1
|
Virga DM, Hamilton S, Osei B, Morgan A, Kneis P, Zamponi E, Park NJ, Hewitt VL, Zhang D, Gonzalez KC, Russell FM, Grahame Hardie D, Prudent J, Bloss E, Losonczy A, Polleux F, Lewis TL. Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo. Nat Commun 2024; 15:2142. [PMID: 38459070 PMCID: PMC10923867 DOI: 10.1038/s41467-024-46463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly between the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Ca2+ and Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a signaling pathway underlying the subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise and activity-dependent regulation of mitochondria fission/fusion balance.
Collapse
Affiliation(s)
- Daniel M Virga
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Stevie Hamilton
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Bertha Osei
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Emiliano Zamponi
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Natalie J Park
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Victoria L Hewitt
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - David Zhang
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Fiona M Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY, Cambridge, UK
| | - Erik Bloss
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Hao S, Huang H, Ma RY, Zeng X, Duan CY. Multifaceted functions of Drp1 in hypoxia/ischemia-induced mitochondrial quality imbalance: from regulatory mechanism to targeted therapeutic strategy. Mil Med Res 2023; 10:46. [PMID: 37833768 PMCID: PMC10571487 DOI: 10.1186/s40779-023-00482-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings. Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia. Dynamin-related protein 1 (Drp1) regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications, which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury. However, there is active controversy and gaps in knowledge regarding the modification, protein interaction, and functions of Drp1, which both hinder and promote development of Drp1 as a novel therapeutic target. Here, we summarize recent findings on the oligomeric changes, modification types, and protein interactions of Drp1 in various hypoxic-ischemic diseases, as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia. Additionally, potential clinical translation prospects for targeting Drp1 are discussed. This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.
Collapse
Affiliation(s)
- Shuai Hao
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002 China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Rui-Yan Ma
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400010 China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| |
Collapse
|
3
|
Huan Y, Hao G, Shi Z, Liang Y, Dong Y, Quan H. The role of dynamin-related protein 1 in cerebral ischemia/hypoxia injury. Biomed Pharmacother 2023; 165:115247. [PMID: 37516018 DOI: 10.1016/j.biopha.2023.115247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Mitochondrial dysfunction, especially in terms of mitochondrial dynamics, has been reported to be closely associated with neuronal outcomes and neurological impairment in cerebral ischemia/hypoxia injury. Dynamin-related protein 1 (Drp1) is a cytoplasmic GTPase that mediates mitochondrial fission and participates in neuronal cell death, calcium signaling, and oxidative stress. The neuroprotective role of Drp1 inhibition has been confirmed in several central nervous system disease models, demonstrating that targeting Drp1 may shed light on novel approaches for the treatment of cerebral ischemia/hypoxia injury. In this review, we aimed to highlight the roles of Drp1 in programmed cell death, oxidative stress, mitophagy, and mitochondrial function to provide a better understanding of mitochondrial disturbances in cerebral ischemia/hypoxia injury, and we also summarize the advances in novel chemical compounds targeting Drp1 to provide new insights into potential therapies for cerebral ischemia/hypoxia injury.
Collapse
Affiliation(s)
- Yu Huan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zuolin Shi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yong Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Huilin Quan
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Bhatti JS, Kaur S, Mishra J, Dibbanti H, Singh A, Reddy AP, Bhatti GK, Reddy PH. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166798. [PMID: 37392948 DOI: 10.1016/j.bbadis.2023.166798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that manifests its pathology through synaptic damage, mitochondrial abnormalities, microRNA deregulation, hormonal imbalance, increased astrocytes & microglia, accumulation of amyloid β (Aβ) and phosphorylated Tau in the brains of AD patients. Despite extensive research, the effective treatment of AD is still unknown. Tau hyperphosphorylation and mitochondrial abnormalities are involved in the loss of synapses, defective axonal transport and cognitive decline in patients with AD. Mitochondrial dysfunction is evidenced by enhanced mitochondrial fragmentation, impaired mitochondrial dynamics, mitochondrial biogenesis and defective mitophagy in AD. Hence, targeting mitochondrial proteins might be a promising therapeutic strategy in treating AD. Recently, dynamin-related protein 1 (Drp1), a mitochondrial fission protein, has gained attention due to its interactions with Aβ and hyperphosphorylated Tau, altering mitochondrial morphology, dynamics, and bioenergetics. These interactions affect ATP production in mitochondria. A reduction in Drp1 GTPase activity protects against neurodegeneration in AD models. This article provides a comprehensive overview of Drp1's involvement in oxidative damage, apoptosis, mitophagy, and axonal transport of mitochondria. We also highlighted the interaction of Drp1 with Aβ and Tau, which may contribute to AD progression. In conclusion, targeting Drp1 could be a potential therapeutic approach for preventing AD pathology.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| | - Satinder Kaur
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
6
|
Nguyen TTM, Gadet R, Lanfranchi M, Lahaye RA, Yandiev S, Lohez O, Mikaelian I, Jabbour L, Rimokh R, Courchet J, Saudou F, Popgeorgiev N, Gillet G. Mitochondrial Bcl-xL promotes brain synaptogenesis by controlling non-lethal caspase activation. iScience 2023; 26:106674. [PMID: 37182099 PMCID: PMC10173740 DOI: 10.1016/j.isci.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Rudy Gadet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Marine Lanfranchi
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Romane A. Lahaye
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Sozerko Yandiev
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Olivier Lohez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Lea Jabbour
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ruth Rimokh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Julien Courchet
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Frédéric Saudou
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Nikolay Popgeorgiev
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 5, France
| | - Germain Gillet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Hospices civils de Lyon, Laboratoire d’anatomie et cytologie pathologiques, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495 Pierre Bénite, France
| |
Collapse
|
7
|
Kakoty V, Sarathlal KC, Gulati M, Bey Hing G, Dua K, Kumar Singh S. Senolytics: opening avenues in drug discovery to find novel therapeutics for Parkinson's disease. Drug Discov Today 2023; 28:103582. [PMID: 37023942 DOI: 10.1016/j.drudis.2023.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Aging is one of the major risk factors for most neurodegenerative disorders including Parkinson's disease (PD). More than 10 million people are affected with PD worldwide. One of the predominant factors accountable for progression of PD pathology could be enhanced accumulation of senescent cells in the brain with the progress of age. Recent investigations have highlighted that senescent cells can ignite PD pathology via increased oxidative stress and neuroinflammation. Senolytics are agents that kill senescent cells. This review mainly focuses on understanding the pathological connection between senescence and PD, with emphasis on some of the recent advances made in the area of senolytics and their evolution to potential clinical candidates for future pharmaceuticals against PD.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - K C Sarathlal
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Goh Bey Hing
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
8
|
Virga DM, Hamilton S, Osei B, Morgan A, Zamponi E, Park NJ, Hewitt VL, Zhang D, Gonzalez KC, Bloss E, Polleux F, Lewis TL. Activity-dependent subcellular compartmentalization of dendritic mitochondria structure in CA1 pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534233. [PMID: 36993655 PMCID: PMC10055421 DOI: 10.1101/2023.03.25.534233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly in the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a new activity-dependent molecular mechanism underlying the extreme subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise regulation of mitochondria fission/fusion balance.
Collapse
Affiliation(s)
- Daniel M. Virga
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Stevie Hamilton
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Bertha Osei
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Emiliano Zamponi
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Natalie J. Park
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Victoria L. Hewitt
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - David Zhang
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Kevin C. Gonzalez
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Erik Bloss
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Tommy L. Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| |
Collapse
|
9
|
Rosdah AA, Abbott BM, Langendorf CG, Deng Y, Truong JQ, Waddell HMM, Ling NXY, Smiles WJ, Delbridge LMD, Liu GS, Oakhill JS, Lim SY, Holien JK. A novel small molecule inhibitor of human Drp1. Sci Rep 2022; 12:21531. [PMID: 36513726 PMCID: PMC9747717 DOI: 10.1038/s41598-022-25464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation. Herein, we sought to identify a novel small molecule inhibitor of Drp1. From an initial virtual screening, we identified DRP1i27 as a compound which directly bound to the human isoform 3 of Drp1 via surface plasmon resonance and microscale thermophoresis. Importantly, DRP1i27 was found to have a dose-dependent increase in the cellular networks of fused mitochondria but had no effect in Drp1 knock-out cells. Further analogues of this compound were identified and screened, though none displayed greater affinity to human Drp1 isoform 3 than DRP1i27. To date, this is the first small molecule inhibitor shown to directly bind to human Drp1.
