not clear. Here, we explored if dysregulation of Golgi pH can alter Golgi function using β-cell specific knockout (KO) of the Golgi-localized subunit of the v-ATPase, v0a2. We show that partial alkalinization of the Golgi dilates the cisternae, but does not affect proinsulin export, insulin granule formation, insulin secretion, or glucose homeostasis.
Collapse
Affiliation(s)
- Cierra K Boyer
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| | - Sandra E Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Ashleigh E Machado
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
10
|
Pu L, Wang J, Lu Q, Nilsson L, Philbrook A, Pandey A, Zhao L, Schendel RV, Koh A, Peres TV, Hashi WH, Myint SL, Williams C, Gilthorpe JD, Wai SN, Brown A, Tijsterman M, Sengupta P, Henriksson J, Chen C. Dissecting the genetic landscape of GPCR signaling through phenotypic profiling in C. elegans. Nat Commun 2023; 14:8410. [PMID: 38110404 PMCID: PMC10728192 DOI: 10.1038/s41467-023-44177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs) mediate responses to various extracellular and intracellular cues. However, the large number of GPCR genes and their substantial functional redundancy make it challenging to systematically dissect GPCR functions in vivo. Here, we employ a CRISPR/Cas9-based approach, disrupting 1654 GPCR-encoding genes in 284 strains and mutating 152 neuropeptide-encoding genes in 38 strains in C. elegans. These two mutant libraries enable effective deorphanization of chemoreceptors, and characterization of receptors for neuropeptides in various cellular processes. Mutating a set of closely related GPCRs in a single strain permits the assignment of functions to GPCRs with functional redundancy. Our analyses identify a neuropeptide that interacts with three receptors in hypoxia-evoked locomotory responses, unveil a collection of regulators in pathogen-induced immune responses, and define receptors for the volatile food-related odorants. These results establish our GPCR and neuropeptide mutant libraries as valuable resources for the C. elegans community to expedite studies of GPCR signaling in multiple contexts.
Collapse
Affiliation(s)
- Longjun Pu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jing Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Qiongxuan Lu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lars Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alison Philbrook
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Anjali Pandey
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Lina Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan Koh
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Tanara V Peres
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Weheliye H Hashi
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Si Lhyam Myint
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andre Brown
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Piali Sengupta
- Department of Biology, MS 008, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Johan Henriksson
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden.
| | - Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
11
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ Exchanger NHE6 governing localization to the endosome compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565997. [PMID: 37986849 PMCID: PMC10659387 DOI: 10.1101/2023.11.08.565997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mutations in the endosomal Na+/H+ exchanger (NHE6) cause Christianson syndrome (CS), an X-linked neurological disorder. Previous studies have shown that NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl-terminus as bait, we identify Golgi-associated, Gamma adaptin ear containing, ARF binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using co-immunoprecipitation (co-IP): using over-expressed constructs in mammalian cells; and co-IP of endogenously-expressed GGA1 and NHE6 from neuroblastoma cells, as well as from mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7 and NHE9) but not with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate that the cytoplasmic tail of NHE6 is necessary and sufficient for interactions with GGA1. We demonstrate the co-localization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mis-localized in GGA1 knockout cells wherein we find less NHE6 in endosomes but more NHE6 transport to lysosomes, and more Golgi retention of NHE6 with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mis-localization, and Golgi retention, we find the intra-luminal pH in Golgi to be alkalinized. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intra-cellular NHE to the endosome compartment.
Collapse
|
12
|
Bohl S, Le Mignon M, Kilian T, Zimmer A. Sodium chloride impacts glycosylation and N- and O-glycan site occupancy of an Fc-fusion protein. Biotechnol Bioeng 2023; 120:3163-3176. [PMID: 37489835 DOI: 10.1002/bit.28512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Fc-fusion proteins are highly complex molecules, difficult to manufacture at scale. In this work, undesired proteoforms were detected during the manufacture of a therapeutic fusion protein produced in CHO cells. These species were characterized using gel electrophoresis, size exclusion chromatography and liquid chromatography-mass spectrometry leading to the identification of low molecular weight proteoforms presenting low N- and O-glycan site occupancy, as well as a low sialylation content. Upstream process parameters were investigated, and fusion protein quality was shown to be linked to the sodium chloride content of the medium. A mitigation strategy was developed to avoid formation of unwanted glyco-variants, resulting in an increased yield of highly glycosylated Fc-fusion protein. The effect of sodium chloride was shown to be independent of the osmolality increase and was hypothesized to be linked to a modulation of Golgi acidity, which is required for the correct localization and function of glycosyltransferases. Altogether, this study highlights the importance of the salt balance in cell culture media used to produce highly sialylated and occupied glycoproteins, helping to maximize the yield and increase robustness of processes aiming at producing biopharmaceutical complex therapeutic molecules.
Collapse
Affiliation(s)
- Susanne Bohl
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| | | | - Thomas Kilian
- Biomolecule Analytics & Proteomics, Merck KGaA, Darmstadt, Germany
| | - Aline Zimmer
- Upstream R&D, Merck Life Science KGaA, Darmstadt, Germany
| |
Collapse
|
13
|
Sunshine S, Puschnik AS, Replogle JM, Laurie MT, Liu J, Zha BS, Nuñez JK, Byrum JR, McMorrow AH, Frieman MB, Winkler J, Qiu X, Rosenberg OS, Leonetti MD, Ye CJ, Weissman JS, DeRisi JL, Hein MY. Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq. Nat Commun 2023; 14:6245. [PMID: 37803001 PMCID: PMC10558542 DOI: 10.1038/s41467-023-41788-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but efficient delineation of their molecular roles during infection remains a challenge. Here we use Perturb-seq, combining genetic perturbations with a single-cell readout, to investigate how inactivation of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages of infection and modulations of the interferon response. However, only a small percentage of host factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides massively parallel functional characterization of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and bystander cells.
