1
|
Mosna MJ, Garde FJ, Stinson MG, Pastore CD, Carcagno AL. The chorioallantoic membrane (CAM) model: From its origins in developmental biology to its role in cancer research. Dev Biol 2025; 519:79-95. [PMID: 39694172 DOI: 10.1016/j.ydbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/24/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Over the past century, the chick embryo model, historically employed for research in developmental biology, has become a valuable tool for cancer research. The characteristics of the chick chorioallantoic membrane (CAM) make it a convenient model for the study of cancer, leading to the establishment of the CAM assay as an alternative to traditional in vivo cancer models. In this review we will explore the characteristics of the CAM that make it suitable for cancer research, as well as its consolidation as a versatile platform in this field. We will put particular emphasis on describing the key features that make this model an important asset for studying the hallmarks of cancer and for testing a wide variety of therapeutic strategies for its treatment, and which make it a suitable host for patient-derived xenografts (PDX). Additionally, we will examine the wide spectrum of methodological approaches available to study these subjects, highlighting some innovative cases. Finally, we will discuss the advantages and disadvantages of the chick CAM as a model for cancer research and how we can improve this model to its full potential.
Collapse
Affiliation(s)
- María Jimena Mosna
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Federico J Garde
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Marcelo G Stinson
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Candela D Pastore
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Abel L Carcagno
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
2
|
Sase M, Sato T, Sato H, Miya F, Zhang S, Haeno H, Kajita M, Noguchi T, Mori Y, Ohteki T. Comparative analysis of tongue cancer organoids among patients identifies the heritable nature of minimal residual disease. Dev Cell 2025; 60:396-413.e6. [PMID: 39504967 DOI: 10.1016/j.devcel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/13/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
The relapse of tongue cancer (TC) after chemotherapy is caused by minimal residual disease (MRD), which is a few remaining cancer cells after chemotherapy. To understand the mechanism of MRD in TC, we created a library of TC organoids (TCOs) from 28 untreated TC patients at diverse ages and cancer stages. These TCOs reproduced the primary TC tissues both in vitro and in a xenograft model, and several TCO lines survived after cisplatin treatment (chemo-resistant TCOs). Of note, the chemo-resistant TCOs showed "heritable" embryonic diapause-like features before treatment and activation of the autophagy and cholesterol biosynthetic pathways. Importantly, inhibiting these pathways with specific inhibitors converted the chemo-resistant TCOs into chemo-sensitive TCOs. Conversely, autophagy activation with mTOR inhibitors conferred chemo-resistance on the chemo-sensitive TCOs. This unique model provides insights into the mechanism of MRD formation in TCs, leading to effective therapeutic approaches to reduce the recurrence of TC.
Collapse
Affiliation(s)
- Miwako Sase
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taku Sato
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School Graduate School of Medicine, Tokyo 113-8603, Japan
| | - Hajime Sato
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shicheng Zhang
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Hiroshi Haeno
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Mihoko Kajita
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan
| | - Tadahide Noguchi
- Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan.
| |
Collapse
|
3
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025:10.1038/s41568-024-00781-9. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Kabak EC, Foo SL, Rafaeva M, Martin I, Bentires-Alj M. Microenvironmental Regulation of Dormancy in Breast Cancer Metastasis: "An Ally that Changes Allegiances". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:373-395. [PMID: 39821034 DOI: 10.1007/978-3-031-70875-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Breast cancer remission after treatment is sometimes long-lasting, but in about 30% of cases, there is a relapse after a so-called dormant state. Cellular cancer dormancy, the propensity of disseminated tumor cells (DTCs) to remain in a nonproliferative state for an extended period, presents an opportunity for therapeutic intervention that may prevent reawakening and the lethal consequences of metastatic outgrowth. Therefore, identification of dormant DTCs and detailed characterization of cancer cell-intrinsic and niche-specific [i.e., tumor microenvironment (TME) mediated] mechanisms influencing dormancy in different metastatic organs are of great importance in breast cancer. Several microenvironmental drivers of DTC dormancy in metastatic organs, such as the lung, bone, liver, and brain, have been identified using in vivo models and/or in vitro three-dimensional culture systems. TME induction and persistence of dormancy in these organs are mainly mediated by signals from immune cells, stromal cells, and extracellular matrix components of the TME. Alterations of the TME have been shown to reawaken dormant DTCs. Efforts to capitalize on these findings often face translational challenges due to limited availability of representative patient samples and difficulty in designing dormancy-targeting clinical trials. In this chapter, we discuss current approaches to identify dormant DTCs and provide insights into cell-extrinsic (i.e., TME) mechanisms driving breast cancer cell dormancy in distant organs.
