1
|
Garg V, André S, Heyer L, Kracht G, Ruhwedel T, Scholz P, Ischebeck T, Werner HB, Dullin C, Engelmann J, Möbius W, Göpfert MC, Dosch R, Geurten BRH. Axon demyelination and degeneration in a zebrafish spastizin model of hereditary spastic paraplegia. Open Biol 2024; 14:240100. [PMID: 39503232 PMCID: PMC11539067 DOI: 10.1098/rsob.240100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a diverse set of neurological disorders characterized by progressive spasticity and weakness in the lower limbs caused by damage to the axons of the corticospinal tract. More than 88 genetic mutations have been associated with HSP, yet the mechanisms underlying these disorders are not well understood. We replicated the pathophysiology of one form of HSP known as spastic paraplegia 15 (SPG15) in zebrafish. This disorder is caused in humans by mutations in the ZFYVE26 gene, which codes for a protein called SPASTIZIN. We show that, in zebrafish, the significant reduction of Spastizin caused degeneration of large motor neurons. Motor neuron degeneration is associated with axon demyelination in the spinal cord and impaired locomotion in the spastizin mutants. Our findings reveal that the reduction in Spastizin compromises axonal integrity and affects the myelin sheath, ultimately recapitulating the pathophysiology of HSPs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Selina André
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luisa Heyer
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Gudrun Kracht
- Department of Developmental Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Zoology, University of Otago Dunedin, Dunedin, New Zealand
| |
Collapse
|
2
|
Alonso-Matilla R, Lam AR, Miettinen TP. Cell-intrinsic mechanical regulation of plasma membrane accumulation at the cytokinetic furrow. Proc Natl Acad Sci U S A 2024; 121:e2320769121. [PMID: 38990949 PMCID: PMC11260091 DOI: 10.1073/pnas.2320769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, less is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of the plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of the plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane toward the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion, and cortical contractility. Overall, our work reveals cell-intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis, and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.
Collapse
Affiliation(s)
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
3
|
Wang W, Shi Z, Zhang D, Hou W, Ma H, Liu X, Zhang Y, Zhu J, Yang Z, Jia B, Xu Q, Zhang Y, Zhang M. Kinesin motor KIF16A regulates microtubule stability and actin-dependent spindle migration in mouse oocyte meiosis. FASEB J 2024; 38:e23750. [PMID: 38888878 DOI: 10.1096/fj.202400989r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Zhenhu Shi
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of Wanbei Coal Group, Key Laboratory of Reproductive Medicine and Embryo of Suzhou City, Suzhou, China
| | - Wenwen Hou
- Center of Reproductive Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Huijie Ma
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Xinyu Liu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Yongteng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Jinbao Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Zaishan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Bo Jia
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Qimei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| |
Collapse
|
4
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
5
|
Zhu Y, Liu F, Jian F, Rong Y. Recent progresses in the late stages of autophagy. CELL INSIGHT 2024; 3:100152. [PMID: 38435435 PMCID: PMC10904915 DOI: 10.1016/j.cellin.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Autophagy, a lysosome-dependent degradation process, plays a crucial role in maintaining cell homeostasis. It serves as a vital mechanism for adapting to stress and ensuring intracellular quality control. Autophagy deficiencies or defects are linked to numerous human disorders, especially those associated with neuronal degeneration or metabolic diseases. Yoshinori Ohsumi was honored with the Nobel Prize in Physiology or Medicine in 2016 for his groundbreaking discoveries regarding autophagy mechanisms. Over the past few decades, autophagy research has predominantly concentrated on the early stages of autophagy, with relatively limited attention given to the late stages. Nevertheless, recent studies have witnessed substantial advancements in understanding the molecular intricacies of the late stages, which follows autophagosome formation. This review provides a comprehensive summary of the recent progresses in comprehending the molecular mechanisms of the late stages of autophagy.
Collapse
Affiliation(s)
- YanYan Zhu
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengping Liu
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fenglei Jian
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueguang Rong
- School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Alonso-Matilla R, Lam A, Miettinen TP. Cell intrinsic mechanical regulation of plasma membrane accumulation at the cytokinetic furrow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566882. [PMID: 38014042 PMCID: PMC10680611 DOI: 10.1101/2023.11.13.566882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cytokinesis is the process where the mother cell's cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, little is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane towards the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion and cortical contractility. Overall, our work reveals cell intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alice Lam
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Ke L, Lin X, Luo Y, Tao S, Yan C, He Y, Wu Y, Liu N, Qin Y. Autophagy core protein BECN1 is vital for spermatogenesis and male fertility in mice†. Biol Reprod 2024; 110:599-614. [PMID: 37975917 DOI: 10.1093/biolre/ioad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Mammalian spermatogenesis is a highly complex multi-step biological process, and autophagy has been demonstrated to be involved in the process of spermatogenesis. Beclin-1/BECN1, a core autophagy factor, plays a critical role in many biological processes and diseases. However, its function in spermatogenesis remains largely unclear. In the present study, germ cell-specific Beclin 1 (Becn1) knockout mice were generated and were conducted to determine the role of Becn1 in spermatogenesis and fertility of mice. Results indicate that Becn1 deficiency leads to reduced sperm motility and quantity, partial failure of spermiation, actin network disruption, excessive residual cytoplasm, acrosome malformation, and aberrant mitochondrial accumulation of sperm, ultimately resulting in reduced fertility in male mice. Furthermore, inhibition of autophagy was observed in the testes of germ cell-specific Becn1 knockout mice, which may contribute to impaired spermiogenesis and reduced fertility. Collectively, our results reveal that Becn1 is essential for fertility and spermiogenesis in mice.
Collapse
Affiliation(s)
- Lu Ke
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyi Lin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchuan Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifeilong He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Ezoe K, Takahashi T, Miki T, Kato K. Developmental perturbation in human embryos: Clinical and biological significance learned from time-lapse images. Reprod Med Biol 2024; 23:e12593. [PMID: 38983691 PMCID: PMC11232294 DOI: 10.1002/rmb2.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Background Time-lapse technology (TLT) has gained widespread adoption worldwide. In addition to facilitating the undisturbed culture of embryos, TLT offers the unique capability of continuously monitoring embryos to detect spatiotemporal changes. Although these observed phenomena play a role in optimal embryo selection/deselection, the clinical advantages of introducing TLT remain unclear. However, manual annotation of embryo perturbation could facilitate a comprehensive assessment of developmental competence. This process requires a thorough understanding of embryo observation and the biological significance associated with developmental dogma and variation. This review elucidates the typical behavior and variation of each phenomenon, exploring their clinical significance and research perspectives. Methods The MEDLINE database was searched using PubMed for peer-reviewed English-language original articles concerning human embryo development. Main findings TLT allows the observation of consecutive changes in embryo morphology, serving as potential biomarkers for embryo assessment. In assisted reproductive technology laboratories, several phenomena have not revealed their mechanism, posing difficulties such as fertilization deficiency and morula arrest. Conclusion A profound understanding of the biological mechanisms and significance of each phenomenon is crucial. Further collaborative efforts between the clinical and molecular fields following translational studies are required to advance embryonic outcomes and assessment.
Collapse
|
10
|
Pierga A, Matusiak R, Cauhapé M, Branchu J, Danglot L, Boutry M, Darios F. Spatacsin regulates directionality of lysosome trafficking by promoting the degradation of its partner AP5Z1. PLoS Biol 2023; 21:e3002337. [PMID: 37871017 PMCID: PMC10621996 DOI: 10.1371/journal.pbio.3002337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/02/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
The endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating lysosome positioning and motility. The movements of lysosomes are controlled by the attachment of molecular motors to their surface. However, the molecular mechanisms by which ER controls lysosome dynamics are still elusive. Here, using mouse brain extracts and mouse embryonic fibroblasts, we demonstrate that spatacsin is an ER-resident protein regulating the formation of tubular lysosomes, which are highly dynamic. Screening for spatacsin partners required for tubular lysosome formation showed spatacsin to act by regulating protein degradation. We demonstrate that spatacsin promotes the degradation of its partner AP5Z1, which regulates the relative amount of spastizin and AP5Z1 at lysosomes. Spastizin and AP5Z1 contribute to regulate tubular lysosome formation, as well as their trafficking by interacting with anterograde and retrograde motor proteins, kinesin KIF13A and dynein/dynactin subunit p150Glued, respectively. Ultimately, investigations in polarized mouse cortical neurons in culture demonstrated that spatacsin-regulated degradation of AP5Z1 controls the directionality of lysosomes trafficking. Collectively, our results identify spatacsin as a protein regulating the directionality of lysosome trafficking.
