1
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Aw WY, Sawhney A, Rathod M, Whitworth CP, Doherty EL, Madden E, Lu J, Westphal K, Stack R, Polacheck WJ. Dysfunctional mechanotransduction regulates the progression of PIK3CA-driven vascular malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609165. [PMID: 39229154 PMCID: PMC11370454 DOI: 10.1101/2024.08.22.609165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Somatic activating mutations in PIK3CA are common drivers of vascular and lymphatic malformations. Despite common biophysical signatures of tissues susceptible to lesion formation, including compliant extracellular matrix and low rates of perfusion, lesions vary in clinical presentation from localized cystic dilatation to diffuse and infiltrative vascular dysplasia. The mechanisms driving the differences in disease severity and variability in clinical presentation and the role of the biophysical microenvironment in potentiating progression are poorly understood. Here, we investigate the role of hemodynamic forces and the biophysical microenvironment in the pathophysiology of vascular malformations, and we identify hemodynamic shear stress and defective endothelial cell mechanotransduction as key regulators of lesion progression. We found that constitutive PI3K activation impaired flow-mediated endothelial cell alignment and barrier function. We show that defective shear stress sensing in PIK3CA E542K endothelial cells is associated with reduced myosin light chain phosphorylation, junctional instability, and defective recruitment of vinculin to cell-cell junctions. Using 3D microfluidic models of the vasculature, we demonstrate that PIK3CA E542K microvessels apply reduced traction forces and are unaffected by flow interruption. We further found that draining transmural flow resulted in increased sprouting and invasion responses in PIK3CA E542K microvessels. Mechanistically, constitutive PI3K activation decreased cellular and nuclear elasticity resulting in defective cellular tensional homeostasis in endothelial cells which may underlie vascular dilation, tissue hyperplasia, and hypersprouting in PIK3CA-driven venous and lymphatic malformations. Together, these results suggest that defective nuclear mechanics, impaired cellular mechanotransduction, and maladaptive hemodynamic responses contribute to the development and progression of PIK3CA-driven vascular malformations.
Collapse
Affiliation(s)
- Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Aanya Sawhney
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Mitesh Rathod
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Chloe P Whitworth
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Elizabeth L Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Ethan Madden
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jingming Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Kaden Westphal
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Ryan Stack
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Morales-Camilo N, Liu J, Ramírez MJ, Canales-Salgado P, Alegría JJ, Liu X, Ong HT, Barrera NP, Fierro A, Toyama Y, Goult BT, Wang Y, Meng Y, Nishimura R, Fong-Ngern K, Low CSL, Kanchanawong P, Yan J, Ravasio A, Bertocchi C. Alternative molecular mechanisms for force transmission at adherens junctions via β-catenin-vinculin interaction. Nat Commun 2024; 15:5608. [PMID: 38969637 PMCID: PMC11226457 DOI: 10.1038/s41467-024-49850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Force transmission through adherens junctions (AJs) is crucial for multicellular organization, wound healing and tissue regeneration. Recent studies shed light on the molecular mechanisms of mechanotransduction at the AJs. However, the canonical model fails to explain force transmission when essential proteins of the mechanotransduction module are mutated or missing. Here, we demonstrate that, in absence of α-catenin, β-catenin can directly and functionally interact with vinculin in its open conformation, bearing physiological forces. Furthermore, we found that β-catenin can prevent vinculin autoinhibition in the presence of α-catenin by occupying vinculin´s head-tail interaction site, thus preserving force transmission capability. Taken together, our findings suggest a multi-step force transmission process at AJs, where α-catenin and β-catenin can alternatively and cooperatively interact with vinculin. This can explain the graded responses needed to maintain tissue mechanical homeostasis and, importantly, unveils a force-bearing mechanism involving β-catenin and extended vinculin that can potentially explain the underlying process enabling collective invasion of metastatic cells lacking α-catenin.
Collapse
Affiliation(s)
- Nicole Morales-Camilo
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Jingzhun Liu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Manuel J Ramírez
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricio Canales-Salgado
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan José Alegría
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile
| | - Xuyao Liu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Nelson P Barrera
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Fierro
- Department of Organic Chemistry, School of Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yusuke Toyama
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Yilin Wang
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Yue Meng
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Ryosuke Nishimura
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Kedsarin Fong-Ngern
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Christine Siok Lan Low
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117543, Singapore, Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
- Mechanobiology Institute, Singapore, National University of Singapore, 117411, Singapore, Singapore
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile.
- Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Chen T, Giannone G. Single molecule imaging unveils cellular architecture, dynamics and mechanobiology. Curr Opin Cell Biol 2024; 88:102369. [PMID: 38759257 DOI: 10.1016/j.ceb.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024]
Abstract
The biomechanical regulation of the cytoskeleton and cell adhesions underlies various essential cellular functions. Studying them requires visualizing their nanostructure and molecular dynamics with evermore precise spatio-temporal resolution. In this review we will focus on the recent advances in single molecule fluorescence imaging techniques and discuss how they improve our understanding of mechanically sensitive cellular structures such as adhesions and the cytoskeleton. We will also discuss future directions for research, emphasizing on the 3D nature of cellular structures and tissues, their mechanical regulation at the molecule level, as well as how super-resolution microscopy will enhance our knowledge on protein structure and conformational changes in the cellular context.
Collapse
Affiliation(s)
- Tianchi Chen
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
6
|
Gaptulbarova KА, Tsydenova IA, Dolgasheva DS, Kravtsova EA, Ibragimova MK, Vtorushin SV, Litviakov NV. Mechanisms and significance of entosis for tumour growth and progression. Cell Death Discov 2024; 10:109. [PMID: 38429285 PMCID: PMC10907354 DOI: 10.1038/s41420-024-01877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
To date, numerous mechanisms have been identified in which one cell engulfs another, resulting in the creation of 'cell-in-cell' (CIC) structures, which subsequently cause cell death. One of the mechanisms of formation of these structures is entosis, which is presumably associated with possible carcinogenesis and tumour progression. The peculiarity of the process is that entotic cells themselves actively invade the host cell, and afterwards have several possible variants of fate. Entotic formations are structures where one cell is engulfed by another cell, creating a cell-in-cell structure. The nucleus of the outer cell has a crescent shape, while the inner cell is surrounded by a large entotic vacuole. These characteristics differentiate entosis from cell cannibalism. It's worth noting that entotic formations are not necessarily harmful and may even be beneficial in some cases. In this article we will consider the mechanism of entosis and variants of entotic cell death, and also put forward hypothesis about possible variants of participation of this process on the formation and progression of cancer. This article also presents our proposed classification of functional forms of entosis.
Collapse
Affiliation(s)
- Ksenia Аndreevna Gaptulbarova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia.
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia.