Collapse
Affiliation(s)
- Evrim Ceren Kabak
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sok Lin Foo
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Maria Rafaeva
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Menegakis A, Vennin C, Ient J, Groot AJ, Krenning L, Klompmaker R, Friskes A, Ilic M, Yaromina A, Harkes R, van den Broek B, Jakob Sonke J, De Jong M, Piepers J, van Rheenen J, Vooijs MA, Medema RH. A novel lineage-tracing tool reveals that hypoxic tumor cells drive tumor relapse after radiotherapy. Radiother Oncol 2025; 202:110592. [PMID: 39427933 PMCID: PMC11718160 DOI: 10.1016/j.radonc.2024.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Tumor hypoxia imposes a main obstacle to the efficacy of anti-cancer therapy. Understanding the cellular dynamics of individual hypoxic cells before, during and post-treatment has been hampered by the technical inability to identify and trace these cells over time. METHODS AND MATERIALS Here, we present a novel lineage-tracing reporter for hypoxic cells based on the conditional expression of a HIF1a-CreERT2-UnaG biosensor that can visualize hypoxic cells in a time-dependent manner and trace the fate of hypoxic cells over time. We combine this system with multiphoton microscopy, flow cytometry, and immunofluorescence to characterize the role of hypoxic cells in tumor relapse after irradiation in H1299 tumor spheroids and in vivo xenografts. RESULTS We validate the reporter in monolayer cultures and we show that tagged cells colocalize in spheroids and human tumor xenografts with the hypoxic marker pimonidazole. We found that irradiation of H1299-HIFcreUnaG spheroids leads to preferential outgrowth of cells from the hypoxic core. Similarly, in xenografts tumors, although initially UnaG-positive-cells coincide with pimonidazole-positive tumor areas and they are merely quiescent, upon irradiation UnaG-positive cells enrich in regrowing tumors and are mainly proliferative. CONCLUSIONS Collectively, our data provide clear evidence that the hypoxic cells drive tumor relapse after irradiation.
Collapse
Affiliation(s)
- Apostolos Menegakis
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland; Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands; Oncode Institute, Division of Tumor Biology and Tumor Immunology, the Netherlands.
| | - Claire Vennin
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jonathan Ient
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Arjan J Groot
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Lenno Krenning
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Rob Klompmaker
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Anoek Friskes
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Mila Ilic
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Rolf Harkes
- Bioimaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Bram van den Broek
- Bioimaging Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jan Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Monique De Jong
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Jolanda Piepers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, the Netherlands.
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherland; Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands(2).
