1
|
Simoncik O, Tichy V, Durech M, Hernychova L, Trcka F, Uhrik L, Bardelcik M, Coates PJ, Vojtesek B, Muller P. Direct activation of HSF1 by macromolecular crowding and misfolded proteins. PLoS One 2024; 19:e0312524. [PMID: 39495731 PMCID: PMC11534217 DOI: 10.1371/journal.pone.0312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
Stress responses play a vital role in cellular survival against environmental challenges, often exploited by cancer cells to proliferate, counteract genomic instability, and resist therapeutic stress. Heat shock factor protein 1 (HSF1), a central transcription factor in stress response pathways, exhibits markedly elevated activity in cancer. Despite extensive research into the transcriptional role of HSF1, the mechanisms underlying its activation remain elusive. Upon exposure to conditions that induce protein damage, monomeric HSF1 undergoes rapid conformational changes and assembles into trimers, a key step for DNA binding and transactivation of target genes. This study investigates the role of HSF1 as a sensor of proteotoxic stress conditions. Our findings reveal that purified HSF1 maintains a stable monomeric conformation independent of molecular chaperones in vitro. Moreover, while it is known that heat stress triggers HSF1 trimerization, a notable increase in trimerization and DNA binding was observed in the presence of protein-based crowders. Conditions inducing protein misfolding and increased protein crowding in cells directly trigger HSF1 trimerization. In contrast, proteosynthesis inhibition, by reducing denatured proteins in the cell, prevents HSF1 activation. Surprisingly, HSF1 remains activated under proteotoxic stress conditions even when bound to Hsp70 and Hsp90. This finding suggests that the negative feedback regulation between HSF1 and chaperones is not directly driven by their interaction but is realized indirectly through chaperone-mediated restoration of cytoplasmic proteostasis. In summary, our study suggests that HSF1 serves as a molecular crowding sensor, trimerizing to initiate protective responses that enhance chaperone activities to restore homeostasis.
Collapse
Affiliation(s)
- Oliver Simoncik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vlastimil Tichy
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Michal Durech
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Filip Trcka
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lukas Uhrik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Miroslav Bardelcik
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Philip J. Coates
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Muller
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
2
|
Yuan W, Zhang Q, Zhao Y, Xia W, Yin S, Liang X, Chen T, Li G, Liu Y, Liu Z, Huang J. BAP1 regulates HSF1 activity and cancer immunity in pancreatic cancer. J Exp Clin Cancer Res 2024; 43:275. [PMID: 39350280 PMCID: PMC11441124 DOI: 10.1186/s13046-024-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The vast majority of pancreatic cancers have been shown to be insensitive to single-agent immunotherapy. Exploring the mechanisms of immune resistance and implementing combination therapeutic strategies are crucial for PDAC patients to derive benefits from immunotherapy. Deletion of BAP1 occurs in approximately 27% of PDAC patients and is significantly correlated with poor prognosis, but the mechanism how BAP1-deletion compromises survival of patients with PDAC remain a puzzle. METHODS Bap1 knock-out KPC (KrasG12D/+; LSLTrp53R172H/+; Pdx-1-Cre) mice and control KPC mice, syngeneic xenograft models were applied to analysis the correlation between BAP1 and immune therapy response in PDAC. Immunoprecipitation, RT-qPCR, luciferase and transcriptome analysis were combined to revealing potential mechanisms. Syngeneic xenograft models and flow cytometry were constructed to examine the efficacy of the inhibitor of SIRT1 and its synergistic effect with anti-PD-1 therapy. RESULT The deletion of BAP1 contributes to the resistance to immunotherapy in PDAC, which is attributable to BAP1's suppression of the transcriptional activity of HSF1. Specifically, BAP1 competes with SIRT1 for binding to the K80 acetylated HSF1. The BAP1-HSF1 interaction preserves the acetylation of HSF1-K80 and promotes HSF1-HSP70 interaction, facilitating HSF1 oligomerization and detachment from the chromatin. Furthermore, we demonstrate that the targeted inhibition of SIRT1 reverses the immune insensitivity in BAP1 deficient PDAC mouse model. CONCLUSION Our study elucidates an unrevealed mechanism by which BAP1 regulates immune therapy response in PDAC via HSF1 inhibition, and providing promising therapeutic strategies to address immune insensitivity in BAP1-deficient PDAC.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaofeng Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanshen Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jinxi Huang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
3
|
Alhasan B, Gladova YA, Sverchinsky DV, Aksenov ND, Margulis BA, Guzhova IV. Hsp70 Negatively Regulates Autophagy via Governing AMPK Activation, and Dual Hsp70-Autophagy Inhibition Induces Synergetic Cell Death in NSCLC Cells. Int J Mol Sci 2024; 25:9090. [PMID: 39201776 PMCID: PMC11354248 DOI: 10.3390/ijms25169090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Proteostasis mechanisms, such as proteotoxic-stress response and autophagy, are increasingly recognized for their roles in influencing various cancer hallmarks such as tumorigenesis, drug resistance, and recurrence. However, the precise mechanisms underlying their coordination remain not fully elucidated. The aim of this study is to investigate the molecular interplay between Hsp70 and autophagy in lung adenocarcinoma cells and elucidate its impact on the outcomes of anticancer therapies in vitro. For this purpose, we utilized the human lung adenocarcinoma A549 cell line and genetically modified it by knockdown of Hsp70 or HSF1, and the H1299 cell line with knockdown or overexpression of Hsp70. In addition, several treatments were employed, including treatment with Hsp70 inhibitors (VER-155008 and JG-98), HSF1 activator ML-346, or autophagy modulators (SAR405 and Rapamycin). Using immunoblotting, we found that Hsp70 negatively regulates autophagy by directly influencing AMPK activation, uncovering a novel regulatory mechanism of autophagy by Hsp70. Genetic or chemical Hsp70 overexpression was associated with the suppression of AMPK and autophagy. Conversely, the inhibition of Hsp70, genetically or chemically, resulted in the upregulation of AMPK-mediated autophagy. We further investigated whether Hsp70 suppression-mediated autophagy exhibits pro-survival- or pro-death-inducing effects via MTT test, colony formation, CellTiter-Glo 3D-Spheroid viability assay, and Annexin/PI apoptosis assay. Our results show that combined inhibition of Hsp70 and autophagy, along with cisplatin treatment, synergistically reduces tumor cell metabolic activity, growth, and viability in 2D and 3D tumor cell models. These cytotoxic effects were exerted by substantially potentiating apoptosis, while activating autophagy via rapamycin slightly rescued tumor cells from apoptosis. Therefore, our findings demonstrate that the combined inhibition of Hsp70 and autophagy represents a novel and promising therapeutic approach that may disrupt the capacity of refractory tumor cells to withstand conventional therapies in NSCLC.
Collapse
Affiliation(s)
- Bashar Alhasan
- Lab of Cell Protection Mechanisms, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (Y.A.G.); (D.V.S.); (N.D.A.); (B.A.M.); (I.V.G.)
| | | | | | | | | | | |
Collapse
|
4
|
Luo YW, Zhou JP, Ji H, Xu D, Zheng A, Wang X, Dai Z, Luo Z, Cao F, Wang XY, Bai Y, Chen D, Chen Y, Wang Q, Yang Y, Zhang X, Chiu S, Peng X, Huang AL, Tang KF. SARS-CoV-2 N protein-induced Dicer, XPO5, SRSF3, and hnRNPA3 downregulation causes pneumonia. Nat Commun 2024; 15:6964. [PMID: 39138195 PMCID: PMC11322655 DOI: 10.1038/s41467-024-51192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Though RNAi and RNA-splicing machineries are involved in regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, their precise roles in coronavirus disease 2019 (COVID-19) pathogenesis remain unclear. Herein, we show that decreased RNAi component (Dicer and XPO5) and splicing factor (SRSF3 and hnRNPA3) expression correlate with increased COVID-19 severity. SARS-CoV-2 N protein induces the autophagic degradation of Dicer, XPO5, SRSF3, and hnRNPA3, inhibiting miRNA biogenesis and RNA splicing and triggering DNA damage, proteotoxic stress, and pneumonia. Dicer, XPO5, SRSF3, and hnRNPA3 knockdown increases, while their overexpression decreases, N protein-induced pneumonia's severity. Older mice show lower expression of Dicer, XPO5, SRSF3, and hnRNPA3 in their lung tissues and exhibit more severe N protein-induced pneumonia than younger mice. PJ34, a poly(ADP-ribose) polymerase inhibitor, or anastrozole, an aromatase inhibitor, ameliorates N protein- or SARS-CoV-2-induced pneumonia by restoring Dicer, XPO5, SRSF3, and hnRNPA3 expression. These findings will aid in developing improved treatments for SARS-CoV-2-associated pneumonia.
Collapse
Grants
- 81972648 National Natural Science Foundation of China (National Science Foundation of China)
- CSTB2023NSCQ-BHX0134 Chongqing Postdoctoral Science Foundation
- 82172915 National Natural Science Foundation of China (National Science Foundation of China)
- 81773011 National Natural Science Foundation of China (National Science Foundation of China)
- I01 HX000134 HSRD VA
- The National Key Research and Development Program is aimed at addressing major scientific and technological issues that are crucial to the national economy, people's livelihood, public welfare, industrial core competitiveness, overall capability for independent innovation, and national security. It aims to overcome technological bottlenecks in key areas of national economic and social development. This program integrates several initiatives previously managed by different departments, including the National Basic Research Program of Ministry of Science and Technology, the National High-Tech Research and Development Program, the National Science and Technology Support Program, special projects for international science and technology cooperation and exchange, industrial technology research and development funds co-managed by the National Development and Reform Commission and the Ministry of Industry and Information Technology, as well as public welfare industry scientific research special projects managed by 13 departments including the Ministry of Agriculture and the National Health and Family Planning Commission, into a unified national key R&D program.
Collapse
Affiliation(s)
- Yu-Wei Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiang-Peng Zhou
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Hongyu Ji
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Doudou Xu
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xin Wang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhizheng Dai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhicheng Luo
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Fang Cao
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Xing-Yue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yunfang Bai
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Di Chen
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Qi Wang
- Department of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, PR China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, PR China
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, National Center of Technology Innovation for animal model, CAMS & PUMC, Beijing, PR China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, PR China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| | - Kai-Fu Tang
- Key Laboratory of Molecular Biology on Infectious Disease, Ministry of Education, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
5
|
Yu K, Yao KR, Aguinaga MA, Choquette JM, Liu C, Wang Y, Liao D. G272V and P301L Mutations Induce Isoform Specific Tau Mislocalization to Dendritic Spines and Synaptic Dysfunctions in Cellular Models of 3R and 4R Tau Frontotemporal Dementia. J Neurosci 2024; 44:e1215232024. [PMID: 38858079 PMCID: PMC11236579 DOI: 10.1523/jneurosci.1215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.