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia.
| | - Irina Alexandrovna Tsydenova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Daria Sergeevna Dolgasheva
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Ekaterina Andreevna Kravtsova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Marina Konstantinovna Ibragimova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Sergey Vladimirovich Vtorushin
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
| | - Nikolai Vasilievich Litviakov
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| |
Collapse
|
7
|
Berniak K, Ura DP, Piórkowski A, Stachewicz U. Cell-Material Interplay in Focal Adhesion Points. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9944-9955. [PMID: 38354103 PMCID: PMC10910443 DOI: 10.1021/acsami.3c19035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
The complex interplay between cells and materials is a key focus of this research, aiming to develop optimal scaffolds for regenerative medicine. The need for tissue regeneration underscores understanding cellular behavior on scaffolds, especially cell adhesion to polymer fibers forming focal adhesions. Key proteins, paxillin and vinculin, regulate cell signaling, migration, and mechanotransduction in response to the extracellular environment. This study utilizes advanced microscopy, specifically the AiryScan technique, along with advanced image analysis employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm, to investigate protein distribution during osteoblast cell adhesion to polymer fibers and glass substrates. During cell attachment to both glass and polymer fibers, a noticeable shift in the local maxima of paxillin and vinculin signals is observed at the adhesion sites. The focal adhesion sites on polymer fibers are smaller and elliptical but exhibit higher protein density than on the typical glass surface. The characteristics of focal adhesions, influenced by paxillin and vinculin, such as size and density, can potentially reflect the strength and stability of cell adhesion. Efficient adhesion correlates with well-organized, larger focal adhesions characterized by increased accumulation of paxillin and vinculin. These findings offer promising implications for enhancing scaffold design, evaluating adhesion to various substrates, and refining cellular interactions in biomedical applications.
Collapse
Affiliation(s)
- Krzysztof Berniak
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Daniel P. Ura
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Adam Piórkowski
- Department
of Biocybernetics and Biomedical Engineering, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, Krakow 30-059, Poland
| |
Collapse
|
8
|
Zhang N, Häring M, Wolf F, Großhans J, Kong D. Dynamics and functions of E-cadherin complexes in epithelial cell and tissue morphogenesis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:585-601. [PMID: 38045551 PMCID: PMC10689684 DOI: 10.1007/s42995-023-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Cell-cell adhesion is at the center of structure and dynamics of epithelial tissue. E-cadherin-catenin complexes mediate Ca2+-dependent trans-homodimerization and constitute the kernel of adherens junctions. Beyond the basic function of cell-cell adhesion, recent progress sheds light the dynamics and interwind interactions of individual E-cadherin-catenin complex with E-cadherin superclusters, contractile actomyosin and mechanics of the cortex and adhesion. The nanoscale architecture of E-cadherin complexes together with cis-interactions and interactions with cortical actomyosin adjust to junctional tension and mechano-transduction by reinforcement or weakening of specific features of the interactions. Although post-translational modifications such as phosphorylation and glycosylation have been implicated, their role for specific aspects of in E-cadherin function has remained unclear. Here, we provide an overview of the E-cadherin complex in epithelial cell and tissue morphogenesis focusing on nanoscale architectures by super-resolution approaches and post-translational modifications from recent, in particular in vivo, studies. Furthermore, we review the computational modelling in E-cadherin complexes and highlight how computational modelling has contributed to a deeper understanding of the E-cadherin complexes.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
9
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
11
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. Mol Biol Cell 2023; 34:ar81. [PMID: 37163320 PMCID: PMC10398881 DOI: 10.1091/mbc.e23-03-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
During embryonic development, dramatic cell shape changes and movements reshape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by mechanosensitive multiprotein complexes assembled via multivalent connections. Here we combine genetic, cell biological, and modeling approaches to define the mechanism of action and functions of an important player, Drosophila polychaetoid, homologue of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways, perhaps in distinct subcomplexes, but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Jörg Grosshans
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Institute for Dynamics of Complex Systems, Georg August University, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
12
|
Shi B, Matsui T, Qian S, Weiss TM, Nicholl ID, Callaway DJE, Bu Z. An ensemble of cadherin-catenin-vinculin complex employs vinculin as the major F-actin binding mode. Biophys J 2023; 122:2456-2474. [PMID: 37147801 PMCID: PMC10323030 DOI: 10.1016/j.bpj.2023.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The cell-cell adhesion cadherin-catenin complexes recruit vinculin to the adherens junction (AJ) to modulate the mechanical couplings between neighboring cells. However, it is unclear how vinculin influences the AJ structure and function. Here, we identified two patches of salt bridges that lock vinculin in the head-tail autoinhibited conformation and reconstituted the full-length vinculin activation mimetics bound to the cadherin-catenin complex. The cadherin-catenin-vinculin complex contains multiple disordered linkers and is highly dynamic, which poses a challenge for structural studies. We determined the ensemble conformation of this complex using small-angle x-ray and selective deuteration/contrast variation small-angle neutron scattering. In the complex, both α-catenin and vinculin adopt an ensemble of flexible conformations, but vinculin has fully open conformations with the vinculin head and actin-binding tail domains well separated from each other. F-actin binding experiments show that the cadherin-catenin-vinculin complex binds and bundles F-actin. However, when the vinculin actin-binding domain is removed from the complex, only a minor fraction of the complex binds to F-actin. The results show that the dynamic cadherin-catenin-vinculin complex employs vinculin as the primary F-actin binding mode to strengthen AJ-cytoskeleton interactions.
Collapse
Affiliation(s)
- Bright Shi
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Shuo Qian
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Iain D Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York.
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York.
| |
Collapse
|
13
|
Barsanti L, Birindelli L, Sbrana F, Lombardi G, Gualtieri P. Advanced Microscopy Techniques for Molecular Biophysics. Int J Mol Sci 2023; 24:9973. [PMID: 37373120 DOI: 10.3390/ijms24129973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Though microscopy is most often intended as a technique for providing qualitative assessment of cellular and subcellular properties, when coupled with other instruments such as wavelength selectors, lasers, photoelectric devices and computers, it can perform a wide variety of quantitative measurements, which are demanding in establishing relationships between the properties and structures of biological material in all their spatial and temporal complexities. These combinations of instruments are a powerful approach to improve non-destructive investigations of cellular and subcellular properties (both physical and chemical) at a macromolecular scale resolution. Since many subcellular compartments in living cells are characterized by structurally organized molecules, this review deals with three advanced microscopy techniques well-suited for these kind of investigations, i.e., microspectrophotometry (MSP), super-resolution localization microscopy (SRLM) and holotomographic microscopy (HTM). These techniques can achieve an insight view into the role intracellular molecular organizations such as photoreceptive and photosynthetic structures and lipid bodies play in many cellular processes as well as their biophysical properties. Microspectrophotometry uses a set-up based on the combination of a wide-field microscope and a polychromator, which allows the measurement of spectroscopic features such as absorption spectra. Super resolution localization microscopy combines dedicated optics and sophisticated software algorithms to overcome the diffraction limit of light and allow the visualization of subcellular structures and dynamics in greater detail with respect to conventional optical microscopy. Holotomographic microscopy combines holography and tomography techniques into a single microscopy set-up, and allows 3D reconstruction by means of the phase separation of biomolecule condensates. This review is organized in sections, which for each technique describe some general aspects, a peculiar theoretical aspect, a specific experimental configuration and examples of applications (fish and algae photoreceptors, single labeled proteins and endocellular aggregates of lipids).