Collapse
Affiliation(s)
- Sara Sunshine
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- University of California, Berkeley-UCSF Joint Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Beth Shoshana Zha
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James K Nuñez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Janie R Byrum
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | | | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juliane Winkler
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oren S Rosenberg
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| | - Marco Y Hein
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- Medical University of Vienna, Center for Medical Biochemistry, Vienna, Austria.
| |
Collapse
|
14
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
15
|
Chakraborty N, Raghuram N. Life, death and resurrection of plant GPCRs. PLANT MOLECULAR BIOLOGY 2023; 111:221-232. [PMID: 36495361 DOI: 10.1007/s11103-022-01323-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
The activation of G-protein coupled receptors (GPCRs) by extracellular ligands constitutes the first step of heterotrimeric G-protein signalling in animals. In plants, canonical GPCRs have been known for over 25 years, often in association with agronomically important functions. But their role in plant G-protein signalling and even their annotation as GPCR was contested in the last decade, only to be revisited in the light of more recent evidences. In this first ever review on plant GPCRs, we catalogue all the plant GPCRs described to date and discuss the evidences for and against their role in plants in general and G-protein signalling in particular. We argue against writing off GPCRs and point to the missing links to be investigated to establish firm conclusions either way.
Collapse
Affiliation(s)
- Navjyoti Chakraborty
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
16
|
Abstract
Significance: Cancer-associated tissue-specific lactic acidosis stimulates and mediates tumor invasion and metastasis and is druggable. Rarely, malignancy causes systemic lactic acidosis, the role of which is poorly understood. Recent Advances: The understanding of the role of lactate has shifted dramatically since its discovery. Long recognized as only a waste product, lactate has become known as an alternative metabolism substrate and a secreted nutrient that is exchanged between the tumor and the microenvironment. Tissue-specific lactic acidosis is targeted to improve the host body's anticancer defense and serves as a tool that allows the targeting of anticancer compounds. Systemic lactic acidosis is associated with poor survival. In patients with solid cancer, systemic lactic acidosis is associated with an extremely poor prognosis, as revealed by the analysis of 57 published cases in this study. Although it is considered a pathology worth treating, targeting systemic lactic acidosis in patients with solid cancer is usually inefficient. Critical Issues: Research gaps include simple questions, such as the unknown nuclear pH of the cancer cells and its effects on chemotherapy outcomes, pH sensitivity of glycosylation in cancer cells, in vivo mechanisms of response to acidosis in the absence of lactate, and overinterpretation of in vitro results that were obtained by using cells that were not preadapted to acidic environments. Future Directions: Numerous metabolism-targeting anticancer compounds induce lactatemia, lactic acidosis, or other types of acidosis. Their potential to induce acidic environments is largely overlooked, although the acidosis might contribute to a substantial portion of the observed clinical effects. Antioxid. Redox Signal. 37, 1130-1152.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Vargas-Zapata V, Geiger KM, Tran D, Ma J, Mao X, Puschnik AS, Coscoy L. SARS-CoV-2 Envelope-mediated Golgi pH dysregulation interferes with ERAAP retention in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.29.518257. [PMID: 36482965 PMCID: PMC9727756 DOI: 10.1101/2022.11.29.518257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Endoplasmic reticulum (ER) aminopeptidase associated with antigen processing (ERAAP) trims peptide precursors in the ER for presentation by major histocompatibility (MHC)-I molecules to surveying CD8+ T-cells. This function allows ERAAP to regulate the nature and quality of the peptide repertoire and, accordingly, the resulting immune responses. We recently showed that infection with murine cytomegalovirus leads to a dramatic loss of ERAAP levels in infected cells. In mice, this loss is associated with the activation of QFL T-cells, a subset of T-cells that monitor ERAAP integrity and eliminate cells experiencing ERAAP dysfunction. In this study, we aimed to identify host factors that regulate ERAAP expression level and determine whether these could be manipulated during viral infections. We performed a CRISPR knockout screen and identified ERp44 as a factor promoting ERAAP retention in the ER. ERp44's interaction with ERAAP is dependent on the pH gradient between the ER and Golgi. We hypothesized that viruses that disrupt the pH of the secretory pathway interfere with ERAAP retention. Here, we demonstrate that expression of the Envelope (E) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to Golgi pH neutralization and consequently decrease of ERAAP intracellular levels. Furthermore, SARS-CoV-2-induced ERAAP loss correlates with its release into the extracellular environment. ERAAP's reliance on ERp44 and a functioning ER/Golgi pH gradient for proper localization and function led us to propose that ERAAP serves as a sensor of disturbances in the secretory pathway during infection and disease.
Collapse
Affiliation(s)
- Valerie Vargas-Zapata
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kristina M Geiger
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dan Tran
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jessica Ma
- Division of Microbial Biology, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaowen Mao
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Laurent Coscoy
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
18
|
Sou YS, Yamaguchi J, Kameda H, Masuda K, Maeda Y, Uchiyama Y, Koike M. GPHR-mediated acidification of the Golgi lumen is essential for cholesterol biosynthesis in the brain. FEBS Lett 2022; 596:2873-2888. [PMID: 36056653 DOI: 10.1002/1873-3468.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Abstract
The Golgi pH regulator (GPHR) is essential for maintaining the function and morphology of the Golgi apparatus through the regulation of luminal acidic pH. Abnormal morphology of the Golgi apparatus is associated with neurodegenerative diseases. Here, we found that knockout of GPHR in the mouse brain led to morphological changes in the Golgi apparatus and neurodegeneration, which included brain atrophy, neuronal cell death, and gliosis. Furthermore, in the GPHR knockout mouse brain, transcriptional activity of sterol regulatory element-binding protein 2 (SREBP2) decreased, resulting in a reduction in cholesterol levels. GPHR-deficient cells exhibited suppressed neurite outgrowth, which was recovered by exogenous expression of the active form of SREBP2. Our results show that GPHR-mediated luminal acidification of the Golgi apparatus maintains proper cholesterol levels and, thereby, neuronal morphology.