Collapse
Affiliation(s)
- Alexandre Pierga
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Raphaël Matusiak
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Julien Branchu
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Lydia Danglot
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Scientific director of NeurImag facility, Université Paris Cité, Paris, France
| | - Maxime Boutry
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Frédéric Darios
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| |
Collapse
|
11
|
Pust S, Brech A, Wegner CS, Stenmark H, Haglund K. Vesicle-mediated transport of ALIX and ESCRT-III to the intercellular bridge during cytokinesis. Cell Mol Life Sci 2023; 80:235. [PMID: 37523003 PMCID: PMC10390626 DOI: 10.1007/s00018-023-04864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023]
Abstract
Cellular abscission is the final step of cytokinesis that leads to the physical separation of the two daughter cells. The scaffold protein ALIX and the ESCRT-I protein TSG101 contribute to recruiting ESCRT-III to the midbody, which orchestrates the final membrane scission of the intercellular bridge. Here, we addressed the transport mechanisms of ALIX and ESCRT-III subunit CHMP4B to the midbody. Structured illumination microscopy revealed gradual accumulation of ALIX at the midbody, resulting in the formation of spiral-like structures extending from the midbody to the abscission site, which strongly co-localized with CHMP4B. Live-cell microscopy uncovered that ALIX appeared together with CHMP4B in vesicular structures, whose motility was microtubule-dependent. Depletion of ALIX led to structural alterations of the midbody and delayed recruitment of CHMP4B, resulting in delayed abscission. Likewise, depletion of the kinesin-1 motor KIF5B reduced the motility of ALIX-positive vesicles and delayed midbody recruitment of ALIX, TSG101 and CHMP4B, accompanied by impeded abscission. We propose that ALIX, TSG101 and CHMP4B are associated with endosomal vesicles transported on microtubules by kinesin-1 to the cytokinetic bridge and midbody, thereby contributing to their function in abscission.
Collapse
Affiliation(s)
- Sascha Pust
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Catherine Sem Wegner
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Kaisa Haglund
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379, Oslo, Norway.
| |
Collapse
|
12
|
Kunduri G, Acharya U, Acharya JK. Lipid Polarization during Cytokinesis. Cells 2022; 11:3977. [PMID: 36552741 PMCID: PMC9776629 DOI: 10.3390/cells11243977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The plasma membrane of eukaryotic cells is composed of a large number of lipid species that are laterally segregated into functional domains as well as asymmetrically distributed between the outer and inner leaflets. Additionally, the spatial distribution and organization of these lipids dramatically change in response to various cellular states, such as cell division, differentiation, and apoptosis. Division of one cell into two daughter cells is one of the most fundamental requirements for the sustenance of growth in all living organisms. The successful completion of cytokinesis, the final stage of cell division, is critically dependent on the spatial distribution and organization of specific lipids. In this review, we discuss the properties of various lipid species associated with cytokinesis and the mechanisms involved in their polarization, including forward trafficking, endocytic recycling, local synthesis, and cortical flow models. The differences in lipid species requirements and distribution in mitotic vs. male meiotic cells will be discussed. We will concentrate on sphingolipids and phosphatidylinositols because their transbilayer organization and movement may be linked via the cytoskeleton and thus critically regulate various steps of cytokinesis.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
13
|
Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, McGrath MJ. Autophagic lysosome reformation in health and disease. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Randini Nanayakkara
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Samuel J. Rodgers
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Dong P, Cai Z, Li B, Zhu Y, Chan AKY, Chiang MWL, Au CH, Sung WK, Cheung TT, Lo CM, Man K, Lee NP. HFE promotes mitotic cell division through recruitment of cytokinetic abscission machinery in hepatocellular carcinoma. Oncogene 2022; 41:4185-4199. [PMID: 35882980 DOI: 10.1038/s41388-022-02419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
HFE (Hemochromatosis) is a conventional iron level regulator and its loss of function due to gene mutations increases the risk of cancers including hepatocellular carcinoma (HCC). Likewise, studies focusing on HFE overexpression in cancers are all limited to linking up these events as a consequence of iron level deregulation. No study has explored any iron unrelated role of HFE in cancers. Here, we first reported HFE as an oncogene in HCC and its undescribed function on promoting abscission in cytokinesis during mitotic cell division, independent of its iron-regulating ability. Clinical analyses revealed HFE upregulation in tumors linking to large tumor size and poor prognosis. Functionally and mechanistically, HFE promoted cytokinetic abscission via facilitating ESCRT abscission machinery recruitment to the abscission site through signaling a novel HFE/ALK3/Smads/LIF/Hippo/YAP/YY1/KIF13A axis. Pharmacological blockage of HFE signaling axis impeded tumor phenotypes in vitro and in vivo. Our data on HFE-driven HCC unveiled a new mechanism utilized by cancer cells to propel rapid cell division. This study also laid the groundwork for tumor intolerable therapeutics development given the high cytokinetic dependency of cancer cells and their vulnerability to cytokinetic blockage.
Collapse
Affiliation(s)
- Pingping Dong
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Radiation Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziqing Cai
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Bingfeng Li
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yueqin Zhu
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alice K Y Chan
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong.,Po Leung Kuk Tong Nai Kan Junior Secondary College, Hong Kong, Hong Kong
| | - Michael W L Chiang
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong
| | - Chun Hang Au
- Hong Kong Genome Institute, Hong Kong, Hong Kong
| | - Wing Kin Sung
- Hong Kong Genome Institute, Hong Kong, Hong Kong.,School of Computing, National University of Singapore, Singapore, Singapore.,Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong.
| | - Nikki P Lee
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong. .,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong, Hong Kong.
| |
Collapse
|
15
|
Mo G, Li R, Swider Z, Leblanc J, Bement WM, Liu XJ. A localized calcium transient and polar body abscission. Cell Cycle 2022; 21:2239-2254. [PMID: 35775922 DOI: 10.1080/15384101.2022.2092815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Polar body emission is a special form of cytokinesis in oocyte meiosis that ensures the correct number of chromosomes in reproduction-competent eggs. The molecular mechanism of the last step, polar body abscission, is poorly understood. While it has been proposed that Ca2+ signaling plays important roles in embryonic cytokinesis, to date transient increases in intracellular free Ca2+ have been difficult to document in oocyte meiosis except for the global Ca2+ wave induced by sperm at fertilization. Here, we find that microinjection of the calcium chelator dibromo-BAPTA inhibits polar body abscission in Xenopus laevis oocytes. Using a novel, microtubule-targeted ratio-metric calcium sensor, we detected a calcium transient that is focused at the contractile ring-associated plasma membrane and which occurred after anaphase and constriction of the contractile ring but prior to abscission. This calcium transient was confirmed by mobile calcium probes. Further, the Ca2+-sensitive protein kinase Cβ C2 domain transiently translocated to the contractile ring-associated membrane simultaneously with the calcium transient. Collectively, these results demonstrate that a calcium transient, apparently originating at the contractile ring-associated plasma membrane, promotes polar body abscission.
Collapse
Affiliation(s)
- Guolong Mo
- Ottawa Hospital Research Institute, Ottawa Hospital General Campus, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruizhen Li
- Ottawa Hospital Research Institute, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - Zachary Swider
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Leblanc
- Ottawa Hospital Research Institute, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
| | - William M Bement
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA.,Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - X Johné Liu
- Ottawa Hospital Research Institute, Ottawa Hospital General Campus, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Ceyhan Y, Zhang M, Sandoval CG, Agoulnik AI, Agoulnik IU. Expression pattern and the roles of phosphatidylinositol phosphatases in testis. Biol Reprod 2022; 107:902-915. [PMID: 35766372 DOI: 10.1093/biolre/ioac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology. Gene targeting experiments strongly suggest that in mice with deficiency of several PI phosphatases such as Pten, Mtmrs, Inpp4b, and Inpp5b, spermatogenesis is affected, resulting in partial or complete infertility. Similarly, in men, loss of several of the PIP phosphatases is observed in infertility characterized by the lack of mature sperm. Using available gene expression databases, we compare expression of known PI phosphatases in various testicular cell types, infertility patients, and mouse age-dependent testicular gene expression, and discuss their potential roles in testis physiology and spermatogenesis.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Manqi Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Carlos G Sandoval
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Almacellas E, Mauvezin C. Emerging roles of mitotic autophagy. J Cell Sci 2022; 135:275665. [PMID: 35686549 DOI: 10.1242/jcs.255802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lysosomes exert pleiotropic functions to maintain cellular homeostasis and degrade autophagy cargo. Despite the great advances that have boosted our understanding of autophagy and lysosomes in both physiology and pathology, their function in mitosis is still controversial. During mitosis, most organelles are reshaped or repurposed to allow the correct distribution of chromosomes. Mitotic entry is accompanied by a reduction in sites of autophagy initiation, supporting the idea of an inhibition of autophagy to protect the genetic material against harmful degradation. However, there is accumulating evidence revealing the requirement of selective autophagy and functional lysosomes for a faithful chromosome segregation. Degradation is the most-studied lysosomal activity, but recently described alternative functions that operate in mitosis highlight the lysosomes as guardians of mitotic progression. Because the involvement of autophagy in mitosis remains controversial, it is important to consider the specific contribution of signalling cascades, the functions of autophagic proteins and the multiple roles of lysosomes, as three entangled, but independent, factors controlling genomic stability. In this Review, we discuss the latest advances in this area and highlight the therapeutic potential of targeting autophagy for drug development.