Collapse
Affiliation(s)
- Laura Barsanti
- Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | | | | | - Giovanni Lombardi
- Istituto di Scienza e Tecnologia dell'Informazione, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | - Paolo Gualtieri
- Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
14
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
15
|
Montenegro-Rojas I, Yañez G, Skog E, Guerrero-Calvo O, Andaur-Lobos M, Dolfi L, Cellerino A, Cerda M, Concha ML, Bertocchi C, Rojas NO, Ravasio A, Rudge TJ. A computational framework for testing hypotheses of the minimal mechanical requirements for cell aggregation using early annual killifish embryogenesis as a model. Front Cell Dev Biol 2023; 11:959611. [PMID: 37020464 PMCID: PMC10067630 DOI: 10.3389/fcell.2023.959611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction: Deciphering the biological and physical requirements for the outset of multicellularity is limited to few experimental models. The early embryonic development of annual killifish represents an almost unique opportunity to investigate de novo cellular aggregation in a vertebrate model. As an adaptation to seasonal drought, annual killifish employs a unique developmental pattern in which embryogenesis occurs only after undifferentiated embryonic cells have completed epiboly and dispersed in low density on the egg surface. Therefore, the first stage of embryogenesis requires the congregation of embryonic cells at one pole of the egg to form a single aggregate that later gives rise to the embryo proper. This unique process presents an opportunity to dissect the self-organizing principles involved in early organization of embryonic stem cells. Indeed, the physical and biological processes required to form the aggregate of embryonic cells are currently unknown. Methods: Here, we developed an in silico, agent-based biophysical model that allows testing how cell-specific and environmental properties could determine the aggregation dynamics of early Killifish embryogenesis. In a forward engineering approach, we then proceeded to test two hypotheses for cell aggregation (cell-autonomous and a simple taxis model) as a proof of concept of modeling feasibility. In a first approach (cell autonomous system), we considered how intrinsic biophysical properties of the cells such as motility, polarity, density, and the interplay between cell adhesion and contact inhibition of locomotion drive cell aggregation into self-organized clusters. Second, we included guidance of cell migration through a simple taxis mechanism to resemble the activity of an organizing center found in several developmental models. Results: Our numerical simulations showed that random migration combined with low cell-cell adhesion is sufficient to maintain cells in dispersion and that aggregation can indeed arise spontaneously under a limited set of conditions, but, without environmental guidance, the dynamics and resulting structures do not recapitulate in vivo observations. Discussion: Thus, an environmental guidance cue seems to be required for correct execution of early aggregation in early killifish development. However, the nature of this cue (e.g., chemical or mechanical) can only be determined experimentally. Our model provides a predictive tool that could be used to better characterize the process and, importantly, to design informed experimental strategies.
Collapse
Affiliation(s)
- Ignacio Montenegro-Rojas
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Yañez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Skog
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar Guerrero-Calvo
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Andaur-Lobos
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luca Dolfi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Alessandro Cellerino
- BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina. Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Medical Informatics and Telemedicine, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina. Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology Pontificia Universidad Católica de Chile, Santiago, Chile
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Nicolás O. Rojas
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Timothy J. Rudge
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Rangarajan ES, Smith EW, Izard T. Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments. Commun Biol 2023; 6:276. [PMID: 36928388 PMCID: PMC10020564 DOI: 10.1038/s42003-023-04610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Attachment between cells is crucial for almost all aspects of the life of cells. These inter-cell adhesions are mediated by the binding of transmembrane cadherin receptors of one cell to cadherins of a neighboring cell. Inside the cell, cadherin binds β-catenin, which interacts with α-catenin. The transitioning of cells between migration and adhesion is modulated by α-catenin, which links cell junctions and the plasma membrane to the actin cytoskeleton. At cell junctions, a single β-catenin/α-catenin heterodimer slips along filamentous actin in the direction of cytoskeletal tension which unfolds clustered heterodimers to form catch bonds with F-actin. Outside cell junctions, α-catenin dimerizes and links the plasma membrane to F-actin. Under cytoskeletal tension, α-catenin unfolds and forms an asymmetric catch bond with F-actin. To understand the mechanism of this important α-catenin function, we determined the 2.7 Å cryogenic electron microscopy (cryoEM) structures of filamentous actin alone and bound to human dimeric α-catenin. Our structures provide mechanistic insights into the role of the α-catenin interdomain interactions in directing α-catenin function and suggest a bivalent mechanism. Further, our cryoEM structure of human monomeric α-catenin provides mechanistic insights into α-catenin autoinhibition. Collectively, our structures capture the initial α-catenin interaction with F-actin before the sensing of force, which is a crucial event in cell adhesion and human disease.
Collapse
Affiliation(s)
| | - Emmanuel W Smith
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA
| | - Tina Izard
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
17
|
Schmidt A, Finegan T, Häring M, Kong D, Fletcher AG, Alam Z, Grosshans J, Wolf F, Peifer M. Polychaetoid/ZO-1 strengthens cell junctions under tension while localizing differently than core adherens junction proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530634. [PMID: 36909597 PMCID: PMC10002719 DOI: 10.1101/2023.03.01.530634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During embryonic development dramatic cell shape changes and movements re-shape the embryonic body plan. These require robust but dynamic linkage between the cell-cell adherens junctions and the force-generating actomyosin cytoskeleton. Our view of this linkage has evolved, and we now realize linkage is mediated by a mechanosensitive multiprotein complex assembled via multivalent connections. Here we combine genetic, cell biological and modeling approaches to define the mechanism of action and functions of an important player, Drosophila Polychaetoid, homolog of mammalian ZO-1. Our data reveal that Pyd reinforces cell junctions under elevated tension, and facilitates cell rearrangements. Pyd is important to maintain junctional contractility and in its absence cell rearrangements stall. We next use structured illumination microscopy to define the molecular architecture of cell-cell junctions during these events. The cadherin-catenin complex and Cno both localize to puncta along the junctional membrane, but are differentially enriched in different puncta. Pyd, in contrast, exhibits a distinct localization to strands that extend out from the region occupied by core junction proteins. We then discuss the implications for the protein network at the junction-cytoskeletal interface, suggesting different proteins localize and function in distinct ways but combine to produce robust connections.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Tara Finegan
- Department of Biology, University of Rochester, Rochester, New York, USA 14627-0211
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Alexander G Fletcher
- School of Mathematics and Statistics & Bateson Centre, University of Sheffield, Sheffield, UK
| | - Zuhayr Alam
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jörg Grosshans
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Georg August University, Hermann Rein Str. 3, 37075 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Hermann Rein St. 3, 37075 Göttingen, German
- Institute for Dynamics of Complex Systems, Georg August University, Friedrich Hund Pl. 1, 37077 Göttingen, Germany
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
18
|
Bax NA, Wang A, Huang DL, Pokutta S, Weis WI, Dunn AR. Multi-level Force-dependent Allosteric Enhancement of αE-catenin Binding to F-actin by Vinculin. J Mol Biol 2023; 435:167969. [PMID: 36682678 PMCID: PMC9957948 DOI: 10.1016/j.jmb.2023.167969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Classical cadherins are transmembrane proteins whose extracellular domains link neighboring cells, and whose intracellular domains connect to the actin cytoskeleton via β-catenin and α-catenin. The cadherin-catenin complex transmits forces that drive tissue morphogenesis and wound healing. In addition, tension-dependent changes in αE-catenin conformation enables it to recruit the actin-binding protein vinculin to cell-cell junctions, which contributes to junctional strengthening. How and whether multiple cadherin-complexes cooperate to reinforce cell-cell junctions in response to load remains poorly understood. Here, we used single-molecule optical trap measurements to examine how multiple cadherin-catenin complexes interact with F-actin under load, and how this interaction is influenced by the presence of vinculin. We show that force oriented toward the (-) end of the actin filament results in mean lifetimes 3-fold longer than when force was applied towards the barbed (+) end. We also measured force-dependent actin binding by a quaternary complex comprising the cadherin-catenin complex and the vinculin head region, which cannot itself bind actin. Binding lifetimes of this quaternary complex increased as additional complexes bound F-actin, but only when load was oriented toward the (-) end. In contrast, the cadherin-catenin complex alone did not show this form of cooperativity. These findings reveal multi-level, force-dependent regulation that enhances the strength of the association of multiple cadherin/catenin complexes with F-actin, conferring positive feedback that may strengthen the junction and polarize F-actin to facilitate the emergence of higher-order cytoskeletal organization.
