1
|
Tilwani S, Gandhi K, Dalal SN. 14-3-3ε conditional knockout mice exhibit defects in the development of the epidermis. FEBS Lett 2024; 598:3005-3020. [PMID: 39511902 DOI: 10.1002/1873-3468.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The epidermis is a stratified epithelium that functions as the first line of defense against pathogenic invasion and acts as a barrier preventing water loss. In this study, we aimed to decipher the role of 14-3-3ε in the development of the epidermis. We report that loss of 14-3-3ε in the epidermis of juvenile and adult mice reduces cell division in the basal layer and increases the percentage of cells with multiple centrosomes, leading to a reduction in the thickness of the basal and stratified layers. We also demonstrate a decrease in the expression of differentiation markers, although no gross morphological defects in the skin or adverse effects on the survival of the mice were observed. These results suggest that loss of 14-3-3ε in the epidermis may lead to defects in proliferation and differentiation.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sorab N Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Moussa AT, Cosenza MR, Wohlfromm T, Brobeil K, Hill A, Patrizi A, Müller-Decker K, Holland-Letz T, Jauch A, Kraft B, Krämer A. STIL overexpression shortens lifespan and reduces tumor formation in mice. PLoS Genet 2024; 20:e1011460. [PMID: 39466849 PMCID: PMC11542878 DOI: 10.1371/journal.pgen.1011460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Centrosomes are the major microtubule organizing centers of animal cells. Supernumerary centrosomes are a common feature of human tumors and associated with karyotype abnormalities and aggressive disease, but whether they are cause or consequence of cancer remains controversial. Here, we analyzed the consequences of centrosome amplification by generating transgenic mice in which centrosome numbers can be increased by overexpression of the structural centrosome protein STIL. We show that STIL overexpression induces centrosome amplification and aneuploidy, leading to senescence, apoptosis, and impaired proliferation in mouse embryonic fibroblasts, and microcephaly with increased perinatal lethality and shortened lifespan in mice. Importantly, both overall tumor formation in mice with constitutive, global STIL overexpression and chemical skin carcinogenesis in animals with inducible, skin-specific STIL overexpression were reduced, an effect that was not rescued by concomitant interference with p53 function. These results suggest that supernumerary centrosomes impair proliferation in vitro as well as in vivo, resulting in reduced lifespan and delayed spontaneous as well as carcinogen-induced tumor formation.
Collapse
Affiliation(s)
- Amira-Talaat Moussa
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Al Sharkia, Egypt
| | - Marco R. Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Timothy Wohlfromm
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Katharina Brobeil
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Anthony Hill
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Bianca Kraft
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Stracker TH. Regulation of p53 by the mitotic surveillance/stopwatch pathway: implications in neurodevelopment and cancer. Front Cell Dev Biol 2024; 12:1451274. [PMID: 39398482 PMCID: PMC11466822 DOI: 10.3389/fcell.2024.1451274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024] Open
Abstract
The transcription factor p53 (encoded by TP53) plays diverse roles in human development and disease. While best known for its role in tumor suppression, p53 signaling also influences mammalian development by triggering cell fate decisions in response to a wide variety of stresses. After over 4 decades of study, a new pathway that triggers p53 activation in response to mitotic delays was recently identified. Termed the mitotic surveillance or mitotic stopwatch pathway, the USP28 and 53BP1 proteins activate p53 in response to delayed mitotic progression to control cell fate and promote genomic stability. In this Minireview, I discuss its identification, potential roles in neurodevelopmental disorders and cancer, as well as explore outstanding questions about its function, regulation and potential use as a biomarker for anti-mitotic therapies.
Collapse
Affiliation(s)
- Travis H. Stracker
- Center for Cancer Research, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
4
|
Skinner MW, Simington CJ, López-Jiménez P, Baran KA, Xu J, Dayani Y, Pryzhkova MV, Page J, Gómez R, Holland AJ, Jordan PW. Spermatocytes have the capacity to segregate chromosomes despite centriole duplication failure. EMBO Rep 2024; 25:3373-3405. [PMID: 38943004 PMCID: PMC11316026 DOI: 10.1038/s44319-024-00187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Centrosomes are the canonical microtubule organizing centers (MTOCs) of most mammalian cells, including spermatocytes. Centrosomes comprise a centriole pair within a structurally ordered and dynamic pericentriolar matrix (PCM). Unlike in mitosis, where centrioles duplicate once per cycle, centrioles undergo two rounds of duplication during spermatogenesis. The first duplication is during early meiotic prophase I, and the second is during interkinesis. Using mouse mutants and chemical inhibition, we have blocked centriole duplication during spermatogenesis and determined that non-centrosomal MTOCs (ncMTOCs) can mediate chromosome segregation. This mechanism is different from the acentriolar MTOCs that form bipolar spindles in oocytes, which require PCM components, including gamma-tubulin and CEP192. From an in-depth analysis, we identified six microtubule-associated proteins, TPX2, KIF11, NuMA, and CAMSAP1-3, that localized to the non-centrosomal MTOC. These factors contribute to a mechanism that ensures bipolar MTOC formation and chromosome segregation during spermatogenesis when centriole duplication fails. However, despite the successful completion of meiosis and round spermatid formation, centriole inheritance and PLK4 function are required for normal spermiogenesis and flagella assembly, which are critical to ensure fertility.
Collapse
Affiliation(s)
- Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carter J Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo López-Jiménez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
| | - Kerstin A Baran
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jingwen Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yaron Dayani
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jesús Page
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Rocío Gómez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
5
|
Martinez A, Stemm-Wolf AJ, Sheridan RM, Taliaferro MJ, Pearson CG. The Unkempt RNA binding protein reveals a local translation program in centriole overduplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605660. [PMID: 39131325 PMCID: PMC11312568 DOI: 10.1101/2024.07.29.605660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Excess centrosomes cause defects in mitosis, cell-signaling, and cell migration, and therefore their assembly is tightly regulated. Plk4 controls centriole duplication at the heart of centrosome assembly, and elevation of Plk4 promotes centrosome amplification (CA), a founding event of tumorigenesis. Here, we investigate the transcriptional consequences of elevated Plk4 and find Unkempt, a gene encoding an RNA binding protein with roles in translational regulation, to be one of only two upregulated mRNAs. Unk protein localizes to centrosomes and Cep131-positive centriolar satellites and is required for Plk4-induced centriole overduplication in an RNA-binding dependent manner. Translation is enriched at centrosomes and centriolar satellites with Unk and Cep131 promoting this localized translation. A transient centrosomal downregulation of translation occurs early in Plk4-induced CA. CNOT9, an Unk interactor and component of the translational inhibitory CCR4-NOT complex, localizes to centrosomes at this time. In summary, centriolar satellites and Unk promote local translation as part of a translational program that ensures centriole duplication.
Collapse
Affiliation(s)
- Abraham Martinez
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Ryan M. Sheridan
- RNA Bioscience Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora CO 80045
| | - Matthew J. Taliaferro
- RNA Bioscience Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora CO 80045
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
6
|
Meyer-Gerards C, Bazzi H. Developmental and tissue-specific roles of mammalian centrosomes. FEBS J 2024. [PMID: 38935637 DOI: 10.1111/febs.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Centrosomes are dominant microtubule organizing centers in animal cells with a pair of centrioles at their core. They template cilia during interphase and help organize the mitotic spindle for a more efficient cell division. Here, we review the roles of centrosomes in the early developing mouse and during organ formation. Mammalian cells respond to centrosome loss-of-function by activating the mitotic surveillance pathway, a timing mechanism that, when a defined mitotic duration is exceeded, leads to p53-dependent cell death in the descendants. Mouse embryos without centrioles are highly susceptible to this pathway and undergo embryonic arrest at mid-gestation. The complete loss of the centriolar core results in earlier and more severe phenotypes than that of other centrosomal proteins. Finally, different developing tissues possess varying thresholds and mount graded responses to the loss of centrioles that go beyond the germ layer of origin.