Collapse
Affiliation(s)
- Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan.,Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Hiroshi Kameda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Keisuke Masuda
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
19
|
Levic DS, Bagnat M. Self-organization of apical membrane protein sorting in epithelial cells. FEBS J 2022; 289:659-670. [PMID: 33864720 PMCID: PMC8522177 DOI: 10.1111/febs.15882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Polarized epithelial cells are characterized by the asymmetric distribution of proteins between apical and basolateral domains of the plasma membrane. This asymmetry is highly conserved and is fundamental to epithelial cell physiology, development, and homeostasis. How proteins are segregated for apical or basolateral delivery, a process known as sorting, has been the subject of considerable investigation for decades. Despite these efforts, the rules guiding apical sorting are poorly understood and remain controversial. Here, we consider mechanisms of apical membrane protein sorting and argue that they are largely driven by self-organization and biophysical principles. The preponderance of data to date is consistent with the idea that apical sorting is not ruled by a dedicated protein-based sorting machinery and relies instead on the concerted effects of oligomerization, phase separation of lipids and proteins in membranes, and pH-dependent glycan interactions.
Collapse
Affiliation(s)
- Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
20
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
21
|
Geraghty S, Koutsouveli V, Hall C, Chang L, Sacristan-Soriano O, Hill M, Riesgo A, Hill A. Establishment of Host-Algal Endosymbioses: Genetic Response to Symbiont Versus Prey in a Sponge Host. Genome Biol Evol 2021; 13:6427630. [PMID: 34791195 PMCID: PMC8633732 DOI: 10.1093/gbe/evab252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The freshwater sponge Ephydatia muelleri and its Chlorella-like algal partner is an emerging model for studying animal: algal endosymbiosis. The sponge host is a tractable laboratory organism, and the symbiotic algae are easily cultured. We took advantage of these traits to interrogate questions about mechanisms that govern the establishment of durable intracellular partnerships between hosts and symbionts in facultative symbioses. We modified a classical experimental approach to discern the phagocytotic mechanisms that might be co-opted to permit persistent infections, and identified genes differentially expressed in sponges early in the establishment of endosymbiosis. We exposed algal-free E. muelleri to live native algal symbionts and potential food items (bacteria and native heat-killed algae), and performed RNA-Seq to compare patterns of gene expression among treatments. We found a relatively small but interesting suite of genes that are differentially expressed in the host exposed to live algal symbionts, and a larger number of genes triggered by host exposure to heat-killed algae. The upregulated genes in sponges exposed to live algal symbionts were mostly involved in endocytosis, ion transport, metabolic processes, vesicle-mediated transport, and oxidation–reduction. One of the host genes, an ATP-Binding Cassette transporter that is downregulated in response to live algal symbionts, was further evaluated for its possible role in the establishment of the symbiosis. We discuss the gene expression profiles associated with host responses to living algal cells in the context of conditions necessary for long-term residency within host cells by phototrophic symbionts as well as the genetic responses to sponge phagocytosis and immune-driven pathways.
Collapse
Affiliation(s)
- Sara Geraghty
- Department of Biology, University of Richmond, Virginia, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, New Jersey, USA
| | - Vasiliki Koutsouveli
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Chelsea Hall
- Department of Biology, University of Richmond, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lillian Chang
- Department of Biology, Bates College, Lewiston, Maine, USA
| | - Oriol Sacristan-Soriano
- Department of Biology, University of Richmond, Virginia, USA.,Centro de Estudios Avanzados de Blanes (CEAB, CSIC), Blanes, Spain
| | - Malcolm Hill
- Department of Biology, University of Richmond, Virginia, USA.,Department of Biology, Bates College, Lewiston, Maine, USA
| | - Ana Riesgo
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Madrid, Spain
| | - April Hill
- Department of Biology, University of Richmond, Virginia, USA.,Department of Biology, Bates College, Lewiston, Maine, USA
| |
Collapse
|
22
|
Tashima Y, Hirata T, Maeda Y, Murakami Y, Kinoshita T. Differential use of p24 family members as cargo receptors for the transport of glycosylphosphatidylinositol-anchored proteins and Wnt1. J Biochem 2021; 171:75-83. [PMID: 34647572 DOI: 10.1093/jb/mvab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 02/01/2023] Open
Abstract
Complexes of p24 proteins act as cargo receptors for the transport of COPII vesicles from the endoplasmic reticulum. The major cargos of p24 complexes are hydrophilic proteins tethered to the endoplasmic reticulum membrane via a covalently attached glycosylphosphatidylinositol (GPI) or fatty acid. Each p24 complex is known to contain members from all four p24 subfamilies (p24α, p24β, p24γ, and p24δ). However, it remains unclear how the cargo specificities of p24 complexes are influenced by member stoichiometry. Here, we report the subunit compositions of mammalian p24 complexes involved in the transport of GPI-anchored proteins and Wnt1. We show that at least one p24α is required for the formation of p24 complexes, and that a p24 complex consisting of p24α2, p24β1, p24γ2, and p24δ1 is required for the efficient transport of GPI-anchored proteins. On the other hand, a p24 complex containing p24α2, p24α3, p24β1, p24γ, and p24δ1 is involved in the transport of Wnt1. Further, interactions between p24α2 and p24α3 are critical for Wnt1 transport. Thus, p24α and p24γ subfamily members are important for cargo selectivity. Lastly, our data fit with an octamer, rather than a tetramer, model of p24 complexes, where each complex consists of two proteins from each p24 subfamily.