| |
Collapse
|
6
|
Puente-Cobacho B, Esteo C, Altea-Manzano P, Garcia-Perez JL, Quiles JL, Sanchez-Rovira P, Martín-Salvago MD, Molina-Jiménez L, Luque RJ, Fendt SM, Vera-Ramirez L. De novo lipogenesis protects dormant breast cancer cells from ferroptosis and promotes metastasis. Redox Biol 2024; 80:103480. [PMID: 39787900 PMCID: PMC11764609 DOI: 10.1016/j.redox.2024.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Dormant disseminated tumor cells (DTCs) remain viable for years to decades before establishing a clinically overt metastatic lesion. DTCs are known to be highly resilient and able to overcome the multiple biological hurdles imposed along the metastatic cascade. However, the specific metabolic adaptations of dormant DTCs remain to be elucidated. Here, we reveal that dormant DTCs upregulate de novo lipogenesis and favor the activation and incorporation of monounsaturated fatty acids (MUFAs) to their cellular membranes through the activation of acyl-coenzyme A synthetase long-chain family member 3 (ACSL3). Pharmacologic inhibition of de novo lipogenesis or genetic knockdown of ACSL3 results in lipid peroxidation and non-apoptotic cell death through ferroptosis. Clinically, ACSL3 was found to be overexpressed in quiescent DTCs in the lymph nodes of breast cancer patients and to significantly correlate with shorter disease-free and overall survival. Our work provides new insights into the molecular mechanisms enabling the survival of dormant DTCs and supports the use of de novo lipogenesis inhibitors to prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Cintia Esteo
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | | | | | | | - Rafael J Luque
- Pathological Anatomy Unit, University Hospital of Jaén, Jaén, Spain
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
7
|
Chen W, Mao Y, Zhan Y, Li W, Wu J, Mao X, Xu B, Shu F. Exosome-delivered NR2F1-AS1 and NR2F1 drive phenotypic transition from dormancy to proliferation in treatment-resistant prostate cancer via stabilizing hormonal receptors. J Nanobiotechnology 2024; 22:761. [PMID: 39695778 DOI: 10.1186/s12951-024-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer cells acquire the ability to reprogram their phenotype in response to targeted therapies, yet the transition from dormancy to proliferation in drug-resistant cancers remains poorly understood. In prostate cancer, we utilized high-plasticity mouse models and enzalutamide-resistant (ENZ-R) cellular models to elucidate NR2F1 as a key factor in lineage transition and ENZ resistance. Depletion of NR2F1 drives ENZ-R cells into a relative dormancy state, characterized by reduced proliferation and heightened drug resistance, while NR2F1 overexpression yields contrasting outcomes. Transcriptional sequencing analysis of NR2F1-silenced prostate cancer cells and tissues from the Cancer Genome Atlas-prostate cancer and SU2C cohorts indicated exosomes as the most enriched cell component, with pathways implicated in steroid hormone biosynthesis and drug metabolism. Moreover, NR2F1-AS1 forms a complex with SRSF1 to upregulate NR2F1 expression, facilitating its binding with ESR1 to sustain hormonal receptor expression and enhance proliferation in ENZ-R cells. Furthermore, HnRNPA2B1 interacts with NR2F1 and NR2F1-AS1, assisting their packaging into exosomes, wherein exosomal NR2F1 and NR2F1-AS1 promote the proliferation of dormant ENZ-R cells. Our works offer novel insights into the reawaking of dormant drug-resistant cancer cells governed by NR2F1 upregulation triggered by exosome-derived NR2F1-AS1 and NR2F1, suggesting therapeutic potential for phenotype reversal.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yiyou Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - YiYuan Zhan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Liu W, Kovacs AH, Hou J. Cancer Cells in Sleep Mode: Wake Them to Eliminate or Keep Them Asleep Forever? Cells 2024; 13:2022. [PMID: 39682769 DOI: 10.3390/cells13232022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer cell dormancy is a critical phase in cancer development, wherein cancer cells exist in a latent state marked by temporary but reversible growth arrest. This dormancy phase contributes to anticancer drug resistance, cancer recurrence, and metastasis. Treatment strategies aimed at cancer dormancy can be categorized into two contradictory approaches: inducing cancer cells into a dormant state or eliminating dormant cells. While the former seeks to establish permanent dormancy, the latter aims at eradicating this small population of dormant cells. In this review, we explore the current advancements in therapeutic methods targeting cancer cell dormancy and discuss future strategies. The concept of cancer cell dormancy has emerged as a promising avenue for novel cancer treatments, holding the potential for breakthroughs in the future.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Antal H Kovacs