Collapse
Affiliation(s)
- Ayeshah A. Rosdah
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.108126.c0000 0001 0557 0975Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Belinda M. Abbott
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | | | - Yali Deng
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Jia Q. Truong
- grid.1017.70000 0001 2163 3550School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001 Australia
| | - Helen M. M. Waddell
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Naomi X. Y. Ling
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - William J. Smiles
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - Lea M. D. Delbridge
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Guei-Sheung Liu
- grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.410670.40000 0004 0625 8539Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Jonathan S. Oakhill
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.411958.00000 0001 2194 1270Australian Catholic University, Fitzroy, VIC Australia
| | - Shiang Y. Lim
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia ,grid.419385.20000 0004 0620 9905National Heart Centre, National Heart Research Institute Singapore, Singapore, Singapore
| | - Jessica K. Holien
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1017.70000 0001 2163 3550School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001 Australia
| |
Collapse
|
10
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
11
|
Miller SJ, Campbell CE, Jimenez-Corea HA, Wu GH, Logan R. Neuroglial Senescence, α-Synucleinopathy, and the Therapeutic Potential of Senolytics in Parkinson’s Disease. Front Neurosci 2022; 16:824191. [PMID: 35516803 PMCID: PMC9063319 DOI: 10.3389/fnins.2022.824191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and the second most prevalent neurodegenerative disease after Alzheimer’s disease. Despite decades of research, there is still no cure for PD and the complicated intricacies of the pathology are still being worked out. Much of the research on PD has focused on neurons, since the disease is characterized by neurodegeneration. However, neuroglia has become recognized as key players in the health and disease of the central nervous system. This review provides a current perspective on the interactive roles that α-synuclein and neuroglial senescence have in PD. The self-amplifying and cyclical nature of oxidative stress, neuroinflammation, α-synucleinopathy, neuroglial senescence, neuroglial chronic activation and neurodegeneration will be discussed. Finally, the compelling role that senolytics could play as a therapeutic avenue for PD is explored and encouraged.
Collapse
Affiliation(s)
- Sean J. Miller
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
| | | | | | - Guan-Hui Wu
- Department of Neurology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Robert Logan
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
- *Correspondence: Robert Logan,
| |
Collapse
|
12
|
Park HA, Crowe-White KM, Ciesla L, Scott M, Bannerman S, Davis AU, Adhikari B, Burnett G, Broman K, Ferdous KA, Lackey KH, Licznerski P, Jonas EA. Alpha-Tocotrienol Enhances Arborization of Primary Hippocampal Neurons via Upregulation of Bcl-xL. Nutr Res 2022; 101:31-42. [PMID: 35366596 PMCID: PMC9081260 DOI: 10.1016/j.nutres.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
Alpha-tocotrienol (α-TCT) is a member of the vitamin E family. It has been reported to protect the brain against various pathologies including cerebral ischemia and neurodegeneration. However, it is still unclear if α-TCT exhibits beneficial effects during brain development. We hypothesized that treatment with α-TCT improves intracellular redox homeostasis supporting normal development of neurons. We found that primary hippocampal neurons isolated from rat feti grown in α-TCT-containing media achieved greater levels of neurite complexity compared to ethanol-treated control neurons. Neurons were treated with 1 μM α-TCT for 3 weeks, and media were replaced with fresh α-TCT every week. Treatment with α-TCT increased α-TCT levels (26 pmol/mg protein) in the cells, whereas the control neurons did not contain α-TCT. α-TCT-treated neurons produced adenosine triphosphate (ATP) at a higher rate and increased ATP retention at neurites, supporting formation of neurite branches. Although treatment with α-TCT alone did not change neuronal viability, neurons grown in α-TCT were more resistant to death at maturity. We further found that messenger RNA and protein levels of B-cell lymphoma-extra large (Bcl-xL) are increased by α-TCT treatment without inducing posttranslational cleavage of Bcl-xL. Bcl-xL is known to enhance mitochondrial energy production, which improves neuronal function including neurite outgrowth and neurotransmission. Therefore α-TCT-mediated Bcl-xL upregulation may be the central mechanism of neuroprotection seen in the α-TCT-treated group. In summary, treatment with α-TCT upregulates Bcl-xL and increases ATP levels at neurites. This correlates with increased neurite branching during development and with protection of mature neurons against oxidative stress.
Collapse
Affiliation(s)
- Han-A Park
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Kristi M Crowe-White
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lukasz Ciesla
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Madison Scott
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Sydni Bannerman
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Abigail U Davis
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Bishnu Adhikari
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Garrett Burnett
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Katheryn Broman
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Khondoker Adeba Ferdous
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Kimberly H Lackey
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Pawel Licznerski
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, 06511, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
13
|
Bahatyrevich-Kharitonik B, Medina-Guzman R, Flores-Cortes A, García-Cruzado M, Kavanagh E, Burguillos MA. Cell Death Related Proteins Beyond Apoptosis in the CNS. Front Cell Dev Biol 2022; 9:825747. [PMID: 35096845 PMCID: PMC8794922 DOI: 10.3389/fcell.2021.825747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.
Collapse
Affiliation(s)
- Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Alicia Flores-Cortes
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marta García-Cruzado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Edel Kavanagh
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Miguel Angel Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| |
Collapse
|
14
|
Cho C, Zeigler M, Mizuno S, Morrison RS, Totah RA, Barker-Haliski M. Reductions in Hydrogen Sulfide and Changes in Mitochondrial Quality Control Proteins Are Evident in the Early Phases of the Corneally Kindled Mouse Model of Epilepsy. Int J Mol Sci 2022; 23:ijms23031434. [PMID: 35163358 PMCID: PMC8835945 DOI: 10.3390/ijms23031434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a heterogenous neurological disorder characterized by recurrent unprovoked seizures, mitochondrial stress, and neurodegeneration. Hydrogen sulfide (H2S) is a gasotransmitter that promotes mitochondrial function and biogenesis, elicits neuromodulation and neuroprotection, and may acutely suppress seizures. A major gap in knowledge remains in understanding the role of mitochondrial dysfunction and progressive changes in H2S levels following acute seizures or during epileptogenesis. We thus sought to quantify changes in H2S and its methylated metabolite (MeSH) via LC-MS/MS following acute maximal electroshock and 6 Hz 44 mA seizures in mice, as well as in the early phases of the corneally kindled mouse model of chronic seizures. Plasma H2S was acutely reduced after a maximal electroshock seizure. H2S or MeSH levels and expressions of related genes in whole brain homogenates from corneally kindled mice were not altered. However, plasma H2S levels were significantly lower during kindling, but not after established kindling. Moreover, we demonstrated a time-dependent increase in expression of mitochondrial membrane integrity-related proteins, OPA1, MFN2, Drp1, and Mff during kindling, which did not correlate with changes in gene expression. Taken together, short-term reductions in plasma H2S could be a novel biomarker for seizures. Future studies should further define the role of H2S and mitochondrial stress in epilepsy.
Collapse
Affiliation(s)
- Christi Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Maxwell Zeigler
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Stephanie Mizuno
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| | | | - Rheem A. Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA;
- Correspondence: ; Tel.: +1-206-685-1783
| |
Collapse
|
15
|
Vesicular formation regulated by ERK/MAPK pathway mediates human erythroblast enucleation. Blood Adv 2021; 5:4648-4661. [PMID: 34551066 PMCID: PMC8759143 DOI: 10.1182/bloodadvances.2021004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
ERK pathway plays a key role in enucleation of human orthochromatic erythroblasts. ERK regulates human erythroblast enucleation by affecting vesicular formation.
Enucleation is a key event in mammalian erythropoiesis responsible for the generation of enucleated reticulocytes. Although progress is being made in developing mechanistic understanding of enucleation, our understanding of mechanisms for enucleation is still incomplete. The MAPK pathway plays diverse roles in biological processes, but its role in erythropoiesis has yet to be fully defined. Analysis of RNA-sequencing data revealed that the MAPK pathway is significantly upregulated during human terminal erythroid differentiation. The MAPK pathway consists of 3 major signaling cassettes: MEK/ERK, p38, and JNK. In the present study, we show that among these 3 cassettes, only ERK was significantly upregulated in late-stage human erythroblasts. The increased expression of ERK along with its increased phosphorylation suggests a potential role for ERK activation in enucleation. To explore this hypothesis, we treated sorted populations of human orthochromatic erythroblasts with the MEK/ERK inhibitor U0126 and found that U0126 inhibited enucleation. In contrast, inhibitors of either p38 or JNK had no effect on enucleation. Mechanistically, U0126 selectively inhibited formation/accumulation of cytoplasmic vesicles and endocytosis of the transferrin receptor without affecting chromatin condensation, nuclear polarization, or enucleosome formation. Treatment with vacuolin-1 that induces vacuole formation partially rescued the blockage of enucleation by U0126. Moreover, phosphoproteomic analysis revealed that inactivation of the ERK pathway led to downregulation of the endocytic recycling pathway. Collectively, our findings uncovered a novel role of ERK activation in human erythroblast enucleation by modulating vesicle formation and have implications for understanding anemia associated with defective enucleation.