Collapse
Affiliation(s)
- Charlotte Meyer-Gerards
- Department of Cell Biology of the Skin, Medical Faculty, University of Cologne, Germany
- Department of Dermatology and Venereology, Medical Faculty, University of Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Germany
- Graduate School for Biological Sciences, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Germany
| | - Hisham Bazzi
- Department of Cell Biology of the Skin, Medical Faculty, University of Cologne, Germany
- Department of Dermatology and Venereology, Medical Faculty, University of Cologne, Germany
- The Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Medical Faculty, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Germany
| |
Collapse
|
7
|
Yoshino Y, Ogoh H, Iichi Y, Sasaki T, Yoshida T, Ichimura S, Nakayama M, Xi W, Fujita H, Kikuchi M, Fang Z, Li X, Abe T, Futakuchi M, Nakamura Y, Watanabe T, Chiba N. Knockout of Brca1-interacting factor Ola1 in female mice induces tumors with estrogen suppressible centrosome amplification. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167138. [PMID: 38537683 DOI: 10.1016/j.bbadis.2024.167138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Obg-like ATPase 1 (OLA1) is a binding protein of Breast cancer gene 1 (BRCA1), germline pathogenic variants of which cause hereditary breast cancer. Cancer-associated variants of BRCA1 and OLA1 are deficient in the regulation of centrosome number. Although OLA1 might function as a tumor suppressor, the relevance of OLA1 deficiency to carcinogenesis is unclear. Here, we generated Ola1 knockout mice. Aged female Ola1+/- mice developed lymphoproliferative diseases, including malignant lymphoma. The lymphoma tissues had low expression of Ola1 and an increase in the number of cells with centrosome amplification. Interestingly, the proportion of cells with centrosome amplification in normal spleen from Ola1+/- mice was higher in male mice than in female mice. In human cells, estrogen stimulation attenuated centrosome amplification induced by OLA1 knockdown. Previous reports indicate that prominent centrosome amplification causes cell death but does not promote tumorigenesis. Thus, in the current study, the mild centrosome amplification observed under estrogen stimulation in Ola1+/- female mice is likely more tumorigenic than the prominent centrosome amplification observed in Ola1+/- male mice. Our findings provide a possible sex-dependent mechanism of the tumor suppressor function of OLA1.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Yudai Iichi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Sasaki
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takahiro Yoshida
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shiori Ichimura
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Masahiro Nakayama
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Laboratory of Molecular Immunology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Wu Xi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Hiroki Fujita
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Megumi Kikuchi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Zhenzhou Fang
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Xingming Li
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-Nishimachi, Nara, 630-8506, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan; Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
8
|
Sankaralingam P, Wang S, Liu Y, Oegema KF, O'Connell KF. The kinase ZYG-1 phosphorylates the cartwheel protein SAS-5 to drive centriole assembly in C. elegans. EMBO Rep 2024; 25:2698-2721. [PMID: 38744971 PMCID: PMC11169420 DOI: 10.1038/s44319-024-00157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5S10A exhibit centriole assembly failure, while those expressing SAS-5S331/338/340A possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.
Collapse
Affiliation(s)
- Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yan Liu
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Karen F Oegema
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin F O'Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Gabriel GC, Yagi H, Tan T, Bais AS, Glennon BJ, Stapleton MC, Huang L, Reynolds WT, Shaffer MG, Ganapathiraju M, Simon D, Panigrahy A, Wu YL, Lo CW. Mitotic Block and Epigenetic Repression Underlie Neurodevelopmental Defects and Neurobehavioral Deficits in Congenital Heart Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.05.565716. [PMID: 38464057 PMCID: PMC10925221 DOI: 10.1101/2023.11.05.565716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Poor neurodevelopment is often observed with congenital heart disease (CHD), especially with mutations in chromatin modifiers. Here analysis of mice with hypoplastic left heart syndrome (HLHS) arising from mutations in Sin3A associated chromatin modifier Sap130 , and adhesion protein Pcdha9, revealed neurodevelopmental and neurobehavioral deficits reminiscent of those in HLHS patients. Microcephaly was associated with impaired cortical neurogenesis, mitotic block, and increased apoptosis. Transcriptional profiling indicated dysregulated neurogenesis by REST, altered CREB signaling regulating memory and synaptic plasticity, and impaired neurovascular coupling modulating cerebral blood flow. Many neurodevelopmental/neurobehavioral disease pathways were recovered, including autism and cognitive impairment. These same pathways emerged from genome-wide DNA methylation and Sap130 chromatin immunoprecipitation sequencing analyses, suggesting epigenetic perturbation. Mice with Pcdha9 mutation or forebrain-specific Sap130 deletion without CHD showed learning/memory deficits and autism-like behavior. These novel findings provide mechanistic insights indicating the adverse neurodevelopment in HLHS may involve cell autonomous/nonautonomous defects and epigenetic dysregulation and suggest new avenues for therapy.
Collapse
|
10
|
Cheng T, Mariappan A, Langner E, Shim K, Gopalakrishnan J, Mahjoub MR. Inhibiting centrosome clustering reduces cystogenesis and improves kidney function in autosomal dominant polycystic kidney disease. JCI Insight 2024; 9:e172047. [PMID: 38385746 DOI: 10.1172/jci.insight.172047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder accounting for approximately 5% of patients with renal failure, yet therapeutics for the treatment of ADPKD remain limited. ADPKD tissues display abnormalities in the biogenesis of the centrosome, a defect that can cause genome instability, aberrant ciliary signaling, and secretion of pro-inflammatory factors. Cystic cells form excess centrosomes via a process termed centrosome amplification (CA), which causes abnormal multipolar spindle configurations, mitotic catastrophe, and reduced cell viability. However, cells with CA can suppress multipolarity via "centrosome clustering," a key mechanism by which cells circumvent apoptosis. Here, we demonstrate that inhibiting centrosome clustering can counteract the proliferation of renal cystic cells with high incidences of CA. Using ADPKD human cells and mouse models, we show that preventing centrosome clustering with 2 inhibitors, CCB02 and PJ34, blocks cyst initiation and growth in vitro and in vivo. Inhibiting centrosome clustering activates a p53-mediated surveillance mechanism leading to apoptosis, reduced cyst expansion, decreased interstitial fibrosis, and improved kidney function. Transcriptional analysis of kidneys from treated mice identified pro-inflammatory signaling pathways implicated in CA-mediated cystogenesis and fibrosis. Our results demonstrate that centrosome clustering is a cyst-selective target for the improvement of renal morphology and function in ADPKD.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ewa Langner
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyuhwan Shim
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Jena, Germany
| | - Moe R Mahjoub
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Lei Q, Yu Q, Yang N, Xiao Z, Song C, Zhang R, Yang S, Liu Z, Deng H. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem 2024; 265:116115. [PMID: 38199166 DOI: 10.1016/j.ejmech.2023.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.
Collapse
Affiliation(s)
- Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Na Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaolin Xiao
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuxin Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Ribeiro JH, Altinisik N, Rajan N, Verslegers M, Baatout S, Gopalakrishnan J, Quintens R. DNA damage and repair: underlying mechanisms leading to microcephaly. Front Cell Dev Biol 2023; 11:1268565. [PMID: 37881689 PMCID: PMC10597653 DOI: 10.3389/fcell.2023.1268565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
DNA-damaging agents and endogenous DNA damage constantly harm genome integrity. Under genotoxic stress conditions, the DNA damage response (DDR) machinery is crucial in repairing lesions and preventing mutations in the basic structure of the DNA. Different repair pathways are implicated in the resolution of such lesions. For instance, the non-homologous DNA end joining and homologous recombination pathways are central cellular mechanisms by which eukaryotic cells maintain genome integrity. However, defects in these pathways are often associated with neurological disorders, indicating the pivotal role of DDR in normal brain development. Moreover, the brain is the most sensitive organ affected by DNA-damaging agents compared to other tissues during the prenatal period. The accumulation of lesions is believed to induce cell death, reduce proliferation and premature differentiation of neural stem and progenitor cells, and reduce brain size (microcephaly). Microcephaly is mainly caused by genetic mutations, especially genes encoding proteins involved in centrosomes and DNA repair pathways. However, it can also be induced by exposure to ionizing radiation and intrauterine infections such as the Zika virus. This review explains mammalian cortical development and the major DNA repair pathways that may lead to microcephaly when impaired. Next, we discuss the mechanisms and possible exposures leading to DNA damage and p53 hyperactivation culminating in microcephaly.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nazlican Altinisik
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nicholas Rajan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jay Gopalakrishnan
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
13
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
15
|
Lupan BM, Solecki RA, Musso CM, Alsina FC, Silver DL. The exon junction complex component EIF4A3 is essential for mouse and human cortical progenitor mitosis and neurogenesis. Development 2023; 150:dev201619. [PMID: 37139782 PMCID: PMC10233715 DOI: 10.1242/dev.201619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Mutations in components of the exon junction complex (EJC) are associated with neurodevelopment and disease. In particular, reduced levels of the RNA helicase EIF4A3 cause Richieri-Costa-Pereira syndrome (RCPS) and copy number variations are linked to intellectual disability. Consistent with this, Eif4a3 haploinsufficient mice are microcephalic. Altogether, this implicates EIF4A3 in cortical development; however, the underlying mechanisms are poorly understood. Here, we use mouse and human models to demonstrate that EIF4A3 promotes cortical development by controlling progenitor mitosis, cell fate and survival. Eif4a3 haploinsufficiency in mice causes extensive cell death and impairs neurogenesis. Using Eif4a3;p53 compound mice, we show that apoptosis has the most impact on early neurogenesis, while additional p53-independent mechanisms contribute to later stages. Live imaging of mouse and human neural progenitors reveals that Eif4a3 controls mitosis length, which influences progeny fate and viability. These phenotypes are conserved, as cortical organoids derived from RCPS iPSCs exhibit aberrant neurogenesis. Finally, using rescue experiments we show that EIF4A3 controls neuron generation via the EJC. Altogether, our study demonstrates that EIF4A3 mediates neurogenesis by controlling mitosis duration and cell survival, implicating new mechanisms that underlie EJC-mediated disorders.