Collapse
Affiliation(s)
- Ke Yu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Department of General Practice, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Katherine R Yao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Miguel A Aguinaga
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Jessica M Choquette
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Chengliang Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yuxin Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
6
|
Zhao T, Zheng H, Xu JJ, Pantopoulos K, Xu YC, Liu LL, Lei XJ, Kotzamanis YP, Luo Z. MnO 2 nanoparticles trigger hepatic lipotoxicity and mitophagy via mtROS-dependent Hsf1 Ser326 phosphorylation. Free Radic Biol Med 2024; 210:390-405. [PMID: 38048852 DOI: 10.1016/j.freeradbiomed.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Manganese (Mn) is an essential element for maintaining normal metabolism in vertebrates. Mn dioxide nanoparticles (MnO2 NPs), a novel Mn source, have shown great potentials in biological and biomedical applications due to their distinct physical and chemical properties. However, little is known about potential adverse effects on animal or cellular metabolism. Here, we investigated whether and how dietary MnO2 NPs affect hepatic lipid metabolism in vertebrates. We found that, excessive MnO2 NPs intake increased hepatic and mitochondrial Mn content, promoted hepatic lipotoxic disease and lipogenesis, and inhibited hepatic lipolysis and fatty acid β-oxidation. Moreover, excessive MnO2 NPs intake induced hepatic mitochondrial oxidative stress, damaged mitochondrial function, disrupted mitochondrial dynamics and activated mitophagy. Importantly, we uncovered that mtROS-activated phosphorylation of heat shock factor 1 (Hsf1) at Ser326 residue mediated MnO2 NPs-induced hepatic lipotoxic disease and mitophagy. Mechanistically, MnO2 NPs-induced lipotoxicity and mitophagy were via mtROS-induced phosphorylation and nucleus translocation of Hsf1 and its DNA binding capacity to plin2/dgat1 and bnip3 promoters, respectively. Overall, our findings uncover novel mechanisms by which mtROS-mediated mitochondrial dysfunction and phosphorylation of Hsf1S326 contribute to MnO2 NPs-induced hepatic lipotoxicity and mitophagy, which provide new insights into the effects of metal oxides nanoparticles on hepatotoxicity in vertebrates.
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie-Jie Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec, H3T 1E2, Canada
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu-Lu Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi-Jun Lei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yannis P Kotzamanis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Agios Kosmas, Hellenikon, 16777, Athens, Greece
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
7
|
Ram BM, Dai C. Detection of the DNA binding of transcription factors in situ at the single-cell resolution in cultured cells by proximity ligation assay. STAR Protoc 2023; 4:102692. [PMID: 37917578 PMCID: PMC10651771 DOI: 10.1016/j.xpro.2023.102692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Transcription factors (TFs) play a pivotal role in gene expression, and their DNA binding is the prerequisite to instigating gene transcription. Here, we present a protocol that exploits the proximity ligation assay technique to measure the DNA-binding activities of TFs in situ at the single-cell resolution. We describe steps for immunostaining with specific antibodies against double-stranded DNA and the TFs of interest, probe incubation, proximity ligation, and signal amplification. We then detail procedures for imaging and image analysis. For complete details on the use and execution of this protocol, please refer to Dai et al. (2015)1 and Xu et al. (2023).2.
Collapse
Affiliation(s)
- Babul Moni Ram
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Maiti S, Bhattacharya K, Wider D, Hany D, Panasenko O, Bernasconi L, Hulo N, Picard D. Hsf1 and the molecular chaperone Hsp90 support a 'rewiring stress response' leading to an adaptive cell size increase in chronic stress. eLife 2023; 12:RP88658. [PMID: 38059913 DOI: 10.7554/elife.88658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Cells are exposed to a wide variety of internal and external stresses. Although many studies have focused on cellular responses to acute and severe stresses, little is known about how cellular systems adapt to sublethal chronic stresses. Using mammalian cells in culture, we discovered that they adapt to chronic mild stresses of up to two weeks, notably proteotoxic stresses such as heat, by increasing their size and translation, thereby scaling the amount of total protein. These adaptations render them more resilient to persistent and subsequent stresses. We demonstrate that Hsf1, well known for its role in acute stress responses, is required for the cell size increase, and that the molecular chaperone Hsp90 is essential for coupling the cell size increase to augmented translation. We term this translational reprogramming the 'rewiring stress response', and propose that this protective process of chronic stress adaptation contributes to the increase in size as cells get older, and that its failure promotes aging.
Collapse
Affiliation(s)
- Samarpan Maiti
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Diana Wider
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Olesya Panasenko
- BioCode: RNA to Proteins Core Facility, Département de Microbiologie et Médecine Moléculaire, Faculté de Médecine, Université de Genève, Genève, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Genève, Switzerland
| |
Collapse
|
9
|
Endo N, Tsukimoto R, Isono K, Hosoi A, Yamaguchi R, Tanaka K, Iuchi S, Yotsui I, Sakata Y, Taji T. MOS4-associated complex contributes to proper splicing and suppression of ER stress under long-term heat stress in Arabidopsis. PNAS NEXUS 2023; 2:pgad329. [PMID: 38024402 PMCID: PMC10644990 DOI: 10.1093/pnasnexus/pgad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Plants are often exposed not only to short-term (S-) but also to long-term (L-)heat stress over several consecutive days. A few Arabidopsis mutants defective in L-heat tolerance have been identified, but the molecular mechanisms are less understood for this tolerance than for S-heat stress tolerance. To elucidate the mechanisms of the former, we used a forward genetic screen for sensitive to long-term heat (sloh) mutants and isolated sloh3 and sloh63. The mutants were hypersensitive to L- but not to S-heat stress, and sloh63 was also hypersensitive to salt stress. We identified the causal genes, SLOH3 and SLOH63, both of which encoded splicing-related components of the MOS4-associated complex (MAC). This complex is widely conserved in eukaryotes and has been suggested to interact with spliceosomes. Both genes were induced by L-heat stress in a time-dependent manner, and some abnormal splicing events were observed in both mutants under L-heat stress. In addition, endoplasmic reticulum (ER) stress and subsequent unfolded protein response occurred in both mutants under L-heat stress and were especially prominent in sloh63, suggesting that enhanced ER stress is due to the salt hypersensitivity of sloh63. Splicing inhibitor pladienolide B led to concentration-dependent disturbance of splicing, decreased L-heat tolerance, and enhanced ER stress. These findings suggest that maintenance of precise mRNA splicing under L-heat stress by the MAC is important for L-heat tolerance and suppressing ER stress in Arabidopsis.
Collapse
Affiliation(s)
- Naoya Endo
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Ryo Tsukimoto
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kazuho Isono
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Akito Hosoi
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Ryo Yamaguchi
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Satoshi Iuchi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
10
|
Tharp KM, Park S, Timblin GA, Richards AL, Berg JA, Twells NM, Riley NM, Peltan EL, Shon DJ, Stevenson E, Tsui K, Palomba F, Lefebvre AEYT, Soens RW, Ayad NM, Hoeve-Scott JT, Healy K, Digman M, Dillin A, Bertozzi CR, Swaney DL, Mahal LK, Cantor JR, Paszek MJ, Weaver VM. The microenvironment dictates glycocalyx construction and immune surveillance. RESEARCH SQUARE 2023:rs.3.rs-3164966. [PMID: 37645943 PMCID: PMC10462183 DOI: 10.21203/rs.3.rs-3164966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Efforts to identify anti-cancer therapeutics and understand tumor-immune interactions are built with in vitro models that do not match the microenvironmental characteristics of human tissues. Using in vitro models which mimic the physical properties of healthy or cancerous tissues and a physiologically relevant culture medium, we demonstrate that the chemical and physical properties of the microenvironment regulate the composition and topology of the glycocalyx. Remarkably, we find that cancer and age-related changes in the physical properties of the microenvironment are sufficient to adjust immune surveillance via the topology of the glycocalyx, a previously unknown phenomenon observable only with a physiologically relevant culture medium.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14850, USA
| | - Greg A. Timblin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alicia L. Richards
- Quantitative Biosciences Institute (QBI) and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jordan A. Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicholas M. Twells
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Nicholas M. Riley
- Department of Chemistry, Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Egan L. Peltan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA USA 94305
- Sarafan ChEM-H, Stanford University, Stanford, CA USA 94305
| | - D. Judy Shon
- Department of Chemistry, Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI) and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kimberly Tsui
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94597, USA
| | - Francesco Palomba
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California, CA 92697, USA
| | | | - Ross W. Soens
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nadia M.E. Ayad
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Johanna ten Hoeve-Scott
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kevin Healy
- Department of Chemical and Systems Biology, Sarafan ChEM-H and Howard Hughes Medical Institute, Stanford University, Stanford, CA USA 94305
| | - Michelle Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California, CA 92697, USA
| | - Andrew Dillin
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94597, USA
| | - Carolyn R. Bertozzi
- Department of Chemical and Systems Biology, Sarafan ChEM-H and Howard Hughes Medical Institute, Stanford University, Stanford, CA USA 94305
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI) and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jason R. Cantor
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Xu M, Lin L, Ram BM, Shriwas O, Chuang KH, Dai S, Su KH, Tang Z, Dai C. Heat shock factor 1 (HSF1) specifically potentiates c-MYC-mediated transcription independently of the canonical heat shock response. Cell Rep 2023; 42:112557. [PMID: 37224019 PMCID: PMC10592515 DOI: 10.1016/j.celrep.2023.112557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/27/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Despite its pivotal roles in biology, how the transcriptional activity of c-MYC is tuned quantitatively remains poorly defined. Here, we show that heat shock factor 1 (HSF1), the master transcriptional regulator of the heat shock response, acts as a prime modifier of the c-MYC-mediated transcription. HSF1 deficiency diminishes c-MYC DNA binding and dampens its transcriptional activity genome wide. Mechanistically, c-MYC, MAX, and HSF1 assemble into a transcription factor complex on genomic DNAs, and surprisingly, the DNA binding of HSF1 is dispensable. Instead, HSF1 physically recruits the histone acetyltransferase general control nonderepressible 5 (GCN5), promoting histone acetylation and augmenting c-MYC transcriptional activity. Thus, we find that HSF1 specifically potentiates the c-MYC-mediated transcription, discrete from its canonical role in countering proteotoxic stress. Importantly, this mechanism of action engenders two distinct c-MYC activation states, primary and advanced, which may be important to accommodate diverse physiological and pathological conditions.