Collapse
|
16
|
Guo C, Hildick KL, Jiang J, Zhao A, Guo W, Henley JM, Wilkinson KA. SENP3 Promotes an Mff-Primed Bcl-x L -Drp1 Interaction Involved in Cell Death Following Ischemia. Front Cell Dev Biol 2021; 9:752260. [PMID: 34722538 PMCID: PMC8555761 DOI: 10.3389/fcell.2021.752260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of the mitochondrial fission machinery has been linked to cell death following ischemia. Fission is largely dependent on recruitment of Dynamin-related protein 1 (Drp1) to the receptor Mitochondrial fission factor (Mff) located on the mitochondrial outer membrane (MOM). Drp1 is a target for SUMOylation and its deSUMOylation, mediated by the SUMO protease SENP3, enhances the Drp1-Mff interaction to promote cell death in an oxygen/glucose deprivation (OGD) model of ischemia. Another interacting partner for Drp1 is the Bcl-2 family member Bcl-x L , an important protein in cell death and survival pathways. Here we demonstrate that preventing Drp1 SUMOylation by mutating its SUMO target lysines enhances the Drp1-Bcl-x L interaction in vivo and in vitro. Moreover, SENP3-mediated deSUMOylation of Drp1 promotes the Drp1-Bcl-x L interaction. Our data suggest that Mff primes Drp1 binding to Bcl-x L at the mitochondria and that Mff and Bcl-x L can interact directly, independent of Drp1, through their transmembrane domains. Importantly, SENP3 loss in cells subjected to OGD correlates with reduced Drp1-Bcl-x L interaction, whilst recovery of SENP3 levels in cells subjected to reoxygenation following OGD correlates with increased Drp1-Bcl-x L interaction. Expressing a Bcl-x L mutant with defective Drp1 binding reduces OGD plus reoxygenation-evoked cell death. Taken together, our results indicate that SENP3-mediated deSUMOlyation promotes an Mff-primed Drp1-Bcl-x L interaction that contributes to cell death following ischemia.
Collapse
Affiliation(s)
- Chun Guo
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Keri L Hildick
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Juwei Jiang
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Alice Zhao
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Wenbin Guo
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Faculty of Science, Centre for Neuroscience and Regenerative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
17
|
Grahammer F, Huber TB, Artunc F. Role of mTOR Signaling for Tubular Function and Disease. Physiology (Bethesda) 2021; 36:350-358. [PMID: 34514872 DOI: 10.1152/physiol.00021.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) forms two distinct intracellular multiprotein complexes that control a multitude of intracellular processes linked to metabolism, proliferation, actin cytoskeleton, and survival. Recent studies have identified the importance of these complexes for transport regulation of ions and nutrients along the entire nephron. First reports could link altered activity of these complexes to certain disease entities, i.e. diabetic nephropathy, acute kidney injury or hyperkalemia.
Collapse
Affiliation(s)
- Florian Grahammer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University Tübingen, Tübingen, Germany.,German Center for Diabetes Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Bcl-xL Is Required by Primary Hippocampal Neurons during Development to Support Local Energy Metabolism at Neurites. BIOLOGY 2021; 10:biology10080772. [PMID: 34440004 PMCID: PMC8389656 DOI: 10.3390/biology10080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
B-cell lymphoma-extra large (Bcl-xL) is a mitochondrial protein known to inhibit mitochondria-dependent intrinsic apoptotic pathways. An increasing number of studies have demonstrated that Bcl-xL is critical in regulating neuronal energy metabolism and has a protective role in pathologies associated with an energy deficit. However, it is less known how Bcl-xL regulates physiological processes of the brain. In this study, we hypothesize that Bcl-xL is required for neurite branching and maturation during neuronal development by improving local energy metabolism. We found that the absence of Bcl-xL in rat primary hippocampal neurons resulted in mitochondrial dysfunction. Specifically, the ATP/ADP ratio was significantly decreased in the neurites of Bcl-xL depleted neurons. We further found that neurons transduced with Bcl-xL shRNA or neurons treated with ABT-263, a pharmacological inhibitor of Bcl-xL, showed impaired mitochondrial motility. Neurons lacking Bcl-xL had significantly decreased anterograde and retrograde movement of mitochondria and an increased stationary mitochondrial population when Bcl-xL was depleted by either means. These mitochondrial defects, including loss of ATP, impaired normal neurite development. Neurons lacking Bcl-xL showed significantly decreased neurite arborization, growth and complexity. Bcl-xL depleted neurons also showed impaired synapse formation. These neurons showed increased intracellular calcium concentration and were more susceptible to excitotoxic challenge. Bcl-xL may support positioning of mitochondria at metabolically demanding regions of neurites like branching points. Our findings suggest a role for Bcl-xL in physiological regulation of neuronal growth and development.
Collapse
|
19
|
Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 2021; 48:2669-2689. [PMID: 33155649 PMCID: PMC7752083 DOI: 10.1042/bst20200467] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The structure-function paradigm has guided investigations into the molecules involved in cellular signalling for decades. The peripheries of this paradigm, however, start to unravel when considering the co-operation between proteins and the membrane in signalling processes. Intrinsically disordered regions hold distinct advantages over folded domains in terms of their binding promiscuity, sensitivity to their particular environment and their ease of modulation through post-translational modifications. Low sequence complexity and bias towards charged residues are also favourable for the multivalent electrostatic interactions that occur at the surfaces of lipid bilayers. This review looks at the principles behind the successful marriage between protein disorder and membranes in addition to the role of this partnership in modifying and regulating signalling in cellular processes. The HVR (hypervariable region) of small GTPases is highlighted as a well-studied example of the nuanced role a short intrinsically disordered region can play in the fine-tuning of signalling pathways.
Collapse
|
20
|
Vauzour D, Rendeiro C, D’Amato A, Waffo-Téguo P, Richard T, Mérillon JM, Pontifex MG, Connell E, Müller M, Butler LT, Williams CM, Spencer JPE. Anthocyanins Promote Learning through Modulation of Synaptic Plasticity Related Proteins in an Animal Model of Ageing. Antioxidants (Basel) 2021; 10:antiox10081235. [PMID: 34439483 PMCID: PMC8388918 DOI: 10.3390/antiox10081235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Anthocyanin-rich foods, such as berries, reportedly ameliorate age-related cognitive deficits in both animals and humans. Despite this, investigation into the mechanisms which underpin anthocyanin-mediated learning and memory benefits remains relatively limited. The present study investigates the effects of anthocyanin intake on a spatial working memory paradigm, assessed via the cross-maze apparatus, and relates behavioural test performance to underlying molecular mechanisms. Six-week supplementation with pure anthocyanins (2% w/w), administered throughout the learning phase of the task, improved both spatial and psychomotor performances in aged rats. Behavioural outputs were accompanied by changes in the expression profile of key proteins integral to synaptic function/maintenance, with upregulation of dystrophin, protein kinase B (PKB/Akt) and tyrosine hydroxylase, and downregulation of apoptotic proteins B-cell lymphoma-extra-large (Bcl-xL) and the phosphorylated rapidly accelerated fibrosarcoma (p-Raf). Separate immunoblot analysis supported these observations, indicating increased activation of extracellular signal-related kinase (ERK1), Akt Ser473, mammalian target of rapamycin (mTOR) Ser2448, activity-regulated cytoskeleton-associated protein (Arc/Arg 3.1) and brain-derived neurotrophic factor (BDNF) in response to anthocyanin treatment, whilst α-E-catenin, c-Jun N-terminal kinase (JNK1) and p38 protein levels decreased. Together, these findings suggest that purified anthocyanin consumption enhances spatial learning and motor coordination in aged animals and can be attributed to the modulation of key synaptic proteins, which support integrity and maintenance of synaptic function.