Collapse
Affiliation(s)
- Bianca M. Lupan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rachel A. Solecki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Camila M. Musso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Fernando C. Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
16
|
Rukh S, Meechan DW, Maynard TM, Lamantia AS. Out of Line or Altered States? Neural Progenitors as a Target in a Polygenic Neurodevelopmental Disorder. Dev Neurosci 2023; 46:1-21. [PMID: 37231803 DOI: 10.1159/000530898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
The genesis of a mature complement of neurons is thought to require, at least in part, precursor cell lineages in which neural progenitors have distinct identities recognized by exclusive expression of one or a few molecular markers. Nevertheless, limited progenitor types distinguished by specific markers and lineal progression through such subclasses cannot easily yield the magnitude of neuronal diversity in most regions of the nervous system. The late Verne Caviness, to whom this edition of Developmental Neuroscience is dedicated, recognized this mismatch. In his pioneering work on the histogenesis of the cerebral cortex, he acknowledged the additional flexibility required to generate multiple classes of cortical projection and interneurons. This flexibility may be accomplished by establishing cell states in which levels rather than binary expression or repression of individual genes vary across each progenitor's shared transcriptome. Such states may reflect local, stochastic signaling via soluble factors or coincidence of cell surface ligand/receptor pairs in subsets of neighboring progenitors. This probabilistic, rather than determined, signaling could modify transcription levels via multiple pathways within an apparently uniform population of progenitors. Progenitor states, therefore, rather than lineal relationships between types may underlie the generation of neuronal diversity in most regions of the nervous system. Moreover, mechanisms that influence variation required for flexible progenitor states may be targets for pathological changes in a broad range of neurodevelopmental disorders, especially those with polygenic origins.
Collapse
Affiliation(s)
- Shah Rukh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Daniel W Meechan
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Thomas M Maynard
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Anthony-Samuel Lamantia
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
17
|
Bery A, Etienne O, Mouton L, Mokrani S, Granotier-Beckers C, Gauthier LR, Feat-Vetel J, Kortulewski T, Pérès EA, Desmaze C, Lestaveal P, Barroca V, Laugeray A, Boumezbeur F, Abramovski V, Mortaud S, Menuet A, Le Bihan D, Villartay JPD, Boussin FD. XLF/Cernunnos loss impairs mouse brain development by altering symmetric proliferative divisions of neural progenitors. Cell Rep 2023; 42:112342. [PMID: 37027298 DOI: 10.1016/j.celrep.2023.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/20/2022] [Accepted: 03/19/2023] [Indexed: 04/08/2023] Open
Abstract
XLF/Cernunnos is a component of the ligation complex used in classical non-homologous end-joining (cNHEJ), a major DNA double-strand break (DSB) repair pathway. We report neurodevelopmental delays and significant behavioral alterations associated with microcephaly in Xlf-/- mice. This phenotype, reminiscent of clinical and neuropathologic features in humans deficient in cNHEJ, is associated with a low level of apoptosis of neural cells and premature neurogenesis, which consists of an early shift of neural progenitors from proliferative to neurogenic divisions during brain development. We show that premature neurogenesis is related to an increase in chromatid breaks affecting mitotic spindle orientation, highlighting a direct link between asymmetric chromosome segregation and asymmetric neurogenic divisions. This study reveals thus that XLF is required for maintaining symmetric proliferative divisions of neural progenitors during brain development and shows that premature neurogenesis may play a major role in neurodevelopmental pathologies caused by NHEJ deficiency and/or genotoxic stress.
Collapse
Affiliation(s)
- Amandine Bery
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Olivier Etienne
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Laura Mouton
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Sofiane Mokrani
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Christine Granotier-Beckers
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Laurent R Gauthier
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Justyne Feat-Vetel
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Elodie A Pérès
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; NeuroSpin, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Chantal Desmaze
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Philippe Lestaveal
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, 92262 Fontenay-aux-Roses, France
| | - Vilma Barroca
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Antony Laugeray
- Immunologie et Neurogénétique Expérimentales et Moléculaires - UMR7355 CNRS - 3B, rue de la Férollerie, 45071 Orléans, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Vincent Abramovski
- Université Paris Cité, Imagine Institute, Laboratory "Genome Dynamics in the Immune System", Equipe labellisée La LIGUE, INSERM UMR 1163, 75015 Paris, France
| | - Stéphane Mortaud
- Immunologie et Neurogénétique Expérimentales et Moléculaires - UMR7355 CNRS - 3B, rue de la Férollerie, 45071 Orléans, France; Université d'Orléans, Orléans, France
| | - Arnaud Menuet
- Immunologie et Neurogénétique Expérimentales et Moléculaires - UMR7355 CNRS - 3B, rue de la Férollerie, 45071 Orléans, France; Université d'Orléans, Orléans, France
| | - Denis Le Bihan
- NeuroSpin, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Pierre de Villartay
- Université Paris Cité, Imagine Institute, Laboratory "Genome Dynamics in the Immune System", Equipe labellisée La LIGUE, INSERM UMR 1163, 75015 Paris, France
| | - François D Boussin
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
18
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484 DOI: 10.5483/bmbrep.2023-0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 12/10/2024] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/23/2023] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
20
|
Asif M, Abdullah U, Nürnberg P, Tinschert S, Hussain MS. Congenital Microcephaly: A Debate on Diagnostic Challenges and Etiological Paradigm of the Shift from Isolated/Non-Syndromic to Syndromic Microcephaly. Cells 2023; 12:cells12040642. [PMID: 36831309 PMCID: PMC9954724 DOI: 10.3390/cells12040642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Congenital microcephaly (CM) exhibits broad clinical and genetic heterogeneity and is thus categorized into several subtypes. However, the recent bloom of disease-gene discoveries has revealed more overlaps than differences in the underlying genetic architecture for these clinical sub-categories, complicating the differential diagnosis. Moreover, the mechanism of the paradigm shift from a brain-restricted to a multi-organ phenotype is only vaguely understood. This review article highlights the critical factors considered while defining CM subtypes. It also presents possible arguments on long-standing questions of the brain-specific nature of CM caused by a dysfunction of the ubiquitously expressed proteins. We argue that brain-specific splicing events and organ-restricted protein expression may contribute in part to disparate clinical manifestations. We also highlight the role of genetic modifiers and de novo variants in the multi-organ phenotype of CM and emphasize their consideration in molecular characterization. This review thus attempts to expand our understanding of the phenotypic and etiological variability in CM and invites the development of more comprehensive guidelines.
Collapse
Affiliation(s)
- Maria Asif
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Rawalpindi 46300, Pakistan
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sigrid Tinschert
- Zentrum Medizinische Genetik, Medizinische Universität, 6020 Innsbruck, Austria
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
21
|
Ortiz-Álvarez G, Fortoul A, Srivastava A, Moreau MX, Bouloudi B, Mailhes-Hamon C, Delgehyr N, Faucourt M, Bahin M, Blugeon C, Breau M, Géli V, Causeret F, Meunier A, Spassky N. p53/p21 pathway activation contributes to the ependymal fate decision downstream of GemC1. Cell Rep 2022; 41:111810. [PMID: 36516767 DOI: 10.1016/j.celrep.2022.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiciliated ependymal cells and adult neural stem cells are components of the adult neurogenic niche, essential for brain homeostasis. These cells share a common glial cell lineage regulated by the Geminin family members Geminin and GemC1/Mcidas. Ependymal precursors require GemC1/Mcidas expression to massively amplify centrioles and become multiciliated cells. Here, we show that GemC1-dependent differentiation is initiated in actively cycling radial glial cells, in which a DNA damage response, including DNA replication-associated damage and dysfunctional telomeres, is induced, without affecting cell survival. Genotoxic stress is not sufficient by itself to induce ependymal cell differentiation, although the absence of p53 or p21 in progenitors hinders differentiation by maintaining cell division. Activation of the p53-p21 pathway downstream of GemC1 leads to cell-cycle slowdown/arrest, which permits timely onset of ependymal cell differentiation in progenitor cells.