Collapse
Affiliation(s)
- Meng Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ling Lin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Babul Moni Ram
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Omprakash Shriwas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kun-Han Chuang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Siyuan Dai
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Zijian Tang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
12
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
13
|
Chin Y, Gumilar KE, Li XG, Tjokroprawiro BA, Lu CH, Lu J, Zhou M, Sobol RW, Tan M. Targeting HSF1 for cancer treatment: mechanisms and inhibitor development. Theranostics 2023; 13:2281-2300. [PMID: 37153737 PMCID: PMC10157728 DOI: 10.7150/thno.82431] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Heat Shock Factor 1 (HSF1) is a master regulator of heat shock responsive signaling. In addition to playing critical roles in cellular heat shock response, emerging evidence suggests that HSF1 also regulates a non-heat shock responsive transcriptional network to handle metabolic, chemical, and genetic stress. The function of HSF1 in cellular transformation and cancer development has been extensively studied in recent years. Due to important roles for HSF1 for coping with various stressful cellular states, research on HSF1 has been very active. New functions and molecular mechanisms underlying these functions have been continuously discovered, providing new targets for novel cancer treatment strategies. In this article, we review the essential roles and mechanisms of HSF1 action in cancer cells, focusing more on recently discovered functions and their underlying mechanisms to reflect the new advances in cancer biology. In addition, we emphasize new advances with regard to HSF1 inhibitors for cancer drug development.
Collapse
Affiliation(s)
- Yeh Chin
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Khanisyah E Gumilar
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| | - Brahmana A. Tjokroprawiro
- The Department of Obstetrics and Gynecology, Medical Faculty, Universitas Airlangga, Surabaya, Indonesia
| | - Chien-Hsing Lu
- Department of Gynecology and Obstetrics, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan, R.O.C
- Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
14
|
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci 2023; 17:1131683. [PMID: 37138769 PMCID: PMC10150069 DOI: 10.3389/fncel.2023.1131683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
This analytical review summarizes literature data and our own research on HSP70-dependent mechanisms of neuroprotection and discusses potential pharmacological agents that can influence HSP70 expression to improve neurological outcomes and effective therapy. The authors formed a systemic concepts of the role of HSP70-dependent mechanisms of endogenous neuroprotection aimed at stopping the formation of mitochondrial dysfunction, activation of apoptosis, desensitization of estrogen receptors, reduction of oxidative and nitrosative stress, prevention of morpho-functional changes in brain cells during cerebral ischemia, and experimentally substantiated new target links for neuroprotection. Heat shock proteins (HSPs) are an evolutionarily integral part of the functioning of all cells acting as intracellular chaperones that support cell proteostasis under normal and various stress conditions (hyperthermia, hypoxia, oxidative stress, radiation, etc.). The greatest curiosity in conditions of ischemic brain damage is the HSP70 protein, as an important component of the endogenous neuroprotection system, which, first of all, performs the function of intracellular chaperones and ensures the processes of folding, holding and transport of synthesized proteins, as well as their degradation, both under normoxic conditions and stress-induced denaturation. A direct neuroprotective effect of HSP70 has been established, which is realized through the regulation the processes of apoptosis and cell necrosis due to a long-term effect on the synthesis of antioxidant enzymes, chaperone activity, and stabilization of active enzymes. An increase in the level of HSP70 leads to the normalization of the glutathione link of the thiol-disulfide system and an increase in the resistance of cells to ischemia. HSP 70 is able to activate and regulate compensatory ATP synthesis pathways during ischemia. It was found that in response to the cerebral ischemia formation, HIF-1a is expressed, which initiates the launch of compensatory mechanisms for energy production. Subsequently, the regulation of these processes switches to HSP70, which "prolongs" the action of HIF-1a, and also independently maintains the expression of mitochondrial NAD-dependent malate dehydrogenase activity, thereby maintaining the activity of the malate-aspartate shuttle mechanism for a long time. During ischemia of organs and tissues, HSP70 performs a protective function, which is realized through increased synthesis of antioxidant enzymes, stabilization of oxidatively damaged macromolecules, and direct anti-apoptotic and mitoprotective action. Such a role of these proteins in cellular reactions during ischemia raises the question of the development of new neuroprotective agents which are able to provide modulation/protection of the genes encoding the synthesis of HSP 70 and HIF-1a proteins. Numerous studies of recent years have noted the important role of HSP70 in the implementation of the mechanisms of metabolic adaptation, neuroplasticity and neuroprotection of brain cells, so the positive modulation of the HSP70 system is a perspective concept of neuroprotection, which can improve the efficiency of the treatment of ischemic-hypoxic brain damage and be the basis for substantiating of the feasibility of using of HSP70 modulators as promising neuroprotectors.
Collapse
Affiliation(s)
- Igor F. Belenichev
- Department of Pharmacology and Medical Formulation With Course of Normal Physiology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena G. Aliyeva
- Department of Medical Biology, Parasitology and Genetics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena O. Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Nina V. Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
15
|
Virtanen L, Holm E, Halme M, West G, Lindholm F, Gullmets J, Irjala J, Heliö T, Padzik A, Meinander A, Eriksson JE, Taimen P. Lamin A/C phosphorylation at serine 22 is a conserved heat shock response to regulate nuclear adaptation during stress. J Cell Sci 2023; 136:289469. [PMID: 36695453 PMCID: PMC10022683 DOI: 10.1242/jcs.259788] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The heat shock (HS) response is crucial for cell survival in harmful environments. Nuclear lamin A/C, encoded by the LMNA gene, contributes towards altered gene expression during HS, but the underlying mechanisms are poorly understood. Here, we show that upon HS, lamin A/C was reversibly phosphorylated at serine 22 in concert with HSF1 activation in human cells, mouse cells and Drosophila melanogaster in vivo. Consequently, the phosphorylation facilitated nucleoplasmic localization of lamin A/C and nuclear sphericity in response to HS. Interestingly, lamin A/C knock-out cells showed deformed nuclei after HS and were rescued by ectopic expression of wild-type lamin A, but not by a phosphomimetic (S22D) lamin A mutant. Furthermore, HS triggered concurrent downregulation of lamina-associated protein 2α (Lap2α, encoded by TMPO) in wild-type lamin A/C-expressing cells, but a similar response was perturbed in lamin A/C knock-out cells and in LMNA mutant patient fibroblasts, which showed impaired cell cycle arrest under HS and compromised survival at recovery. Taken together, our results suggest that the altered phosphorylation stoichiometry of lamin A/C provides an evolutionarily conserved mechanism to regulate lamina structure and serve nuclear adaptation and cell survival during HS.
Collapse
Affiliation(s)
- Laura Virtanen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520 Turku, Finland
| | - Emilia Holm
- Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Mona Halme
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520 Turku, Finland
| | - Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520 Turku, Finland
| | - Fanny Lindholm
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520 Turku, Finland
| | - Josef Gullmets
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520 Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Juho Irjala
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520 Turku, Finland
| | - Tiina Heliö
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Artur Padzik
- Genome Editing Core, Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - John E Eriksson
- Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520 Turku, Finland.,Department of Pathology, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
16
|
Dong Q, Xiu Y, Wang Y, Hodgson C, Borcherding N, Jordan C, Buchanan J, Taylor E, Wagner B, Leidinger M, Holman C, Thiele DJ, O’Brien S, Xue HH, Zhao J, Li Q, Meyerson H, Boyce BF, Zhao C. HSF1 is a driver of leukemia stem cell self-renewal in acute myeloid leukemia. Nat Commun 2022; 13:6107. [PMID: 36245043 PMCID: PMC9573868 DOI: 10.1038/s41467-022-33861-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is maintained by self-renewing leukemic stem cells (LSCs). A fundamental problem in treating AML is that conventional therapy fails to eliminate LSCs, which can reinitiate leukemia. Heat shock transcription factor 1 (HSF1), a central regulator of the stress response, has emerged as an important target in cancer therapy. Using genetic Hsf1 deletion and a direct HSF1 small molecule inhibitor, we show that HSF1 is specifically required for the maintenance of AML, while sparing steady-state and stressed hematopoiesis. Mechanistically, deletion of Hsf1 dysregulates multifaceted genes involved in LSC stemness and suppresses mitochondrial oxidative phosphorylation through downregulation of succinate dehydrogenase C (SDHC), a direct HSF1 target. Forced expression of SDHC largely restores the Hsf1 ablation-induced AML developmental defect. Importantly, the growth and engraftment of human AML cells are suppressed by HSF1 inhibition. Our data provide a rationale for developing efficacious small molecules to specifically target HSF1 in AML.