Collapse
Affiliation(s)
- David Vauzour
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
- Correspondence: ; Tel.: +44-1603-591-732
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Pierre Waffo-Téguo
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Tristan Richard
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Jean Michel Mérillon
- UFR des Sciences Pharmaceutiques, Unité de Recherche Œnologie EA 4577, University of Bordeaux, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique, 210 Chemin de Leysotte, F-33882 Villenave d’Ornon, France; (P.W.-T.); (T.R.) ; (J.M.M.)
| | - Matthew G. Pontifex
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Emily Connell
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Michael Müller
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK; (M.G.P.); (E.C.); (M.M.)
| | - Laurie T. Butler
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Claire M. Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK;
| | - Jeremy P. E. Spencer
- Molecular Nutrition Group, Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK;
| |
Collapse
|
21
|
Lucantoni F, Salvucci M, Dussmann H, Prehn JHM. BCL(X)L and BCL2 increase mitochondrial dynamics in breast cancer cell: Evidence from functional and genetic studies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119095. [PMID: 34214511 DOI: 10.1016/j.bbamcr.2021.119095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
BCL2 family proteins are important regulators of mitochondrial outer membrane permeabilization (MOMP). In recent years, BCL2 family proteins have also been linked to the regulation of mitochondrial bioenergetics and dynamics. Given their overexpression in breast cancer cells, we sought to explore whether two key members of this family, BCL2 and BCL(X)L impacted on mitochondrial fusion/fission processes. By employing a single cell imaging and RNA sequencing we found that overexpression of BCL2 or BCL(X)L increases mitochondrial dynamics and alters the expression profile of genes involved in this process. Collectively, our data show that overexpression of BCL2 proteins regulates mitochondrial dynamics in breast cancer tumor cells.
Collapse
Affiliation(s)
- Federico Lucantoni
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Centre for System Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Centre for System Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Dussmann
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Centre for System Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Centre for System Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
22
|
Bcl-2 Family of Proteins in the Control of Mitochondrial Calcium Signalling: An Old Chap with New Roles. Int J Mol Sci 2021; 22:ijms22073730. [PMID: 33918511 PMCID: PMC8038216 DOI: 10.3390/ijms22073730] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.
Collapse
|
23
|
Involvement of Bcl-xL in Neuronal Function and Development. Int J Mol Sci 2021; 22:ijms22063202. [PMID: 33801158 PMCID: PMC8004157 DOI: 10.3390/ijms22063202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
The B-cell lymphoma (Bcl-2) family of proteins are mainly known for their role in the regulation of apoptosis by preventing pore formation at the mitochondrial outer membrane and subsequent caspase activation. However, Bcl-2 proteins also have non-canonical functions, independent of apoptosis. Indeed, the cell death machinery, including Bcl-2 homologs, was reported to be essential for the central nervous system (CNS), notably with respect to synaptic transmission and axon pruning. Here we focused on Bcl-xL, a close Bcl-2 homolog, which plays a major role in neuronal development, as bclx knock out mice prematurely die at embryonic day 13.5, showing massive apoptosis in the CNS. In addition, we present evidence that Bcl-xL fosters ATP generation by the mitochondria to fuel high energy needs by neurons, and its contribution to synaptic transmission. We discuss how Bcl-xL might control local and transient activation of caspases in neurons without causing cell death. Consistently, Bcl-xL may contribute to morphological changes, such as sprouting and retractation of axon branches, in the context of CNS plasticity. Regarding degenerative diseases and aging, a better understanding of the numerous roles of the cell death machinery in neurons may have future clinical implications.
Collapse
|
24
|
Dail ME, Brino MLM, Chambers JE. Effects of novel brain-penetrating oxime acetylcholinesterase reactivators on sarin surrogate-induced changes in rat brain gene expression. J Biochem Mol Toxicol 2021; 35:1-10. [PMID: 33682265 DOI: 10.1002/jbt.22755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 11/11/2022]
Abstract
Past assassinations and terrorist attacks demonstrate the need for a more effective antidote against nerve agents and other organophosphates (OP) that cause brain damage through inhibition of acetylcholinesterase (AChE). Our lab has invented a platform of phenoxyalkyl pyridinium oximes (US patent 9,277,937) that demonstrate the ability to cross the blood-brain barrier in in vivo rat tests with a sarin surrogate nitrophenyl isopropyl methylphosphonate (NIMP) and provide evidence of brain penetration by reducing cessation time of seizure-like behaviors, accumulation of glial fibrillary acidic protein (GFAP), and hippocampal neuropathology, as opposed to the currently approved oxime, 2-pyridine aldoxime methyl chloride (2-PAM). Using two of the novel oximes (Oximes 1 and 20), this project examined whether gene expression changes might help explain this protection. Expression changes in the piriform cortex were examined using polymerase chain reaction arrays for inflammatory cytokines and receptors. The hippocampus was examined via quantitative polymerase chain reaction for the expression of immediate-early genes involved in brain repair (Bdnf), increasing neurotoxicity (Fos), and apoptosis control (Jdp2, Bcl2l1, Bcl2l11). In the piriform cortex, NIMP significantly stimulated expression for the macrophage inflammatory proteins CCL4, IL-1A, and IL-1B. Oxime 20 by itself elicited the most changes. When it was given therapeutically post-NIMP, the largest change occurred: a 310-fold repression of the inflammatory cytokine, CCL12. In the hippocampus, NIMP increased the expression of the neurotoxicity marker Fos and decreased the expression of neuroprotective Bdnf and antiapoptotic Bcl2l1. Compared with 2-PAM, Oxime 20 stimulated Bcl2l1 expression more and returned expression closer to the vehicle control values.
Collapse
Affiliation(s)
- Mary E Dail
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| | - Meghan L M Brino
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| | - Janice E Chambers
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, United States, USA
| |
Collapse
|
25
|
Abstract
Bcl-xL is a pro-survival protein of the Bcl2 family found in the mitochondrial membrane. Bcl-xL supports growth, development, and maturation of neurons, and it also prevents neuronal death during neurotoxic stimulation. This article reviews the mechanisms and upstream signaling that regulate the activity and abundance of Bcl-xL. Our team and others have reported that oxidative stress is a key regulator of intracellular Bcl-xL balance in neurons. Oxidative stress regulates synthesis, degradation, and activity of Bcl-xL and therefore neuronal function. During apoptosis, pro-apoptotic Bcl2 proteins such as Bax and Bak translocate to and oligomerize in the mitochondrial membrane. Formation of oligomers causes release of cytochrome c and activation of caspases that lead to neuronal death. Bcl-xL binds directly to pro-apoptotic Bcl2 proteins to block apoptotic signaling. Although anti-apoptotic roles of Bcl-xL have been well documented, an increasing number of studies in recent decades show that protein binding partners of Bcl-xL are not limited to Bcl2 proteins. Bcl-xL forms a complex with F1Fo ATP synthase, DJ-1, DRP1, IP3R, and the ryanodine receptor. These proteins support physiological processes in neurons such as growth and development and prevent neuronal damage by regulating mitochondrial ATP production, synapse formation, synaptic vesicle recycling, neurotransmission, and calcium signaling. However, under conditions of oxidative stress, Bcl-xL undergoes proteolytic cleavage thus lowering the abundance of functional Bcl-xL in neurons. Additionally, oxidative stress alters formation of Bcl-xL-mediated multiprotein complexes by regulating post-translational phosphorylation. Finally, oxidative stress regulates transcription factors that target the Bcl-x gene and alter accessibility of microRNA to mRNA influencing mRNA levels of Bcl-xL. In this review, we discussed how Bcl-xL supports the normal physiology of neurons, and how oxidative stress contributes to pathology by manipulating the dynamics of Bcl-xL production, degradation, and activity.
Collapse
Affiliation(s)
- Han-A Park
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Katheryn Broman
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University, New Haven, CT, USA
| |
Collapse
|
26
|
Arriagada-Diaz J, Prado-Vega L, Cárdenas Díaz AM, Ardiles AO, Gonzalez-Jamett AM. Dynamin Superfamily at Pre- and Postsynapses: Master Regulators of Synaptic Transmission and Plasticity in Health and Disease. Neuroscientist 2020; 28:41-58. [PMID: 33300419 DOI: 10.1177/1073858420974313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dynamin superfamily proteins (DSPs) comprise a large group of GTP-ases that orchestrate membrane fusion and fission, and cytoskeleton remodeling in different cell-types. At the central nervous system, they regulate synaptic vesicle recycling and signaling-receptor turnover, allowing the maintenance of synaptic transmission. In the presynapses, these GTP-ases control the recycling of synaptic vesicles influencing the size of the ready-releasable pool and the release of neurotransmitters from nerve terminals, whereas in the postsynapses, they are involved in AMPA-receptor trafficking to and from postsynaptic densities, supporting excitatory synaptic plasticity, and consequently learning and memory formation. In agreement with these relevant roles, an important number of neurological disorders are associated with mutations and/or dysfunction of these GTP-ases. Along the present review we discuss the importance of DSPs at synapses and their implication in different neuropathological contexts.