Collapse
Affiliation(s)
- Gonzalo Ortiz-Álvarez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Aurélien Fortoul
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Mathieu Bahin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Corinne Blugeon
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Équipe Labellisée) Marseille, 13009 Marseille, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Université PSL, 75005 Paris, France.
| |
Collapse
|
22
|
Grange LJ, Reynolds JJ, Ullah F, Isidor B, Shearer RF, Latypova X, Baxley RM, Oliver AW, Ganesh A, Cooke SL, Jhujh SS, McNee GS, Hollingworth R, Higgs MR, Natsume T, Khan T, Martos-Moreno GÁ, Chupp S, Mathew CG, Parry D, Simpson MA, Nahavandi N, Yüksel Z, Drasdo M, Kron A, Vogt P, Jonasson A, Seth SA, Gonzaga-Jauregui C, Brigatti KW, Stegmann APA, Kanemaki M, Josifova D, Uchiyama Y, Oh Y, Morimoto A, Osaka H, Ammous Z, Argente J, Matsumoto N, Stumpel CTRM, Taylor AMR, Jackson AP, Bielinsky AK, Mailand N, Le Caignec C, Davis EE, Stewart GS. Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy. Nat Commun 2022; 13:6664. [PMID: 36333305 PMCID: PMC9636423 DOI: 10.1038/s41467-022-34349-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.
Collapse
Affiliation(s)
- Laura J Grange
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Farid Ullah
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Robert F Shearer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, UK
| | - Anil Ganesh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sophie L Cooke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gavin S McNee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert Hollingworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
| | - Tahir Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, Guy's Hospital, King's College London, London, UK
| | - Nahid Nahavandi
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Zafer Yüksel
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Mojgan Drasdo
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Anja Kron
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Petra Vogt
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Annemarie Jonasson
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | | | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Masato Kanemaki
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | | | - Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Oh
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Akira Morimoto
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA Alimentación/IMDEA Food, Madrid, Spain
| | - Naomichi Matsumoto
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Constance T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cedric Le Caignec
- Centre Hospitalier Universitaire Toulouse, Service de Génétique Médicale and ToNIC, Toulouse NeuroImaging Center, Inserm, UPS, Université de Toulouse, Toulouse, France.
| | - Erica E Davis
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Department of Pediatrics; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
23
|
Jaylet T, Quintens R, Benotmane MA, Luukkonen J, Tanaka IB, Ibanez C, Durand C, Sachana M, Azimzadeh O, Adam-Guillermin C, Tollefsen KE, Laurent O, Audouze K, Armant O. Development of an Adverse Outcome Pathway for radiation-induced microcephaly via expert consultation and machine learning. Int J Radiat Biol 2022; 98:1752-1762. [PMID: 35947014 DOI: 10.1080/09553002.2022.2110312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brain development during embryogenesis and in early postnatal life is particularly complex and involves the interplay of many cellular processes and molecular mechanisms, making it extremely vulnerable to exogenous insults, including ionizing radiation (IR). Microcephaly is one of the most frequent neurodevelopmental abnormalities that is characterized by small brain size, and is often associated with intellectual deficiency. Decades of research span from epidemiological data on in utero exposure of the A-bomb survivors, to studies on animal and cellular models that allowed deciphering the most prominent molecular mechanisms leading to microcephaly. The Adverse Outcome Pathway (AOP) framework is used to organize, evaluate and portray the scientific knowledge of toxicological effects spanning different biological levels of organizations, from the initial interaction with molecular targets to the occurrence of a disease or adversity. In the present study, the framework was used in an attempt to organize the current scientific knowledge on microcephaly progression in the context of ionizing radiation (IR) exposure. This work was performed by a group of experts formed during a recent workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. Here we report on the development of a putative AOP for congenital microcephaly resulting from IR exposure based on discussions of the working group and we emphasize the use of a novel machine-learning approach to assist in the screening of the available literature to develop AOPs. CONCLUSION The expert consultation led to the identification of crucial biological events for the progression of microcephaly upon exposure to IR, and highlighted current knowledge gaps. The machine learning approach was successfully used to screen the existing knowledge and helped to rapidly screen the body of evidence and in particular the epidemiological data. This systematic review approach also ensured that the analysis was sufficiently comprehensive to identify the most relevant data and facilitate rapid and consistent AOP development. We anticipate that as machine learning approaches become more user-friendly through easy-to-use web interface, this would allow AOP development to become more efficient and less time consuming.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | | | - Jukka Luukkonen
- University of Eastern Finland, Kuopio Campus, Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 lenomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Chrystelle Ibanez
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Christelle Durand
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, 75775 CEDEX 16 Paris, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (Bfs), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Olivier Laurent
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| |
Collapse
|
24
|
González-Martínez J, Cwetsch AW, Gilabert-Juan J, Gómez J, Garaulet G, Schneider P, de Cárcer G, Mulero F, Caleiras E, Megías D, Porlan E, Malumbres M. Genetic interaction between PLK1 and downstream MCPH proteins in the control of centrosome asymmetry and cell fate during neural progenitor division. Cell Death Differ 2022; 29:1474-1485. [PMID: 35058575 PMCID: PMC9345906 DOI: 10.1038/s41418-022-00937-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Alteration of centrosome function and dynamics results in major defects during chromosome segregation and is associated with primary autosomal microcephaly (MCPH). Despite the knowledge accumulated in the last few years, why some centrosomal defects specifically affect neural progenitors is not clear. We describe here that the centrosomal kinase PLK1 controls centrosome asymmetry and cell fate in neural progenitors during development. Gain- or loss-of-function mutations in Plk1, as well as deficiencies in the MCPH genes Cdk5rap2 (MCPH3) and Cep135 (MCPH8), lead to abnormal asymmetry in the centrosomes carrying the mother and daughter centriole in neural progenitors. However, whereas loss of MCPH proteins leads to increased centrosome asymmetry and microcephaly, deficient PLK1 activity results in reduced asymmetry and increased expansion of neural progenitors and cortical growth during mid-gestation. The combination of PLK1 and MCPH mutations results in increased microcephaly accompanied by more aggressive centrosomal and mitotic abnormalities. In addition to highlighting the delicate balance in the level and activity of centrosomal regulators, these data suggest that human PLK1, which maps to 16p12.1, may contribute to the neurodevelopmental defects associated with 16p11.2-p12.2 microdeletions and microduplications in children with developmental delay and dysmorphic features.
Collapse
Affiliation(s)
- José González-Martínez
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrzej W Cwetsch
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Imagine Institute of Genetic Diseases, University of Paris, Paris, France
| | - Javier Gilabert-Juan
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Departamento de Anatomía, Histología y Neurociencia. Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jesús Gómez
- Confocal Microscopy Core Unit, CNIO, Madrid, Spain
| | | | - Paulina Schneider
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo de Cárcer
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB-CSIC), 28029, Madrid, Spain
| | | | | | - Diego Megías
- Confocal Microscopy Core Unit, CNIO, Madrid, Spain
| | - Eva Porlan
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Departamento de Biología Molecular, UAM, Spain, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
25
|
Sapir T, Kshirsagar A, Gorelik A, Olender T, Porat Z, Scheffer IE, Goldstein DB, Devinsky O, Reiner O. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex. Nat Commun 2022; 13:4209. [PMID: 35864088 PMCID: PMC9304408 DOI: 10.1038/s41467-022-31752-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
HNRNPU encodes the heterogeneous nuclear ribonucleoprotein U, which participates in RNA splicing and chromatin organization. Microdeletions in the 1q44 locus encompassing HNRNPU and other genes and point mutations in HNRNPU cause brain disorders, including early-onset seizures and severe intellectual disability. We aimed to understand HNRNPU’s roles in the developing brain. Our work revealed that HNRNPU loss of function leads to rapid cell death of both postmitotic neurons and neural progenitors, with an apparent higher sensitivity of the latter. Further, expression and alternative splicing of multiple genes involved in cell survival, cell motility, and synapse formation are affected following Hnrnpu’s conditional truncation. Finally, we identified pharmaceutical and genetic agents that can partially reverse the loss of cortical structures in Hnrnpu mutated embryonic brains, ameliorate radial neuronal migration defects and rescue cultured neural progenitors’ cell death. HNRNPU is an RNA splicing protein associated with brain disorders such as early onset seizures. Here they show that HNRNPU functions to maintain neural progenitors and their progeny by regulating splicing of key neuronal genes.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ingrid E Scheffer
- The University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, VIC, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
26
|
Centrosome Defects in Hematological Malignancies: Molecular Mechanisms and Therapeutic Insights. BLOOD SCIENCE 2022; 4:143-151. [DOI: 10.1097/bs9.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
|
27
|
Tkach JM, Philip R, Sharma A, Strecker J, Durocher D, Pelletier L. Global cellular response to chemical perturbation of PLK4 activity and abnormal centrosome number. eLife 2022; 11:e73944. [PMID: 35758262 PMCID: PMC9236612 DOI: 10.7554/elife.73944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/04/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes act as the main microtubule organizing center (MTOC) in metazoans. Centrosome number is tightly regulated by limiting centriole duplication to a single round per cell cycle. This control is achieved by multiple mechanisms, including the regulation of the protein kinase PLK4, the most upstream facilitator of centriole duplication. Altered centrosome numbers in mouse and human cells cause p53-dependent growth arrest through poorly defined mechanisms. Recent work has shown that the E3 ligase TRIM37 is required for cell cycle arrest in acentrosomal cells. To gain additional insights into this process, we undertook a series of genome-wide CRISPR/Cas9 screens to identify factors important for growth arrest triggered by treatment with centrinone B, a selective PLK4 inhibitor. We found that TRIM37 is a key mediator of growth arrest after partial or full PLK4 inhibition. Interestingly, PLK4 cellular mobility decreased in a dose-dependent manner after centrinone B treatment. In contrast to recent work, we found that growth arrest after PLK4 inhibition correlated better with PLK4 activity than with mitotic length or centrosome number. These data provide insights into the global response to changes in centrosome number and PLK4 activity and extend the role for TRIM37 in regulating the abundance, localization, and function of centrosome proteins.