Collapse
Affiliation(s)
- Yuko Tashima
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan.,Current Address: Department of Molecular & Cellular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tetsuya Hirata
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan.,Current Address: Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yusuke Maeda
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, and + WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Khosrowabadi E, Rivinoja A, Risteli M, Tuomisto A, Salo T, Mäkinen MJ, Kellokumpu S. SLC4A2 anion exchanger promotes tumour cell malignancy via enhancing net acid efflux across golgi membranes. Cell Mol Life Sci 2021; 78:6283-6304. [PMID: 34279699 PMCID: PMC8429400 DOI: 10.1007/s00018-021-03890-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
Proper functioning of each secretory and endocytic compartment relies on its unique pH micro-environment that is known to be dictated by the rates of V-ATPase-mediated H+ pumping and its leakage back to the cytoplasm via an elusive "H+ leak" pathway. Here, we show that this proton leak across Golgi membranes is mediated by the AE2a (SLC4A2a)-mediated bicarbonate-chloride exchange, as it is strictly dependent on bicarbonate import (in exchange for chloride export) and the expression level of the Golgi-localized AE2a anion exchanger. In the acidic Golgi lumen, imported bicarbonate anions and protons then facilitate a common buffering reaction that yields carbon dioxide and water before their egress back to the cytoplasm via diffusion or water channels. The flattened morphology of the Golgi cisternae helps this process, as their high surface-volume ratio is optimal for water and gas exchange. Interestingly, this net acid efflux pathway is often upregulated in cancers and established cancer cell lines, and responsible for their markedly elevated Golgi resting pH and attenuated glycosylation potential. Accordingly, AE2 knockdown in SW-48 colorectal cancer cells was able to restore these two phenomena, and at the same time, reverse their invasive and anchorage-independent growth phenotype. These findings suggest a possibility to return malignant cells to a benign state by restoring Golgi resting pH.
Collapse
Affiliation(s)
- Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu (Oulun Yliopisto), Aapistie 7A, PO BOX 5400, 90014, Oulu, Finland.
| | | | - Maija Risteli
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Anne Tuomisto
- Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Markus J Mäkinen
- Medical Research Centre, Oulu University Hospital, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu (Oulun Yliopisto), Aapistie 7A, PO BOX 5400, 90014, Oulu, Finland.
| |
Collapse
|
24
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Galenkamp KMO, Commisso C. The Golgi as a "Proton Sink" in Cancer. Front Cell Dev Biol 2021; 9:664295. [PMID: 34055797 PMCID: PMC8155353 DOI: 10.3389/fcell.2021.664295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a "proton sink" in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.
Collapse
Affiliation(s)
- Koen M. O. Galenkamp
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Cosimo Commisso
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
26
|
Jin YN, Cui ZH, Ma K, Yao JL, Ruan YY, Guo ZF. Characterization of ZmCOLD1, novel GPCR-Type G Protein genes involved in cold stress from Zea mays L. and the evolution analysis with those from other species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:619-632. [PMID: 33854288 PMCID: PMC7981359 DOI: 10.1007/s12298-021-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Maize is one of the most vital staple crops worldwide. G proteins modulate plentiful signaling pathways, and G protein-coupled receptor-type G proteins (GPCRs) are highly conserved membrane proteins in plants. However, researches on maize G proteins and GPCRs are scarce. In this study, we identified three novel GPCR-Type G Protein (GTG) genes from chromosome 10 (Chr 10) in maize, designated as ZmCOLD1-10A, ZmCOLD1-10B and ZmCOLD1-10C. Their amino acid sequences had high similarity to TaCOLD1 from wheat and OsCOLD1 from rice. They contained the basic characteristics of GTG/COLD1 proteins, including GPCR-like topology, the conserved hydrophilic loop (HL) domain, DUF3735 (domain of unknown function 3735) domain, GTPase-activating domain, and ATP/GTP-binding domain. Subcellular localization analyses of ZmCOLD1 proteins suggested that ZmCOLD1 proteins localized on plasma membrane (PM) and endoplasmic reticulum (ER). Furthermore, amino acid sequence alignment verified the conservation of the key 187th amino acid T in maize and other wild maize-relative species. Evolutionary relationship among plants GTG/COLD1 proteins family displayed strong group-specificity. Expression analysis indicated that ZmCOLD1-10A was cold-induced and inhibited by light. Together, these results suggested that ZmCOLD1 genes had potential value to improve cold tolerance and to contribute crops growth and molecular breeding.
Collapse
Affiliation(s)
- Ya-Nan Jin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
- College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, 028000 China
| | - Zhen-hai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Ke Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Jia-Lu Yao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Yan-Ye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Zhi-Fu Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
27
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
28
|
Liu J, Huang Y, Li T, Jiang Z, Zeng L, Hu Z. The role of the Golgi apparatus in disease (Review). Int J Mol Med 2021; 47:38. [PMID: 33537825 PMCID: PMC7891830 DOI: 10.3892/ijmm.2021.4871] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The Golgi apparatus is known to underpin many important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions are dysregulated in neurodegenerative diseases, cancer, infectious diseases and cardiovascular diseases, and the number of disease-related genes associated with Golgi apparatus is on the increase. Recently, many studies have suggested that the mutations in the genes encoding Golgi resident proteins can trigger the occurrence of diseases. By summarizing the pathogenesis of these genetic diseases, it was found that most of these diseases have defects in membrane trafficking. Such defects typically result in mislocalization of proteins, impaired glycosylation of proteins, and the accumulation of undegraded proteins. In the present review, we aim to understand the patterns of mutations in the genes encoding Golgi resident proteins and decipher the interplay between Golgi resident proteins and membrane trafficking pathway in cells. Furthermore, the detection of Golgi resident protein in human serum samples has the potential to be used as a diagnostic tool for diseases, and its central role in membrane trafficking pathways provides possible targets for disease therapy. Thus, we also introduced the clinical value of Golgi apparatus in the present review.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
29
|
Tan X, Banerjee P, Pham EA, Rutaganira FUN, Basu K, Bota-Rabassedas N, Guo HF, Grzeskowiak CL, Liu X, Yu J, Shi L, Peng DH, Rodriguez BL, Zhang J, Zheng V, Duose DY, Solis LM, Mino B, Raso MG, Behrens C, Wistuba II, Scott KL, Smith M, Nguyen K, Lam G, Choong I, Mazumdar A, Hill JL, Gibbons DL, Brown PH, Russell WK, Shokat K, Creighton CJ, Glenn JS, Kurie JM. PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma. Sci Transl Med 2021; 12:12/527/eaax3772. [PMID: 31969487 DOI: 10.1126/scitranslmed.aax3772] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Heightened secretion of protumorigenic effector proteins is a feature of malignant cells. Yet, the molecular underpinnings and therapeutic implications of this feature remain unclear. Here, we identify a chromosome 1q region that is frequently amplified in diverse cancer types and encodes multiple regulators of secretory vesicle biogenesis and trafficking, including the Golgi-dedicated enzyme phosphatidylinositol (PI)-4-kinase IIIβ (PI4KIIIβ). Molecular, biochemical, and cell biological studies show that PI4KIIIβ-derived PI-4-phosphate (PI4P) synthesis enhances secretion and accelerates lung adenocarcinoma progression by activating Golgi phosphoprotein 3 (GOLPH3)-dependent vesicular release from the Golgi. PI4KIIIβ-dependent secreted factors maintain 1q-amplified cancer cell survival and influence prometastatic processes in the tumor microenvironment. Disruption of this functional circuitry in 1q-amplified cancer cells with selective PI4KIIIβ antagonists induces apoptosis and suppresses tumor growth and metastasis. These results support a model in which chromosome 1q amplifications create a dependency on PI4KIIIβ-dependent secretion for cancer cell survival and tumor progression.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward A Pham
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florentine U N Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kaustabh Basu
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiaqi Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Veronica Zheng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Smith
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Stanford ChEM-H Medicinal Chemistry Knowledge Center, Stanford University, CA 94305, USA
| | - Khanh Nguyen
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grace Lam
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ingrid Choong
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Abhijit Mazumdar
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jamal L Hill
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Powel H Brown
- Department of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kevan Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. .,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey S Glenn
- Departments of Medicine and Microbiology & Immunology, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Veterans Administration Medical Center, Palo Alto, CA 94304, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell 2021; 184:106-119.e14. [PMID: 33333024 PMCID: PMC7723770 DOI: 10.1016/j.cell.2020.12.004] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.