Collapse
Affiliation(s)
- Nicolas A Bax
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States. https://twitter.com/@bax1337
| | - Amy Wang
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States; Department of Chemical Engineering, Stanford University School of Engineering, United States. https://twitter.com/@amywang01
| | - Derek L Huang
- Graduate Program in Biophysics, Stanford University, United States
| | - Sabine Pokutta
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States.
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University School of Engineering, United States; Stanford Cardiovascular Institute, Stanford School of Medicine.
| |
Collapse
|
19
|
Li X, McLain C, Samuel MS, Olson MF, Radice GL. Actomyosin-mediated cellular tension promotes Yap nuclear translocation and myocardial proliferation through α5 integrin signaling. Development 2023; 150:dev201013. [PMID: 36621002 PMCID: PMC10110499 DOI: 10.1242/dev.201013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state results in the loss of regenerative potential of the mammalian heart shortly after birth. Nonmuscle myosin IIB (NM IIB)-mediated actomyosin contractility regulates cardiomyocyte cytokinesis in the embryonic heart, and NM IIB levels decline after birth, suggesting a role for cellular tension in the regulation of cardiomyocyte cell cycle activity in the postnatal heart. To investigate the role of actomyosin contractility in cardiomyocyte cell cycle arrest, we conditionally activated ROCK2 kinase domain (ROCK2:ER) in the murine postnatal heart. Here, we show that α5/β1 integrin and fibronectin matrix increase in response to actomyosin-mediated tension. Moreover, activation of ROCK2:ER promotes nuclear translocation of Yap, a mechanosensitive transcriptional co-activator, and enhances cardiomyocyte proliferation. Finally, we show that reduction of myocardial α5 integrin rescues the myocardial proliferation phenotype in ROCK2:ER hearts. These data demonstrate that cardiomyocytes respond to increased intracellular tension by altering their intercellular contacts in favor of cell-matrix interactions, leading to Yap nuclear translocation, thus uncovering a function for nonmuscle myosin contractility in promoting cardiomyocyte proliferation in the postnatal heart.
Collapse
Affiliation(s)
- Xiaofei Li
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Callie McLain
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Michael S. Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Michael F. Olson
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3 Canada
| | - Glenn L. Radice
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
20
|
Su L, Jing L, Zeng X, Chen T, Liu H, Kong Y, Wang X, Yang X, Fu C, Sun J, Huang D. 3D-Printed Prolamin Scaffolds for Cell-Based Meat Culture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207397. [PMID: 36271729 DOI: 10.1002/adma.202207397] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Cultivating meat from muscle stem cells in vitro requires 3D edible scaffolds as the supporting matrix. Electrohydrodynamic (EHD) printing is an emerging 3D-printing technology for fabricating ultrafine fibrous scaffolds with high precision microstructures for biomedical applications. However, edible EHD-printed scaffolds remain scarce in cultured meat (CM) production partly due to special requirements with regard to the printability of ink. Here, hordein or secalin is mixed, which are cereal prolamins extracted from barley or rye, with zein to produce pure prolamin-based inks, which exhibit favorable printability similar to common polycaprolactone ink. Zein/hordein and zein/secalin scaffolds with highly ordered tessellated structures are successfully fabricated after optimizing printing conditions. The prolamin scaffolds demonstrated good water stability and in vitro degradability due to the porous fiber surface, which is spontaneously generated by culturing muscle cells for 1 week. Moreover, mouse skeletal myoblasts (C2C12) and porcine skeletal muscle satellite cells (PSCs) can adhere and proliferate on the fibrous matrix, and a CM slice is produced by culturing PSCs on prolamin scaffolds with high tissue similarity. The upregulation of myogenic proteins shows that the differentiation process is triggered in the 3D culture, demonstrating the great potential of prolamin scaffolds in CM production.
Collapse
Affiliation(s)
- Lingshan Su
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Linzhi Jing
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
| | - Xianjian Zeng
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Tong Chen
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Hang Liu
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Yan Kong
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Xiang Wang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Xin Yang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| | - Caili Fu
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
| | - Jie Sun
- Department of Mechatronics and Robotics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Dejian Huang
- Peak Of Excellent-Center Of Health and Food Technology, National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu, 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
| |
Collapse
|
21
|
Naser AN, Guiler W, Lu Q, Chen Y. Nanoarchitecture and molecular interactions of epithelial cell junction proteins revealed by super-resolution microscopy. Ann N Y Acad Sci 2022; 1516:175-187. [PMID: 35819053 PMCID: PMC9588527 DOI: 10.1111/nyas.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelial cells are polarized with defined apical tight junctions (TJs), lateral adherens junctions (AJs), and basal integrin-matrix interactions. However, it is increasingly recognized that resident cell junction proteins can be found in varying locations and with previously unrecognized functions. Our study here presents the nanoarchitecture and nanocolocalization of cell junction proteins in culture and tissue by stochastic optical reconstruction microscopy (STORM). The Z-axial view of noncancerous MDCK-II and PZ-HPV-7 cell-cell junctions resolved β-catenin and p120ctn localizations to TJs and AJs, with p120ctn apical to β-catenin and colocalizing with TJ protein claudin-7. More basally, p120ctn and β-catenin become colocalized. This topography was lost in isogenic Ras-transformed MDCK cells and cancerous PC3 cells, where p120ctn becomes basally localized in relation to β-catenin. Claudin-7 gene conditional knockout (cKO) in mice also have altered polarity of p120ctn relative to β-catenin, like that seen in normal-to-cancer cell phenotypic transformation. Additionally, claudin-7 cKO resulted in redistribution and relocalization of other cell junction proteins, including claudin-1, zonula occludens-1, integrin α2, epithelial cell adhesion molecule, and focal adhesion kinase (FAK); specifically, integrin α2 and FAK were observed at the apical-lateral compartment. Our data show that STORM reveals regional cellular junction nanoarchitecture previously uncharacterized, providing new insight into potential trans-compartmental modulation of protein functions.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - William Guiler
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Yan‐Hua Chen
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
22
|
Sakakibara S, Sakane A, Sasaki T, Shinohara M, Maruo T, Miyata M, Mizutani K, Takai Y. Identification of lysophosphatidic acid in serum as a factor that promotes epithelial apical junctional complex organization. J Biol Chem 2022; 298:102426. [PMID: 36030821 PMCID: PMC9520027 DOI: 10.1016/j.jbc.2022.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization–promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol–novel PKC and Rho–ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho–ROCK pathway activation–mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization–disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization–promoting activity in a manner dependent on or independent of AJ proteins.
Collapse
Affiliation(s)
- Shotaro Sakakibara
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8503, Japan.
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomohiko Maruo
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan.