Collapse
Affiliation(s)
- Qianze Dong
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Yan Xiu
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 USA
| | - Yang Wang
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Nick Borcherding
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110 USA
| | - Craig Jordan
- grid.241116.10000000107903411Division of Hematology, University of Colorado Anschutz Campus, Denver, CO 80045 USA
| | - Jane Buchanan
- grid.214572.70000 0004 1936 8294Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52240 USA
| | - Eric Taylor
- grid.214572.70000 0004 1936 8294Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52240 USA
| | - Brett Wagner
- grid.214572.70000 0004 1936 8294Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242 USA
| | - Mariah Leidinger
- grid.214572.70000 0004 1936 8294Department of Pathology, University of Iowa, Iowa City, IA 52242 USA
| | - Carol Holman
- grid.214572.70000 0004 1936 8294Department of Pathology, University of Iowa, Iowa City, IA 52242 USA
| | | | | | - Hai-hui Xue
- grid.239835.60000 0004 0407 6328Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110 USA
| | - Jinming Zhao
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.412449.e0000 0000 9678 1884Department of Pathology, China Medical University, 77 Puhe Rd, Shenbei Xinqu, Shenyang Shi, 110122 Liaoning Sheng China
| | - Qingchang Li
- grid.412449.e0000 0000 9678 1884Department of Pathology, China Medical University, 77 Puhe Rd, Shenbei Xinqu, Shenyang Shi, 110122 Liaoning Sheng China
| | - Howard Meyerson
- grid.443867.a0000 0000 9149 4843Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| | - Brendan F. Boyce
- grid.412750.50000 0004 1936 9166Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Chen Zhao
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA ,grid.410349.b0000 0004 5912 6484Department of Pathology, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106 USA ,grid.443867.a0000 0000 9149 4843Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106 USA
| |
Collapse
|
17
|
Choudhury A, Ratna A, Lim A, Sebastian RM, Moore CL, Filliol AA, Bledsoe J, Dai C, Schwabe RF, Shoulders MD, Mandrekar P. Loss of heat shock factor 1 promotes hepatic stellate cell activation and drives liver fibrosis. Hepatol Commun 2022; 6:2781-2797. [PMID: 35945902 PMCID: PMC9512451 DOI: 10.1002/hep4.2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Liver fibrosis is an aberrant wound healing response that results from chronic injury and is mediated by hepatocellular death and activation of hepatic stellate cells (HSCs). While induction of oxidative stress is well established in fibrotic livers, there is limited information on stress‐mediated mechanisms of HSC activation. Cellular stress triggers an adaptive defense mechanism via master protein homeostasis regulator, heat shock factor 1 (HSF1), which induces heat shock proteins to respond to proteotoxic stress. Although the importance of HSF1 in restoring cellular homeostasis is well‐established, its potential role in liver fibrosis is unknown. Here, we show that HSF1 messenger RNA is induced in human cirrhotic and murine fibrotic livers. Hepatocytes exhibit nuclear HSF1, whereas stellate cells expressing alpha smooth muscle actin do not express nuclear HSF1 in human cirrhosis. Interestingly, despite nuclear HSF1, murine fibrotic livers did not show induction of HSF1 DNA binding activity compared with controls. HSF1‐deficient mice exhibit augmented HSC activation and fibrosis despite limited pro‐inflammatory cytokine response and display delayed fibrosis resolution. Stellate cell and hepatocyte‐specific HSF1 knockout mice exhibit higher induction of profibrogenic response, suggesting an important role for HSF1 in HSC activation and fibrosis. Stable expression of dominant negative HSF1 promotes fibrogenic activation of HSCs. Overactivation of HSF1 decreased phosphorylation of JNK and prevented HSC activation, supporting a protective role for HSF1. Our findings identify an unconventional role for HSF1 in liver fibrosis. Conclusion: Our results show that deficiency of HSF1 is associated with exacerbated HSC activation promoting liver fibrosis, whereas activation of HSF1 prevents profibrogenic HSC activation.
Collapse
Affiliation(s)
- Asmita Choudhury
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Anuradha Ratna
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Arlene Lim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Rebecca M Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher L Moore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Aveline A Filliol
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Jacob Bledsoe
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, USA
| | - Chengkai Dai
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Robert F Schwabe
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
18
|
Li C, Pan Y, Tan Y, Wang Y, Sun X. PINK1-Dependent Mitophagy Reduced Endothelial Hyperpermeability and Cell Migration Capacity Under Simulated Microgravity. Front Cell Dev Biol 2022; 10:896014. [PMID: 35874841 PMCID: PMC9300855 DOI: 10.3389/fcell.2022.896014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The effect of cardiovascular dysfunction including orthostatic intolerance and disability on physical exercise is one of the health problems induced by long-term spaceflight astronauts face. As an important part of vascular structure, the vascular endothelium, uniquely sensitive to mechanical force, plays a pivotal role in coordinating vascular functions. Our study found that simulated microgravity induced PINK1-dependent mitophagy in human umbilical vein endothelial cells (HUVECs). Here, we explored the underlying mechanism of mitophagy induction. The ER stress induced by proteostasis failure in HUVECs promoted the Ca2+ transfer from ER to mitochondria, resulting in mitochondria Ca2+ overload, decreased mitochondrial membrane potential, mitochondria fission, and accumulation of Parkin and p62 in mitochondria and mitophagy under simulated microgravity. Moreover, we assumed that mitophagy played a vital role in functional changes in endothelial cells under simulated microgravity. Using mdivi-1 and PINK1 knockdown, we found that NLRP3 inflammasome activation was enhanced after mitophagy was inhibited. The NLRP3 inflammasome contributed to endothelial hyperpermeability and cellular migration by releasing IL-1β. Thus, mitophagy inhibited cell migration ability and hyperpermeability in HUVECs exposed to clinostat-simulated microgravity. Collectively, we here clarify the mechanism of mitophagy induction by simulated microgravity in vitro and demonstrate the relationship between mitophagy and vascular endothelial functional changes including cellular migration and permeability. This study deepens the understanding of vascular functional changes under microgravity.
Collapse
Affiliation(s)
- Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Yingjun Tan
- China Astronaut Research and Training Center, Beijing, China
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiqing Sun, , Yongchun Wang,
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiqing Sun, , Yongchun Wang,
| |
Collapse
|
19
|
A puromycin-dependent activity-based sensing probe for histochemical staining of hydrogen peroxide in cells and animal tissues. Nat Protoc 2022; 17:1691-1710. [PMID: 35562423 DOI: 10.1038/s41596-022-00694-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen peroxide (H2O2) is a key member of the reactive oxygen species family of transient small molecules that has broad contributions to oxidative stress and redox signaling. The development of selective and sensitive chemical probes can enable the study of H2O2 biology in cell, tissue and animal models. Peroxymycin-1 is a histochemical activity-based sensing probe that responds to H2O2 via chemoselective boronate oxidation to release puromycin, which is then covalently incorporated into nascent proteins by the ribosome and can be detected by antibody staining. Here, we describe an optimized two-step, one-pot protocol for synthesizing Peroxymycin-1 with improved yields over our originally reported procedure. We also present detailed procedures for applying Peroxymycin-1 to a broad range of biological samples spanning cells to animal tissues for profiling H2O2 levels through histochemical detection by using commercially available anti-puromycin antibodies. The preparation of Peroxymycin-1 takes 9 h, the confocal imaging experiments of endogenous H2O2 levels across different cancer cell lines take 1 d, the dot blot analysis of mouse liver tissues takes 1 d and the confocal imaging of mouse liver tissues takes 3-4 d.
Collapse
|
20
|
Inflammation: A New Look at an Old Problem. Int J Mol Sci 2022; 23:ijms23094596. [PMID: 35562986 PMCID: PMC9100490 DOI: 10.3390/ijms23094596] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Pro-inflammatory stress is inherent in any cells that are subject to damage or threat of damage. It is defined by a number of universal components, including oxidative stress, cellular response to DNA damage, unfolded protein response to mitochondrial and endoplasmic reticulum stress, changes in autophagy, inflammasome formation, non-coding RNA response, formation of an inducible network of signaling pathways, and epigenetic changes. The presence of an inducible receptor and secretory phenotype in many cells is the cause of tissue pro-inflammatory stress. The key phenomenon determining the occurrence of a classical inflammatory focus is the microvascular inflammatory response (exudation, leukocyte migration to the alteration zone). This same reaction at the systemic level leads to the development of life-critical systemic inflammation. From this standpoint, we can characterize the common mechanisms of pathologies that differ in their clinical appearance. The division of inflammation into alternative variants has deep evolutionary roots. Evolutionary aspects of inflammation are also described in the review. The aim of the review is to provide theoretical arguments for the need for an up-to-date theory of the relationship between key human pathological processes based on the integrative role of the molecular mechanisms of cellular and tissue pro-inflammatory stress.
Collapse
|
21
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
22
|
Chhipi-Shrestha JK, Schneider-Poetsch T, Suzuki T, Mito M, Khan K, Dohmae N, Iwasaki S, Yoshida M. Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns. Cell Chem Biol 2022; 29:259-275.e10. [PMID: 34520743 PMCID: PMC8857039 DOI: 10.1016/j.chembiol.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022]
Abstract
Chemical splicing modulators that bind to the spliceosome have provided an attractive avenue for cancer treatment. Splicing modulators induce accumulation and subsequent translation of a subset of intron-retained mRNAs. However, the biological effect of proteins containing translated intron sequences remains unclear. Here, we identify a number of truncated proteins generated upon treatment with the splicing modulator spliceostatin A (SSA) via genome-wide ribosome profiling and bio-orthogonal noncanonical amino acid tagging (BONCAT) mass spectrometry. A subset of these truncated proteins has intrinsically disordered regions, forms insoluble cellular condensates, and triggers the proteotoxic stress response through c-Jun N-terminal kinase (JNK) phosphorylation, thereby inhibiting the mTORC1 pathway. In turn, this reduces global translation. These findings indicate that creating an overburden of condensate-prone proteins derived from introns represses translation and prevents further production of harmful truncated proteins. This mechanism appears to contribute to the antiproliferative and proapoptotic activity of splicing modulators.
Collapse
Affiliation(s)
- Jagat K. Chhipi-Shrestha
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Khalid Khan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Wako, Saitama 351-0198, Japan.