Collapse
Affiliation(s)
- Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline Mauvezin
- Department of Biomedicine, Faculty of Medicine, University of Barcelona c/ Casanova, 143 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), c/ Rosselló, 149-153 08036 Barcelona, Spain
| |
Collapse
|
18
|
Thankachan JM, Setty SRG. KIF13A—A Key Regulator of Recycling Endosome Dynamics. Front Cell Dev Biol 2022; 10:877532. [PMID: 35547822 PMCID: PMC9081326 DOI: 10.3389/fcell.2022.877532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Molecular motors of the kinesin superfamily (KIF) are a class of ATP-dependent motor proteins that transport cargo, including vesicles, along the tracks of the microtubule network. Around 45 KIF proteins have been described and are grouped into 14 subfamilies based on the sequence homology and domain organization. These motors facilitate a plethora of cellular functions such as vesicle transport, cell division and reorganization of the microtubule cytoskeleton. Current studies suggest that KIF13A, a kinesin-3 family member, associates with recycling endosomes and regulates their membrane dynamics (length and number). KIF13A has been implicated in several processes in many cell types, including cargo transport, recycling endosomal tubule biogenesis, cell polarity, migration and cytokinesis. Here we describe the recent advances in understanding the regulatory aspects of KIF13A motor in controlling the endosomal dynamics in addition to its structure, mechanism of its association to the membranes, regulators of motor activity, cell type-specific cargo/membrane transport, methods to measure its activity and its association with disease. Thus, this review article will provide our current understanding of the cell biological roles of KIF13A in regulating endosomal membrane remodeling.
Collapse
|
19
|
Rakowski M, Porębski S, Grzelak A. Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23073625. [PMID: 35408992 PMCID: PMC8998447 DOI: 10.3390/ijms23073625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dietary supplements and nutraceuticals have entered the mainstream. Especially in the media, they are strongly advertised as safe and even recommended for certain diseases. Although they may support conventional therapy, sometimes these substances can have unexpected side effects. This review is particularly focused on the modulation of autophagy by selected vitamins and nutraceuticals, and their relevance in the treatment of neurodegenerative diseases, especially Parkinson’s disease (PD). Autophagy is crucial in PD; thus, the induction of autophagy may alleviate the course of the disease by reducing the so-called Lewy bodies. Hence, we believe that those substances could be used in prevention and support of conventional therapy of neurodegenerative diseases. This review will shed some light on their ability to modulate the autophagy.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
- Correspondence:
| | - Szymon Porębski
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| | - Agnieszka Grzelak
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| |
Collapse
|
20
|
Liu GT, Kochlamazashvili G, Puchkov D, Müller R, Schultz C, Mackintosh AI, Vollweiter D, Haucke V, Soykan T. Endosomal phosphatidylinositol 3-phosphate controls synaptic vesicle cycling and neurotransmission. EMBO J 2022; 41:e109352. [PMID: 35318705 PMCID: PMC9058544 DOI: 10.15252/embj.2021109352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3-phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2-mediated hyperactivation of Cdk5 downstream of receptor- and activity-dependent calcium influx. Our results unravel an unexpected function for PI(3)P-containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P-producing VPS34 kinase in neurological disease and neurodegeneration.
Collapse
Affiliation(s)
- Guan-Ting Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Rainer Müller
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany.,Department of Chemical Physiology & Biochemistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Albert I Mackintosh
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dennis Vollweiter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
21
|
Tae H, Park S, Kim SO, Yorulmaz Avsar S, Cho NJ. Selective Recognition of Phosphatidylinositol Phosphate Receptors by C-Terminal Tail of Mitotic Kinesin-like Protein 2 (MKlp2). J Phys Chem B 2022; 126:2345-2352. [PMID: 35316051 DOI: 10.1021/acs.jpcb.1c10534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mitotic kinesin-like protein 2 (MKlp2) plays a key role in the proper completion of cytokinetic abscission. Specifically, the C-terminal tail of MKlp2 (CTM peptides) offers a stable tethering on the plasma membrane and microtubule cytoskeleton in the midbody during abscission. However, little is known about the underlying mechanism of how the CTM peptides bind to the plasma membrane of the intercellular bridge. Herein, we identify the specific molecular interaction between the CTM peptides and phosphatidylinositol phosphate (PIP) receptors using quartz crystal microbalance-dissipation and atomic force microscopy force spectroscopic measurements. To systematically examine the effects of amino acids, we designed a series of synthetic 33-mer peptides derived from the wild-type (CTM1). First, we evaluated the peptide binding amount caused by electrostatic interactions based on 100% zwitterionic and 30% negatively charged model membranes, whereby the nonspecific attractions were nearly proportional to the net charge of peptides. Upon incubating with PIP-containing model membranes, the wild-type CTM1 and its truncated mutation showed significant PI(3)P-specific binding, which was evidenced by a 15-fold higher binding mass and 6-fold stronger adhesion force compared to other negatively charged membranes. The extent of the specific binding was predominantly dependent on the existence of S21, whereby substitution or deletion of S21 significantly hindered the binding affinity. Taken together, our findings based on a correlative measurement platform enabled the quantification of the nonelectrostatic, selective binding interactions of the C-terminal of MKlp2 to certain PIP receptors and contributed to understanding the molecular mechanisms on complete cytokinetic abscission in cells.
Collapse
Affiliation(s)
- Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Seong-Oh Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Saziye Yorulmaz Avsar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.,China-Singapore International Joint Research Institute (CSIJRI), Guangzhou 510000, China
| |
Collapse
|
22
|
Maimó-Barceló A, Martín-Saiz L, Fernández JA, Pérez-Romero K, Garfias-Arjona S, Lara-Almúnia M, Piérola-Lopetegui J, Bestard-Escalas J, Barceló-Coblijn G. Polyunsaturated Fatty Acid-Enriched Lipid Fingerprint of Glioblastoma Proliferative Regions Is Differentially Regulated According to Glioblastoma Molecular Subtype. Int J Mol Sci 2022; 23:ijms23062949. [PMID: 35328369 PMCID: PMC8949316 DOI: 10.3390/ijms23062949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents one of the deadliest tumors owing to a lack of effective treatments. The adverse outcomes are worsened by high rates of treatment discontinuation, caused by the severe side effects of temozolomide (TMZ), the reference treatment. Therefore, understanding TMZ’s effects on GBM and healthy brain tissue could reveal new approaches to address chemotherapy side effects. In this context, we have previously demonstrated the membrane lipidome is highly cell type-specific and very sensitive to pathophysiological states. However, little remains known as to how membrane lipids participate in GBM onset and progression. Hence, we employed an ex vivo model to assess the impact of TMZ treatment on healthy and GBM lipidome, which was established through imaging mass spectrometry techniques. This approach revealed that bioactive lipid metabolic hubs (phosphatidylinositol and phosphatidylethanolamine plasmalogen species) were altered in healthy brain tissue treated with TMZ. To better understand these changes, we interrogated RNA expression and DNA methylation datasets of the Cancer Genome Atlas database. The results enabled GBM subtypes and patient survival to be linked with the expression of enzymes accounting for the observed lipidome, thus proving that exploring the lipid changes could reveal promising therapeutic approaches for GBM, and ways to ameliorate TMZ side effects.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (L.M.-S.); (J.A.F.)
| | - Karim Pérez-Romero
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Santiago Garfias-Arjona
- Quirónsalud Medical Center, 07300 Inca, Spain;
- Son Verí Quirónsalud Hospital, Balearic Islands, 07609 Son Veri Nou, Spain
- Hospital de Llevant, 07680 Porto Cristo, Spain
| | - Mónica Lara-Almúnia
- Department of Neurosurgery, Jimenez Diaz Foundation University Hospital, Reyes Catolicos Av., No 2, 28040 Madrid, Spain;
- Ruber International Hospital, Maso St., No 38, 28034 Madrid, Spain
| | - Javier Piérola-Lopetegui
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
| | - Joan Bestard-Escalas
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
- Correspondence: (J.B.-E.); (G.B.-C.)