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
9
|
Dalla E, Papanicolaou M, Park MD, Barth N, Hou R, Segura-Villalobos D, Valencia Salazar L, Sun D, Forrest ARR, Casanova-Acebes M, Entenberg D, Merad M, Aguirre-Ghiso JA. Lung-resident alveolar macrophages regulate the timing of breast cancer metastasis. Cell 2024; 187:6631-6648.e20. [PMID: 39378878 PMCID: PMC11568918 DOI: 10.1016/j.cell.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Breast disseminated cancer cells (DCCs) can remain dormant in the lungs for extended periods, but the mechanisms limiting their expansion are not well understood. Research indicates that tissue-resident alveolar macrophages suppress breast cancer metastasis in lung alveoli by inducing dormancy. Through ligand-receptor mapping and intravital imaging, it was found that alveolar macrophages express transforming growth factor (TGF)-β2. This expression, along with persistent macrophage-cancer cell interactions via the TGF-βRIII receptor, maintains cancer cells in a dormant state. Depleting alveolar macrophages or losing the TGF-β2 receptor in cancer cells triggers metastatic awakening. Aggressive breast cancer cells are either suppressed by alveolar macrophages or evade this suppression by avoiding interaction and downregulating the TGF-β2 receptor. Restoring TGF-βRIII in aggressive cells reinstates TGF-β2-mediated macrophage growth suppression. Thus, alveolar macrophages act as a metastasis immune barrier, and downregulation of TGF-β2 signaling allows cancer cells to overcome macrophage-mediated growth suppression.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Papanicolaou
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Matthew D Park
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Barth
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Deisy Segura-Villalobos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Luis Valencia Salazar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Dan Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Maria Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - David Entenberg
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
10
|
Sui L, Wang J, Jiang WG, Song X, Ye L. Molecular mechanism of bone metastasis in breast cancer. Front Oncol 2024; 14:1401113. [PMID: 39605887 PMCID: PMC11599183 DOI: 10.3389/fonc.2024.1401113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Bone metastasis is a debilitating complication that frequently occurs in the advanced stages of breast cancer. However, the underlying molecular and cellular mechanisms of the bone metastasis remain unclear. Here, we elucidate how bone metastasis arises from tumor cells that detach from the primary lesions and infiltrate into the surrounding tissue, as well as how these cells disseminate to distant sites. Specifically, we elaborate how tumor cells preferentially grow within the bone micro-environment and interact with bone cells to facilitate bone destruction, characterized as osteoclastic bone metastasis, as well as new bone matrix deposition, characterized as osteoblastic bone metastasis. We also updated the current understanding of the molecular mechanisms underlying bone metastasis and reasons for relapse in breast cancer, and also opportunities of developing novel diagnostic approaches and treatment.
Collapse
Affiliation(s)
- Laijian Sui
- Department of Orthopedics, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jing Wang
- Department of Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Xicheng Song
- Department of Otorhinolaryngol and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
11
|
Kim YS, Kimball SR, Piskounova E, Begley TJ, Hempel N. Stress response regulation of mRNA translation: Implications for antioxidant enzyme expression in cancer. Proc Natl Acad Sci U S A 2024; 121:e2317846121. [PMID: 39495917 PMCID: PMC11572934 DOI: 10.1073/pnas.2317846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