Collapse
Affiliation(s)
- Johnny M Tkach
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Reuben Philip
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
| | - Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Sinai Health SystemTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
28
|
Kalogeropoulou A, Mougkogianni M, Iliadou M, Nikolopoulou E, Flordelis S, Kanellou A, Arbi M, Nikou S, Nieminuszczy J, Niedzwiedz W, Kardamakis D, Bravou V, Lygerou Z, Taraviras S. Intrinsic neural stem cell properties define brain hypersensitivity to genotoxic stress. Stem Cell Reports 2022; 17:1395-1410. [PMID: 35623353 PMCID: PMC9214316 DOI: 10.1016/j.stemcr.2022.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Impaired replication has been previously linked to growth retardation and microcephaly; however, why the brain is critically affected compared with other organs remains elusive. Here, we report the differential response between early neural progenitors (neuroepithelial cells [NECs]) and fate-committed neural progenitors (NPs) to replication licensing defects. Our results show that, while NPs can tolerate altered expression of licensing factors, NECs undergo excessive replication stress, identified by impaired replication, increased DNA damage, and defective cell-cycle progression, leading eventually to NEC attrition and microcephaly. NECs that possess a short G1 phase license and activate more origins than NPs, by acquiring higher levels of DNA-bound MCMs. In vivo G1 shortening in NPs induces DNA damage upon impaired licensing, suggesting that G1 length correlates with replication stress hypersensitivity. Our findings propose that NECs possess distinct cell-cycle characteristics to ensure fast proliferation, although these inherent features render them susceptible to genotoxic stress.
Collapse
Affiliation(s)
- Argyro Kalogeropoulou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Maria Mougkogianni
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Marianna Iliadou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Eleni Nikolopoulou
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Stefanos Flordelis
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece
| | - Alexandra Kanellou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Marina Arbi
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | | | | | - Dimitrios Kardamakis
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Basic Medical Sciences Building, 1 Asklepiou Str., University Campus, 26504, Rio, Patras, Greece.
| |
Collapse
|
29
|
Casas Gimeno G, Paridaen JTML. The Symmetry of Neural Stem Cell and Progenitor Divisions in the Vertebrate Brain. Front Cell Dev Biol 2022; 10:885269. [PMID: 35693936 PMCID: PMC9174586 DOI: 10.3389/fcell.2022.885269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Robust brain development requires the tight coordination between tissue growth, neuronal differentiation and stem cell maintenance. To achieve this, neural stem cells need to balance symmetric proliferative and terminal divisions with asymmetric divisions. In recent years, the unequal distribution of certain cellular components in mitosis has emerged as a key mechanism to regulate the symmetry of division, and the determination of equal and unequal sister cell fates. Examples of such components include polarity proteins, signaling components, and cellular structures such as endosomes and centrosomes. In several types of neural stem cells, these factors show specific patterns of inheritance that correlate to specific cell fates, albeit the underlying mechanism and the potential causal relationship is not always understood. Here, we review these examples of cellular neural stem and progenitor cell asymmetries and will discuss how they fit into our current understanding of neural stem cell function in neurogenesis in developing and adult brains. We will focus mainly on the vertebrate brain, though we will incorporate relevant examples from invertebrate organisms as well. In particular, we will highlight recent advances in our understanding of the complexities related cellular asymmetries in determining division mode outcomes, and how these mechanisms are spatiotemporally regulated to match the different needs for proliferation and differentiation as the brain forms.
Collapse
|
30
|
Vásquez-Limeta A, Lukasik K, Kong D, Sullenberger C, Luvsanjav D, Sahabandu N, Chari R, Loncarek J. CPAP insufficiency leads to incomplete centrioles that duplicate but fragment. J Cell Biol 2022; 221:213119. [PMID: 35404385 PMCID: PMC9007748 DOI: 10.1083/jcb.202108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Centrioles are structures that assemble centrosomes. CPAP is critical for centrosome assembly, and its mutations are found in patients with diseases such as primary microcephaly. CPAP’s centrosomal localization, its dynamics, and the consequences of its insufficiency in human cells are poorly understood. Here we use human cells genetically engineered for fast degradation of CPAP, in combination with superresolution microscopy, to address these uncertainties. We show that three independent centrosomal CPAP populations are dynamically regulated during the cell cycle. We confirm that CPAP is critical for assembly of human centrioles, but not for recruitment of pericentriolar material on already assembled centrioles. Further, we reveal that CPAP insufficiency leads to centrioles with incomplete microtubule triplets that can convert to centrosomes, duplicate, and form mitotic spindle poles, but fragment owing to loss of cohesion between microtubule blades. These findings further our basic understanding of the role of CPAP in centrosome biogenesis and help understand how CPAP aberrations can lead to human diseases.
Collapse
Affiliation(s)
- Alejandra Vásquez-Limeta
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Kimberly Lukasik
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Catherine Sullenberger
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Delgermaa Luvsanjav
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Natalie Sahabandu
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD
| |
Collapse
|
31
|
Iyer J, Gentry LK, Bergwell M, Smith A, Guagliardo S, Kropp PA, Sankaralingam P, Liu Y, Spooner E, Bowerman B, O’Connell KF. The chromatin remodeling protein CHD-1 and the EFL-1/DPL-1 transcription factor cooperatively down regulate CDK-2 to control SAS-6 levels and centriole number. PLoS Genet 2022; 18:e1009799. [PMID: 35377871 PMCID: PMC9009770 DOI: 10.1371/journal.pgen.1009799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/14/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022] Open
Abstract
Centrioles are submicron-scale, barrel-shaped organelles typically found in pairs, and play important roles in ciliogenesis and bipolar spindle assembly. In general, successful execution of centriole-dependent processes is highly reliant on the ability of the cell to stringently control centriole number. This in turn is mainly achieved through the precise duplication of centrioles during each S phase. Aberrations in centriole duplication disrupt spindle assembly and cilia-based signaling and have been linked to cancer, primary microcephaly and a variety of growth disorders. Studies aimed at understanding how centriole duplication is controlled have mainly focused on the post-translational regulation of two key components of this pathway: the master regulatory kinase ZYG-1/Plk4 and the scaffold component SAS-6. In contrast, how transcriptional control mechanisms might contribute to this process have not been well explored. Here we show that the chromatin remodeling protein CHD-1 contributes to the regulation of centriole duplication in the C. elegans embryo. Specifically, we find that loss of CHD-1 or inactivation of its ATPase activity can restore embryonic viability and centriole duplication to a strain expressing insufficient ZYG-1 activity. Interestingly, loss of CHD-1 is associated with increases in the levels of two ZYG-1-binding partners: SPD-2, the centriole receptor for ZYG-1 and SAS-6. Finally, we explore transcriptional regulatory networks governing centriole duplication and find that CHD-1 and a second transcription factor, EFL-1/DPL-1 cooperate to down regulate expression of CDK-2, which in turn promotes SAS-6 protein levels. Disruption of this regulatory network results in the overexpression of SAS-6 and the production of extra centrioles. Centrioles are cellular constituents that play an important role in cell reproduction, signaling and movement. To properly function, centrioles must be present in the cell at precise numbers. Errors in maintaining centriole number result in cell division defects and diseases such as cancer and microcephaly. How the cell maintains proper centriole copy number is not entirely understood. Here we show that two transcription factors, EFL-1/DPL-1 and CHD-1 cooperate to reduce expression of CDK-2, a master regulator of the cell cycle. We find that CDK-2 in turn promotes expression of SAS-6, a major building block of centrioles. When EFL-1/DPL-1 and CHD-1 are inhibited, CDK-2 is overexpressed. This leads to increased levels of SAS-6 and excess centrioles. Our work thus demonstrates a novel mechanism for controlling centriole number and is thus relevant to those human diseases caused by defects in centriole copy number control.