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigacio Sanitaria Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (K.P.-R.); (J.P.-L.)
- Research Unit, University Hospital Son Espases, 07120 Palma, Spain
- Correspondence: (J.B.-E.); (G.B.-C.)
| |
Collapse
|
23
|
Gulluni F, Prever L, Li H, Krafcikova P, Corrado I, Lo WT, Margaria JP, Chen A, De Santis MC, Cnudde SJ, Fogerty J, Yuan A, Massarotti A, Sarijalo NT, Vadas O, Williams RL, Thelen M, Powell DR, Schüler M, Wiesener MS, Balla T, Baris HN, Tiosano D, McDermott BM, Perkins BD, Ghigo A, Martini M, Haucke V, Boura E, Merlo GR, Buchner DA, Hirsch E. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 2021; 374:eabk0410. [PMID: 34882480 PMCID: PMC7612254 DOI: 10.1126/science.abk0410] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)–dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2–binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type–specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.
Collapse
Affiliation(s)
- Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Ilaria Corrado
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Wen-Ting Lo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Sophie J. Cnudde
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alex Yuan
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Nasrin Torabi Sarijalo
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Oscar Vadas
- Section des Sciences Pharmaceutiques, University of Geneva, 1211 Geneva, Switzerland
| | - Roger L. Williams
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - David R. Powell
- Pharmaceutical Biology, Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | - Markus Schüler
- Division of Nephrology and Internal Intensive Care Medicine, Charite University, Berlin, Germany
| | - Michael S. Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen Nürnberg, Erlangen, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hagit N. Baris
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
| | - Dov Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
- Rappaport Family Faculty of Medicine, Technion - –Israel Institute of Technology, Haifa 30196, Israel
| | - Brian M. McDermott
- Department of Otolaryngology–Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brian D. Perkins
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, 10126, Italy
| |
Collapse
|
24
|
Russo G, Krauss M. Septin Remodeling During Mammalian Cytokinesis. Front Cell Dev Biol 2021; 9:768309. [PMID: 34805175 PMCID: PMC8600141 DOI: 10.3389/fcell.2021.768309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/18/2021] [Indexed: 01/22/2023] Open
Abstract
Cytokinesis mediates the final separation of a mother cell into two daughter cells. Septins are recruited to the cleavage furrow at an early stage. During cytokinetic progression the septin cytoskeleton is constantly rearranged, ultimately leading to a concentration of septins within the intercellular bridge (ICB), and to the formation of two rings adjacent to the midbody that aid ESCRT-dependent abscission. The molecular mechanisms underlying this behavior are poorly understood. Based on observations that septins can associate with actin, microtubules and associated motors, we review here established roles of septins in mammalian cytokinesis, and discuss, how septins may support cytokinetic progression by exerting their functions at particular sites. Finally, we discuss how this might be assisted by phosphoinositide-metabolizing enzymes.
Collapse
Affiliation(s)
- Giulia Russo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
25
|
Khundadze M, Ribaudo F, Hussain A, Stahlberg H, Brocke-Ahmadinejad N, Franzka P, Varga RE, Zarkovic M, Pungsrinont T, Kokal M, Ganley IG, Beetz C, Sylvester M, Hübner CA. Mouse models for hereditary spastic paraplegia uncover a role of PI4K2A in autophagic lysosome reformation. Autophagy 2021; 17:3690-3706. [PMID: 33618608 PMCID: PMC8632344 DOI: 10.1080/15548627.2021.1891848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) denotes genetically heterogeneous disorders characterized by leg spasticity due to degeneration of corticospinal axons. SPG11 and SPG15 have a similar clinical course and together are the most prevalent autosomal recessive HSP entity. The respective proteins play a role for macroautophagy/autophagy and autophagic lysosome reformation (ALR). Here, we report that spg11 and zfyve26 KO mice developed motor impairments within the same course of time. This correlated with enhanced accumulation of autofluorescent material in neurons and progressive neuron loss. In agreement with defective ALR, tubulation events were diminished in starved KO mouse embryonic fibroblasts (MEFs) and lysosomes decreased in neurons of KO brain sections. Confirming that both proteins act in the same molecular pathway, the pathologies were not aggravated upon simultaneous disruption of both. We further show that PI4K2A (phosphatidylinositol 4-kinase type 2 alpha), which phosphorylates phosphatidylinositol to phosphatidylinositol-4-phosphate (PtdIns4P), accumulated in autofluorescent deposits isolated from KO but not WT brains. Elevated PI4K2A abundance was already found at autolysosomes of neurons of presymptomatic KO mice. Immunolabelings further suggested higher levels of PtdIns4P at LAMP1-positive structures in starved KO MEFs. An increased association with LAMP1-positive structures was also observed for clathrin and DNM2/dynamin 2, which are important effectors of ALR recruited by phospholipids. Because PI4K2A overexpression impaired ALR, while its knockdown increased tubulation, we conclude that PI4K2A modulates phosphoinositide levels at autolysosomes and thus the recruitment of downstream effectors of ALR. Therefore, PI4K2A may play an important role in the pathogenesis of SPG11 and SPG15. Abbreviations: ALR: autophagic lysosome reformation; AP-5: adaptor protein complex 5; BFP: blue fluorescent protein; dKO: double knockout; EBSS: Earle’s balanced salt solution; FBA: foot base angle; GFP: green fluorescent protein; HSP: hereditary spastic paraplegia; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; SQSTM1/p62: sequestosome 1; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RFP: red fluorescent protein; SPG: spastic paraplegia gene; TGN: trans-Golgi network; WT: wild type
Collapse
Affiliation(s)
- Mukhran Khundadze
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Federico Ribaudo
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Adeela Hussain
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henry Stahlberg
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Nahal Brocke-Ahmadinejad
- Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Patricia Franzka
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rita-Eva Varga
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Milena Zarkovic
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thanakorn Pungsrinont
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Miriam Kokal
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Christian Beetz
- Institute of Clinical Chemistry, University Hospital Jena, Friedrich-Schiller-University Jena, Germany; Current Affiliation: Centogene GmbH, Rostock, Germany
| | - Marc Sylvester
- Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
26
|
Lam CW, Chan CY, Wong KC, Chang STL. Postzygotic inactivating mutation of KIF13A located at chromosome 6p22.3 in a patient with a novel mosaic neuroectodermal syndrome. J Hum Genet 2021; 66:825-829. [PMID: 33526817 DOI: 10.1038/s10038-020-00883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 11/09/2022]
Abstract
Hypomelanosis of Ito (HMI) is part of a neuroectodermal syndrome characterized by distinctive skin manifestations with or without multisystemic involvements. In our undiagnosed diseases program, we have encountered a 3-year-old girl presenting with characteristic skin hypopigmentation suggesting HMI and developmental delay. An exome and genome approach utilizing next-generation sequencing revealed a heterozygous de novo frameshift variant in the KIF13A gene, i.e., NM_022113.6: c.2357dupA, resulting in nonsense-mediated decay. The low mutant allelic ratio suggested that the mutation has occurred postzygotically leading to embryonic mosaicism. Functionally, K1F3A regulates cell membrane blebbing and migration of neural crest cells by controlling recycling of RHOB to the plasma membrane and is also involved in melanosome biogenesis. Importantly, hypopigmentation of the skin has been reported in chr 6p22.3-p23 microdeletion syndrome supporting the association of KIF13A haploinsufficiency with the novel neuroectodermal syndrome. With the increased availability of genome sequencing, we envisage more genetic causes of HMI will be identified in the future.