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan.
| |
Collapse
|
23
|
Sri-Ranjan K, Sanchez-Alonso JL, Swiatlowska P, Rothery S, Novak P, Gerlach S, Koeninger D, Hoffmann B, Merkel R, Stevens MM, Sun SX, Gorelik J, Braga VMM. Intrinsic cell rheology drives junction maturation. Nat Commun 2022; 13:4832. [PMID: 35977954 PMCID: PMC9385638 DOI: 10.1038/s41467-022-32102-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
A fundamental property of higher eukaryotes that underpins their evolutionary success is stable cell-cell cohesion. Yet, how intrinsic cell rheology and stiffness contributes to junction stabilization and maturation is poorly understood. We demonstrate that localized modulation of cell rheology governs the transition of a slack, undulated cell-cell contact (weak adhesion) to a mature, straight junction (optimal adhesion). Cell pairs confined on different geometries have heterogeneous elasticity maps and control their own intrinsic rheology co-ordinately. More compliant cell pairs grown on circles have slack contacts, while stiffer triangular cell pairs favour straight junctions with flanking contractile thin bundles. Counter-intuitively, straighter cell-cell contacts have reduced receptor density and less dynamic junctional actin, suggesting an unusual adaptive mechano-response to stabilize cell-cell adhesion. Our modelling informs that slack junctions arise from failure of circular cell pairs to increase their own intrinsic stiffness and resist the pressures from the neighbouring cell. The inability to form a straight junction can be reversed by increasing mechanical stress artificially on stiffer substrates. Our data inform on the minimal intrinsic rheology to generate a mature junction and provide a springboard towards understanding elements governing tissue-level mechanics.
Collapse
Affiliation(s)
- K Sri-Ranjan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - J L Sanchez-Alonso
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - P Swiatlowska
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - S Rothery
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - P Novak
- School of Engineering and Materials Science, Queen Mary University, London, UK
| | - S Gerlach
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - D Koeninger
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - B Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - R Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - M M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering Imperial College London, London, UK
| | - S X Sun
- Department of Mechanical Engineering and Institute of NanoBioTechnology, Johns Hopkins University, Baltimore Maryland, USA
| | - J Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
24
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|
25
|
Yu Q, Kim T, Rajagopal V. Role of actin filaments and cis binding in cadherin clustering and patterning. PLoS Comput Biol 2022; 18:e1010257. [PMID: 35802763 PMCID: PMC9299298 DOI: 10.1371/journal.pcbi.1010257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/20/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cadherins build up clusters to maintain intercellular contact through trans and cis (lateral) bindings. Meanwhile, interactions between cadherin and the actin cytoskeleton through cadherin/F-actin linkers can affect cadherin dynamics by corralling and tethering cadherin molecules locally. Despite many experimental studies, a quantitative, mechanistic understanding of how cadherin and actin cytoskeleton interactions regulate cadherin clustering does not exist. To address this gap in knowledge, we developed a coarse-grained computational model of cadherin dynamics and their interaction with the actin cortex underlying the cell membrane. Our simulation predictions suggest that weak cis binding affinity between cadherin molecules can facilitate large cluster formation. We also found that cadherin movement inhibition by actin corralling is dependent on the concentration and length of actin filaments. This results in changes in cadherin clustering behaviors, as reflected by differences in cluster size and distribution as well as cadherin monomer trajectory. Strong cadherin/actin binding can enhance trans and cis interactions as well as cadherin clustering. By contrast, with weak cadherin/actin binding affinity, a competition between cadherin-actin binding and cis binding for a limited cadherin pool leads to temporary and unstable cadherin clusters.
Collapse
Affiliation(s)
- Qilin Yu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (TK); (VR)
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
- * E-mail: (TK); (VR)
| |
Collapse
|
26
|
Fernandez-Gonzalez R, Peifer M. Powering morphogenesis: multiscale challenges at the interface of cell adhesion and the cytoskeleton. Mol Biol Cell 2022; 33. [PMID: 35696393 DOI: 10.1091/mbc.e21-09-0452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among the defining features of the animal kingdom is the ability of cells to change shape and move. This underlies embryonic and postembryonic development, tissue homeostasis, regeneration, and wound healing. Cell shape change and motility require linkage of the cell's force-generating machinery to the plasma membrane at cell-cell and cell-extracellular matrix junctions. Connections of the actomyosin cytoskeleton to cell-cell adherens junctions need to be both resilient and dynamic, preventing tissue disruption during the dramatic events of embryonic morphogenesis. In the past decade, new insights radically altered the earlier simple paradigm that suggested simple linear linkage via the cadherin-catenin complex as the molecular mechanism of junction-cytoskeleton interaction. In this Perspective we provide a brief overview of our current state of knowledge and then focus on selected examples highlighting what we view as the major unanswered questions in our field and the approaches that offer exciting new insights at multiple scales from atomic structure to tissue mechanics.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G5, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3280.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
27
|
Liu S, Kanchanawong P. Emerging interplay of cytoskeletal architecture, cytomechanics and pluripotency. J Cell Sci 2022; 135:275761. [PMID: 35726598 DOI: 10.1242/jcs.259379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) are capable of differentiating into all three germ layers and trophoblasts, whereas tissue-specific adult stem cells have a more limited lineage potency. Although the importance of the cytoskeletal architecture and cytomechanical properties in adult stem cell differentiation have been widely appreciated, how they contribute to mechanotransduction in PSCs is less well understood. Here, we discuss recent insights into the interplay of cellular architecture, cell mechanics and the pluripotent states of PSCs. Notably, the distinctive cytomechanical and morphodynamic profiles of PSCs are accompanied by a number of unique molecular mechanisms. The extent to which such mechanobiological signatures are intertwined with pluripotency regulation remains an open question that may have important implications in developmental morphogenesis and regenerative medicine.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore 117411, Republic of Singapore
| |
Collapse
|
28
|
Ravasio A, Morselli E, Bertocchi C. Mechanoautophagy: Synergies Between Autophagy and Cell Mechanotransduction at Adhesive Complexes. Front Cell Dev Biol 2022; 10:917662. [PMID: 35721483 PMCID: PMC9198486 DOI: 10.3389/fcell.2022.917662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cells are exposed and respond to various mechanical forces and physical cues stemming from their environment. This interaction has been seen to differentially regulate various cellular processes for maintenance of homeostasis, of which autophagy represents one of the major players. In addition, autophagy has been suggested to regulate mechanical functions of the cells including their interaction with the environment. In this minireview, we summarize the state of the art of the fascinating interplay between autophagy and the mechanotransduction machinery associated with cell adhesions, that we name ¨Mechanoautophagy¨
Collapse
Affiliation(s)
- Andrea Ravasio
- Institute for Biological and Medical Engineering Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Cristina Bertocchi, ; Andrea Ravasio,
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Cristina Bertocchi, ; Andrea Ravasio,
| |
Collapse
|
29
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
30
|
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic Visualization of Cell-Cell Adhesion Complexes at Micro and Nanoscale. Front Cell Dev Biol 2022; 10:819534. [PMID: 35517500 PMCID: PMC9065677 DOI: 10.3389/fcell.2022.819534] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| | - Jian-hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| |
Collapse
|
31
|
Faix J, Rottner K. Ena/VASP proteins in cell edge protrusion, migration and adhesion. J Cell Sci 2022; 135:274697. [DOI: 10.1242/jcs.259226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT
The tightly coordinated, spatiotemporal control of actin filament remodeling provides the basis of fundamental cellular processes, such as cell migration and adhesion. Specific protein assemblies, composed of various actin-binding proteins, are thought to operate in these processes to nucleate and elongate new filaments, arrange them into complex three-dimensional (3D) arrays and recycle them to replenish the actin monomer pool. Actin filament assembly is not only necessary to generate pushing forces against the leading edge membrane or to propel pathogens through the cytoplasm, but also coincides with the generation of stress fibers (SFs) and focal adhesions (FAs) that generate, transmit and sense mechanical tension. The only protein families known to date that directly enhance the elongation of actin filaments are formins and the family of Ena/VASP proteins. Their mechanisms of action, however, in enhancing processive filament elongation are distinct. The aim of this Review is to summarize our current knowledge on the molecular mechanisms of Ena/VASP-mediated actin filament assembly, and to discuss recent insights into the cell biological functions of Ena/VASP proteins in cell edge protrusion, migration and adhesion.