Collapse
Affiliation(s)
- Jyoti Iyer
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, Oklahoma, United States of America
- * E-mail: (JI); (KFO)
| | - Lindsey K. Gentry
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Mary Bergwell
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, Oklahoma, United States of America
| | - Amy Smith
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, Oklahoma, United States of America
| | - Sarah Guagliardo
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Peter A. Kropp
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Yan Liu
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Eric Spooner
- Proteomics Core Facility, Whitehead Institute for Biomedical Research, Cambridge Massachusetts, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail: (JI); (KFO)
| |
Collapse
|
32
|
Wang YW, Chen SC, Gu DL, Yeh YC, Tsai JJ, Yang KT, Jou YS, Chou TY, Tang TK. A novel HIF1α-STIL-FOXM1 axis regulates tumor metastasis. J Biomed Sci 2022; 29:24. [PMID: 35365182 PMCID: PMC8973879 DOI: 10.1186/s12929-022-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metastasis is the major cause of morbidity and mortality in cancer that involves in multiple steps including epithelial-mesenchymal transition (EMT) process. Centrosome is an organelle that functions as the major microtubule organizing center (MTOC), and centrosome abnormalities are commonly correlated with tumor aggressiveness. However, the conclusive mechanisms indicating specific centrosomal proteins participated in tumor progression and metastasis remain largely unknown. METHODS The expression levels of centriolar/centrosomal genes in various types of cancers were first examined by in silico analysis of the data derived from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and European Bioinformatics Institute (EBI) datasets. The expression of STIL (SCL/TAL1-interrupting locus) protein in clinical specimens was further assessed by Immunohistochemistry (IHC) analysis and the oncogenic roles of STIL in tumorigenesis were analyzed using in vitro and in vivo assays, including cell migration, invasion, xenograft tumor formation, and metastasis assays. The transcriptome differences between low- and high-STIL expression cells were analyzed by RNA-seq to uncover candidate genes involved in oncogenic pathways. The quantitative polymerase chain reaction (qPCR) and reporter assays were performed to confirm the results. The chromatin immunoprecipitation (ChIP)-qPCR assay was applied to demonstrate the binding of transcriptional factors to the promoter. RESULTS The expression of STIL shows the most significant increase in lung and various other types of cancers, and is highly associated with patients' survival rate. Depletion of STIL inhibits tumor growth and metastasis. Interestingly, excess STIL activates the EMT pathway, and subsequently enhances cancer cell migration and invasion. Importantly, we reveal an unexpected role of STIL in tumor metastasis. A subset of STIL translocate into nucleus and associate with FOXM1 (Forkhead box protein M1) to promote tumor metastasis and stemness via FOXM1-mediated downstream target genes. Furthermore, we demonstrate that hypoxia-inducible factor 1α (HIF1α) directly binds to the STIL promoter and upregulates STIL expression under hypoxic condition. CONCLUSIONS Our findings indicate that STIL promotes tumor metastasis through the HIF1α-STIL-FOXM1 axis, and highlight the importance of STIL as a promising therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Yi-Wei Wang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Shu-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jhih-Jie Tsai
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Kuo-Tai Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
- Dept. of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan
| | - Teh-Ying Chou
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 11529, Taiwan.
| |
Collapse
|
33
|
Abstract
The centrosome is a multifunctional organelle that is known primarily for its microtubule organising function. Centrosomal defects caused by changes in centrosomal structure or number have been associated with human diseases ranging from congenital defects to cancer. We are only beginning to appreciate how the non-microtubule organising roles of the centrosome are related to these clinical conditions. In this review, we will discuss the historical evidence that led to the proposal that the centrosome participates in cell cycle regulation. We then summarize the body of work that describes the involvement of the mammalian centrosome in triggering cell cycle progression and checkpoint signalling. Then we will highlight work from the fission yeast model organism, revealing the molecular details that explain how the spindle pole body (SPB, the yeast functional equivalent of the centrosome), participates in these cell cycle transitions. Importantly, we will discuss some of the emerging questions from recent discoveries related to the role of the centrosome as a cell cycle regulator.
Collapse
|
34
|
Carvalhal S, Bader I, Rooimans MA, Oostra AB, Balk JA, Feichtinger RG, Beichler C, Speicher MR, van Hagen JM, Waisfisz Q, van Haelst M, Bruijn M, Tavares A, Mayr JA, Wolthuis RMF, Oliveira RA, de Lange J. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. SCIENCE ADVANCES 2022; 8:eabk0114. [PMID: 35044816 PMCID: PMC8769543 DOI: 10.1126/sciadv.abk0114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/24/2021] [Indexed: 05/14/2023]
Abstract
Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients’ cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.
Collapse
Affiliation(s)
- Sara Carvalhal
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ingrid Bader
- Unit of Clinical Genetics, Paracelsus Medical University, Salzburg, Austria
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christine Beichler
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Johanna M. van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Mieke van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Martijn Bruijn
- Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, Netherlands
| | - Alexandra Tavares
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Johannes A. Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Raquel A. Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Job de Lange
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
35
|
Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel) 2022; 14:cancers14020442. [PMID: 35053604 PMCID: PMC8774008 DOI: 10.3390/cancers14020442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Precise chromosome segregation during mitosis is a vital event orchestrated by formation of bipolar spindle poles. Supernumerary centrosomes, caused by centrosome amplification, deteriorates mitotic processes, resulting in segregation defects leading to chromosomal instability (CIN). Centrosome amplification is frequently observed in various types of cancer and considered as a significant contributor to destabilization of chromosomes. This review provides a comprehensive overview of causes and consequences of centrosome amplification thoroughly describing molecular mechanisms. Abstract Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers. We have now begun to understand the processes by which these numerical and structural anomalies may lead to cancer, and vice-versa: how key events that occur during carcinogenesis could lead to amplification of centrosomes. Despite the proliferative advantages that having extra centrosomes may confer, their presence can also lead to loss of essential genetic material as a result of segregational errors and cancer cells must deal with these deadly consequences. Here, we review recent advances in the current literature describing the mechanisms by which cancer cells amplify their centrosomes and the methods they employ to tolerate the presence of these anomalies, focusing particularly on centrosomal clustering.
Collapse
|
36
|
Endosomal trafficking defects alter neural progenitor proliferation and cause microcephaly. Nat Commun 2022; 13:16. [PMID: 35013230 PMCID: PMC8748540 DOI: 10.1038/s41467-021-27705-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors. Mutations in the human WDR81 gene result in severe microcephaly. Carpentieri et al. show that mutation of WDR81, a gene coding for an endosomal regulator, alters intracellular processing of the EGF receptor, leading to reduced proliferation rates of neuronal progenitors and to microcephaly.
Collapse
|
37
|
Kinesin Family Member C1 (KIFC1/HSET): A Potential Actionable Biomarker of Early Stage Breast Tumorigenesis and Progression of High-Risk Lesions. J Pers Med 2021; 11:jpm11121361. [PMID: 34945833 PMCID: PMC8708236 DOI: 10.3390/jpm11121361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The enigma of why some premalignant or pre-invasive breast lesions transform and progress while others do not remains poorly understood. Currently, no radiologic or molecular biomarkers exist in the clinic that can successfully risk-stratify high-risk lesions for malignant transformation or tumor progression as well as serve as a minimally cytotoxic actionable target for at-risk subpopulations. Breast carcinogenesis involves a series of key molecular deregulatory events that prompt normal cells to bypass tumor-suppressive senescence barriers. Kinesin family member C1 (KIFC1/HSET), which confers survival of cancer cells burdened with extra centrosomes, has been observed in premalignant and pre-invasive lesions, and its expression has been shown to correlate with increasing neoplastic progression. Additionally, KIFC1 has been associated with aggressive breast tumor molecular subtypes, such as basal-like and triple-negative breast cancers. However, the role of KIFC1 in malignant transformation and its potential as a predictive biomarker of neoplastic progression remain elusive. Herein, we review compelling evidence suggesting the involvement of KIFC1 in enabling pre-neoplastic cells to bypass senescence barriers necessary to become immortalized and malignant. We also discuss evidence inferring that KIFC1 levels may be higher in premalignant lesions with a greater inclination to transform and acquire aggressive tumor intrinsic subtypes. Collectively, this evidence provides a strong impetus for further investigation into KIFC1 as a potential risk-stratifying biomarker and minimally cytotoxic actionable target for high-risk patient subpopulations.
Collapse
|
38
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
39
|
Buchwalter RA, Ogden SC, York SB, Sun L, Zheng C, Hammack C, Cheng Y, Chen JV, Cone AS, Meckes DG, Tang H, Megraw TL. Coordination of Zika Virus Infection and Viroplasm Organization by Microtubules and Microtubule-Organizing Centers. Cells 2021; 10:3335. [PMID: 34943843 PMCID: PMC8699624 DOI: 10.3390/cells10123335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) became a global health concern in 2016 due to its links to congenital microcephaly and other birth defects. Flaviviruses, including ZIKV, reorganize the endoplasmic reticulum (ER) to form a viroplasm, a compartment where virus particles are assembled. Microtubules (MTs) and microtubule-organizing centers (MTOCs) coordinate structural and trafficking functions in the cell, and MTs also support replication of flaviviruses. Here we investigated the roles of MTs and the cell's MTOCs on ZIKV viroplasm organization and virus production. We show that a toroidal-shaped viroplasm forms upon ZIKV infection, and MTs are organized at the viroplasm core and surrounding the viroplasm. We show that MTs are necessary for viroplasm organization and impact infectious virus production. In addition, the centrosome and the Golgi MTOC are closely associated with the viroplasm, and the centrosome coordinates the organization of the ZIKV viroplasm toroidal structure. Surprisingly, viroplasm formation and virus production are not significantly impaired when infected cells have no centrosomes and impaired Golgi MTOC, and we show that MTs are anchored to the viroplasm surface in these cells. We propose that the viroplasm is a site of MT organization, and the MTs organized at the viroplasm are sufficient for efficient virus production.