Collapse
Affiliation(s)
- Jorge Arriagada-Diaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Prado-Vega
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas Díaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
27
|
Zhang Y, Sun R, Wang L, Zhu Y, Tuyiringire D, Yang Y, Li K, Han W, Wang Y, Yan L. Physiological responses of Arthrobacter sp. JQ-1 cell interfaces to co-existed di-(2-ethylhexyl) phthalate (DEHP) and copper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111163. [PMID: 32836159 DOI: 10.1016/j.ecoenv.2020.111163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Arthrobacter sp. JQ-1 can completely degrade 500 mg/L of DEHP within 3 days. The minimum inhibitory concentrations (MICs) of Cu2+ could reach 1.56 mM, however, 5.0 mg/L Cu2+ apparently inhibited DEHP degradation and bacterial growth. Consequently, JQ-1 was exposed to the DEHP-copper environment to verify the toxicity mechanism based on the physiological responses of cellular multiple interfaces (cellular surface, membrane and intracellular characteristics). The results showed the combination of 500 mg/L DEHP and 5.0 mg/L Cu2+ significantly decreased cell surface hydrophobicity (CSH) and the absolute value of zeta potential, which implied the bioavailability of DEHP was decreased. The cellular surface changes were mainly due to the interaction between Cu2+ and some functional groups (CH2, CH3, aromatic rings, and amide). The weakened proton-motive force (PMF) across the plasma membrane may interfere the formation and utilization of energy, which is not conducive to the repair process of cellular damages. In this study, Non-invasive micro-test technology (NMT) was applied to the research of combined toxicity of DEHP and heavy metal ions for the first time. DEHP-copper intensified K+ efflux and Ca2+ influx across the plasma membrane, which disturbed ion homeostasis of K+ and Ca2+ and might induce apoptosis and further inhibit DEHP degradation. The decline of intracellular esterase activity indicated that the metabolic capacity is apparently restrained. This study enhances our understanding of cellular different interface processes responding to combined pollutants.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Ruixue Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Diogene Tuyiringire
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kuimin Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Han
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lilong Yan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
28
|
Murata D, Arai K, Iijima M, Sesaki H. Mitochondrial division, fusion and degradation. J Biochem 2020; 167:233-241. [PMID: 31800050 DOI: 10.1093/jb/mvz106] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrion is an essential organelle for a wide range of cellular processes, including energy production, metabolism, signal transduction and cell death. To execute these functions, mitochondria regulate their size, number, morphology and distribution in cells via mitochondrial division and fusion. In addition, mitochondrial division and fusion control the autophagic degradation of dysfunctional mitochondria to maintain a healthy population. Defects in these dynamic membrane processes are linked to many human diseases that include metabolic syndrome, myopathy and neurodegenerative disorders. In the last several years, our fundamental understanding of mitochondrial fusion, division and degradation has been significantly advanced by high resolution structural analyses, protein-lipid biochemistry, super resolution microscopy and in vivo analyses using animal models. Here, we summarize and discuss this exciting recent progress in the mechanism and function of mitochondrial division and fusion.
Collapse
Affiliation(s)
- Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Kenta Arai
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Choi SY, Lee JH, Chung AY, Jo Y, Shin JH, Park HC, Kim H, Lopez-Gonzalez R, Ryu JR, Sun W. Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death Dis 2020; 11:888. [PMID: 33087694 PMCID: PMC7578657 DOI: 10.1038/s41419-020-03102-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of motor neurons (MNs) and subsequent muscle weakness. These pathological features are associated with numerous cellular changes, including alteration in mitochondrial morphology and function. However, the molecular mechanisms associating mitochondrial structure with ALS pathology are poorly understood. In this study, we found that Dynamin-related protein 1 (Drp1) was dephosphorylated in several ALS models, including those with SOD1 and TDP-43 mutations, and the dephosphorylation was mediated by the pathological induction of protein phosphatase 1 (PP1) activity in these models. Suppression of the PP1-Drp1 cascade effectively prevented ALS-related symptoms, including mitochondrial fragmentation, mitochondrial complex I impairment, axonal degeneration, and cell death, in primary neuronal culture models, iPSC-derived human MNs, and zebrafish models in vivo. These results suggest that modulation of PP1-Drp1 activity may be a therapeutic target for multiple pathological features of ALS.
Collapse
Affiliation(s)
- So Yoen Choi
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
- Department of Neurology, University of Massachusetts Medical school, Worcester, MA, USA
| | - Ju-Hyun Lee
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Ah-Young Chung
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Youhwa Jo
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | | | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Licznerski P, Park HA, Rolyan H, Chen R, Mnatsakanyan N, Miranda P, Graham M, Wu J, Cruz-Reyes N, Mehta N, Sohail S, Salcedo J, Song E, Effman C, Effman S, Brandao L, Xu GN, Braker A, Gribkoff VK, Levy RJ, Jonas EA. ATP Synthase c-Subunit Leak Causes Aberrant Cellular Metabolism in Fragile X Syndrome. Cell 2020; 182:1170-1185.e9. [PMID: 32795412 DOI: 10.1016/j.cell.2020.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
Abstract
Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase β subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.
Collapse
Affiliation(s)
- Pawel Licznerski
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Han-A Park
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Harshvardhan Rolyan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Rongmin Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Paige Miranda
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jing Wu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Nikita Mehta
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sana Sohail
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Jorge Salcedo
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Erin Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Samuel Effman
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Lucas Brandao
- Department of Biology, Clark University, Worcester, MA 01610, USA
| | - Gulan N Xu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Amber Braker
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Valentin K Gribkoff
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
31
|
Aishwarya R, Alam S, Abdullah CS, Morshed M, Nitu SS, Panchatcharam M, Miriyala S, Kevil CG, Bhuiyan MS. Pleiotropic effects of mdivi-1 in altering mitochondrial dynamics, respiration, and autophagy in cardiomyocytes. Redox Biol 2020; 36:101660. [PMID: 32750667 PMCID: PMC7396909 DOI: 10.1016/j.redox.2020.101660] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fission and fusion events to adapt to changes in the cellular environment. Aberrant mitochondrial fission has been associated with several types of cardiovascular dysfunction; inhibition of pathologically aberrant mitochondrial fission has been shown to be cardioprotective. Pathological fission is mediated by the excessive activation of GTPase dynamin-related protein 1 (Drp1), making it an attractive therapeutic target in numerous cardiovascular diseases. Mitochondrial division inhibitor (mdivi-1) is widely used small molecule reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate injury. The purpose of our study was to understand the pleiotropic effects of mdivi-1 on mitochondrial dynamics, mitochondrial respiration, electron transport activities, and macro-autophagy. In this study, we found that mdivi-1 treatment decreased Drp1 expression, proteolytically cleaved L-OPA1, and altered the expression of OXPHOS complex proteins, resulting in increased superoxide production. The altered expression of OXPHOS complex proteins may be directly associated with decreased Drp1 expression, as Drp1 siRNA knockdown in cardiomyocytes showed similar effects. Results from an autophagy flux assay showed that mdivi-1 induced impaired autophagy flux that could be restored by Atg7 overexpression, suggesting that mdivi-1 mediated inhibition of macro-autophagy in cardiomyocytes. Treatment with mdivi-1 resulted in increased expression of p62, which is required for Atg7 overexpression-induced rescue of mdivi-1-mediated impaired autophagy flux. In addition, mdivi-1-dependent proteolytic processing of L-OPA1 was associated with increased mitochondrial superoxide production and altered expression of mitochondrial serine/proteases. Overall, the novel pleiotropic effect of mdivi-1 in cardiomyocytes included proteolytically cleaved L-OPA1, altered expression of OXPHOS complex proteins, and increased superoxide production, which together resulted in defects in mitochondrial respiration and inhibition of macro-autophagy.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Sadia S Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Manikandan Panchatcharam
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Sumitra Miriyala
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA; Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
32
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
33
|
Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. J Mol Cell Cardiol 2020; 144:109-118. [PMID: 32461058 PMCID: PMC7877492 DOI: 10.1016/j.yjmcc.2020.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) or mitochondrial megachannel is arguably one of the most mysterious phenomena in biology today. mPTP has been at the center of ongoing extensive scientific research for the last several decades. In this review we will discuss recent advances in the field that enhance our understanding of the molecular composition of mPTP, its regulatory mechanisms and its pathophysiological role. We will describe our recent findings on the role of ATP synthase c-subunit ring as a central player in mitochondrial permeability transition and as an important metabolic regulator during development and in degenerative diseases.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
34
|
Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, Mitochondrial Homeostasis, and Cell Fate. Front Cell Dev Biol 2020; 8:467. [PMID: 32671064 PMCID: PMC7326955 DOI: 10.3389/fcell.2020.00467] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are highly plastic and dynamic organelles that have graded responses to the changing cellular, environmental, and developmental cues. Mitochondria undergo constant mitochondrial fission and fusion, mitochondrial biogenesis, and mitophagy, which coordinately control mitochondrial morphology, quantity, quality, turnover, and inheritance. Mitophagy is a cellular process that selectively removes the aged and damaged mitochondria via the specific sequestration and engulfment of mitochondria for subsequent lysosomal degradation. It plays a pivotal role in reinstating cellular homeostasis in normal physiology and conditions of stress. Damaged mitochondria may either instigate innate immunity through the overproduction of ROS or the release of mtDNA, or trigger cell death through the release of cytochrome c and other apoptogenic factors when mitochondria damage is beyond repair. Distinct molecular machineries and signaling pathways are found to regulate these mitochondrial dynamics and behaviors. It is less clear how mitochondrial behaviors are coordinated at molecular levels. BCL2 family proteins interact within family members to regulate mitochondrial outer membrane permeabilization and apoptosis. They were also described as global regulators of mitochondrial homeostasis and mitochondrial fate through their interaction with distinct partners including Drp1, mitofusins, PGAM5, and even LC3 that involved mitochondrial dynamics and behaviors. In this review, we summarize recent findings on molecular pathways governing mitophagy and its coordination with other mitochondrial behaviors, which together determine cellular fate.