Collapse
Affiliation(s)
- Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
32
|
Tension-dependent stabilization of E-cadherin limits cell-cell contact expansion in zebrafish germ-layer progenitor cells. Proc Natl Acad Sci U S A 2022; 119:2122030119. [PMID: 35165179 PMCID: PMC8872771 DOI: 10.1073/pnas.2122030119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 01/22/2023] Open
Abstract
Cell–cell contact formation is a key step in the evolution of multicellularity. While the molecular and cellular processes underlying cell–cell adhesion and contact formation have been extensively studied, comparably little is known about the physical principles guiding these processes. Actomyosin cortex tension differentially applied at the cell–cell and cell–medium interfaces was shown to promote expansion of the cell–cell contacts. Here, we uncover a nonlinear relationship between cortex tension and cell–cell contact size; in a low-tension regime, cell–cell contact size positively scales with cortex tension, while the high-tension regime promotes small contacts. This change in behavior is due to tension decreasing the turnover of adhesion molecules at the cell–cell contact, limiting contact expansion. Tension of the actomyosin cell cortex plays a key role in determining cell–cell contact growth and size. The level of cortical tension outside of the cell–cell contact, when pulling at the contact edge, scales with the total size to which a cell–cell contact can grow [J.-L. Maître et al., Science 338, 253–256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell–cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell–cell contact size is limited by tension-stabilizing E-cadherin–actin complexes at the contact.
Collapse
|
33
|
Hwang W, Kim D, Kim D. Axial Scanning Metal-Induced Energy Transfer Microscopy for Extended Range Nanometer-Sectioning Cell Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105497. [PMID: 35174635 DOI: 10.1002/smll.202105497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Nanometer-sectioning optical microscopy has become an indispensable tool in membrane-related biomedical studies. Finally, many nanometer-sectioning imaging schemes, such as variable-angle total internal reflection fluorescence microscopy, metal-induced energy transfer (MIET) imaging, and supercritical-angle fluorescence microscopy have been introduced. However, these methods can measure a single layer of molecules, and the measurement ranges are below 100 nm, which is not large enough to cover the thickness of lamellipodium. This paper proposes an optical imaging scheme that can identify the axial locations of two layers of molecules with an extended measurement range and a nanometer-scale precision by using MIET, axial focal plane scanning, and biexponential analysis in fluorescence lifetime imaging microscopy. The feasibility of the proposed method is demonstrated by measuring an artificial sample of a known structure and the lamellipodium of a human aortic endothelial cell whose thickness ranges from 100 to 450 nm with 18.3 nm precision.
Collapse
Affiliation(s)
- Wonsang Hwang
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Dongeun Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Dugyoung Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| |
Collapse
|
34
|
Schoenit A, Lo Giudice C, Hahnen N, Ollech D, Jahnke K, Göpfrich K, Cavalcanti-Adam EA. Tuning Epithelial Cell-Cell Adhesion and Collective Dynamics with Functional DNA-E-Cadherin Hybrid Linkers. NANO LETTERS 2022; 22:302-310. [PMID: 34939414 PMCID: PMC8759084 DOI: 10.1021/acs.nanolett.1c03780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The binding strength between epithelial cells is crucial for tissue integrity, signal transduction and collective cell dynamics. However, there is no experimental approach to precisely modulate cell-cell adhesion strength at the cellular and molecular level. Here, we establish DNA nanotechnology as a tool to control cell-cell adhesion of epithelial cells. We designed a DNA-E-cadherin hybrid system consisting of complementary DNA strands covalently bound to a truncated E-cadherin with a modified extracellular domain. DNA sequence design allows to tune the DNA-E-cadherin hybrid molecular binding strength, while retaining its cytosolic interactions and downstream signaling capabilities. The DNA-E-cadherin hybrid facilitates strong and reversible cell-cell adhesion in E-cadherin deficient cells by forming mechanotransducive adherens junctions. We assess the direct influence of cell-cell adhesion strength on intracellular signaling and collective cell dynamics. This highlights the scope of DNA nanotechnology as a precision technology to study and engineer cell collectives.
Collapse
Affiliation(s)
- Andreas Schoenit
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Cristina Lo Giudice
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Nina Hahnen
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Dirk Ollech
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Elisabetta Ada Cavalcanti-Adam
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| |
Collapse
|
35
|
Dynamics of the Actin Cytoskeleton at Adhesion Complexes. BIOLOGY 2021; 11:biology11010052. [PMID: 35053050 PMCID: PMC8773209 DOI: 10.3390/biology11010052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023]
Abstract
The shape of cells is altered to allow cells to adapt to their changing environments, including responding to internally generated and externally applied force. Force is sensed by cell surface adhesion proteins that are enriched in sites where cells bind to the extracellular matrix (focal adhesions) and neighboring cells (cell-cell or adherens junctions). Receptors at these adhesion sites stimulate intracellular signal transduction cascades that culminate in dramatic changes in the actin cytoskeleton. New actin filaments form, and/or new and existing filaments can be cleaved, branched, or bundled. Here, we discuss the actin cytoskeleton and its functions. We will examine the current understanding for how the actin cytoskeleton is tethered to adhesion sites. Finally, we will highlight recent studies describing how the actin cytoskeleton at these adhesion sites is remodeled in response to force.
Collapse
|
36
|
Seo H, Lee HW, Yoon SY, Chang SH, Park SH, Hwang JH, Park TI, Park KS. Effect of Cadherin-11 Expression on the Prognosis of a Newly Diagnosed Primary Glioblastoma. Brain Tumor Res Treat 2021; 9:63-69. [PMID: 34725986 PMCID: PMC8561220 DOI: 10.14791/btrt.2021.9.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cadherin-11, a cell-to-cell adhesion molecule, is associated with higher tumor grade and decreased patient survival. The purpose of this study was to investigate the clinical significance of cadherin-11 expression in the progression and prognosis of a newly diagnosed primary glioblastoma (GBL). Methods Between 2007 and 2016, 52 out of 178 patients diagnosed with a GBL and satisfied the following criteria: 1) a new primary GBL, 2) gross-total resection, 3) immunohistochemically-available tissue, and 4) standardized adjuvant treatment. Results In terms of staining intensity, the low-intensity cadherin-11 group showed longer progression-free survival (PFS) than the high-intensity cadherin-11 group (median PFS, 12.0 months [95% CI, 11.1–12.9] vs. median PFS, 6.0 months [95% CI, 3.7–8.3]; p<0.001). The low-intensity cadherin-11 group revealed longer overall survival (OS) than the high-intensity cadherin-11 group (median OS, 20.0 months [95% CI, 11.8–16.6] vs. median OS, 15.0 months [95% CI, 11.8–18.2]; p=0.003). The staining intensity of cadherin-11 was a statistically significant factor in PFS and OS in terms of univariate and multivariate analyses (univariate analysis: p<0.001 and p=0.005; multivariate analysis: p<0.001 and p=0.005). Conclusion Our clinical study demonstrates high cadherin-11 expression may be associated with poor PFS and OS for a newly diagnosed primary GBL.