Collapse
Affiliation(s)
- Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Hong Kong, China.
| | - Candace Yim Chan
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China.,Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Ka-Chung Wong
- Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | | |
Collapse
|
27
|
Hirst J, Hesketh GG, Gingras AC, Robinson MS. Rag GTPases and phosphatidylinositol 3-phosphate mediate recruitment of the AP-5/SPG11/SPG15 complex. J Cell Biol 2021; 220:211690. [PMID: 33464297 PMCID: PMC7814351 DOI: 10.1083/jcb.202002075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Adaptor protein complex 5 (AP-5) and its partners, SPG11 and SPG15, are recruited onto late endosomes and lysosomes. Here we show that recruitment of AP-5/SPG11/SPG15 is enhanced in starved cells and occurs by coincidence detection, requiring both phosphatidylinositol 3-phosphate (PI3P) and Rag GTPases. PI3P binding is via the SPG15 FYVE domain, which, on its own, localizes to early endosomes. GDP-locked RagC promotes recruitment of AP-5/SPG11/SPG15, while GTP-locked RagA prevents its recruitment. Our results uncover an interplay between AP-5/SPG11/SPG15 and the mTORC1 pathway and help to explain the phenotype of AP-5/SPG11/SPG15 deficiency in patients, including the defect in autophagic lysosome reformation.
Collapse
Affiliation(s)
- Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK,Jennifer Hirst:
| | - Geoffrey G. Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Margaret S. Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK,Correspondence to Margaret S. Robinson:
| |
Collapse
|
28
|
Konjikusic MJ, Gray RS, Wallingford JB. The developmental biology of kinesins. Dev Biol 2021; 469:26-36. [PMID: 32961118 PMCID: PMC10916746 DOI: 10.1016/j.ydbio.2020.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Kinesins are microtubule-based motor proteins that are well known for their key roles in cell biological processes ranging from cell division, to intracellular transport of mRNAs, proteins, vesicles, and organelles, and microtubule disassembly. Interestingly, many of the ~45 distinct kinesin genes in vertebrate genomes have also been associated with specific phenotypes in embryonic development. In this review, we highlight the specific developmental roles of kinesins, link these to cellular roles reported in vitro, and highlight remaining gaps in our understanding of how this large and important family of proteins contributes to the development and morphogenesis of animals.
Collapse
Affiliation(s)
- Mia J Konjikusic
- Department of Molecular Biosciences, USA; Department of Nutritional Sciences, University of Texas at Austin, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, University of Texas at Austin, USA.
| | | |
Collapse
|
29
|
Protein crowding mediates membrane remodeling in upstream ESCRT-induced formation of intraluminal vesicles. Proc Natl Acad Sci U S A 2020; 117:28614-28624. [PMID: 33139578 DOI: 10.1073/pnas.2014228117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of the lysosomal degradation pathway, the endosomal sorting complexes required for transport (ESCRT-0 to -III/VPS4) sequester receptors at the endosome and simultaneously deform the membrane to generate intraluminal vesicles (ILVs). Whereas ESCRT-III/VPS4 have an established function in ILV formation, the role of upstream ESCRTs (0 to II) in membrane shape remodeling is not understood. Combining experimental measurements and electron microscopy analysis of ESCRT-III-depleted cells with a mathematical model, we show that upstream ESCRT-induced alteration of the Gaussian bending rigidity and their crowding in concert with the transmembrane cargo on the membrane induce membrane deformation and facilitate ILV formation: Upstream ESCRT-driven budding does not require ATP consumption as only a small energy barrier needs to be overcome. Our model predicts that ESCRTs do not become part of the ILV, but localize with a high density at the membrane neck, where the steep decline in the Gaussian curvature likely triggers ESCRT-III/VPS4 assembly to enable neck constriction and scission.
Collapse
|
30
|
Abstract
Autophagy is an intracellular degradation pathway targeting organelles and macromolecules, thereby regulating various cellular functions. Phosphorylation is a key posttranscriptional protein modification implicated in the regulation of biological function including autophagy. Under asynchronous conditions, autophagy activity is predominantly suppressed by mechanistic target of rapamycin (mTOR) kinase, but whether autophagy-related genes (ATG) proteins are phosphorylated differentially throughout the sequential phases of the cell cycle remains unclear. In this issue, Li and colleagues report that cyclin-dependent kinase 1 (CDK1) phosphorylates the ULK complex during mitosis. This phosphorylation induces autophagy and, surprisingly, is shown to drive cell cycle progression. This work reveals a yet-unappreciated role for autophagy in cell cycle progression and enhances our understanding of the specific phase-dependent autophagy regulation during cellular growth and proliferation.
Collapse
Affiliation(s)
- Akinori Yamasaki
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yui Jin
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
31
|
Valet C, Levade M, Bellio M, Caux M, Payrastre B, Severin S. Phosphatidylinositol 3-monophosphate: A novel actor in thrombopoiesis and thrombosis. Res Pract Thromb Haemost 2020; 4:491-499. [PMID: 32548550 PMCID: PMC7292656 DOI: 10.1002/rth2.12321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022] Open
Abstract
Phosphoinositides are lipid second messengers regulating in time and place the formation of protein complexes involved in the control of intracellular signaling, vesicular trafficking, and cytoskeleton/membrane dynamics. One of these lipids, phosphatidylinositol 3 monophosphate (PtdIns3P), is present in small amounts in mammalian cells and is involved in the control of endocytic/endosomal trafficking and in autophagy. Its metabolism is finely regulated by specific kinases and phosphatases including class II phosphoinositide 3-kinases (PI3KC2s) and the class III PI3K, Vps34. Recently, PtdIns3P has emerged as an important regulator of megakaryocyte/platelet structure and functions. Here, we summarize the current knowledge in the role of different pools of PtdIns3P regulated by class II and III PI3Ks in platelet production and thrombosis. Potential new antithrombotic therapeutic perspectives based on the use of inhibitors targeting specifically PtdIns3P-metabolizing enzymes will also be discussed. Finally, we provide report of new research in this area presented at the International Society of Thrombosis and Haemostasis 2019 Annual Congress.
Collapse
Affiliation(s)
- Colin Valet
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Marie Levade
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Marie Bellio
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Manuella Caux
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| | - Bernard Payrastre
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
- Hematology LaboratoryToulouse University HospitalToulouseFrance
| | - Sonia Severin
- Inserm U1048 and Paul Sabatier UniversityInstitute of Cardiovascular and Metabolic DiseasesToulouseFrance
| |
Collapse
|
32
|
Rizzelli F, Malabarba MG, Sigismund S, Mapelli M. The crosstalk between microtubules, actin and membranes shapes cell division. Open Biol 2020; 10:190314. [PMID: 32183618 PMCID: PMC7125961 DOI: 10.1098/rsob.190314] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell-substrate adhesion, cell-cell contacts and extracellular signalling events regulating proliferation.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
33
|
Hirsch E, Gulluni F, Martini M. Phosphoinositides in cell proliferation and metabolism. Adv Biol Regul 2020; 75:100693. [PMID: 32008962 DOI: 10.1016/j.jbior.2020.100693] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Phosphoinositides (PI) are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have improved our understanding of how and when these lipids are generated and what their roles are in physiology and disease. In particular, PI play a central role in the regulation of cell proliferation and metabolism. Here, we will review recent advances in our understanding of PI function, regulation, and importance in different aspects of proliferation and energy metabolism.
Collapse
Affiliation(s)
- Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
34
|
Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:472. [PMID: 31752944 PMCID: PMC6873561 DOI: 10.1186/s13046-019-1472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Background Alteration of signalling pathways regulating cell cycle progression is a common feature of cancer cells. Several drugs targeting distinct phases of the cell cycle have been developed but the inability of many of them to discriminate between normal and cancer cells has strongly limited their clinical potential because of their reduced efficacy at the concentrations used to limit adverse side effects. Mechanisms of resistance have also been described, further affecting their efficacy. Identification of novel targets that can potentiate the effect of these drugs or overcome drug resistance can provide a useful strategy to exploit the anti-cancer properties of these agents to their fullest. Methods The class II PI3K isoform PI3K-C2β was downregulated in prostate cancer PC3 cells and cervical cancer HeLa cells using selective siRNAs and the effect on cell growth was determined in the absence or presence of the microtubule-stabilizing agent/anti-cancer drug docetaxel. Mitosis progression was monitored by time-lapse microscopy. Clonogenic assays were performed to determine the ability of PC3 and HeLa cells to form colonies upon PI3K-C2β downregulation in the absence or presence of docetaxel. Cell multi-nucleation was assessed by immunofluorescence. Tumour growth in vivo was assessed using a xenograft model of PC3 cells upon PI3K-C2β downregulation and in combination with docetaxel. Results Downregulation of PI3K-C2β delays mitosis progression in PC3 and HeLa cells, resulting in reduced ability to form colonies in clonogenic assays in vitro. Compared to control cells, PC3 cells lacking PI3K-C2β form smaller and more compact colonies in vitro and they form tumours more slowly in vivo in the first weeks after cells implant. Stable and transient PI3K-C2β downregulation potentiates the effect of low concentrations of docetaxel on cancer cell growth. Combination of PI3K-C2β downregulation and docetaxel almost completely prevents colonies formation in clonogenic assays in vitro and strongly inhibits tumour growth in vivo. Conclusions These data reveal a novel role for the class II PI3K PI3K-C2β during mitosis progression. Furthermore, data indicate that blockade of PI3K-C2β might represent a novel strategy to potentiate the effect of docetaxel on cancer cell growth.