Collapse
|
31
|
Levic DS, Ryan S, Marjoram L, Honeycutt J, Bagwell J, Bagnat M. Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish. J Cell Biol 2020; 219:133852. [PMID: 32328632 PMCID: PMC7147097 DOI: 10.1083/jcb.201908225] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial cell physiology critically depends on the asymmetric distribution of channels and transporters. However, the mechanisms targeting membrane proteins to the apical surface are still poorly understood. Here, we performed a visual forward genetic screen in the zebrafish intestine and identified mutants with defective apical targeting of membrane proteins. One of these mutants, affecting the vacuolar H+-ATPase gene atp6ap1b, revealed specific requirements for luminal acidification in apical, but not basolateral, membrane protein sorting and transport. Using a low temperature block assay combined with genetic and pharmacologic perturbation of luminal pH, we monitored transport of newly synthesized membrane proteins from the TGN to apical membrane in live zebrafish. We show that vacuolar H+-ATPase activity regulates sorting of O-glycosylated proteins at the TGN, as well as Rab8-dependent post-Golgi trafficking of different classes of apical membrane proteins. Thus, luminal acidification plays distinct and specific roles in apical membrane biogenesis.
Collapse
Affiliation(s)
| | - Sean Ryan
- Department of Cell Biology, Duke University, Durham, NC
| | | | | | | | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC
| |
Collapse
|
32
|
Tempio T, Anelli T. The pivotal role of ERp44 in patrolling protein secretion. J Cell Sci 2020; 133:133/21/jcs240366. [PMID: 33173013 DOI: 10.1242/jcs.240366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interactions between protein ligands and receptors are the main language of intercellular communication; hence, how cells select proteins to be secreted or presented on the plasma membrane is a central concern in cell biology. A series of checkpoints are located along the secretory pathway, which ensure the fidelity of such protein signals (quality control). Proteins that pass the checkpoints operated in the endoplasmic reticulum (ER) by the binding immunoglobulin protein (BiP; also known as HSPA5 and GRP78) and the calnexin-calreticulin systems, must still overcome additional scrutiny in the ER-Golgi intermediate compartment (ERGIC) and the Golgi. One of the main players of this process in all metazoans is the ER-resident protein 44 (ERp44); by cycling between the ER and the Golgi, ERp44 controls the localization of key enzymes designed to act in the ER but that are devoid of suitable localization motifs. ERp44 also patrols the secretion of correctly assembled disulfide-linked oligomeric proteins. Here, we discuss the mechanisms driving ERp44 substrate recognition, with important consequences on the definition of 'thiol-mediated quality control'. We also describe how pH and zinc gradients regulate the functional cycle of ERp44, coupling quality control and membrane trafficking along the early secretory compartment.
Collapse
Affiliation(s)
- Tiziana Tempio
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan 20132, Italy.,IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan 20132, Italy .,IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
33
|
Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17:597-617. [PMID: 32710014 PMCID: PMC8211394 DOI: 10.1038/s41575-020-0331-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) affects 6.8 million people globally. A variety of factors have been implicated in IBD pathogenesis, including host genetics, immune dysregulation and gut microbiota alterations. Emerging evidence implicates intestinal epithelial glycosylation as an underappreciated process that interfaces with these three factors. IBD is associated with increased expression of truncated O-glycans as well as altered expression of terminal glycan structures. IBD genes, glycosyltransferase mislocalization, altered glycosyltransferase and glycosidase expression and dysbiosis drive changes in the glycome. These glycan changes disrupt the mucus layer, glycan-lectin interactions, host-microorganism interactions and mucosal immunity, and ultimately contribute to IBD pathogenesis. Epithelial glycans are especially critical in regulating the gut microbiota through providing bacterial ligands and nutrients and ultimately determining the spatial organization of the gut microbiota. In this Review, we discuss the regulation of intestinal epithelial glycosylation, altered epithelial glycosylation in IBD and mechanisms for how these alterations contribute to disease pathobiology. We hope that this Review provides a foundation for future studies on IBD glycosylation and the emergence of glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
34
|
Agarwal S, Rath PP, Anand G, Gourinath S. Uncovering the Cyclic AMP Signaling Pathway of the Protozoan Parasite Entamoeba histolytica and Understanding Its Role in Phagocytosis. Front Cell Infect Microbiol 2020; 10:566726. [PMID: 33102254 PMCID: PMC7546249 DOI: 10.3389/fcimb.2020.566726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023] Open
Abstract
Second messenger signaling controls a surprisingly diverse range of processes in several eukaryotic pathogens. Molecular machinery and pathways involving these messengers thus hold tremendous opportunities for therapeutic interventions. Relative to Ca2+ signaling, the knowledge of a crucial second messenger cyclic AMP (cAMP) and its signaling pathway is very scant in the intestinal parasite Entamoeba histolytica. In the current study, mining the available genomic resources, we have for the first time identified the cAMP signal transduction pathway of E. histolytica. Three heptahelical proteins with variable G-protein-coupled receptor domains, heterotrimeric G-proteins (Gα, Gβ, and Gγ subunits), soluble adenylyl cyclase, cyclase-associated protein, and enzyme carbonic anhydrase were identified in its genome. We could also identify several putative candidate genes for cAMP downstream effectors such as protein kinase A, A-kinase anchoring proteins, and exchange protein directly activated by the cAMP pathway. Using specific inhibitors against key identified targets, we could observe changes in the intracellular cAMP levels as well as defect in the rate of phagocytosis of red blood cells by the parasite E. histolytica. We thus strongly believe that characterization of some of these unexplored crucial signaling determinants will provide a paradigm shift in understanding the pathogenicity of this organism.