Collapse
Affiliation(s)
- Hyunwoo Seo
- School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Sang-Youl Yoon
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sung Hyun Chang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong-Hyun Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeong-Hyun Hwang
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae In Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Ki-Su Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
37
|
Zhang C, Zhu H, Ren X, Gao B, Cheng B, Liu S, Sha B, Li Z, Zhang Z, Lv Y, Wang H, Guo H, Lu TJ, Xu F, Genin GM, Lin M. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat Commun 2021; 12:6229. [PMID: 34711824 PMCID: PMC8553821 DOI: 10.1038/s41467-021-26454-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell's mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed "mechanical memory" in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinru Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zhaoqing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- MOE Key Laboratory of Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
38
|
Gentile F. Time dependent adhesion of cells on nanorough surfaces. J Biomech 2021; 129:110814. [PMID: 34688065 DOI: 10.1016/j.jbiomech.2021.110814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Understanding and controlling the mechanisms of cell adhesion to nanomaterials is essential in tissue engineering, regenerative medicine, the development of experimental models for the study of neurodegenerative diseases. Nonetheless, despite the great many of studies that have examined how cells interact with nanoscale surfaces, little is known about the temporal dimension of the process of adhesion. In a previous work, Decuzzi and Ferrari, by examining how the energy of a cell changes while binding to a nanoscale surface, determined a criterion to decide whether nanoroughness can either enhance or retard cell adhesion. While accurate, however their model template disregards the time variable. Here, starting from the work of Decuzzi and Ferrari, we have developed a mathematical model based on chemotaxis that describes how cells adhere to a nanorough surface over time. Relaxing the originating constraint of a fixed density of ligand molecules expressed by the cell membrane, we show that the strength of adhesion depends on time and that, for certain values of the model parameters, a cell can arrive to establish a stable adhesion to a substrate even if the process of binding is initially energetically unfavourable. We show that, for a cell-membrane stiffness of 10kPa, an initial density of receptors of 500bonds/μm2, a specific and non-specific energy density of adhesion of 10-5J/m2 and 10-7J/m2, and roughness in the low nanometer range, cell adhesion forces can be completely activated from few seconds to some tens of minutes from the initial contact with the surface.
Collapse
Affiliation(s)
- F Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia", Catanzaro 88100, Italy.
| |
Collapse
|
39
|
Koirala R, Priest AV, Yen CF, Cheah JS, Pannekoek WJ, Gloerich M, Yamada S, Sivasankar S. Inside-out regulation of E-cadherin conformation and adhesion. Proc Natl Acad Sci U S A 2021; 118:e2104090118. [PMID: 34301871 PMCID: PMC8325368 DOI: 10.1073/pnas.2104090118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherin cell-cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell-cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II-dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.
Collapse
Affiliation(s)
- Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Chi-Fu Yen
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Joleen S Cheah
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616;
| |
Collapse
|
40
|
Characterization of the strain-rate-dependent mechanical response of single cell-cell junctions. Proc Natl Acad Sci U S A 2021; 118:2019347118. [PMID: 33531347 DOI: 10.1073/pnas.2019347118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture. In this study, we designed and fabricated a single-cell adhesion micro tensile tester (SCAµTT) using two-photon polymerization and performed displacement-controlled tensile tests of individual pairs of adherent epithelial cells with a mature cell-cell adhesion. Straining the cytoskeleton-cell adhesion complex system reveals a passive shear-thinning viscoelastic behavior and a rate-dependent active stress-relaxation mechanism mediated by cytoskeleton growth. Under low strain rates, stress relaxation mediated by the cytoskeleton can effectively relax junctional stress buildup and prevent adhesion bond rupture. Cadherin bond dissociation also exhibits rate-dependent strengthening, in which increased strain rate results in elevated stress levels at which cadherin bonds fail. This bond dissociation becomes a synchronized catastrophic event that leads to junction fracture at high strain rates. Even at high strain rates, a single cell-cell junction displays a remarkable tensile strength to sustain a strain as much as 200% before complete junction rupture. Collectively, the platform and the biophysical understandings in this study are expected to build a foundation for the mechanistic investigation of the adaptive viscoelasticity of the cell-cell junction.
Collapse
|
41
|
Troyanovsky RB, Sergeeva AP, Indra I, Chen CS, Kato R, Shapiro L, Honig B, Troyanovsky SM. Sorting of cadherin-catenin-associated proteins into individual clusters. Proc Natl Acad Sci U S A 2021; 118:e2105550118. [PMID: 34272290 PMCID: PMC8307379 DOI: 10.1073/pnas.2105550118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cytoplasmic tails of classical cadherins form a multiprotein cadherin-catenin complex (CCC) that constitutes the major structural unit of adherens junctions (AJs). The CCC in AJs forms junctional clusters, "E clusters," driven by cis and trans interactions in the cadherin ectodomain and stabilized by α-catenin-actin interactions. Additional proteins are known to bind to the cytoplasmic region of the CCC. Here, we analyze how these CCC-associated proteins (CAPs) integrate into cadherin clusters and how they affect the clustering process. Using a cross-linking approach coupled with mass spectrometry, we found that the majority of CAPs, including the force-sensing protein vinculin, interact with CCCs outside of AJs. Accordingly, structural modeling shows that there is not enough space for CAPs the size of vinculin to integrate into E clusters. Using two CAPs, scribble and erbin, as examples, we provide evidence that these proteins form separate clusters, which we term "C clusters." As proof of principle, we show, by using cadherin ectodomain monoclonal antibodies (mAbs), that mAb-bound E-cadherin forms separate clusters that undergo trans interactions. Taken together, our data suggest that, in addition to its role in cell-cell adhesion, CAP-driven CCC clustering serves to organize cytoplasmic proteins into distinct domains that may synchronize signaling networks of neighboring cells within tissues.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Chi-Shuo Chen
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Rei Kato
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032;
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
- Department of Medicine, Columbia University, New York, NY 10032
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
42
|
Li M, Xi N, Liu L. Hierarchical micro-/nanotopography for tuning structures and mechanics of cells probed by atomic force microscopy. IEEE Trans Nanobioscience 2021; 20:543-553. [PMID: 34242170 DOI: 10.1109/tnb.2021.3096056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracellular matrix plays an important role in regulating the behaviors of cells, and utilizing matrix physics to control cell fate has been a promising way for cell and tissue engineering. However, the nanoscale situations taking place during the topography-regulated cell-matrix interactions are still not fully understood to the best of our knowledge. The invention of atomic force microscopy (AFM) provides a powerful tool to characterize the structures and properties of living biological systems under aqueous conditions with unprecedented spatial resolution. In this work, with the use of AFM, structural and mechanical dynamics of individual cells grown on micro-/nanotopographical surface were revealed. First, the microgroove patterned silicon substrates were fabricated by photolithography. Next, nanogranular topography was formed on microgroove substrates by cell culture medium protein deposition, which was visualized by in situ AFM imaging. The micro-/nanotopographical substrates were then used to grow two types of cells (3T3 cell or MCF-7 cell). AFM morphological imaging and mechanical measurements were applied to characterize the changes of cells grown on the micro-/nanotopographical substrates. The experimental results showed the significant alterations in cellular structures and cellular mechanics caused by micro-/nanotopography. The study provides a novel way based on AFM to unveil the native nanostructures and mechanical properties of cell-matrix interfaces with high spatial resolution in liquids, which will have potential impacts on the studies of topography-tuned cell behaviors.