Collapse
Affiliation(s)
- Kaili Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhui Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Oliver Kepp
- Gustave Roussy Cancer Campus, Villejuif, France.,INSERM, UMR 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
35
|
Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region. Neurobiol Dis 2020; 141:104950. [PMID: 32439598 DOI: 10.1016/j.nbd.2020.104950] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/19/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular changes at synapses are thought to underly the deficits in motor and cognitive dysfunction seen in Huntington's disease (HD). Previously we showed in synaptosome preparations age dependent changes in levels of selected proteins examined by western blot assay in the striatum of Q140/Q140 HD mice. To assess if CAG repeat length influenced protein changes at the synapse, we examined synaptosomes from 6-month old heterozygote HD mice with CAG repeat lengths ranging from 50 to 175. Analysis of 19 selected proteins showed that increasing CAG repeat length in huntingtin (HTT) increased the number of affected proteins in HD striatal synaptosomes. Moreover, SDS-soluble total HTT (WT plus mutant HTT) and pThr3 HTT were reduced with increasing CAG repeat length, and there was no pSer421 mutant HTT detected in any HD mice. A LC-MS/MS and bioinfomatics study of synaptosomes from 2 and 6-month old striatum and cortex of Q140/Q7 HD mice showed enrichment of synaptic proteins and an influence of age, gender and brain region on the number of protein changes. HD striatum at 6 months had the most protein changes that included many HTT protein interactors, followed by 2-month old HD striatum, 2-month old HD cortex and 6-month HD cortex. SDS-insoluble mutant HTT was detected in HD striatal synaptosomes consistent with the presence of aggregates. Proteins changed in cortex differed from those in striatum. Pathways affected in HD striatal synaptosomes that were not identified in whole striatal lysates of the same HD mouse model included axon guidance, focal adhesion, neurotrophin signaling, regulation of actin cytoskeleton, endocytosis, and synaptic vesicle cycle. Results suggest that synaptosomes prepared from HD mice are highly informative for monitoring protein changes at the synapse and may be preferred for assessing the effects of experimental therapies on synaptic function in HD.
Collapse
|
36
|
Cho HM, Sun W. Molecular cross talk among the components of the regulatory machinery of mitochondrial structure and quality control. Exp Mol Med 2020; 52:730-737. [PMID: 32398745 PMCID: PMC7272630 DOI: 10.1038/s12276-020-0434-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction critically impairs cellular health and often causes or affects the progression of several diseases, including neurodegenerative diseases and cancer. Thus, cells must have several ways to monitor the condition of mitochondrial quality and maintain mitochondrial health. Accumulating evidence suggests that the molecular machinery responding to spontaneous changes in mitochondrial morphology is associated with the routine mitochondrial quality control system. In this short review, we discuss recent progress made in linking mitochondrial structural dynamics and the quality control system. The health of mitochondria is important for cellular health, and is maintained by the same mechanisms that control their shape. Mitochondria continuously divide, fuse, elongate, and shrink, forming ever-changing networks inside cells. Damaged mitochondria produce toxic byproducts and have been implicated in neurodegenerative diseases and cancer. Although changes in mitochondrial structure are known to be related to cellular health, the detailed mechanisms are not well understood. In a review, Woong Sun and Hyo Min Cho at the Korea University College of Medicine, Seoul, detail how mitochondrial fusion, division, and recycling are controlled, what signals are used to dispose of damaged mitochondria, and how the shape-control mechanisms also regulate mitochondrial quality. This review will help us to more clearly understand the structure-function relationship of mitochondria.
Collapse
Affiliation(s)
- Hyo Min Cho
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea.
| |
Collapse
|
37
|
Borrás C, Mas-Bargues C, Román-Domínguez A, Sanz-Ros J, Gimeno-Mallench L, Inglés M, Gambini J, Viña J. BCL-xL, a Mitochondrial Protein Involved in Successful Aging: From C. elegans to Human Centenarians. Int J Mol Sci 2020; 21:ijms21020418. [PMID: 31936510 PMCID: PMC7014191 DOI: 10.3390/ijms21020418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/01/2020] [Accepted: 01/04/2020] [Indexed: 01/07/2023] Open
Abstract
B-Cell Lymphoma-extra-large (BCL-xL) is involved in longevity and successful aging, which indicates a role for BCL-xL in cell survival pathway regulation. Beyond its well described role as an inhibitor of apoptosis by preventing cytochrome c release, BCL-xL has also been related, indirectly, to autophagy and senescence pathways. Although in these latter cases, BCL-xL has dual roles, either activating or inhibiting, depending on the cell type and the specific conditions. Taken together, all these findings suggest a precise mechanism of action for BCL-xL, able to regulate the crosstalk between apoptosis, autophagy, and senescence, thus promoting cell survival or cell death. All three pathways can be both beneficial or detrimental depending on the circumstances. Thus, targeting BCL-xL would in turn be a "double-edge sword" and therefore, additional studies are needed to better comprehend this dual and apparently contradictory role of BCL-XL in longevity.
Collapse
Affiliation(s)
- Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
- Correspondence:
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Aurora Román-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Lucia Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - Marta Inglés
- Freshage Research Group, Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain;
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Avenida Blasco Ibañez, 15 46010 Valencia, Spain; (C.M.-B.); (A.R.-D.); (J.S.-R.); (L.G.-M.); (J.G.); (J.V.)
| |
Collapse
|
38
|
Dong L, Li P, Yang K, Liu L, Gao H, Zhou G, Zhao Q, Xia T, Wang A, Zhang S. Promotion of mitochondrial fusion protects against developmental PBDE-47 neurotoxicity by restoring mitochondrial homeostasis and suppressing excessive apoptosis. Am J Cancer Res 2020; 10:1245-1261. [PMID: 31938063 PMCID: PMC6956817 DOI: 10.7150/thno.40060] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs)-induced neurotoxicity is closely associated with mitochondrial abnormalities. Mitochondrial fusion and fission dynamics are required for the maintenance of mitochondrial homeostasis. However, little is known about how PBDEs disrupt this dynamics and whether such disruption contributes to impaired neurodevelopment. Methods: We investigated the effects of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47), the dominant congener in human samples, on mitochondrial fusion and fission dynamics using PC12 cells, a well-defined in vitro neurodevelopmental model. We also evaluated the effects of perinatal low-dose PBDE-47 exposure on hippocampal mitochondrial dynamics and its association with neurobehavioral changes in adult Sprague-Dawley rats. Results: In vitro, PBDE-47 disrupted mitochondrial dynamics by inhibiting mitochondrial fusion and fission simultaneously, accompanied by mitochondrial fragmentation, membrane potential dissipation, ATP loss, and apoptosis activation. Specifically, enhancing mitochondrial fusion by the chemical promoter M1 or adenovirus-mediated mitofusin 2 (Mfn2) overexpression rescued PBDE-47-caused mitochondrial dynamic, morphological and functional impairments, prevented the resultant apoptosis and promoted neuronal survival. Unexpectedly, either stimulating mitochondrial fission by adenovirus-mediated fission protein 1 (Fis1) overexpression or suppressing mitochondrial fission by the mitochondrial division inhibitor-1 (Mdivi-1) failed to reverse whereas aggravated PBDE-47-induced mitochondrial damage and neuronal death. Importantly, promoting mitochondrial fusion by Mfn2 overexpression neutralized the detrimental effects elicited by Fis1 overexpression after PBDE-47 treatment. Finally, perinatal oral administration of PBDE-47 elicited neurobehavioral deficits and hippocampal neuronal loss via apoptosis in adult rats, which were associated with mitochondrial dynamics alterations manifested as a fragmented phenotype. Conclusion: Our results suggest that PBDE-47 disrupts mitochondrial dynamics to induce mitochondrial abnormalities, triggering apoptosis and thus contributing to neuronal loss and subsequent neurobehavioral deficits. Targeting mitochondrial fusion may be a promising therapeutic intervention against PBDE-47 neurotoxicity.