Collapse
Affiliation(s)
- Shalini Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Gaurav Anand
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
35
|
Wang R, Simoneau CR, Kulsuptrakul J, Bouhaddou M, Travisano K, Hayashi JM, Carlson-Stevermer J, Oki J, Holden K, Krogan NJ, Ott M, Puschnik AS. Functional genomic screens identify human host factors for SARS-CoV-2 and common cold coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.24.312298. [PMID: 32995787 PMCID: PMC7523113 DOI: 10.1101/2020.09.24.312298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Coronaviridae are a family of viruses that causes disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors that are common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted parallel genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E) and glycosaminoglycans (for OC43). Additionally, we discovered phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle as well as the potential development of host-directed therapies.
Collapse
Affiliation(s)
- Ruofan Wang
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | | | | | - Mehdi Bouhaddou
- Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | | | | | | | | | | | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | |
Collapse
|
36
|
Guo XY, Liu YS, Gao XD, Kinoshita T, Fujita M. Calnexin mediates the maturation of GPI-anchors through ER retention. J Biol Chem 2020; 295:16393-16410. [PMID: 32967966 DOI: 10.1074/jbc.ra120.015577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/05/2020] [Indexed: 01/05/2023] Open
Abstract
The protein folding and lipid moiety status of glycosylphosphatidylinositol-anchored proteins (GPI-APs) are monitored in the endoplasmic reticulum (ER), with calnexin playing dual roles in the maturation of GPI-APs. In the present study, we investigated the functions of calnexin in the quality control and lipid remodeling of GPI-APs in the ER. By directly binding the N-glycan on proteins, calnexin was observed to efficiently retain GPI-APs in the ER until they were correctly folded. In addition, sufficient ER retention time was crucial for GPI-inositol deacylation, which is mediated by post-GPI attachment protein 1 (PGAP1). Once the calnexin/calreticulin cycle was disrupted, misfolded and inositol-acylated GPI-APs could not be retained in the ER and were exposed on the plasma membrane. In calnexin/calreticulin-deficient cells, endogenous GPI-anchored alkaline phosphatase was expressed on the cell surface, but its activity was significantly decreased. ER stress induced surface expression of misfolded GPI-APs, but proper GPI-inositol deacylation occurred due to the extended time that they were retained in the ER. Our results indicate that calnexin-mediated ER quality control systems for GPI-APs are necessary for both protein folding and GPI-inositol deacylation.
Collapse
Affiliation(s)
- Xin-Yu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
37
|
Ondruskova N, Honzik T, Vondrackova A, Stranecky V, Tesarova M, Zeman J, Hansikova H. Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation. J Inherit Metab Dis 2020; 43:694-700. [PMID: 32216104 PMCID: PMC7383996 DOI: 10.1002/jimd.12237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Congenital disorders of glycosylation (CDG) represent a wide range of >140 inherited metabolic diseases, continually expanding not only with regards to the number of newly identified causative genes, but also the heterogeneity of the clinical and molecular presentations within each subtype. The deficiency of ATP6AP1, an accessory subunit of the vacuolar H+ -ATPase, is a recently characterised N- and O-glycosylation defect manifesting with immunodeficiency, hepatopathy and cognitive impairment. At the cellular level, the latest studies demonstrate a complex disturbance of metabolomics involving peroxisomal function and lipid homeostasis in the patients. Our study delineates a case of two severely affected siblings with a new hemizygous variant c.221T>C (p.L74P) in ATP6AP1 gene, who both died due to liver failure before reaching 1 year of age. We bring novel pathobiochemical observations including the finding of increased reactive oxygen species in the cultured fibroblasts from the older boy, a striking copper accumulation in his liver, as well as describe the impact of the mutation on the protein in different organs, showing a tissue-specific pattern of ATP6AP1 level and its posttranslational modification.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Alzbeta Vondrackova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Viktor Stranecky
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Marketa Tesarova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| |
Collapse
|
38
|
Banerjee S, Kane PM. Regulation of V-ATPase Activity and Organelle pH by Phosphatidylinositol Phosphate Lipids. Front Cell Dev Biol 2020; 8:510. [PMID: 32656214 PMCID: PMC7324685 DOI: 10.3389/fcell.2020.00510] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Luminal pH and the distinctive distribution of phosphatidylinositol phosphate (PIP) lipids are central identifying features of organelles in all eukaryotic cells that are also critical for organelle function. V-ATPases are conserved proton pumps that populate and acidify multiple organelles of the secretory and the endocytic pathway. Complete loss of V-ATPase activity causes embryonic lethality in higher animals and conditional lethality in yeast, while partial loss of V-ATPase function is associated with multiple disease states. On the other hand, many cancer cells increase their virulence by upregulating V-ATPase expression and activity. The pH of individual organelles is tightly controlled and essential for function, but the mechanisms for compartment-specific pH regulation are not completely understood. There is substantial evidence indicating that the PIP content of membranes influences organelle pH. We present recent evidence that PIPs interact directly with subunit isoforms of the V-ATPase to dictate localization of V-ATPase subpopulations and participate in their regulation. In yeast cells, which have only one set of organelle-specific V-ATPase subunit isoforms, the Golgi-enriched lipid PI(4)P binds to the cytosolic domain of the Golgi-enriched a-subunit isoform Stv1, and loss of PI(4)P binding results in mislocalization of Stv1-containing V-ATPases from the Golgi to the vacuole/lysosome. In contrast, levels of the vacuole/lysosome-enriched signaling lipid PI(3,5)P2 affect assembly and activity of V-ATPases containing the Vph1 a-subunit isoform. Mutations in the Vph1 isoform that disrupt the lipid interaction increase sensitivity to stress. These studies have decoded “zip codes” for PIP lipids in the cytosolic N-terminal domain of the a-subunit isoforms of the yeast V-ATPase, and similar interactions between PIP lipids and the V-ATPase subunit isoforms are emerging in higher eukaryotes. In addition to direct effects on the V-ATPase, PIP lipids are also likely to affect organelle pH indirectly, through interactions with other membrane transporters. We discuss direct and indirect effects of PIP lipids on organelle pH, and the functional consequences of the interplay between PIP lipid content and organelle pH.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