Collapse
|
35
|
Gan H, Xue W, Gao Y, Zhu G, Chan D, Cheah KSE, Huang J. KIF5B modulates central spindle organization in late-stage cytokinesis in chondrocytes. Cell Biosci 2019; 9:85. [PMID: 31636894 PMCID: PMC6794761 DOI: 10.1186/s13578-019-0344-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/23/2019] [Indexed: 01/23/2023] Open
Abstract
Background The growth plate is a special region of the cartilage that drives longitudinal growth of long bones. Proliferating chondrocytes in the growth plate, arranged in columns, divide perpendicular to the long axis of the growth plate then intercalate to re-align with parental columns. Which molecular partners maintain growth plate columnar structures and chondrocyte cytokinesis has not been fully revealed. It is reported that kinesin family member 3A (KIF3A), a subunit of kinesin-2, plays an important role in maintaining columnar organization in growth plates via controlling primary cilia formation and cell proliferation. Result Here we identify kinesin family member 5B (KIF5B), the heavy chain of kinesin-1, a ubiquitously expressed motor protein for anterograde intracellular transport along the microtubule network, as a key modulator of cytokinesis in chondrocytes via maintenance of central spindle organization. We show that KIF5B is concentrated in the central spindle during cytokinesis in both primary chondrocytes and chondrogenic ATDC5 cells. Conclusion The failure of cytokinesis in KIF5B null chondrocytes leads to incomplete cell rotation, disrupting proliferation and differentiation, and results in a disorganized growth plate.
Collapse
Affiliation(s)
- Huiyan Gan
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenqian Xue
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ya Gao
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,2Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Guixia Zhu
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Danny Chan
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kathryn S E Cheah
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiandong Huang
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,3Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 People's Republic of China
| |
Collapse
|
36
|
Bellio M, Caux M, Vauclard A, Chicanne G, Gratacap MP, Terrisse AD, Severin S, Payrastre B. Phosphatidylinositol 3 monophosphate metabolizing enzymes in blood platelet production and in thrombosis. Adv Biol Regul 2019; 75:100664. [PMID: 31604685 DOI: 10.1016/j.jbior.2019.100664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/09/2023]
Abstract
Blood platelets, produced by the fragmentation of megakaryocytes, play a key role in hemostasis and thrombosis. Being implicated in atherothrombosis and other thromboembolic disorders, they represent a major therapeutic target for antithrombotic drug development. Several recent studies have highlighted an important role for the lipid phosphatidylinositol 3 monophosphate (PtdIns3P) in megakaryocytes and platelets. PtdIns3P, present in small amounts in mammalian cells, is involved in the control of endocytic trafficking and autophagy. Its metabolism is finely regulated by specific kinases and phosphatases. Class II (α, β and γ) and III (Vps34) phosphoinositide-3-kinases (PI3Ks), INPP4 and Fig4 are involved in the production of PtdIns3P whereas PIKFyve, myotubularins (MTMs) and type II PIPK metabolize PtdIns3P. By regulating the turnover of different pools of PtdIns3P, class II (PI3KC2α) and class III (Vps34) PI3Ks have been recently involved in the regulation of platelet production and functions. These pools of PtdIns3P appear to modulate membrane organization and intracellular trafficking. Moreover, PIKFyve and INPP4 have been recently implicated in arterial thrombosis. In this review, we will discuss the role of PtdIns3P metabolizing enzymes in platelet production and function. Potential new anti-thrombotic therapeutic perspectives based on inhibitors targeting specifically PtdIns3P metabolizing enzymes will also be commented.
Collapse
Affiliation(s)
- Marie Bellio
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Manuella Caux
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Alicia Vauclard
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Gaëtan Chicanne
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Marie-Pierre Gratacap
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Anne-Dominique Terrisse
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sonia Severin
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Laboratoire d'Hématologie, Hopital Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
37
|
Sun Z, Lu J, Wu M, Li M, Bai L, Shi Z, Hao L, Wu Y. Deficiency of PTEN leads to aberrant chromosome segregation through downregulation of MAD2. Mol Med Rep 2019; 20:4235-4243. [PMID: 31545428 PMCID: PMC6797992 DOI: 10.3892/mmr.2019.10668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/20/2019] [Indexed: 11/07/2022] Open
Abstract
Proper spindle formation and accurate chromosome segregation are essential for ensuring mitotic fidelity. Phosphatase and tensin homolog (PTEN) is a multifunctional protein, which is able to maintain the stability of the genome and chromosomes. The present study described an essential role of PTEN in regulating chromosome segregation to prevent gross genomic instability via regulation of mitotic arrest deficient 2 (MAD2). PTEN knockdown induced cell cycle arrest and abnormal chromosome segregation, which manifested as the formation of anaphase bridges, lagging chromosomes and premature chromatid separation. In addition, MAD2 was identified as a potential target of PTEN. Furthermore, the present study revealed that PTEN knockdown resulted in MAD2 degradation via the ubiquitin-proteasomal pathway, while restoration of MAD2 expression partially ameliorated the mitotic defects induced by PTEN loss. The results from the present study proposed a novel mechanism by which PTEN maintains chromosome stability.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinqi Lu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mingyan Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lu Bai
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
38
|
Phosphoinositides in the control of lysosome function and homeostasis. Biochem Soc Trans 2019; 47:1173-1185. [PMID: 31383818 DOI: 10.1042/bst20190158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Lysosomes are the main degradative compartments of mammalian cells and serve as platforms for cellular nutrient signaling and sterol transport. The diverse functions of lysosomes and their adaptation to extracellular and intracellular cues are tightly linked to the spatiotemporally controlled synthesis, turnover and interconversion of lysosomal phosphoinositides, minor phospholipids that define membrane identity and couple membrane dynamics to cell signaling. How precisely lysosomal phosphoinositides act and which effector proteins within the lysosome membrane or at the lysosomal surface recognize them is only now beginning to emerge. Importantly, mutations in phosphoinositide metabolizing enzyme cause lysosomal dysfunction and are associated with numerous diseases ranging from neurodegeneration to cancer. Here, we discuss the phosphoinositides and phosphoinositide metabolizing enzymes implicated in lysosome function and homeostasis and outline perspectives for future research.