Collapse
|
39
|
Li M, Wang D, He J, Chen L, Li H. Bcl-X L: A multifunctional anti-apoptotic protein. Pharmacol Res 2020; 151:104547. [PMID: 31734345 DOI: 10.1016/j.phrs.2019.104547] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
B-cell lymphoma-extra large (Bcl-XL) is one of the anti-apoptotic proteins of the Bcl-2 family that is localized in the mitochondria. Bcl-XL is one of the key regulators of apoptosis that can also regulate other important cellular functions. Bcl-XL is overexpressed in many cancers, and its inhibitors have shown good therapeutic effects. Bcl-XL interacts with Beclin 1, a key factor regulating autophagy. Bcl-XL is essential for the survival of neurons and plays protective roles in neuronal injuries. It can promote the growth of neurons and the correct formation of neural networks, enhance synaptic plasticity, and control neurotoxicity. Bcl-XL can also promote the transport of Ca2+ to mitochondria, increase the production of ATP, and improve metabolic efficiency. In addition, targeting Bcl-XL has shown potential value in autoimmune diseases and aging. In this review, we summarize the functions of Bcl-XL in cancer, autophagy, Ca2+ signaling, neuroprotection, neuronal growth and synaptic plasticity, energy metabolism, immunity, and senescence as revealed by investigations conducted in the past 10 years. Moreover, we list some inhibitors that have been developed based on the functions of Bcl-XL.
Collapse
Affiliation(s)
- Mingxue Li
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dun Wang
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianhua He
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
40
|
Alpha-Tocotrienol Prevents Oxidative Stress-Mediated Post-Translational Cleavage of Bcl-xL in Primary Hippocampal Neurons. Int J Mol Sci 2019; 21:ijms21010220. [PMID: 31905614 PMCID: PMC6982044 DOI: 10.3390/ijms21010220] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/25/2022] Open
Abstract
B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic member of the Bcl2 family of proteins, which supports neurite outgrowth and neurotransmission by improving mitochondrial function. During excitotoxic stimulation, however, Bcl-xL undergoes post-translational cleavage to ∆N-Bcl-xL, and accumulation of ∆N-Bcl-xL causes mitochondrial dysfunction and neuronal death. In this study, we hypothesized that the generation of reactive oxygen species (ROS) during excitotoxicity leads to formation of ∆N-Bcl-xL. We further proposed that the application of an antioxidant with neuroprotective properties such as α-tocotrienol (TCT) will prevent ∆N-Bcl-xL-induced mitochondrial dysfunction via its antioxidant properties. Primary hippocampal neurons were treated with α-TCT, glutamate, or a combination of both. Glutamate challenge significantly increased cytosolic and mitochondrial ROS and ∆N-Bcl-xL levels. ∆N-Bcl-xL accumulation was accompanied by intracellular ATP depletion, loss of mitochondrial membrane potential, and cell death. α-TCT prevented loss of mitochondrial membrane potential in hippocampal neurons overexpressing ∆N-Bcl-xL, suggesting that ∆N-Bcl-xL caused the loss of mitochondrial function under excitotoxic conditions. Our data suggest that production of ROS is an important cause of ∆N-Bcl-xL formation and that preventing ROS production may be an effective strategy to prevent ∆N-Bcl-xL-mediated mitochondrial dysfunction and thus promote neuronal survival.
Collapse
|
41
|
Ma Y, Du M, Yang F, Mai Z, Zhang C, Qu W, Wang B, Wang X, Chen T. Quantifying the inhibitory effect of Bcl-xl on the action of Mff using live-cell fluorescence imaging. FEBS Open Bio 2019; 9:2041-2051. [PMID: 31587505 PMCID: PMC6886297 DOI: 10.1002/2211-5463.12739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial fission regulates mitochondrial function and morphology, and has been linked to apoptosis. The mitochondrial fission factor (Mff), a tail‐anchored membrane protein, induces excessive mitochondrial fission, contributing to mitochondrial dysfunction and apoptosis. Here, we evaluated the inhibitory effect of Bcl‐xl, an antiapoptotic protein, on the action of Mff by using live‐cell fluorescence imaging. Microscopic imaging analysis showed that overexpression of Mff induced mitochondrial fragmentation and apoptosis, which were reversed by coexpression of Bcl‐xl. Microscopic imaging and live‐cell fluorescence resonance energy transfer analysis demonstrated that Bcl‐xl reconstructs the Mff network from punctate distribution of higher‐order oligomers to filamentous distribution of lower‐order oligomers. Live‐cell fluorescence resonance energy transfer two‐hybrid assay showed that Bcl‐xl interacted with Mff to form heterogenous oligomers with 1 : 2 stoichiometry in cytoplasm and 1 : 1 stoichiometry on mitochondria, indicating that two Bcl‐xl molecules primarily interact with four Mff molecules in cytoplasm, but with two Mff molecules on mitochondria. Mitochondrial fission factor (Mff)‐mediated mitochondrial fission is positively correlated with the self‐oligomerization of Mff. Bcl‐xl directly interacts with Mff to prevent Mff‐mediated mitochondrial fission and apoptosis. Bcl‐xl interacts with Mff to form heterogenous hexamers with 1 : 2 stoichiometry in cytoplasm and heterogenous tetramers with 1 : 1 stoichiometry on the mitochondrial membrane, respectively.![]()
Collapse
Affiliation(s)
- Yunyun Ma
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Mengyan Du
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Fangfang Yang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zihao Mai
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chenshuang Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenfeng Qu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Bin Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
42
|
Itoh K, Murata D, Kato T, Yamada T, Araki Y, Saito A, Adachi Y, Igarashi A, Li S, Pletnikov M, Huganir RL, Watanabe S, Kamiya A, Iijima M, Sesaki H. Brain-specific Drp1 regulates postsynaptic endocytosis and dendrite formation independently of mitochondrial division. eLife 2019; 8:44739. [PMID: 31603426 PMCID: PMC6824841 DOI: 10.7554/elife.44739] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) divides mitochondria as a mechano-chemical GTPase. However, the function of Drp1 beyond mitochondrial division is largely unknown. Multiple Drp1 isoforms are produced through mRNA splicing. One such isoform, Drp1ABCD, contains all four alternative exons and is specifically expressed in the brain. Here, we studied the function of Drp1ABCD in mouse neurons in both culture and animal systems using isoform-specific knockdown by shRNA and isoform-specific knockout by CRISPR/Cas9. We found that the expression of Drp1ABCD is induced during postnatal brain development. Drp1ABCD is enriched in dendritic spines and regulates postsynaptic clathrin-mediated endocytosis by positioning the endocytic zone at the postsynaptic density, independently of mitochondrial division. Drp1ABCD loss promotes the formation of ectopic dendrites in neurons and enhanced sensorimotor gating behavior in mice. These data reveal that Drp1ABCD controls postsynaptic endocytosis, neuronal morphology and brain function.
Collapse
Affiliation(s)
- Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yoichi Araki
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Shuo Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mikhail Pletnikov
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
43
|
Milani M, Beckett AJ, Al-Zebeeby A, Luo X, Prior IA, Cohen GM, Varadarajan S. DRP-1 functions independently of mitochondrial structural perturbations to facilitate BH3 mimetic-mediated apoptosis. Cell Death Discov 2019; 5:117. [PMID: 31341643 PMCID: PMC6637195 DOI: 10.1038/s41420-019-0199-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/23/2022] Open
Abstract
Maintenance of mitochondrial integrity is critical for normal cellular homoeostasis. Most cells respond to stress stimuli and undergo apoptosis by perturbing mitochondrial structure and function to release proteins, such as cytochrome c, which are essential for the execution of the intrinsic apoptotic cascade. Cancer cells evade these events by overexpressing the anti-apoptotic BCL-2 family of proteins on mitochondrial membranes. Inhibitors of the anti-apoptotic BCL-2 family proteins, also known as BH3 mimetics, antagonise the pro-survival functions of these proteins and result in rapid apoptosis. Although the precise mechanism by which BH3 mimetics induce apoptosis has been well characterised, not much is known in terms of the structural changes that occur in mitochondria during apoptosis. Using a panel of highly selective BH3 mimetics and a wide range of cell lines, we demonstrate that BH3 mimetics induce extensive mitochondrial fission, accompanied by swelling of the mitochondrial matrix and rupture of the outer mitochondrial membrane. These changes occur in a BAX/ BAK-dependent manner. Although a major mitochondrial fission GTPase, DRP-1, has been implicated in mitochondrial apoptosis, our data demonstrate that DRP-1 might function independently/downstream of BH3 mimetic-mediated mitochondrial fission to facilitate the release of cytochrome c and apoptosis. Moreover, downregulation of DRP-1 prevented cytochrome c release and apoptosis even when OPA1, a protein mediating mitochondrial fusion, was silenced. Although BH3 mimetic-mediated displacement of BAK and other BH3-only proteins from BCL-XL and MCL-1 was unaffected by DRP-1 downregulation, it prevented BAK activation significantly, thus placing DRP-1 as one of the most critical players, along with BAX and BAK, that governs BH3 mimetic-mediated cytochrome c release and apoptosis.