From tumorigenesis to advanced metastatic stages, tumor cells encounter stress, ranging from limited nutrient and oxygen supply within the tumor microenvironment to extrinsic and intrinsic oxidative stress. Thus, tumor cells seize regulatory pathways to rapidly adapt to distinct physiologic conditions to promote cellular survival, including manipulation of mRNA translation. While it is now well established that metastatic tumor cells must up-regulate their antioxidant capacity to effectively spread and that regulation of antioxidant enzymes is imperative to disease progression, relatively few studies have assessed how translation and the hijacking of RNA systems contribute to antioxidant responses of tumors. Here, we review the major stress signaling pathways involved in translational regulation and discuss how these are affected by oxidative stress to promote prosurvival changes that manipulate antioxidant enzyme expression. We describe how tumors elicit these adaptive responses and detail how stress-induced translation can be regulated by kinases, RNA-binding proteins, RNA species, and RNA modification systems. We also highlight opportunities for further studies focused on the role of mRNA translation and RNA systems in the regulation of antioxidant enzyme expression, which may be of particular importance in the context of metastatic progression and therapeutic resistance.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Elena Piskounova
- Department of Dermatology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Thomas J. Begley
- The RNA Institute and Department of Biological Sciences, University at Albany, Albany, NY12222
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| |
Collapse
|
12
|
Drapela S, Garcia BM, Gomes AP, Correia AL. Metabolic landscape of disseminated cancer dormancy. Trends Cancer 2024:S2405-8033(24)00224-3. [PMID: 39510896 DOI: 10.1016/j.trecan.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Cancer dormancy is a phenomenon defined by the entry of cancer cells into a reversible quiescent, nonproliferative state, and represents an essential part of the metastatic cascade responsible for cancer recurrence and mortality. Emerging evidence suggests that metabolic reprogramming plays a pivotal role in enabling entry, maintenance, and exit from dormancy in the face of the different environments of the metastatic cascade. Here, we review the current literature to understand the dynamics of metabolism during dormancy, highlighting its fine-tuning by the host micro- and macroenvironment, and put forward the importance of identifying metabolic vulnerabilities of the dormant state as therapeutic targets to eradicate recurrent disease.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bruna M Garcia
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | | |
Collapse
|
13
|
Rakhymzhan A, Fiedler AF, Günther R, Domingue SR, Wooldridge L, Leben R, Cao Y, Bias A, Roodselaar J, Köhler R, Ulbricht C, Heidelin J, Andresen V, Beckers I, Haibel A, Duda G, Hauser AE, Niesner RA. Optimized intravital three-photon imaging of intact mouse tibia links plasma cell motility to functional states. iScience 2024; 27:110985. [PMID: 39391739 PMCID: PMC11466647 DOI: 10.1016/j.isci.2024.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Intravital deep bone marrow imaging is crucial to studying cellular dynamics and functions but remains challenging, and minimally invasive methods are needed. We employed a high pulse-energy 1650 nm laser to perform three-photon microscopy in vivo, reaching ≈400 μm depth in intact mouse tibia. Repetition rates of 3 and 4 MHz allowed us to analyze motility patterns of fast and rare cells within unperturbed marrow and to identify a bi-modal migratory behavior for plasma cells. Third harmonic generation (THG) was identified as a label-free marker for cellular organelles, particularly endoplasmic reticulum, indicating protein synthesis capacity. We found a strong THG signal, suggesting high antibody secretion, in one-third of plasma cells while the rest showed low signals. We discovered an inverse relationship between migratory behavior and THG signal, linking motility to functional plasma cell states. This method may enhance our understanding of marrow microenvironment effects on cellular functions.