Collapse
|
43
|
Joy-Immediato M, Ramirez MJ, Cerda M, Toyama Y, Ravasio A, Kanchanawong P, Bertocchi C. Junctional ER Organization Affects Mechanotransduction at Cadherin-Mediated Adhesions. Front Cell Dev Biol 2021; 9:669086. [PMID: 34222239 PMCID: PMC8247578 DOI: 10.3389/fcell.2021.669086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cadherin-mediated adhesions (also known as adherens junctions) are adhesive complexes that connect neighboring cells in a tissue. While the role of the actin cytoskeleton in withstanding tension at these sites of contact is well documented, little is known about the involvement of microtubules and the associated endoplasmic reticulum (ER) network in cadherin mechanotransduction. Therefore, we investigated how the organization of ER extensions in close proximity of cadherin-mediated adhesions can affect such complexes, and vice versa. Here, we show that the extension of the ER to cadherin-mediated adhesions is tension dependent and appears to be cadherin-type specific. Furthermore, the different structural organization of the ER/microtubule network seems to affect the localization of ER-bound PTP1B at cadherin-mediated adhesions. This phosphatase is involved in the modulation of vinculin, a molecular clutch which enables differential engagement of the cadherin-catenin layer with the actomyosin cytoskeleton in response to tension. This suggests a link between structural organization of the ER/microtubule network around cadherin-specific adhesions, to control the mechanotransduction of adherens junctions by modulation of vinculin conformational state.
Collapse
Affiliation(s)
- Michelle Joy-Immediato
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel J Ramirez
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Cerda
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
Abstract
In this review, we consider how the association between adherens junctions and the actomyosin cytoskeleton influences collective cell movement. We focus on recent findings which reveal different ways for adherens junctions to promote the locomotion of cells within tissues: through lamellipodia and junctional contraction. These contributions reflect how classic cadherins establish sites of cortical actin assembly and how adherens junctions couple to contractile actomyosin, respectively. The diverse interplay between cadherin adhesion and the cytoskeleton thus provides different ways for adherens junctions to support epithelial locomotion.
Collapse
Affiliation(s)
- Shafali Gupta
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia 4072
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia 4072
| |
Collapse
|
45
|
Wang M, Niu Z, Qin H, Ruan B, Zheng Y, Ning X, Gu S, Gao L, Chen Z, Wang X, Huang H, Ma L, Sun Q. Mechanical Ring Interfaces between Adherens Junction and Contractile Actomyosin to Coordinate Entotic Cell-in-Cell Formation. Cell Rep 2021; 32:108071. [PMID: 32846129 DOI: 10.1016/j.celrep.2020.108071] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/21/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Entosis is a cell-in-cell (CIC)-mediated death program. Contractile actomyosin (CA) and the adherens junction (AJ) are two core elements essential for entotic CIC formation, but the molecular structures interfacing them remain poorly understood. Here, we report the characterization of a ring-like structure interfacing between the peripheries of invading and engulfing cells. The ring-like structure is a multi-molecular complex consisting of adhesive and cytoskeletal proteins, in which the mechanical sensor vinculin is highly enriched. The vinculin-enriched structure senses mechanical force imposed on cells, as indicated by fluorescence resonance energy transfer (FRET) analysis, and is thus termed the mechanical ring (MR). The MR actively interacts with CA and the AJ to help establish and maintain polarized actomyosin that drives cell internalization. Vinculin depletion leads to compromised MR formation, CA depolarization, and subsequent CIC failure. In summary, we suggest that the vinculin-enriched MR, in addition to CA and AJ, is another core element essential for entosis.
Collapse
Affiliation(s)
- Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China; Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Hongquan Qin
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China; Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China
| | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Xiangkai Ning
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Songzhi Gu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric, the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Li Ma
- Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China.
| |
Collapse
|
46
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
47
|
Gorji A, Toh PJY, Ong HT, Toh YC, Toyama Y, Kanchanawong P. Enhancement of Endothelialization by Topographical Features Is Mediated by PTP1B-Dependent Endothelial Adherens Junctions Remodeling. ACS Biomater Sci Eng 2021; 7:2661-2675. [PMID: 33942605 DOI: 10.1021/acsbiomaterials.1c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial Cells (ECs) form cohesive cellular lining of the vasculature and play essential roles in both developmental processes and pathological conditions. Collective migration and proliferation of endothelial cells (ECs) are key processes underlying endothelialization of vessels as well as vascular graft, but the complex interplay of mechanical and biochemical signals regulating these processes are still not fully elucidated. While surface topography and biochemical modifications have been used to enhance endothelialization in vitro, thus far such single-modality modifications have met with limited success. As combination therapy that utilizes multiple modalities has shown improvement in addressing various intractable and complex biomedical conditions, here, we explore a combined strategy that utilizes topographical features in conjunction with pharmacological perturbations. We characterized EC behaviors in response to micrometer-scale grating topography in concert with pharmacological perturbations of endothelial adherens junctions (EAJ) regulators. We found that the protein tyrosine phosphatase, PTP1B, serves as a potent regulator of EAJ stability, with PTP1B inhibition synergizing with grating topographies to modulate EAJ rearrangement, thereby augmenting global EC monolayer sheet orientation, proliferation, connectivity, and collective cell migration. Our data delineates the crosstalk between cell-ECM topography sensing and cell-cell junction integrity maintenance and suggests that the combined use of grating topography and PTP1B inhibitor could be a promising strategy for promoting collective EC migration and proliferation.
Collapse
Affiliation(s)
- Azita Gorji
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Institut Curie, Laboratoire Physico Chimie Curie, Institut Pierre-Gilles de Gennes, CNRS UMR168, Paris 75005, France
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore.,Institute for Health Innovation and Technology, National University of Singapore, 117599 Republic of Singapore.,The N.1 Institute for Health, National University of Singapore, 117456, Republic of Singapore.,NUS Tissue Engineering Programme, National University of Singapore, 117456, Republic of Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore
| |
Collapse
|
48
|
Li M, Xi N, Wang YC, Liu LQ. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Acta Pharmacol Sin 2021; 42:323-339. [PMID: 32807839 PMCID: PMC8027022 DOI: 10.1038/s41401-020-0494-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mechanics are intrinsic properties which appears throughout the formation, development, and aging processes of biological systems. Mechanics have been shown to play important roles in regulating the development and metastasis of tumors, and understanding tumor mechanics has emerged as a promising way to reveal the underlying mechanisms guiding tumor behaviors. In particular, tumors are highly complex diseases associated with multifaceted factors, including alterations in cancerous cells, tissues, and organs as well as microenvironmental cues, indicating that investigating tumor mechanics on multiple levels is significantly helpful for comprehensively understanding the effects of mechanics on tumor progression. Recently, diverse techniques have been developed for probing the mechanics of tumors, among which atomic force microscopy (AFM) has appeared as an excellent platform enabling simultaneously characterizing the structures and mechanical properties of living biological systems ranging from individual molecules and cells to tissue samples with unprecedented spatiotemporal resolution, offering novel possibilities for understanding tumor physics and contributing much to the studies of cancer. In this review, we survey the recent progress that has been achieved with the use of AFM for revealing micro/nanoscale mechanics in tumor development and metastasis. Challenges and future progress are also discussed.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, China
| | - Yue-Chao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lian-Qing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
50
|
Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures. Int J Mol Sci 2021; 22:ijms22041821. [PMID: 33673054 PMCID: PMC7918886 DOI: 10.3390/ijms22041821] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
There is ample evidence that, instead of a binary switch, epithelial-mesenchymal transition (EMT) in cancer results in a flexible array of phenotypes, each one uniquely suited to a stage in the invasion-metastasis cascade. The phenotypic plasticity of epithelium-derived cancer cells gives them an edge in surviving and thriving in alien environments. This review describes in detail the actin cytoskeleton and E-cadherin-based adherens junction rearrangements that cancer cells need to implement in order to achieve the advantageous epithelial/mesenchymal phenotype and plasticity of migratory phenotypes that can arise from partial EMT.
Collapse
|