Collapse
|
39
|
Zhen Y, Spangenberg H, Munson MJ, Brech A, Schink KO, Tan KW, Sørensen V, Wenzel EM, Radulovic M, Engedal N, Simonsen A, Raiborg C, Stenmark H. ESCRT-mediated phagophore sealing during mitophagy. Autophagy 2019; 16:826-841. [PMID: 31366282 PMCID: PMC7158923 DOI: 10.1080/15548627.2019.1639301] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Inactivation of the endosomal sorting complex required for transport (ESCRT) machinery has been reported to cause autophagic defects, but the exact functions of ESCRT proteins in macroautophagy/autophagy remain incompletely understood. Using live-cell fluorescence microscopy we found that the filament-forming ESCRT-III subunit CHMP4B was recruited transiently to nascent autophagosomes during starvation-induced autophagy and mitophagy, with residence times of about 1 and 2 min, respectively. Correlative light microscopy and electron tomography revealed CHMP4B recruitment at a late step in mitophagosome formation. The autophagosomal dwell time of CHMP4B was strongly increased by depletion of the regulatory ESCRT-III subunit CHMP2A. Using a novel optogenetic closure assay we observed that depletion of CHMP2A inhibited phagophore sealing during mitophagy. Consistent with this, depletion of CHMP2A and other ESCRT-III subunits inhibited both PRKN/PARKIN-dependent and -independent mitophagy. We conclude that the ESCRT machinery mediates phagophore closure, and that this is essential for mitophagic flux.Abbreviations: BSA: bovine serum albumin; CHMP: chromatin-modifying protein; CLEM: correlative light and electron microscopy; EGFP: enhanced green fluorescent protein; ESCRT: endosomal sorting complex required for transport; HEPES: 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid; HRP: horseradish peroxidase; ILV: intralumenal vesicle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; LOV2: light oxygen voltage 2; MLS: mitochondrial localization sequence; MT-CO2: mitochondrially encoded cytochrome c oxidase II; O+A: oligomycin and antimycin A; PBS: phosphate-buffered saline; PIPES: piperazine-N,N-bis(2-ethanesulfonic acid); PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RAB: RAS-related in brain; SD: standard deviation; SEM: standard error of the mean; TOMM20: TOMM20: translocase of outer mitochondrial membrane 20; VCL: vinculin; VPS4: vacuolar protein sorting protein 4; Zdk1: Zdark 1; TUBG: Tubulin gamma chain.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Hélène Spangenberg
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Michael J Munson
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Kay O Schink
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Kia-Wee Tan
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Vigdis Sørensen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Maja Radulovic
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| |
Collapse
|
40
|
Graham WV, He W, Marchiando AM, Zha J, Singh G, Li HS, Biswas A, Ong MLDM, Jiang ZH, Choi W, Zuccola H, Wang Y, Griffith J, Wu J, Rosenberg HJ, Wang Y, Snapper SB, Ostrov D, Meredith SC, Miller LW, Turner JR. Intracellular MLCK1 diversion reverses barrier loss to restore mucosal homeostasis. Nat Med 2019; 25:690-700. [PMID: 30936544 PMCID: PMC6461392 DOI: 10.1038/s41591-019-0393-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/08/2019] [Indexed: 01/08/2023]
Abstract
Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicities. Here, we show that a unique domain within the MLCK splice-variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identified a domain-binding small molecule (Divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, TNF-induced MLCK1 recruitment as well as downstream MLC phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of Divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions.
Collapse
Affiliation(s)
- W Vallen Graham
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, New York, NY, USA
| | - Weiqi He
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, and Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Juanmin Zha
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, and Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gurminder Singh
- Department of Pathology, University of Chicago, Chicago, IL, USA.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hua-Shan Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, and Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ma Lora Drizella M Ong
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi-Hui Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, and Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wangsun Choi
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Yitang Wang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Jingshing Wu
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Yingmin Wang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL, USA
| | | | - Lawrence W Miller
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jerrold R Turner
- Department of Pathology, University of Chicago, Chicago, IL, USA. .,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Khundadze M, Ribaudo F, Hussain A, Rosentreter J, Nietzsche S, Thelen M, Winter D, Hoffmann B, Afzal MA, Hermann T, de Heus C, Piskor EM, Kosan C, Franzka P, von Kleist L, Stauber T, Klumperman J, Damme M, Proikas-Cezanne T, Hübner CA. A mouse model for SPG48 reveals a block of autophagic flux upon disruption of adaptor protein complex five. Neurobiol Dis 2019; 127:419-431. [PMID: 30930081 DOI: 10.1016/j.nbd.2019.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 03/24/2019] [Indexed: 12/25/2022] Open
Abstract
Hereditary spastic paraplegia is a spastic gait disorder that arises from degeneration of corticospinal axons. The subtype SPG48 is associated with mutations in the zeta subunit of the adaptor protein complex five (AP5). AP5 function and the pathophysiology of SPG48 are only poorly understood. Here, we report an AP5 zeta knockout mouse, which shows an age-dependent degeneration of corticospinal axons. Our analysis of knockout fibroblasts supports a trafficking defect from late endosomes to the transGolgi network and reveals a structural defect of the Golgi. We further show that both autophagic flux and the recycling of lysosomes from autolysosomes were impaired in knockout cells. In vivo, we observe an increase of autophagosomes and autolysosomes and, at later stages, the accumulation of intracellular waste in neurons. Taken together, we propose that loss of AP5 function blocks autophagy and thus leads to the aberrant accumulation of autophagic cargo, which finally results in axon degeneration.
Collapse
Affiliation(s)
- Mukhran Khundadze
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07747, Germany.
| | - Federico Ribaudo
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | - Adeela Hussain
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | - Jan Rosentreter
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | - Sandor Nietzsche
- Electron Microscopy Center, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Melanie Thelen
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Birgit Hoffmann
- Biomolecular Photonics Group, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Muhammad Awais Afzal
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | - Tanja Hermann
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | - Cecilia de Heus
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584, Netherlands
| | - Eva-Maria Piskor
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Christian Kosan
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Patricia Franzka
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | - Lisa von Kleist
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Tobias Stauber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Judith Klumperman
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584, Netherlands
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel 24118, Germany
| | - Tassula Proikas-Cezanne
- Department of Molecular Biology, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich-Schiller-University Jena, Jena 07747, Germany.
| |
Collapse
|
42
|
Zheng K, He Z, Kitazato K, Wang Y. Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics 2019; 9:104-125. [PMID: 30662557 PMCID: PMC6332805 DOI: 10.7150/thno.30308] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Aberrant function of cell cycle regulators results in uncontrolled cell proliferation, making them attractive therapeutic targets in cancer treatment. Indeed, survival of many cancers exclusively relies on these proteins, and several specific inhibitors are in clinical use. Although the ubiquitin-proteasome system is responsible for the periodic quality control of cell cycle proteins during cell cycle progression, increasing evidence clearly demonstrates the intimate interaction between cell cycle regulation and selective autophagy, important homeostasis maintenance machinery. However, these studies have often led to divergent rather than unifying explanations due to complexity of the autophagy signaling network, the inconsistent functions between general autophagy and selective autophagy, and the different characteristics of autophagic substrates. In this review, we highlight current data illustrating the contradictory and important role of cell cycle proteins in regulating autophagy. We also focus on how selective autophagy acts as a central mechanism to maintain orderly DNA repair and genome integrity by degrading specific cell cycle proteins, regulating cell division, and promoting DNA damage repair. We further discuss the ways in which selective autophagy may impact the cell cycle regulators, since failure to appropriately remove these can interfere with cell death-related processes, including senescence and autophagy-related cell death. Imbalanced cell proliferation is typically utilized by cancer cells to acquire resistance. Finally, we discuss the possibility of a potent anticancer therapeutic strategy that targets selective autophagy or autophagy and cell cycle together.
Collapse
|
43
|
Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep 2018; 8:17559. [PMID: 30510202 PMCID: PMC6277420 DOI: 10.1038/s41598-018-35859-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023] Open
Abstract
Bacterial infections can be treated with bacteriophages that show great specificity towards their bacterial host and can be genetically modified for different applications. However, whether and how bacteriophages can kill intracellular bacteria in human cells remains elusive. Here, using CRISPR/Cas selection, we have engineered a fluorescent bacteriophage specific for E. coli K1, a nosocomial pathogen responsible for urinary tract infections, neonatal meningitis and sepsis. By confocal and live microscopy, we show that engineered bacteriophages K1F-GFP and E. coli EV36-RFP bacteria displaying the K1 capsule, enter human cells via phagocytosis. Importantly, we show that bacteriophage K1F-GFP efficiently kills intracellular E. coli EV36-RFP in T24 human urinary bladder epithelial cells. Finally, we provide evidence that bacteria and bacteriophages are degraded by LC3-associated phagocytosis and xenophagy.