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
23
|
Lu WC, Omari R, Ray H, Wang J, Williams I, Jacobs C, Hockaden N, Bochman ML, Carpenter RL. AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation. FEBS J 2022; 289:3876-3893. [PMID: 35080342 PMCID: PMC9309721 DOI: 10.1111/febs.16375] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
The heat stress response activates the transcription factor heat shock factor 1 (HSF1), which subsequently upregulates heat shock proteins to maintain the integrity of the proteome. HSF1 activation requires nuclear localization, trimerization, DNA binding, phosphorylation and gene transactivation. Phosphorylation at S326 is an important regulator of HSF1 transcriptional activity. Phosphorylation at S326 is mediated by AKT1, mTOR, p38, MEK1 and DYRK2. Here, we observed activation of HSF1 by AKT1 independently of mTOR. AKT2 also phosphorylated S326 of HSF1 but showed weak ability to activate HSF1. Similarly, mTOR, p38, MEK1 and DYRK2 all phosphorylated S326 but AKT1 was the most potent activator. Mass spectrometry showed that AKT1 also phosphorylated HSF1 at T142, S230 and T527 in addition to S326, whereas the other kinases did not. Subsequent investigation revealed that phosphorylation at T142 is necessary for HSF1 trimerization and that S230, S326 and T527 are required for HSF1 gene transactivation and recruitment of TFIIB and CDK9. Interestingly, T527 as a phosphorylated residue has not been previously shown and sits in the transactivation domain, further implying a role for this site in HSF1 gene transactivation. This study suggests that HSF1 hyperphosphorylation is targeted and these specific residues have direct function in regulating HSF1 transcriptional activity.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Ramsey Omari
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - John Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Imade Williams
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Curteisha Jacobs
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Natasha Hockaden
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.,Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN, USA
| | - Richard L Carpenter
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, IN, USA.,Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN, USA
| |
Collapse
|
24
|
Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021; 1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Cell death is a common and active process that is involved in various biological processes, including organ development, morphogenesis, maintaining tissue homeostasis and eliminating potentially harmful cells. Abnormal regulation of cell death significantly contributes to tumor development, progression and chemoresistance. The mechanisms of cell death are complex and involve not only apoptosis and necrosis but also their cross-talk with other types of cell death, such as autophagy and the newly identified ferroptosis. Cancer cells are chronically exposed to various stresses, such as lack of oxygen and nutrients, immune responses, dysregulated metabolism and genomic instability, all of which lead to activation of heat shock factor 1 (HSF1). In response to heat shock, oxidative stress and proteotoxic stresses, HSF1 upregulates transcription of heat shock proteins (HSPs), which act as molecular chaperones to protect normal cells from stresses and various diseases. Accumulating evidence suggests that HSF1 regulates multiple types of cell death through different signaling pathways as well as expression of distinct target genes in cancer cells. Here, we review the current understanding of the potential roles and molecular mechanism of HSF1 in regulating apoptosis, autophagy and ferroptosis. Deciphering HSF1-regulated signaling pathways and target genes may help in the development of new targeted anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
25
|
Cirone M. Cancer cells dysregulate PI3K/AKT/mTOR pathway activation to ensure their survival and proliferation: mimicking them is a smart strategy of gammaherpesviruses. Crit Rev Biochem Mol Biol 2021; 56:500-509. [PMID: 34130564 DOI: 10.1080/10409238.2021.1934811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The serine/threonine kinase mammalian target of rapamycin (mTOR) is the catalytic subunit of two complexes, mTORC1 and mTORC2, which have common and distinct subunits that mediate separate and overlapping functions. mTORC1 is activated by plenty of nutrients, and the two complexes can be activated by PI3K signaling. mTORC2 acts as an upstream regulator of AKT, and mTORC1 acts as a downstream effector. mTOR signaling integrates both intracellular and extracellular signals, acting as a key regulator of cellular metabolism, growth, and survival. A dysregulated activation of mTOR, as result of PI3K pathway or mTOR regulatory protein mutations or even due to the presence of cellular or viral oncogenes, is a common finding in cancer and represents a central mechanism in cancerogenesis. In the final part of this review, we will focus on the PI3K/AKT/mTOR activation by the human gammaherpesviruses EBV and KSHV that hijack this pathway to promote their-mediated oncogenic transformation and pathologies.
Collapse
Affiliation(s)
- Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
26
|
Occhigrossi L, D’Eletto M, Barlev N, Rossin F. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2. Int J Mol Sci 2021; 22:ijms22126366. [PMID: 34198675 PMCID: PMC8232231 DOI: 10.3390/ijms22126366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions.
Collapse
Affiliation(s)
- Luca Occhigrossi
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Manuela D’Eletto
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Nickolai Barlev
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Moscow Institute of Physics and Technology (MIPT), 141701 Dolgoprudny, Russia
| | - Federica Rossin
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Correspondence:
| |
Collapse
|
27
|
Song P, Yang F, Jin H, Wang X. The regulation of protein translation and its implications for cancer. Signal Transduct Target Ther 2021; 6:68. [PMID: 33597534 PMCID: PMC7889628 DOI: 10.1038/s41392-020-00444-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
In addition to the deregulation of gene transcriptions and post-translational protein modifications, the aberrant translation from mRNAs to proteins plays an important role in the pathogenesis of various cancers. Targeting mRNA translation are expected to become potential approaches for anticancer treatments. Protein translation is affected by many factors including translation initiation factors and RNA-binding proteins. Recently, modifications of mRNAs mainly N6-methyladenine (m6A) modification and noncoding RNAs, such as microRNAs and long noncoding RNAs are involved. In this review, we generally summarized the recent advances on the regulation of protein translation by the interplay between mRNA modifications and ncRNAs. By doing so, we hope this review could offer some hints for the development of novel approaches in precision therapy of human cancers.
Collapse
Affiliation(s)
- Ping Song
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Fan Yang
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Hongchuan Jin
- grid.13402.340000 0004 1759 700XKey Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Xian Wang
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Cancer Institute of Zhejiang University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
28
|
Santopolo S, Riccio A, Rossi A, Santoro MG. The proteostasis guardian HSF1 directs the transcription of its paralog and interactor HSF2 during proteasome dysfunction. Cell Mol Life Sci 2021; 78:1113-1129. [PMID: 32607595 PMCID: PMC11071745 DOI: 10.1007/s00018-020-03568-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/03/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Protein homeostasis is essential for life in eukaryotes. Organisms respond to proteotoxic stress by activating heat shock transcription factors (HSFs), which play important roles in cytoprotection, longevity and development. Of six human HSFs, HSF1 acts as a proteostasis guardian regulating stress-induced transcriptional responses, whereas HSF2 has a critical role in development, in particular of brain and reproductive organs. Unlike HSF1, that is a stable protein constitutively expressed, HSF2 is a labile protein and its expression varies in different tissues; however, the mechanisms regulating HSF2 expression remain poorly understood. Herein we demonstrate that the proteasome inhibitor anticancer drug bortezomib (Velcade), at clinically relevant concentrations, triggers de novo HSF2 mRNA transcription in different types of cancers via HSF1 activation. Similar results were obtained with next-generation proteasome inhibitors ixazomib and carfilzomib, indicating that induction of HSF2 expression is a general response to proteasome dysfunction. HSF2-promoter analysis, electrophoretic mobility shift assays, and chromatin immunoprecipitation studies unexpectedly revealed that HSF1 is recruited to a heat shock element located at 1.397 bp upstream from the transcription start site in the HSF2-promoter. More importantly, we found that HSF1 is critical for HSF2 gene transcription during proteasome dysfunction, representing an interesting example of transcription factor involved in controlling the expression of members of the same family. Moreover, bortezomib-induced HSF2 was found to localize in the nucleus, interact with HSF1, and participate in bortezomib-mediated control of cancer cell migration. The results shed light on HSF2-expression regulation, revealing a novel level of HSF1/HSF2 interplay that may lead to advances in pharmacological modulation of these fundamental transcription factors.
Collapse
Affiliation(s)
- Silvia Santopolo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy.
- Institute of Translational Pharmacology, CNR, Rome, Italy.
| |
Collapse
|
29
|
Tang Z, Su KH, Xu M, Dai C. HSF1 physically neutralizes amyloid oligomers to empower overgrowth and bestow neuroprotection. SCIENCE ADVANCES 2020; 6:6/46/eabc6871. [PMID: 33177089 PMCID: PMC7673739 DOI: 10.1126/sciadv.abc6871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/24/2020] [Indexed: 05/25/2023]
Abstract
The role of proteomic instability in cancer, particularly amyloidogenesis, remains obscure. Heat shock factor 1 (HSF1) transcriptionally governs the proteotoxic stress response to suppress proteomic instability and enhance survival. Paradoxically, HSF1 promotes oncogenesis. Here, we report that AKT activates HSF1 via Ser230 phosphorylation. In vivo, HSF1 enables megalencephaly and hepatomegaly, which are driven by hyperactive phosphatidylinositol 3-kinase/AKT signaling. Hsf1 deficiency exacerbates amyloidogenesis and elicits apoptosis, thereby countering tissue overgrowth. Unexpectedly, HSF1 physically neutralizes soluble amyloid oligomers (AOs). Beyond impeding amyloidogenesis, HSF1 shields HSP60 from direct assault by AOs, averting HSP60 destabilization, collapse of the mitochondrial proteome, and, ultimately, mitophagy and apoptosis. The very same mechanism occurs in Alzheimer's disease. These findings suggest that amyloidogenesis may be a checkpoint mechanism that constrains uncontrolled growth and safeguards tissue homeostasis, congruent with its emerging tumor-suppressive function. HSF1, by acting as an anti-amyloid factor, promotes overgrowth syndromes and cancer but may suppress neurodegenerative disorders.
Collapse
Affiliation(s)
- Zijian Tang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
- Graduate Programs, Department of Molecular & Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Meng Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
30
|
Emerging roles of HSF1 in cancer: Cellular and molecular episodes. Biochim Biophys Acta Rev Cancer 2020; 1874:188390. [PMID: 32653364 DOI: 10.1016/j.bbcan.2020.188390] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
Abstract
Heat shock factor 1 (HSF1) systematically guards proteome stability and proteostasis by regulating the expression of heat shock protein (HSP), thus rendering cancer cells addicted to HSF1. The non-canonical transcriptional programme driven by HSF1, which is distinct from the heat shock response (HSR), plays an indispensable role in the initiation, promotion and progression of cancer. Therefore, HSF1 is widely exploited as a potential therapeutic target in a broad spectrum of cancers. Various molecules and signals in the cell jointly regulate the activation and attenuation of HSF1. The high-level expression of HSF1 in tumours and its relationship with patient prognosis imply that HSF1 can be used as a biomarker for patient prognosis and a target for cancer treatment. In this review, we discuss the newly identified mechanisms of HSF1 activation and regulation, the diverse functions of HSF1 in tumourigenesis, and the feasibility of using HSF1 as a prognostic marker. Disrupting cancer cell proteostasis by targeting HSF1 represents a novel anti-cancer therapeutic strategy.
Collapse
|
31
|
Da Costa R, De Almeida S, Chevarin M, Hadj-Rabia S, Leclerc-Mercier S, Thauvin-Robinet C, Garrido C, Faivre L, Vabres P, Duplomb L, Jego G. Neutralization of HSF1 in cells from PIK3CA-related overgrowth spectrum patients blocks abnormal proliferation. Biochem Biophys Res Commun 2020; 530:520-526. [PMID: 32620236 DOI: 10.1016/j.bbrc.2020.04.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 02/09/2023]
Abstract
PIK3CA-related overgrowth spectrum is caused by mosaicism mutations in the PIK3CA gene. These mutations, which are also observed in various types of cancer, lead to a constitutive activation of the PI3K/AKT/mTOR pathway, increasing cell proliferation. Heat shock transcription factor 1 (HSF1) is the major stress-responsive transcription factor. Recent findings indicate that AKT phosphorylates and activates HSF1 independently of heat-shock in breast cancer cells. Here, we aimed to investigate the role of HSF1 in PIK3CA-related overgrowth spectrum. We observed a higher rate of proliferation and increased phosphorylation of AKT and p70S6K in mutant fibroblasts than in control cells. We also found elevated phosphorylation and activation of HSF1, which is directly correlated to AKT activation. Specific AKT inhibitors inhibit HSF1 phosphorylation as well as HSF1-dependent gene transcription. Finally, we demonstrated that targeting HSF1 with specific inhibitors reduced the proliferation of mutant cells. As there is currently no curative treatment for PIK3CA-related overgrowth spectrum, our results identify HSF1 as a new potential therapeutic target.