39
|
Genetic and structural studies of RABL3 reveal an essential role in lymphoid development and function. Proc Natl Acad Sci U S A 2020; 117:8563-8572. [PMID: 32220963 DOI: 10.1073/pnas.2000703117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The small GTPase RABL3 is an oncogene of unknown physiological function. Homozygous knockout alleles of mouse Rabl3 were embryonic lethal, but a viable hypomorphic allele (xiamen [xm]) causing in-frame deletion of four amino acids from the interswitch region resulted in profound defects in lymphopoiesis. Impaired lymphoid progenitor development led to deficiencies of B cells, T cells, and natural killer (NK) cells in Rabl3 xm/xm mice. T cells and NK cells exhibited impaired cytolytic activity, and mice infected with mouse cytomegalovirus (MCMV) displayed elevated titers in the spleen. Myeloid cells were normal in number and function. Biophysical and crystallographic studies demonstrated that RABL3 formed a homodimer in solution via interactions between the effector binding surfaces on each subunit; monomers adopted a typical small G protein fold. RABL3xm displayed a large compensatory alteration in switch I, which adopted a β-strand configuration normally provided by the deleted interswitch residues, thereby permitting homodimer formation. Dysregulated effector binding due to conformational changes in the switch I-interswitch-switch II module likely underlies the xm phenotype. One such effector may be GPR89, putatively an ion channel or G protein-coupled receptor (GPCR). RABL3, but not RABL3xm, strongly associated with and stabilized GPR89, and an N-ethyl-N-nitrosourea (ENU)-induced mutation (explorer) in Gpr89 phenocopied Rabl3 xm.
Collapse
|
40
|
A new pH sensor localized in the Golgi apparatus of Saccharomyces cerevisiae reveals unexpected roles of Vph1p and Stv1p isoforms. Sci Rep 2020; 10:1881. [PMID: 32024908 PMCID: PMC7002768 DOI: 10.1038/s41598-020-58795-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
The gradual acidification of the secretory pathway is conserved and extremely important for eukaryotic cells, but until now there was no pH sensor available to monitor the pH of the early Golgi apparatus in Saccharomyces cerevisiae. Therefore, we developed a pHluorin-based sensor for in vivo measurements in the lumen of the Golgi. By using this new tool we show that the cis- and medial-Golgi pH is equal to 6.6–6.7 in wild type cells during exponential phase. As expected, V-ATPase inactivation results in a near neutral Golgi pH. We also uncover that surprisingly Vph1p isoform of the V-ATPase is prevalent to Stv1p for Golgi acidification. Additionally, we observe that during changes of the cytosolic pH, the Golgi pH is kept relatively stable, mainly thanks to the V-ATPase. Eventually, this new probe will allow to better understand the mechanisms involved in the acidification and the pH control within the secretory pathway.
Collapse
|
41
|
Zajac M, Chakraborty K, Saha S, Mahadevan V, Infield DT, Accardi A, Qiu Z, Krishnan Y. What biologists want from their chloride reporters – a conversation between chemists and biologists. J Cell Sci 2020; 133:133/2/jcs240390. [DOI: 10.1242/jcs.240390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Impaired chloride transport affects diverse processes ranging from neuron excitability to water secretion, which underlie epilepsy and cystic fibrosis, respectively. The ability to image chloride fluxes with fluorescent probes has been essential for the investigation of the roles of chloride channels and transporters in health and disease. Therefore, developing effective fluorescent chloride reporters is critical to characterizing chloride transporters and discovering new ones. However, each chloride channel or transporter has a unique functional context that demands a suite of chloride probes with appropriate sensing characteristics. This Review seeks to juxtapose the biology of chloride transport with the chemistries underlying chloride sensors by exploring the various biological roles of chloride and highlighting the insights delivered by studies using chloride reporters. We then delineate the evolution of small-molecule sensors and genetically encoded chloride reporters. Finally, we analyze discussions with chloride biologists to identify the advantages and limitations of sensors in each biological context, as well as to recognize the key design challenges that must be overcome for developing the next generation of chloride sensors.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Kasturi Chakraborty
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Sonali Saha
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Daniel T. Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA 52242, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY 10065, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY 10065, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Abstract
Maintenance of the main Golgi functions, glycosylation and sorting, is dependent on the unique Golgi pH microenvironment that is thought to be set by the balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, such as chloride, potassium, calcium, magnesium, and manganese, is also important for Golgi homeostasis and dependent on the transport activity of other ion transporters present in the Golgi membranes. During the last decade, several new disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentially involve proteins that regulate Golgi pH or ion homeostasis.