Collapse
Affiliation(s)
| | - Siu Fung Stanley Ho
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Ranti Dev Shukla
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamas Feher
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| |
Collapse
|
44
|
Vantaggiato C, Panzeri E, Castelli M, Citterio A, Arnoldi A, Santorelli FM, Liguori R, Scarlato M, Musumeci O, Toscano A, Clementi E, Bassi MT. ZFYVE26/SPASTIZIN and SPG11/SPATACSIN mutations in hereditary spastic paraplegia types AR-SPG15 and AR-SPG11 have different effects on autophagy and endocytosis. Autophagy 2018; 15:34-57. [PMID: 30081747 DOI: 10.1080/15548627.2018.1507438] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ZFYVE26/Spastizin and SPG11/Spatacsin encode 2 large proteins that are mutated in hereditary autosomal-recessive spastic paraplegia/paraparesis (HSP) type 15 (AR-SPG15) and type 11 (AR-SPG11), respectively. We previously have reported that AR-SPG15-related ZFYVE26 mutations lead to autophagy defects with accumulation of immature autophagosomes. ZFYVE26 and SPG11 were found to be part of a complex including the AP5 (adaptor related protein complex 5) and to have a critical role in autophagic lysosomal reformation with identification of autophagic and lysosomal defects in cells with both AR-SPG15- and AR-SPG11-related mutations. In spite of these similarities between the 2 proteins, here we report that ZFYVE26 and SPG11 are differently involved in autophagy and endocytosis. We found that both ZFYVE26 and SPG11 interact with RAB5A and RAB11, 2 proteins regulating endosome trafficking and maturation, but only ZFYVE26 mutations affected RAB protein interactions and activation. ZFYVE26 mutations lead to defects in the fusion between autophagosomes and endosomes, while SPG11 mutations do not affect this step and lead to a milder autophagy defect. We thus demonstrate that ZFYVE26 and SPG11 affect the same cellular physiological processes, albeit at different levels: both proteins have a role in autophagic lysosome reformation, but only ZFYVE26 acts at the intersection between endocytosis and autophagy, thus representing a key player in these 2 processes. Indeed expression of the constitutively active form of RAB5A in cells with AR-SPG15-related mutations partially rescues the autophagy defect. Finally the model we propose demonstrates that autophagy and the endolysosomal pathway are central processes in the pathogenesis of these complicated forms of hereditary spastic paraparesis. Abbreviations: ALR, autophagic lysosome reformation; AP5, adaptor related protein complex 5; AR, autosomal-recessive; HSP, hereditary spastic paraplegia/paraparesis; ATG14, autophagy related 14; BafA, bafilomycin A1; BECN1, beclin 1; EBSS, Earle balanced salt solution; EEA1, early endosome antigen 1; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; GDP, guanosine diphosphate; GFP, green fluorescent protein; GTP, guanosine triphosphate; HSP, hereditary spastic paraplegias; LBPA, lysobisphosphatidic acid; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MVBs, multivesicular bodies; PIK3C3, phosphatidylinositol 3-kinase, catalytic subunit type 3; PIK3R4, phosphoinositide-3-kinase regulatory subunit 4; PtdIns3P, phosphatidylinositol-3-phosphate; RFP, red fluorescent protein; RUBCN, RUN and cysteine rich domain containing beclin 1 interacting protein; shRNA, short hairpin RNA; SQSTM1/p62, sequestosome 1; TCC: thin corpus callosum; TF, transferrin; UVRAG, UV radiation resistance associated.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | - Elena Panzeri
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | - Marianna Castelli
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | - Andrea Citterio
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | - Alessia Arnoldi
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| | | | - Rocco Liguori
- c Department of Biomedical and Neuromotor Sciences , University of Bologna; IRCCS Institute of Neurological Sciences , Bologna , Italy
| | - Marina Scarlato
- d Dept. of Neurosciences and Institute of Experimental Neurology (INSpe) , San Raffaele Scientific Institute , Milan , Italy
| | - Olimpia Musumeci
- e Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Antonio Toscano
- e Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Emilio Clementi
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy.,f Unit of Clinical Pharmacology, CNR Institute of Neuroscience, Department of Biomedical and Clinical Sciences , University Hospital "Luigi Sacco", Università di Milano , Milan , Italy
| | - Maria Teresa Bassi
- a Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology , Bosisio Parini , Lecco , Italy
| |
Collapse
|
45
|
Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat Commun 2018; 9:2932. [PMID: 30050131 PMCID: PMC6062606 DOI: 10.1038/s41467-018-05345-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/29/2018] [Indexed: 01/09/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery mediates cargo sorting, membrane deformation and membrane scission on the surface of endosomes, generating intraluminal vesicles (ILVs) to degrade signaling receptors. By live-cell imaging of individual endosomes in human cells, we find that ESCRT proteins are recruited in a repetitive pattern: ESCRT-0 and -I show a gradual and linear recruitment and dissociation, whereas ESCRT-III and its regulatory ATPase VPS4 display fast and transient dynamics. Electron microscopy shows that ILVs are formed consecutively, starting immediately after endocytic uptake of cargo proteins and correlating with the repeated ESCRT recruitment waves, unraveling the timing of ILV formation. Clathrin, recruited by ESCRT-0, is required for timely ESCRT-0 dissociation, efficient ILV formation, correct ILV size and cargo degradation. Thus, cargo sorting and ILV formation occur by concerted, coordinated and repetitive recruitment waves of individual ESCRT subcomplexes and are controlled by clathrin. Intraluminal vesicles are formed by the endosomal sorting complex required for transport (ESCRT) machinery. Here, the authors unravel the timing of vesicle budding, and that endosomal clathrin regulates concerted recruitment of ESCRT subcomplexes, required for efficient membrane remodeling.
Collapse
|
46
|
Mejlvang J, Olsvik H, Svenning S, Bruun JA, Abudu YP, Larsen KB, Brech A, Hansen TE, Brenne H, Hansen T, Stenmark H, Johansen T. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol 2018; 217:3640-3655. [PMID: 30018090 PMCID: PMC6168274 DOI: 10.1083/jcb.201711002] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/20/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023] Open
Abstract
Mejlvang et al. show that amino acid starvation of human fibroblasts and a lung cancer cell line induces a rapid and selective degradation of a subset of proteins, including autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4, that is independent from mTOR and canonical macroautophagy but dependent on endosomal microautophagy. It is not clear to what extent starvation-induced autophagy affects the proteome on a global scale and whether it is selective. In this study, we report based on quantitative proteomics that cells during the first 4 h of acute starvation elicit lysosomal degradation of up to 2–3% of the proteome. The most significant changes are caused by an immediate autophagic response elicited by shortage of amino acids but executed independently of mechanistic target of rapamycin and macroautophagy. Intriguingly, the autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4 are among the most efficiently degraded substrates. Already 1 h after induction of starvation, they are rapidly degraded by a process that selectively delivers autophagy receptors to vesicles inside late endosomes/multivesicular bodies depending on the endosomal sorting complex required for transport III (ESCRT-III). Our data support a model in which amino acid deprivation elicits endocytosis of specific membrane receptors, induction of macroautophagy, and rapid degradation of autophagy receptors by endosomal microautophagy.
Collapse
Affiliation(s)
- Jakob Mejlvang
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hallvard Olsvik
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Steingrim Svenning
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jack-Ansgar Bruun
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Andreas Brech
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tom E Hansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hanne Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terkel Hansen
- Department of Pharmacy, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
47
|
Anquetil T, Payrastre B, Gratacap MP, Viaud J. The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer Metastasis Rev 2018; 37:477-489. [DOI: 10.1007/s10555-018-9735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Methylation-induced silencing of SPG20 facilitates gastric cancer cell proliferation by activating the EGFR/MAPK pathway. Biochem Biophys Res Commun 2018; 500:411-417. [DOI: 10.1016/j.bbrc.2018.04.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
|
49
|
Murthy D, Attri KS, Singh PK. Phosphoinositide 3-Kinase Signaling Pathway in Pancreatic Ductal Adenocarcinoma Progression, Pathogenesis, and Therapeutics. Front Physiol 2018; 9:335. [PMID: 29670543 PMCID: PMC5893816 DOI: 10.3389/fphys.2018.00335] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by its sudden manifestation, rapid progression, poor prognosis, and limited therapeutic options. Genetic alterations in key signaling pathways found in early pancreatic lesions are pivotal for the development and progression of pancreatic intraepithelial neoplastic lesions into invasive carcinomas. More than 90% of PDAC tumors harbor driver mutations in K-Ras that activate various downstream effector-signaling pathways, including the phosphoinositide-3-kinase (PI3K) pathway. The PI3K pathway also responds to stimuli from various growth factor receptors present on the cancer cell surface that, in turn, modulate downstream signaling cascades. Thus, the inositide signaling acts as a central node in the complex cellular signaling networks to impact cancer cell growth, motility, metabolism, and survival. Also, recent publications highlight the importance of PI3K signaling in stromal cells, whereby PI3K signaling modifies the tumor microenvironment to dictate disease outcome. The high incidence of mutations in the PI3K signaling cascade, accompanied by activation of parallel signaling pathways, makes PI3K a promising candidate for drug therapy. In this review, we describe the role of PI3K signaling in pancreatic cancer development and progression. We also discuss the crosstalk between PI3K and other major cellular signaling cascades, and potential therapeutic opportunities for targeting pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kuldeep S Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
50
|
|