Collapse
Affiliation(s)
- Mateus Milani
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Alison J. Beckett
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Aoula Al-Zebeeby
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Ian A. Prior
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Gerald M. Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| | - Shankar Varadarajan
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, Ashton Street, Liverpool, L69 3GE UK
| |
Collapse
|
44
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
45
|
Chen R, Park HA, Mnatsakanyan N, Niu Y, Licznerski P, Wu J, Miranda P, Graham M, Tang J, Boon AJW, Cossu G, Mandemakers W, Bonifati V, Smith PJS, Alavian KN, Jonas EA. Parkinson's disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth. Cell Death Dis 2019; 10:469. [PMID: 31197129 PMCID: PMC6565618 DOI: 10.1038/s41419-019-1679-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/10/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022]
Abstract
Familial Parkinson’s disease (PD) protein DJ-1 mutations are linked to early onset PD. We have found that DJ-1 binds directly to the F1FO ATP synthase β subunit. DJ-1’s interaction with the β subunit decreased mitochondrial uncoupling and enhanced ATP production efficiency while in contrast mutations in DJ-1 or DJ-1 knockout increased mitochondrial uncoupling, and depolarized neuronal mitochondria. In mesencephalic DJ-1 KO cultures, there was a progressive loss of neuronal process extension. This was ameliorated by a pharmacological reagent, dexpramipexole, that binds to ATP synthase, closing a mitochondrial inner membrane leak and enhancing ATP synthase efficiency. ATP synthase c-subunit can form an uncoupling channel; we measured, therefore, ATP synthase F1 (β subunit) and c-subunit protein levels. We found that ATP synthase β subunit protein level in the DJ-1 KO neurons was approximately half that found in their wild-type counterparts, comprising a severe defect in ATP synthase stoichiometry and unmasking c-subunit. We suggest that DJ-1 enhances dopaminergic cell metabolism and growth by its regulation of ATP synthase protein components.
Collapse
Affiliation(s)
- Rongmin Chen
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Han-A Park
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA.,Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, AL, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Yulong Niu
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Pawel Licznerski
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Jing Wu
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Paige Miranda
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Jack Tang
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Giovanni Cossu
- Neurology Service and Stroke Unit, Brotzu General Hospital, Cagliari, Italy
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J S Smith
- Institute of Life Sciences, University of Southampton, Southampton, England.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Kambiz N Alavian
- Marine Biological Laboratory, Woods Hole, MA, USA.,Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, CT, USA. .,Marine Biological Laboratory, Woods Hole, MA, USA. .,Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
46
|
Mitochondria and the Brain: Bioenergetics and Beyond. Neurotox Res 2019; 36:219-238. [DOI: 10.1007/s12640-019-00061-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
47
|
Chen D, Ni HM, Wang L, Ma X, Yu J, Ding WX, Zhang L. p53 Up-regulated Modulator of Apoptosis Induction Mediates Acetaminophen-Induced Necrosis and Liver Injury in Mice. Hepatology 2019; 69:2164-2179. [PMID: 30552702 PMCID: PMC6461480 DOI: 10.1002/hep.30422] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/03/2018] [Indexed: 12/28/2022]
Abstract
Acetaminophen (APAP) overdose is one of the leading causes of hepatotoxicity and acute liver failure in the United States. Accumulating evidence suggests that hepatocyte necrosis plays a critical role in APAP-induced liver injury (AILI). However, the mechanisms of APAP-induced necrosis and liver injury are not fully understood. In this study, we found that p53 up-regulated modulator of apoptosis (PUMA), a B-cell lymphoma-2 (Bcl-2) homology domain 3 (BH3)-only Bcl-2 family member, was markedly induced by APAP in mouse livers and in isolated human and mouse hepatocytes. PUMA deficiency suppressed APAP-induced mitochondrial dysfunction and release of cell death factors from mitochondria, and protected against APAP-induced hepatocyte necrosis and liver injury in mice. PUMA induction by APAP was p53 independent, and required receptor-interacting protein kinase 1 (RIP1) and c-Jun N-terminal kinase (JNK) by transcriptional activation. Furthermore, a small-molecule PUMA inhibitor, administered after APAP treatment, mitigated APAP-induced hepatocyte necrosis and liver injury. Conclusion: Our results demonstrate that RIP1/JNK-dependent PUMA induction mediates AILI by promoting hepatocyte mitochondrial dysfunction and necrosis, and suggest that PUMA inhibition is useful for alleviating acute hepatotoxicity attributed to APAP overdose.
Collapse
Affiliation(s)
- Dongshi Chen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lei Wang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Corresponding authors
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Corresponding authors
| |
Collapse
|
48
|
Rossi MJ, Pekkurnaz G. Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr Opin Neurobiol 2019; 57:149-155. [PMID: 30875521 DOI: 10.1016/j.conb.2019.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells with extraordinary energy demands, which are mainly fulfilled by mitochondria. In response to altered neuronal energy state, mitochondria adapt to enable energy homeostasis and nervous system function. This adaptation, also called mitochondrial plasticity, can be observed as alterations in the form, function and position. The primary site of energy consumption in neurons is localized at the synapse, where mitochondria are critical for both pre- and postsynaptic functions. In this review, we will discuss molecular mechanisms regulating mitochondrial plasticity at the synapse and how they contribute to information processing within neurons.
Collapse
Affiliation(s)
- Meghan J Rossi
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Gulcin Pekkurnaz
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
49
|
Farmer T, O'Neill KL, Naslavsky N, Luo X, Caplan S. Retromer facilitates the localization of Bcl-xL to the mitochondrial outer membrane. Mol Biol Cell 2019; 30:1138-1146. [PMID: 30840537 PMCID: PMC6724524 DOI: 10.1091/mbc.e19-01-0044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The anti-apoptotic Bcl-2 family protein Bcl-xL plays a critical role in cell survival by protecting the integrity of the mitochondrial outer membrane (MOM). The mechanism through which Bcl-xL is recruited to the MOM has not been fully discerned. The retromer is a conserved endosomal scaffold complex involved in membrane trafficking. Here we identify VPS35 and VPS26, two core components of the retromer, as novel regulators of Bcl-xL. We observed interactions and colocalization between Bcl-xL, VPS35, VPS26, and MICAL-L1, a protein involved in recycling endosome biogenesis that also interacts with the retromer. We also found that upon VPS35 depletion, levels of nonmitochondrial Bcl-xL were increased. In addition, retromer-depleted cells displayed more rapid Bax activation and apoptosis. These results suggest that the retromer regulates apoptosis by facilitating Bcl-xL's transport to the MOM. Importantly, our studies suggest a previously uncharacterized relationship between the machineries of cell death/survival and endosomal trafficking.
Collapse
Affiliation(s)
- Trey Farmer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Katelyn L O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870.,Eppley Institute for Research in Cancer and Allied Diseases, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| |
Collapse
|
50
|
Kamerkar SC, Kraus F, Sharpe AJ, Pucadyil TJ, Ryan MT. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun 2018; 9:5239. [PMID: 30531964 PMCID: PMC6286342 DOI: 10.1038/s41467-018-07543-w] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) is essential for mitochondrial and peroxisomal fission. Recent studies propose that Drp1 does not sever but rather constricts mitochondrial membranes allowing dynamin 2 (Dnm2) to execute final scission. Here, we report that unlike Drp1, Dnm2 is dispensable for peroxisomal and mitochondrial fission, as these events occurred in Dnm2 knockout cells. Fission events were also observed in mouse embryonic fibroblasts lacking Dnm1, 2 and 3. Using reconstitution experiments on preformed membrane tubes, we show that Drp1 alone both constricts and severs membrane tubes. Scission required the membrane binding, self-assembling and GTPase activities of Drp1 and occurred on tubes up to 250 nm in radius. In contrast, Dnm2 exhibited severely restricted fission capacity with occasional severing of tubes below 50 nm in radius. We conclude that Drp1 has both membrane constricting and severing abilities and is the dominant dynamin performing mitochondrial and peroxisomal fission. Drp1 and Dnm2 have been implicated in mitochondrial fission events, although their specific activities in constriction and scission have been unclear. Here, the authors demonstrate that Drp1 is sufficient to constrict and sever mitochondrial and peroxisomal membranes in the absence of Dnm proteins.
Collapse
Affiliation(s)
- Sukrut C Kamerkar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Felix Kraus
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Alice J Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia.
| |
Collapse
|