Collapse
Affiliation(s)
- Romain Da Costa
- INSERM, LNC UMR1231, Team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France; FHU-TRANSLAD, University of Burgundy and Franche-Comté, Dijon University Hospital, F-21000, Dijon, France
| | - Steven De Almeida
- INSERM, LNC UMR1231 Team HSP-pathies, University of Burgundy and Franche-Comté, F-21000, Dijon, France
| | - Martin Chevarin
- INSERM, LNC UMR1231, Team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France; FHU-TRANSLAD, University of Burgundy and Franche-Comté, Dijon University Hospital, F-21000, Dijon, France
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Hôpital Universitaire Necker- Enfants Malades, Assistance Publique - Hôpitaux de Paris-Centre (AP-HP5), Paris, France
| | - Stéphanie Leclerc-Mercier
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christel Thauvin-Robinet
- INSERM, LNC UMR1231, Team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France; FHU-TRANSLAD, University of Burgundy and Franche-Comté, Dijon University Hospital, F-21000, Dijon, France
| | - Carmen Garrido
- INSERM, LNC UMR1231 Team HSP-pathies, University of Burgundy and Franche-Comté, F-21000, Dijon, France
| | - Laurence Faivre
- INSERM, LNC UMR1231, Team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France; FHU-TRANSLAD, University of Burgundy and Franche-Comté, Dijon University Hospital, F-21000, Dijon, France
| | - Pierre Vabres
- INSERM, LNC UMR1231, Team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France; FHU-TRANSLAD, University of Burgundy and Franche-Comté, Dijon University Hospital, F-21000, Dijon, France; Department of Dermatology, Dijon University Hospital, F-21000, Dijon, France
| | - Laurence Duplomb
- INSERM, LNC UMR1231, Team GAD, University of Burgundy and Franche-Comté, F-21000, Dijon, France; FHU-TRANSLAD, University of Burgundy and Franche-Comté, Dijon University Hospital, F-21000, Dijon, France
| | - Gaëtan Jego
- INSERM, LNC UMR1231 Team HSP-pathies, University of Burgundy and Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
32
|
Egge N, Arneaud SLB, Wales P, Mihelakis M, McClendon J, Fonseca RS, Savelle C, Gonzalez I, Ghorashi A, Yadavalli S, Lehman WJ, Mirzaei H, Douglas PM. Age-Onset Phosphorylation of a Minor Actin Variant Promotes Intestinal Barrier Dysfunction. Dev Cell 2020; 51:587-601.e7. [PMID: 31794717 DOI: 10.1016/j.devcel.2019.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/17/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
Age-associated decay of intercellular interactions impairs the cells' capacity to tightly associate within tissues and form a functional barrier. This barrier dysfunction compromises organ physiology and contributes to systemic failure. The actin cytoskeleton represents a key determinant in maintaining tissue architecture. Yet, it is unclear how age disrupts the actin cytoskeleton and how this, in turn, promotes mortality. Here, we show that an uncharacterized phosphorylation of a low-abundant actin variant, ACT-5, compromises integrity of the C. elegans intestinal barrier and accelerates pathogenesis. Age-related loss of the heat-shock transcription factor, HSF-1, disrupts the JUN kinase and protein phosphatase I equilibrium which increases ACT-5 phosphorylation within its troponin binding site. Phosphorylated ACT-5 accelerates decay of the intestinal subapical terminal web and impairs its interactions with cell junctions. This compromises barrier integrity, promotes pathogenesis, and drives mortality. Thus, we provide the molecular mechanism by which age-associated loss of specialized actin networks impacts tissue integrity.
Collapse
Affiliation(s)
- Nathan Egge
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Medical Scientist Training Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pauline Wales
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melina Mihelakis
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacob McClendon
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles Savelle
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Atossa Ghorashi
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - William J Lehman
- Department of Structural Biology, Boston University, Boston, MA 02118, USA
| | - Hamid Mirzaei
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis In Aging Cells. Cells 2020; 9:cells9051308. [PMID: 32456366 PMCID: PMC7291254 DOI: 10.3390/cells9051308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them.
Collapse
|
34
|
Dewi FRP, Jiapaer S, Kobayashi A, Hazawa M, Ikliptikawati DK, Hartono, Sabit H, Nakada M, Wong RW. Nucleoporin TPR (translocated promoter region, nuclear basket protein) upregulation alters MTOR-HSF1 trails and suppresses autophagy induction in ependymoma. Autophagy 2020; 17:1001-1012. [PMID: 32207633 PMCID: PMC8078762 DOI: 10.1080/15548627.2020.1741318] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Children with ependymoma have high mortality rates because ependymoma is resistant to conventional therapy. Genomic and transcriptomic studies have identified potential targets as significantly altered genes in ependymoma patients. Although several candidate oncogenes in ependymoma were recently reported, the detailed mechanisms for the roles of these candidate oncogenes in ependymoma progression remain unclear. Here, we report an oncogenic role of the nucleoporin TPR (translocated promoter region, nuclear basket protein) in regulating HSF1 (heat shock transcription factor 1) mRNA trafficking, maintaining MTORC1 activity to phosphorylate ULK1, and preventing macroautophagy/autophagy induction in ependymoma. High expression of TPR were associated with increased HSF1 and HSPA/HSP70 expression in ependymoma patients. In an ependymoma mouse xenograft model, MTOR inhibition by rapamycin therapeutically suppressed TPR expression and reduced tumor size in vivo. Together, these results suggest that TPR may act as a biomarker for ependymoma, and pharmacological interventions targeting TPR-HSF1-MTOR may have therapeutic potential for ependymoma treatment. Abbreviations: ATG: autophagy related; BECN1: beclin 1; BSA: bovine serum albumin; CQ: chloroquine; DMSO: dimethyl sulfoxide; GEO: gene expression omnibus; GFP: green fluorescence protein; HSF1: heat shock transcription factor 1; HSPA/HSP70: heat shock protein family A (Hsp70); LMNB1: lamin B1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK: mitogen-activated protein kinase; MAPK8/JNK: mitogen-activated protein kinase 8; MTORC1: mechanistic target of rapamycin kinase complex 1; NPC: nuclear pore complex; NUP: nucleoporin; PBS: phosphate-buffered saline; q-PCR: quantitative real time PCR; SDS: sodium dodecyl sulfate; SQSTM1: sequestosome 1; STED: stimulated emission depletion microscopy; STX17: syntaxin 17; TCGA: the cancer genome atlas; TPR: translocated promoter region, nuclear basket protein; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Firli Rahmah Primula Dewi
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.,Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Shabierjiang Jiapaer
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akiko Kobayashi
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Masaharu Hazawa
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Dini Kurnia Ikliptikawati
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hartono
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Richard W Wong
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
35
|
Stead ER, Castillo-Quan JI, Miguel VEM, Lujan C, Ketteler R, Kinghorn KJ, Bjedov I. Agephagy - Adapting Autophagy for Health During Aging. Front Cell Dev Biol 2019; 7:308. [PMID: 31850344 PMCID: PMC6892982 DOI: 10.3389/fcell.2019.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a major cellular recycling process that delivers cellular material and entire organelles to lysosomes for degradation, in a selective or non-selective manner. This process is essential for the maintenance of cellular energy levels, components, and metabolites, as well as the elimination of cellular molecular damage, thereby playing an important role in numerous cellular activities. An important function of autophagy is to enable survival under starvation conditions and other stresses. The majority of factors implicated in aging are modifiable through the process of autophagy, including the accumulation of oxidative damage and loss of proteostasis, genomic instability and epigenetic alteration. These primary causes of damage could lead to mitochondrial dysfunction, deregulation of nutrient sensing pathways and cellular senescence, finally causing a variety of aging phenotypes. Remarkably, advances in the biology of aging have revealed that aging is a malleable process: a mild decrease in signaling through nutrient-sensing pathways can improve health and extend lifespan in all model organisms tested. Consequently, autophagy is implicated in both aging and age-related disease. Enhancement of the autophagy process is a common characteristic of all principal, evolutionary conserved anti-aging interventions, including dietary restriction, as well as inhibition of target of rapamycin (TOR) and insulin/IGF-1 signaling (IIS). As an emerging and critical process in aging, this review will highlight how autophagy can be modulated for health improvement.
Collapse
Affiliation(s)
- Eleanor R Stead
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Jorge I Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | | | - Celia Lujan
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Kerri J Kinghorn
- Institute of Healthy Ageing, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Institute of Neurology, University College London, London, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
36
|
Dong B, Jaeger AM, Thiele DJ. Inhibiting Heat Shock Factor 1 in Cancer: A Unique Therapeutic Opportunity. Trends Pharmacol Sci 2019; 40:986-1005. [PMID: 31727393 DOI: 10.1016/j.tips.2019.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022]
Abstract
The ability of cancer cells to cope with stressful conditions is critical for their survival, proliferation, and metastasis. The heat shock transcription factor 1 (HSF1) protects cells from stresses such as chemicals, radiation, and temperature. These properties of HSF1 are exploited by a broad spectrum of cancers, which exhibit high levels of nuclear, active HSF1. Functions for HSF1 in malignancy extend well beyond its central role in protein quality control. While HSF1 has been validated as a powerful target in cancers by genetic knockdown studies, HSF1 inhibitors reported to date have lacked sufficient specificity and potency for clinical evaluation. We review the roles of HSF1 in cancer, its potential as a prognostic indicator for cancer treatment, evaluate current HSF1 inhibitors and provide guidelines for the identification of selective HSF1 inhibitors as chemical probes and for clinical development.