Collapse
Affiliation(s)
- Rebecca A. Buchwalter
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Sarah C. Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Sara B. York
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Li Sun
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Chunfeng Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Christy Hammack
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Jieyan V. Chen
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Allaura S. Cone
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Timothy L. Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| |
Collapse
|
40
|
Ryniawec JM, Rogers GC. Centrosome instability: when good centrosomes go bad. Cell Mol Life Sci 2021; 78:6775-6795. [PMID: 34476544 PMCID: PMC8560572 DOI: 10.1007/s00018-021-03928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
The centrosome is a tiny cytoplasmic organelle that organizes and constructs massive molecular machines to coordinate diverse cellular processes. Due to its many roles during both interphase and mitosis, maintaining centrosome homeostasis is essential to normal health and development. Centrosome instability, divergence from normal centrosome number and structure, is a common pathognomonic cellular state tightly associated with cancers and other genetic diseases. As novel connections are investigated linking the centrosome to disease, it is critical to understand the breadth of centrosome functions to inspire discovery. In this review, we provide an introduction to normal centrosome function and highlight recent discoveries that link centrosome instability to specific disease states.
Collapse
Affiliation(s)
- John M Ryniawec
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA.
| |
Collapse
|
41
|
Shin B, Kim MS, Lee Y, Jung GI, Rhee K. Generation and Fates of Supernumerary Centrioles in Dividing Cells. Mol Cells 2021; 44:699-705. [PMID: 34711687 PMCID: PMC8560585 DOI: 10.14348/molcells.2021.0220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.
Collapse
Affiliation(s)
- Byungho Shin
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Myung Se Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yejoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Gee In Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
42
|
Viais R, Fariña-Mosquera M, Villamor-Payà M, Watanabe S, Palenzuela L, Lacasa C, Lüders J. Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. eLife 2021; 10:67989. [PMID: 34427181 PMCID: PMC8456695 DOI: 10.7554/elife.67989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Microtubules that assemble the mitotic spindle are generated by centrosomal nucleation, chromatin-mediated nucleation, and nucleation from the surface of other microtubules mediated by the augmin complex. Impairment of centrosomal nucleation in apical progenitors of the developing mouse brain induces p53-dependent apoptosis and causes non-lethal microcephaly. Whether disruption of non-centrosomal nucleation has similar effects is unclear. Here, we show, using mouse embryos, that conditional knockout of the augmin subunit Haus6 in apical progenitors led to spindle defects and mitotic delay. This triggered massive apoptosis and abortion of brain development. Co-deletion of Trp53 rescued cell death, but surviving progenitors failed to organize a pseudostratified epithelium, and brain development still failed. This could be explained by exacerbated mitotic errors and resulting chromosomal defects including increased DNA damage. Thus, in contrast to centrosomes, augmin is crucial for apical progenitor mitosis, and, even in the absence of p53, for progression of brain development.
Collapse
Affiliation(s)
- Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marcos Fariña-Mosquera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marina Villamor-Payà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sadanori Watanabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Lluís Palenzuela
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cristina Lacasa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
43
|
Centrosome regulation and function in mammalian cortical neurogenesis. Curr Opin Neurobiol 2021; 69:256-266. [PMID: 34303132 DOI: 10.1016/j.conb.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
As the primary microtubule-organizing center in animal cells, centrosomes regulate microtubule cytoskeleton to support various cellular behaviors. They also serve as the base for nucleating primary cilia, the hub of diverse signaling pathways. Cells typically possess one centrosome that contains two inequal centrioles and undergoes semi-conservative duplication during cell division, resulting in two centrosomes with an inherent asymmetry in age and properties. While the centrosome is ubiquitously present, mutations of centrosome proteins are strongly associated with human microcephaly characterized by a small cerebral cortex, underscoring the importance of an intact centrosome in supporting cortical neurogenesis. Here we review recent advances on centrosome regulation and function in mammalian cortical neural progenitors and discuss the implications for a better understanding of cortical neurogenesis and related disease mechanisms.
Collapse
|
44
|
Overexpression of the PLK4 Gene as a Novel Strategy for the Treatment of Autosomal Recessive Microcephaly by Improving Centrosomal Dysfunction. J Mol Neurosci 2021; 71:2618-2627. [PMID: 34272646 DOI: 10.1007/s12031-021-01881-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023]
Abstract
Autosomal recessive microcephaly and chorioretinopathy (MCCRP) is a neurodevelopmental disorder characterized by delayed psychomotor development, growth retardation with dwarfism, and ocular abnormalities, and its occurrence has been found to be closely related to variants of the gene encoding centrosomes. However, the association between centrosomal duplication defects and the etiology of microcephaly syndromes is poorly understood. It is well known that polo-like kinase 4 (PLK4) is a key regulator of centriole duplication, and the abnormalities of centrosomal function caused by its protein variation need to be further explored in the pathogenesis of microcephaly. In our study, we found that a patient with microcephaly and chorioretinopathy harbored compound heterozygous missense variants NM_014264.4: c.2221C > T (p.Gln741*) and NM_014264.4: c.2062 T > C (p.Tyr688His) in the PLK4 gene. Overexpression experiments of the variant PLK4 proteins then showed that the G741 variant rather than the T688H variant had lost centrosomal amplification ability, and the G741 variant but not the T688H variant induced centrosomal replication disorder, which further inhibited cell proliferation, cycle division and cytoskeleton morphology in HeLa cells. Moreover, the overexpression of the two variant proteins had inconsistent effects on the target protein PLK4 by western blot analysis, also indicating that T688H variant overexpression is not functionally equivalent to WT-PLK4 overexpression. Therefore, all data support the idea that the PLK4 mutation induces centriolar duplication disorder and reduces the efficiency of mitosis inducing cell death or cell proliferation in the etiology of microcephaly disorder.
Collapse
|
45
|
Gilet JG, Ivanova EL, Trofimova D, Rudolf G, Meziane H, Broix L, Drouot N, Courraud J, Skory V, Voulleminot P, Osipenko M, Bahi-Buisson N, Yalcin B, Birling MC, Hinckelmann MV, Kwok BH, Allingham JS, Chelly J. Conditional switching of KIF2A mutation provides new insights into cortical malformation pathogeny. Hum Mol Genet 2021; 29:766-784. [PMID: 31919497 DOI: 10.1093/hmg/ddz316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
By using the Cre-mediated genetic switch technology, we were able to successfully generate a conditional knock-in mouse, bearing the KIF2A p.His321Asp missense point variant, identified in a subject with malformations of cortical development. These mice present with neuroanatomical anomalies and microcephaly associated with behavioral deficiencies and susceptibility to epilepsy, correlating with the described human phenotype. Using the flexibility of this model, we investigated RosaCre-, NestinCre- and NexCre-driven expression of the mutation to dissect the pathophysiological mechanisms underlying neurodevelopmental cortical abnormalities. We show that the expression of the p.His321Asp pathogenic variant increases apoptosis and causes abnormal multipolar to bipolar transition in newborn neurons, providing therefore insights to better understand cortical organization and brain growth defects that characterize KIF2A-related human disorders. We further demonstrate that the observed cellular phenotypes are likely to be linked to deficiency in the microtubule depolymerizing function of KIF2A.