Collapse
|
43
|
Qin X, Jin X, Zhou K, Li H, Wang Q, Li W, Wang Q. EsGPCR89 regulates cerebral antimicrobial peptides through hemocytes in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:151-162. [PMID: 31605765 DOI: 10.1016/j.fsi.2019.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
G protein-coupled receptors (GPCRs) are important transmembrane receptors that participate in diverse physiological processes including metabolism, cell growth and immune processes by transmitting extracellular signals to intracellular effectors. In this study, a gene belonging to the GPCR family was cloned from Eriocheir sinensis and named EsGPCR89. The full-length gene includes an open reading frame (ORF) of 465 amino acid residues, and bioinformatic analysis confirmed the high conservation between species. EsGPCR89 was detected in various tissues of E. sinensis, and was up-regulated in brain following Staphylococcus aureus infection. Expression levels of cerebral antimicrobial peptides (AMPs) were also up-regulated following bacterial challenge, reflecting their function in cerebral immunity. Additionally, EsGPCR89 silencing in hemocytes by RNA interference, down-regulated AMPs in brain after S. aureus infection. Moreover, through Immunisation assay and Polyacrylamide gel electrophoresis (SDS-PAGE) experiments, we could infer that bacterially infected hemocytes released effectors under the regulation of EsGPCR89, thereby activating transcription of cerebral AMPs. These results demonstrate that EsGPCR89 plays important roles in cerebral antimicrobial function via hemocytes.
Collapse
Affiliation(s)
- Xiang Qin
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Xingkun Jin
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, PR China
| | - Kaimin Zhou
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Hao Li
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Qiying Wang
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China
| | - Weiwei Li
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China.
| | - Qun Wang
- State Key Laboratory of Estuarine and Coastal Research, and The Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Science, East China Normal University, Shanghai, PR China.
| |
Collapse
|
44
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
45
|
Cellular models of Batten disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165559. [PMID: 31655107 PMCID: PMC7338907 DOI: 10.1016/j.bbadis.2019.165559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future. Developments made in cellular models for neuronal ceroid lipofuscinosis (NCL) in basic biology and use as therapeutic platforms. Cellular models elucidating function of NCL proteins. NCL proteins implicated in the mTor signalling pathway. Patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types providing insights into the molecular pathogenesis of NCL.
Collapse
|
46
|
Rojas F, Matthews KR. Quorum sensing in African trypanosomes. Curr Opin Microbiol 2019; 52:124-129. [PMID: 31442903 DOI: 10.1016/j.mib.2019.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023]
Abstract
Many microbial eukaryotes exhibit cell-cell communication to co-ordinate group behaviours as a strategy to exploit a changed environment, adapt to adverse conditions or regulate developmental responses. Although best characterised in bacteria, eukaryotic microbes have also been revealed to cooperate to optimise their survival or dissemination. An excellent model for these processes are African trypanosomes, protozoa responsible for important human and animal disease in sub Saharan Africa. These unicellular parasites use density sensing in their mammalian host to prepare for transmission. Recently, the signal and signal transduction pathway underlying this activity have been elucidated, revealing that the parasite exploits oligopeptide signals generated by released peptidases to monitor cell density and so generate transmission stages. Here we review the evidence for this elegant quorum sensing mechanism and its parallels with similar mechanisms in other microbial systems. We also discuss its implications for disease spread in the context of coinfections involving different trypanosome species.
Collapse
Affiliation(s)
- Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| |
Collapse
|
47
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
48
|
Shaik S, Pandey H, Thirumalasetti SK, Nakamura N. Characteristics and Functions of the Yip1 Domain Family (YIPF), Multi-Span Transmembrane Proteins Mainly Localized to the Golgi Apparatus. Front Cell Dev Biol 2019; 7:130. [PMID: 31417902 PMCID: PMC6682643 DOI: 10.3389/fcell.2019.00130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Yip1 domain family (YIPF) proteins are multi-span, transmembrane proteins mainly localized in the Golgi apparatus. YIPF proteins have been found in virtually all eukaryotes, suggesting that they have essential function(s). Saccharomyces cerevisiae contains four YIPFs: Yip1p, Yif1p, Yip4p, and Yip5p. Early analyses in S. cerevisiae indicated that Yip1p and Yif1p bind to each other and play a role in budding of transport vesicles and/or fusion of vesicles to target membranes. However, the molecular basis of their functions remains unclear. Analysis of YIPF proteins in mammalian cells has yielded significant clues about the function of these proteins. Human cells have nine family members that appear to have overlapping functions. These YIPF proteins are divided into two sub-families: YIPFα/Yip1p and YIPFβ/Yif1p. A YIPFα molecule forms a complex with a specific partner YIPFβ molecule. In the most broadly hypothesized scenario, a basic tetramer complex is formed from two molecules of each partner YIPF protein, and this tetramer forms a higher order oligomer. Three distinct YIPF protein complexes are formed from pairs of YIPFα and YIPFβ proteins. These are differently localized in either the early, middle, or late compartments of the Golgi apparatus and are recycled between adjacent compartments. Because a YIPF protein is predicted to have five transmembrane segments, a YIPF tetramer complex is predicted to have 20 transmembrane segments. This high number of transmembrane segments suggests that YIPF complexes function as channels, transporters, or transmembrane receptors. Here, the evidence from functional studies of YIPF proteins obtained during the last two decades is summarized and discussed.
Collapse
Affiliation(s)
- Shaheena Shaik
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Himani Pandey
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Satish Kumar Thirumalasetti
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Department of Biotechnology, Vignan's University, Guntur, India
| | - Nobuhiro Nakamura
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
49
|
Khayat W, Hackett A, Shaw M, Ilie A, Dudding-Byth T, Kalscheuer VM, Christie L, Corbett MA, Juusola J, Friend KL, Kirmse BM, Gecz J, Field M, Orlowski J. A recurrent missense variant in SLC9A7 causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation. Hum Mol Genet 2019; 28:598-614. [PMID: 30335141 DOI: 10.1093/hmg/ddy371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.
Collapse
Affiliation(s)
- Wujood Khayat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Louise Christie
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Kathryn L Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Brian M Kirmse
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|