Collapse
Affiliation(s)
- Bushu Dong
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Alex M Jaeger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dennis J Thiele
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
37
|
Su KH, Dai S, Tang Z, Xu M, Dai C. Heat Shock Factor 1 Is a Direct Antagonist of AMP-Activated Protein Kinase. Mol Cell 2019; 76:546-561.e8. [PMID: 31561952 DOI: 10.1016/j.molcel.2019.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/03/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Through transcriptional control of the evolutionarily conserved heat shock, or proteotoxic stress, response, heat shock factor 1 (HSF1) preserves proteomic stability. Here, we show that HSF1, a physiological substrate for AMP-activated protein kinase (AMPK), constitutively suppresses this central metabolic sensor. By physically evoking conformational switching of AMPK, HSF1 impairs AMP binding to the γ subunits and enhances the PP2A-mediated de-phosphorylation, but it impedes the LKB1-mediated phosphorylation of Thr172, and retards ATP binding to the catalytic α subunits. These immediate and manifold regulations empower HSF1 to both repress AMPK under basal conditions and restrain its activation by diverse stimuli, thereby promoting lipogenesis, cholesterol synthesis, and protein cholesteroylation. In vivo, HSF1 antagonizes AMPK to control body fat mass and drive the lipogenic phenotype and growth of melanomas independently of its intrinsic transcriptional action. Thus, the physical AMPK-HSF1 interaction epitomizes a reciprocal kinase-substrate regulation whereby lipid metabolism and proteomic stability intertwine.
Collapse
Affiliation(s)
- Kuo-Hui Su
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Siyuan Dai
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zijian Tang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Graduate programs, Department of Molecular & Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Meng Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
38
|
Pizzato Scomazzon S, Riccio A, Santopolo S, Lanzilli G, Coccia M, Rossi A, Santoro MG. The Zinc-Finger AN1-Type Domain 2a Gene Acts as a Regulator of Cell Survival in Human Melanoma: Role of E3-Ligase cIAP2. Mol Cancer Res 2019; 17:2444-2456. [DOI: 10.1158/1541-7786.mcr-19-0243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
|
39
|
Yang T, Ren C, Lu C, Qiao P, Han X, Wang L, Wang D, Lv S, Sun Y, Yu Z. Phosphorylation of HSF1 by PIM2 Induces PD-L1 Expression and Promotes Tumor Growth in Breast Cancer. Cancer Res 2019; 79:5233-5244. [PMID: 31409638 DOI: 10.1158/0008-5472.can-19-0063] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Heat shock transcription factor 1 (HSF1) is the master regulator of the proteotoxic stress response, which plays a key role in breast cancer tumorigenesis. However, the mechanisms underlying regulation of HSF1 protein stability are still unclear. Here, we show that HSF1 protein stability is regulated by PIM2-mediated phosphorylation of HSF1 at Thr120, which disrupts the binding of HSF1 to the E3 ubiquitin ligase FBXW7. In addition, HSF1 Thr120 phosphorylation promoted proteostasis and carboplatin-induced autophagy. Interestingly, HSF1 Thr120 phosphorylation induced HSF1 binding to the PD-L1 promoter and enhanced PD-L1 expression. Furthermore, HSF1 Thr120 phosphorylation promoted breast cancer tumorigenesis in vitro and in vivo. PIM2, pThr120-HSF1, and PD-L1 expression positively correlated with each other in breast cancer tissues. Collectively, these findings identify PIM2-mediated HSF1 phosphorylation at Thr120 as an essential mechanism that regulates breast tumor growth and potential therapeutic target for breast cancer. SIGNIFICANCE: These findings identify heat shock transcription factor 1 as a new substrate for PIM2 kinase and establish its role in breast tumor progression.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Dan Wang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shijun Lv
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
40
|
Teravskis PJ, Oxnard BR, Miller EC, Kemper L, Ashe KH, Liao D. Phosphorylation in two discrete tau domains regulates a stepwise process leading to postsynaptic dysfunction. J Physiol 2019; 599:2483-2498. [PMID: 31194886 DOI: 10.1113/jp277459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Tau mislocalization to dendritic spines and associated postsynaptic deficits are mediated through different and non-overlapping phosphorylation sites. Tau mislocalization to dendritic spines depends upon the phosphorylation of either Ser396 or Ser404 in the C-terminus. Postsynaptic dysfunction instead depends upon the phosphorylation of at least one of five residues in the proline-rich region of tau. The blockade of both glycogen synthetase kinase 3β and cyclin-dependent kinase 5 is required to prevent P301L-induced tau mislocalization to dendritic spines, supporting redundant pathways that control tau mislocalization to spines. ABSTRACT Tau protein consists of an N-terminal projection domain, a microtubule-binding domain and a C-terminal domain. In neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia, the hyperphosphorylation of tau changes its shape, binding partners and resulting function. An early consequence of tau phosphorylation by proline-directed kinases is postsynaptic dysfunction associated with the mislocalization of tau to dendritic spines. The specific phosphorylation sites leading to these abnormalities have not been elucidated. Here, using imaging and electrophysiological techniques to study cultured rat hippocampal neurons, we show that postsynaptic dysfunction results from a sequential process involving differential phosphorylation in the N-terminal and C-terminal domains. First, tau mislocalizes to dendritic spines, in a manner that depends upon the phosphorylation of either Ser396 or Ser404 in the C-terminal domain. The blockade of both glycogen synthetase kinase 3β and cyclin-dependent kinase 5 prevents tau mislocalization to dendritic spines. Second, a reduction of functional AMPA receptors depends upon the phosphorylation of at least one of five residues (Ser202, Thr205, Thr212, Thr217 and Thr231) in the proline-rich region of the N-terminal domain. This is the first report of differential phosphorylation in distinct tau domains governing separate, but linked, steps leading to synaptic dysfunction.
Collapse
Affiliation(s)
- Peter J Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,School of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Breeta R Oxnard
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eric C Miller
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lisa Kemper
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA.,N. Bud Grossman Center for Memory Research and Care, Minneapolis, MN, 55455, USA.,GRECC, Minneapolis VA Medical Center, Minneapolis, MN, 55417, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
41
|
van Well EM, Bader V, Patra M, Sánchez-Vicente A, Meschede J, Furthmann N, Schnack C, Blusch A, Longworth J, Petrasch-Parwez E, Mori K, Arzberger T, Trümbach D, Angersbach L, Showkat C, Sehr DA, Berlemann LA, Goldmann P, Clement AM, Behl C, Woerner AC, Saft C, Wurst W, Haass C, Ellrichmann G, Gold R, Dittmar G, Hipp MS, Hartl FU, Tatzelt J, Winklhofer KF. A protein quality control pathway regulated by linear ubiquitination. EMBO J 2019; 38:e100730. [PMID: 30886048 PMCID: PMC6484417 DOI: 10.15252/embj.2018100730] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence domain-containing transcription factor Sp1, and proteasomal degradation of misfolded Huntingtin is facilitated. Notably, all three core LUBAC components are transcriptionally regulated by Sp1, linking defective LUBAC expression to Huntington's disease. In support of a protective activity of linear ubiquitination, silencing of OTULIN, a deubiquitinase with unique specificity for linear polyubiquitin, decreases proteotoxicity, whereas silencing of HOIP has the opposite effect. These findings identify linear ubiquitination as a protein quality control mechanism and hence a novel target for disease-modifying strategies in proteinopathies.
Collapse
Affiliation(s)
- Eva M van Well
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Maria Patra
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ana Sánchez-Vicente
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jens Meschede
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Nikolas Furthmann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Cathrin Schnack
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Alina Blusch
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Joseph Longworth
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Kohji Mori
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lena Angersbach
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Cathrin Showkat
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Dominik A Sehr
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lena A Berlemann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Petra Goldmann
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Albrecht M Clement
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christian Behl
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Andreas C Woerner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Carsten Saft
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Developmental Genetics, Technical University Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gisa Ellrichmann
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gunnar Dittmar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jörg Tatzelt
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
42
|
Suda K, Kaneko A, Shimobayashi M, Nakashima A, Maeda T, Hall MN, Ushimaru T. TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells. Biochem Biophys Res Commun 2019; 511:434-439. [PMID: 30797551 DOI: 10.1016/j.bbrc.2019.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 11/18/2022]
Abstract
Misfolded and aggregated proteins are eliminated to maintain protein homeostasis. Autophagy contributes to the removal of protein aggregates. However, if and how proteotoxic stress induces autophagy is poorly understood. Here we show that proteotoxic stress after treatment with azetidine-2-carboxylic acid (AZC), a toxic proline analog, induces autophagy in budding yeast. AZC treatment attenuated target of rapamycin complex 1 (TORC1) activity, resulting in the dephosphorylation of Atg13, a key factor of autophagy. By contrast, AZC treatment did not affect target of rapamycin complex 2 (TORC2). Proteotoxic stress also induced TORC1 inactivation and autophagy in fission yeast and human cells. This study suggested that TORC1 is a conserved key factor to cope with proteotoxic stress in eukaryotic cells.
Collapse
Affiliation(s)
- Kazuki Suda
- Department of Biological Science, Shizuoka University, Shizuoka, 422-8021, Japan
| | - Atsuki Kaneko
- Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8021, Japan
| | | | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Michael N Hall
- Biozentrum, University of Basel, 4056, Basel, Switzerland, Switzerland
| | - Takashi Ushimaru
- Department of Biological Science, Shizuoka University, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8021, Japan.
| |
Collapse
|
43
|
Joutsen J, Sistonen L. Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034066. [PMID: 30420555 DOI: 10.1101/cshperspect.a034066] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the heat shock response and indispensable for maintaining cellular proteostasis. HSFs mediate their protective functions through diverse genetic programs, which are composed of genes encoding molecular chaperones and other genes crucial for cell survival. The mechanisms that are used to tailor HSF-driven proteostasis networks are not yet completely understood, but they likely comprise from distinct combinations of both genetic and proteomic determinants. In this review, we highlight the versatile HSF-mediated cellular functions that extend from cellular stress responses to various physiological and pathological processes, and we underline the key advancements that have been achieved in the field of HSF research during the last decade.