Collapse
Affiliation(s)
- Johan G Gilet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Ekaterina L Ivanova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Daria Trofimova
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Gabrielle Rudolf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Hamid Meziane
- CNRS UMR 7104, 67400 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, Université de Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Loic Broix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Jeremie Courraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Valerie Skory
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Paul Voulleminot
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France
| | - Maria Osipenko
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Nadia Bahi-Buisson
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, 75015 Paris, France
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Marie-Christine Birling
- CNRS UMR 7104, 67400 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, Université de Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Maria-Victoria Hinckelmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Benjamin H Kwok
- Département de médecine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS UMR 7104, 67400 Illkirch, France.,INSERM U1258, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
46
|
Borghi R, Magliocca V, Petrini S, Conti LA, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis. J Clin Med 2021; 10:jcm10132754. [PMID: 34201522 PMCID: PMC8268119 DOI: 10.3390/jcm10132754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. Developmental regression may occur during disease progression. Patients may present with intellectual disability (ID), behavioral problems, motor and language delay, and a low motor tone. In most cases, seizures are resistant to treatment, but their frequency decreases with age, and some patients may even become seizure-free. ID generally persists after seizure remission, making neurological abnormalities the main clinical issue in affected individuals. An effective treatment is lacking. In vitro studies using patient-derived induced pluripotent stem cells (iPSCs) reported accelerated neural differentiation as a major endophenotype associated with PCDH19 mutations. By using this in vitro model system, we show that accelerated in vitro neurogenesis is associated with a defect in the cell division plane at the neural progenitors stage. We also provide evidence that altered PCDH19 function affects proper mitotic spindle orientation. Our findings identify an altered equilibrium between symmetric versus asymmetric cell division as a previously unrecognized mechanism contributing to the pathogenesis of this rare epileptic encephalopathy.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Sandra Moreno
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Correspondence:
| |
Collapse
|
47
|
Guerreiro A, De Sousa F, Liaudet N, Ivanova D, Eskat A, Meraldi P. WDR62 localizes katanin at spindle poles to ensure synchronous chromosome segregation. J Cell Biol 2021; 220:212394. [PMID: 34137788 PMCID: PMC8240857 DOI: 10.1083/jcb.202007171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the WDR62 gene cause primary microcephaly, a pathological condition often associated with defective cell division that results in severe brain developmental defects. The precise function and localization of WDR62 within the mitotic spindle is, however, still under debate, as it has been proposed to act either at centrosomes or on the mitotic spindle. Here we explored the cellular functions of WDR62 in human epithelial cell lines using both short-term siRNA protein depletions and long-term CRISPR/Cas9 gene knockouts. We demonstrate that WDR62 localizes at spindle poles, promoting the recruitment of the microtubule-severing enzyme katanin. Depletion or loss of WDR62 stabilizes spindle microtubules due to insufficient microtubule minus-end depolymerization but does not affect plus-end microtubule dynamics. During chromosome segregation, WDR62 and katanin promote efficient poleward microtubule flux and favor the synchronicity of poleward movements in anaphase to prevent lagging chromosomes. We speculate that these lagging chromosomes might be linked to developmental defects in primary microcephaly.
Collapse
Affiliation(s)
- Amanda Guerreiro
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filipe De Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiation Oncology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas Liaudet
- Bioimaging Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daria Ivanova
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Eskat
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Badarudeen B, Anand U, Mukhopadhyay S, Manna TK. Ubiquitin signaling in the control of centriole duplication. FEBS J 2021; 289:4830-4849. [PMID: 34115927 DOI: 10.1111/febs.16069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
The centrosome plays an essential role in maintaining genetic stability, ciliogenesis and cell polarisation. The core of the centrosome is made up of two centrioles that duplicate precisely once during every cell cycle to generate two centrosomes that are required for bipolar spindle assembly and chromosome segregation. Abundance of centriole proteins at optimal levels and their recruitment to the centrosome are tightly regulated in time and space in order to restrict aberrant duplication of centrioles, a phenomenon that is observed in many cancers. Recent advances have conclusively shown that dedicated ubiquitin ligase-dependent protein degradation machineries are involved in governing centriole duplication. These studies revealed intricate mechanistic insights into how the ubiquitin ligases target different centriole proteins. In certain cases, a specific ubiquitin ligase targets a number of substrate proteins that co-regulate centriole assembly, prompting the possibility that substrate-targeting occurs during formation of the sub-centriolar structures. There are also instances where a specific centriole duplication protein is targeted by several ubiquitin ligases at different stages of the cell cycle, suggesting synchronised actions. Recent evidence also indicated a direct association of E3 ubiquitin ligase with the centrioles, supporting the notion that substrate-targeting occurs in the organelle itself. In this review, we highlight these advances by underlining the mechanisms of how different ubiquitin ligase machineries control centriole duplication and discuss our views on their coordination.
Collapse
Affiliation(s)
- Binshad Badarudeen
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Ushma Anand
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Swarnendu Mukhopadhyay
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| |
Collapse
|
49
|
Li YF, Shi LJ, Wang P, Wang JW, Shi GY, Lee SC. Binding between ROCK1 and DCTN2 triggers diabetes‑associated centrosome amplification in colon cancer cells. Oncol Rep 2021; 46:151. [PMID: 34080666 PMCID: PMC8185503 DOI: 10.3892/or.2021.8102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes increases the risk various types of cancer and is associated with a poor prognosis therein. There is also evidence that the disease is associated with cancer metastasis. Centrosome amplification can initiate tumorigenesis with metastasis in vivo and increase the invasiveness of cancer cells in vitro. Our previous study reported that type 2 diabetes promotes centrosome amplification via the upregulation and centrosomal translocation of Rho-associated protein kinase 1 (ROCK1), which suggests that centrosome amplification is a candidate biological link between type 2 diabetes and cancer development. In the present study, functional proteomics analysis was used to further investigate the molecular pathways underlying centrosome amplification by targeting ROCK1 binding partners. High glucose, insulin and palmitic acid were used to induce centrosome amplification, and immunofluorescent staining was employed to visualize centrosomal alterations. Combined with immunoprecipitation, mass spectrometry-based proteomics analysis was used to identify ROCK1 binding proteins, and protein complex disruption was achieved by siRNA-knockdown. In total, 1,148 ROCK1 binding proteins were identified, among which 106 proteins were exclusively associated with the treated samples, 193 were only associated with the control samples, and 849 were found in both the control and treated samples. Of the proteins with evidence of centrosomal localization, Dynactin subunit 2 (DCTN2) was confirmed to be localized to the centrosomes. Treating the cells with high glucose, insulin and palmitic acid increased the protein levels of ROCK1 and DCTN2, promoted their binding with each other, and triggered centrosome amplification. Disruption of the protein complex by knocking down ROCK1 or DCTN2 expression partially attenuated centrosome amplification, while simultaneous knockdown of both proteins completely inhibited centrosome amplification. These results suggested ROCK1-DCTN2 binding as a signal for the regulation of centrosome homeostasis, which is key for diabetes-associated centrosome amplification, and enriches our knowledge of centrosome biology. Therefore, the ROCK1-DCTN2 complex may serve as a target for inhibiting centrosome amplification both in research or future therapeutic development.
Collapse
Affiliation(s)
- Yuan Fei Li
- Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lin Jie Shi
- Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pu Wang
- Changzhi Medical University, Changzhi, Shanxi 030001, P.R. China
| | - Jia Wen Wang
- Institute of Biomedical Sciences of The School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Guang Yi Shi
- Institute of Biomedical Sciences of The School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| | - Shao Chin Lee
- Institute of Biomedical Sciences of The School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P.R. China
| |
Collapse
|
50
|
Rivera-Rivera Y, Marina M, Jusino S, Lee M, Velázquez JV, Chardón-Colón C, Vargas G, Padmanabhan J, Chellappan SP, Saavedra HI. The Nek2 centrosome-mitotic kinase contributes to the mesenchymal state, cell invasion, and migration of triple-negative breast cancer cells. Sci Rep 2021; 11:9016. [PMID: 33907253 PMCID: PMC8079711 DOI: 10.1038/s41598-021-88512-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a serine/threonine-protein kinase that localizes to centrosomes and kinetochores, controlling centrosome separation, chromosome attachments to kinetochores, and the spindle assembly checkpoint. These processes prevent centrosome amplification (CA), mitotic dysfunction, and chromosome instability (CIN). Our group and others have suggested that Nek2 maintains high levels of CA/CIN, tumor growth, and drug resistance. We identified that Nek2 overexpression correlates with poor survival of breast cancer. However, the mechanisms driving these phenotypes are unknown. We now report that overexpression of Nek2 in MCF10A cells drives CA/CIN and aneuploidy. Besides, enhanced levels of Nek2 results in larger 3D acinar structures, but could not initiate tumors in a p53+/+ or a p53-/- xenograft model. Nek2 overexpression induced the epithelial-to-mesenchymal transition (EMT) while its downregulation reduced the expression of the mesenchymal marker vimentin. Furthermore, either siRNA-mediated downregulation or INH6's chemical inhibition of Nek2 in MDA-MB-231 and Hs578t cells showed important EMT changes and decreased invasion and migration. We also showed that Slug and Zeb1 are involved in Nek2 mediated EMT, invasion, and migration. Besides its role in CA/CIN, Nek2 contributes to breast cancer progression through a novel EMT mediated mechanism.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Mihaela Marina
- MediTech Media, Two Ravinia Drive, Suite 605, Atlanta, GA, 30346, USA
| | - Shirley Jusino
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Miyoung Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorder Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jaleisha Vélez Velázquez
- Department of Biology, University of Puerto Rico-Ponce, 2151 Santiago de los Caballeros Avenue, Ponce, 00716, Puerto Rico
| | - Camille Chardón-Colón
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Geraldine Vargas
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Jaya Padmanabhan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Harold I Saavedra
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico.
| |
Collapse
|