Collapse
Affiliation(s)
- Jenny Joutsen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
44
|
Saminathan P, Kevadiya BD, Marker DF, Gendelman HE, Gorantla S, Gelbard HA. Broad Spectrum Mixed Lineage Kinase Type 3 Inhibition and HIV-1 Persistence in Macrophages. J Neuroimmune Pharmacol 2019; 14:44-51. [PMID: 30617749 PMCID: PMC6391203 DOI: 10.1007/s11481-018-09829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023]
Abstract
Mixed lineage kinases (MLKs) are a group of serine-threonine kinases that evolved in part to respond to endogenous and exogenous insults that result in oxidative stress and pro-inflammatory responses from innate immune cells. Human immunodeficiency virus type 1 (HIV-1) thrives in these conditions and is associated with the development of associated neurocognitive disorders (HAND). As part of a drug discovery program to identify new therapeutic strategies for HAND, we created a library of broad spectrum MLK inhibitors with drug-like properties. Serendipitously, the lead compound, URMC-099 has proved useful not only in reversing damage to synaptic architecture in models of HAND, but also serves to restore autophagy as a protective response when given in concert with nanoformulated antiretroviral therapy (nanoART) in persistently infected macrophages. These findings are reviewed in the context of MLK3 biology and cellular signaling pathways relevant to new HIV-1 therapies. Graphical abstract.
Collapse
Affiliation(s)
- Priyanka Saminathan
- Center for Neurotherapeutics Discovery and Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel F Marker
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, Departments of Neurology, Pediatrics, Neuroscience and Microbiology and Immunology, University of Rochester Medical Center, Box 645, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
45
|
Neuroprotection by Heat Shock Factor-1 (HSF1) and Trimerization-Deficient Mutant Identifies Novel Alterations in Gene Expression. Sci Rep 2018; 8:17255. [PMID: 30467350 PMCID: PMC6250741 DOI: 10.1038/s41598-018-35610-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Heat shock factor-1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins by stimulating the transcription of genes encoding heat shock proteins (HSPs). This stimulatory action depends on the association of trimeric HSF1 to sequences within HSP gene promoters. However, we recently described that HSF-AB, a mutant form of HSF1 that is incapable of either homo-trimerization, association with HSP gene promoters, or stimulation of HSP expression, protects neurons just as efficiently as wild-type HSF1 suggesting an alternative neuroprotective mechanism that is activated by HSF1. To gain insight into the mechanism by which HSF1 and HSF1-AB protect neurons, we used RNA-Seq technology to identify transcriptional alterations induced by these proteins in either healthy cerebellar granule neurons (CGNs) or neurons primed to die. When HSF1 was ectopically-expressed in healthy neurons, 1,211 differentially expressed genes (DEGs) were identified with 1,075 being upregulated. When HSF1 was expressed in neurons primed to die, 393 genes were upregulated and 32 genes were downregulated. In sharp contrast, HSF1-AB altered expression of 13 genes in healthy neurons and only 6 genes in neurons under apoptotic conditions, suggesting that the neuroprotective effect of HSF1-AB may be mediated by a non-transcriptional mechanism. We validated the altered expression of 15 genes by QPCR. Although other studies have conducted RNA-Seq analyses to identify HSF1 targets, our study performed using primary neurons has identified a number of novel targets that may play a special role in brain maintenance and function.
Collapse
|
46
|
Patton MG, Gillum TL, Szymanski MC, Gould LM, Lauterbach CJ, Vaughan RA, Kuennen MR. Heat acclimation increases inflammatory and apoptotic responses to subsequent LPS challenge in C2C12 myotubes. Cell Stress Chaperones 2018; 23:1117-1128. [PMID: 29907924 PMCID: PMC6111074 DOI: 10.1007/s12192-018-0923-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 01/12/2023] Open
Abstract
This work investigated the ability of a 6-day heat acclimation protocol to impart heat acclimation-mediated cross-tolerance (HACT) in C2C12 myotubes, as indicated by changes in inflammatory and apoptotic responses to subsequent lipopolysaccharide (LPS) challenge. Myotubes were incubated at 40 °C for 2 h/day over 6 days (HA) or maintained for 6 days at 37 °C (C). Following 24 h recovery, myotubes from each group received either no stimulation or 500 ng/ml LPS for 2 h (HA + LPS and C + LPS, respectively). Cell lysates were collected and analyzed for protein markers of the heat shock response, inflammation, and apoptosis. As compared to C, HA exhibited an elevated heat shock response [HSP70 (+ 99%); HSP60 (+ 216%); HSP32 (+ 40%); all p < 0.01] and reduced inflammatory and apoptotic signaling [p-NF-ĸB:NF-ĸB (- 99%%); p-JNK (- 49%); all p < 0.01]. When compared to C + LPS, HA + LPS also exhibited an elevated heat shock response [HSP70 (+ 68%); HSP60 (+ 32%); HSP32 (+ 38%); all p < 0.01]. However, inflammatory and apoptotic responses in HA + LPS were increased [p-IKBa:IKBa (+ 432%); p-NF-ĸB:NF-ĸB (+ 283%); caspase-8p18 (+ 53%); p-JNK (+ 41%); all p < 0.05]. This unanticipated finding may be due to increased TLR4-mediated signaling capacity in HA + LPS, as indicated by upregulation of TLR4 [(+ 24%); MyD88 (+ 308%); p-NIK (+ 199%); and p-IKKα/b (+ 81%); all p < 0.05]. Data suggest HA reduces inflammatory and apoptotic signaling in skeletal muscle cells that are maintained under basal conditions. However, HACT is selective and does not apply to TLR4 signaling in the present model.
Collapse
Affiliation(s)
- Meghan G Patton
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Mandy C Szymanski
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Lacey M Gould
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Claire J Lauterbach
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA.
| |
Collapse
|
47
|
Modulation of Heat Shock Factor 1 Activity through Silencing of Ser303/Ser307 Phosphorylation Supports a Metabolic Program Leading to Age-Related Obesity and Insulin Resistance. Mol Cell Biol 2018; 38:MCB.00095-18. [PMID: 29941492 DOI: 10.1128/mcb.00095-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Activation of the adaptive response to cellular stress orchestrated by heat shock factor 1 (HSF1), which is an evolutionarily conserved transcriptional regulator of chaperone response and cellular bioenergetics in diverse model systems, is a central feature of organismal defense from environmental and cellular stress. HSF1 activity, induced by proteostatic, metabolic, and growth factor signals, is regulated by posttranscriptional modifications, yet the mechanisms that regulate HSF1 and particularly the functional significance of these modifications in modulating its biological activity in vivo remain unknown. HSF1 phosphorylation at both Ser303 (S303) and Ser307 (S307) has been shown to repress HSF1 transcriptional activity under normal physiological growth conditions. To determine the biological relevance of these HSF1 phosphorylation events, we generated a knock-in mouse model in which S303 and S307 were replaced with alanine (HSF1303A/307A). Our results confirmed that loss of phosphorylation in HSF1303A/307A cells and tissues increases protein stability but also markedly sensitizes HSF1 activation under normal and heat- or nutrient-induced stress conditions. Interestingly, the enhanced HSF1 activation in HSF1303A/307A mice activates a supportive metabolic program that aggravates the development of age-dependent obesity, fatty liver diseases, and insulin resistance. Thus, these findings highlight the importance of a posttranslational mechanism (through phosphorylation at S303 and S307 sites) of regulation of the HSF1-mediated transcriptional program that moderates the severity of nutrient-induced metabolic diseases.
Collapse
|
48
|
Scott AJ, Walker SA, Krank JJ, Wilkinson AS, Johnson KM, Lewis EM, Wilkinson JC. AIF promotes a JNK1-mediated cadherin switch independently of respiratory chain stabilization. J Biol Chem 2018; 293:14707-14722. [PMID: 30093403 DOI: 10.1074/jbc.ra118.004022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH in vitro, yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase). AIF-dependent JNK1 signaling culminates in the cadherin switch, and genetic reversal of this switch leads to apoptosis when AIF is suppressed. Notably, this widespread ability of AIF to promote JNK signaling can be uncoupled from its more limited role in respiratory chain stabilization. Thus, AIF is a transmitter of extra-mitochondrial signaling cues with important implications for human development and disease.
Collapse
Affiliation(s)
- Andrew J Scott
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Sierra A Walker
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Joshua J Krank
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Amanda S Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Kaitlyn M Johnson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| | - Eric M Lewis
- the Department of Chemistry, Mathematics and Physics, Clarion University of Pennsylvania, Clarion, Pennsylvania 16214
| | - John C Wilkinson
- From the Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108 and
| |
Collapse
|
49
|
Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci 2018; 75:2897-2916. [PMID: 29774376 PMCID: PMC11105406 DOI: 10.1007/s00018-018-2836-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
Various stress factors leading to protein damage induce the activation of an evolutionarily conserved cell protective mechanism, the heat shock response (HSR), to maintain protein homeostasis in virtually all eukaryotic cells. Heat shock factor 1 (HSF1) plays a central role in the HSR. HSF1 was initially known as a transcription factor that upregulates genes encoding heat shock proteins (HSPs), also called molecular chaperones, which assist in refolding or degrading injured intracellular proteins. However, recent accumulating evidence indicates multiple additional functions for HSF1 beyond the activation of HSPs. Here, we present a nearly comprehensive list of non-HSP-related target genes of HSF1 identified so far. Through controlling these targets, HSF1 acts in diverse stress-induced cellular processes and molecular mechanisms, including the endoplasmic reticulum unfolded protein response and ubiquitin-proteasome system, multidrug resistance, autophagy, apoptosis, immune response, cell growth arrest, differentiation underlying developmental diapause, chromatin remodelling, cancer development, and ageing. Hence, HSF1 emerges as a major orchestrator of cellular stress response pathways.
Collapse
Affiliation(s)
- János Barna
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
50
|
Dai C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0525. [PMID: 29203710 DOI: 10.1098/rstb.2016.0525] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR) is characterized by induction of heat-shock proteins (HSPs). As molecular chaperones, HSPs facilitate the folding, assembly, transportation and degradation of other proteins. In mammals, heat shock factor 1 (HSF1) is the master regulator of this ancient transcriptional programme. Upon proteotoxic insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis, thereby resisting stress and antagonizing protein misfolding diseases and ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells without stress, it becomes constitutively activated within malignant cells, rendering them addicted to HSF1 for their growth and survival. Highlighting the HSR/HPSR as an integral component of the oncogenic network, several key pathways governing HSF1 activation by environmental stressors are causally implicated in malignancy. Importantly, HSF1 impacts the cancer proteome systemically. By suppressing tumour-suppressive amyloidogenesis, HSF1 preserves cancer proteostasis to support the malignant state, both providing insight into how HSF1 enables tumorigenesis and suggesting disruption of cancer proteostasis as a therapeutic strategy. This review provides an overview of the role of HSF1 in oncogenesis, mechanisms underlying its constitutive activation within cancer cells and its pro-oncogenic action, as well as potential HSF1-targeting strategies.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research NCI-Frederick, Building 560, Room 32-31b, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|