Collapse
Affiliation(s)
- Asylkhan Rakhymzhan
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Alexander F. Fiedler
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- Freie Universität Berlin, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Robert Günther
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
| | | | | | - Ruth Leben
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- Freie Universität Berlin, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Yu Cao
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Anne Bias
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- Berlin University of Applied Sciences and Technology, Berlin, Germany
| | - Jay Roodselaar
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Ralf Köhler
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
| | - Carolin Ulbricht
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | | | | | - Ingeborg Beckers
- Berlin University of Applied Sciences and Technology, Berlin, Germany
| | - Astrid Haibel
- Berlin University of Applied Sciences and Technology, Berlin, Germany
| | - Georg Duda
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Julius Wolff Institute, Berlin, Germany
| | - Anja E. Hauser
- German Rheumatism Research Center – a Leibniz Institute, Immune Dynamics, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Raluca A. Niesner
- German Rheumatism Research Center – a Leibniz Institute, Biophysical Analytics, Berlin, Germany
- Freie Universität Berlin, Dynamic and Functional in vivo Imaging, Berlin, Germany
| |
Collapse
|
14
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, Bernards R, Garnett MJ, Hangauer M, Leucci E, Marine JC, O'Brien CA, Oren Y, Patton EE, Robert C, Rosenberg SM, Shen S, Bardelli A. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 2024; 24:694-717. [PMID: 39223250 DOI: 10.1038/s41568-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| | - Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Haoning Peng
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Sumaiyah K Rehman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Tzen S Toh
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Matthew Hangauer
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yaara Oren
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Elizabeth Patton
- MRC Human Genetics Unit, and CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Caroline Robert
- Oncology Department, Dermatology Unit, Villejuif, France
- Oncology Department and INSERM U981, Villejuif, France
- Paris Saclay University, Villejuif, France
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shensi Shen
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
15
|
Balaji N, Kukal S, Bhat A, Pradhan N, Minocha S, Kumar S. A quartet of cancer stem cell niches in hepatocellular carcinoma. Cytokine Growth Factor Rev 2024; 79:39-51. [PMID: 39217065 DOI: 10.1016/j.cytogfr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular Carcinoma (HCC), the most prevalent type of primary liver cancer, is known for its aggressive behavior and poor prognosis. The Cancer Stem Cell theory, which postulates the presence of a small population of self-renewing cells called Cancer Stem Cells (CSCs), provides insights into various clinical and molecular features of HCC such as tumor heterogeneity, metabolic adaptability, therapy resistance, and recurrence. These CSCs are nurtured in the tumor microenvironment (TME), where a mix of internal and external factors creates a tumor-supportive niche that is continuously evolving both spatially and temporally, thus enhancing the tumor's complexity. This review details the origins of hepatic CSCs (HCSCs) and the factors influencing their stem-like qualities. It highlights the reciprocal crosstalk between HCSCs and the TME (hypoxic, vascular, invasive, and immune niches), exploring the signaling pathways involved and how these interactions control the malignant traits of CSCs. Additionally, it discusses potential therapeutic approaches targeting the HCSC niche and their possible uses in clinical practice.
Collapse
Affiliation(s)
- Neha Balaji
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Samiksha Kukal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Anjali Bhat
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Nikita Pradhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| | - Saran Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
16
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. Collagen Mineralization Decreases NK Cell-Mediated Cytotoxicity of Breast Cancer Cells via Increased Glycocalyx Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311505. [PMID: 38279892 PMCID: PMC11471288 DOI: 10.1002/adma.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry are utilized to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. These results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increases their glycocalyx thickness while enhancing resistance to attack by natural killer (NK) cells. These changes are functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, these results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
Zheng C, Allen KO, Liu T, Solodin NM, Meyer MB, Salem K, Tsourkas PK, McIlwain SJ, Vera JM, Cromwell ER, Ozers MS, Fowler AM, Alarid ET. Elevated GRHL2 Imparts Plasticity in ER-Positive Breast Cancer Cells. Cancers (Basel) 2024; 16:2906. [PMID: 39199676 PMCID: PMC11353109 DOI: 10.3390/cancers16162906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is characterized by late recurrences following initial treatment. The epithelial cell fate transcription factor Grainyhead-like protein 2 (GRHL2) is overexpressed in ER-positive breast cancers and is linked to poorer prognosis as compared to ER-negative breast cancers. To understand how GRHL2 contributes to progression, GRHL2 was overexpressed in ER-positive cells. We demonstrated that elevated GRHL2 imparts plasticity with stem cell- and dormancy-associated traits. RNA sequencing and immunocytochemistry revealed that high GRHL2 not only strengthens the epithelial identity but supports a hybrid epithelial to mesenchymal transition (EMT). Proliferation and tumor studies exhibited a decrease in growth and an upregulation of dormancy markers, such as NR2F1 and CDKN1B. Mammosphere assays and flow cytometry revealed enrichment of stem cell markers CD44 and ALDH1, and increased self-renewal capacity. Cistrome analyses revealed a change in transcription factor motifs near GRHL2 sites from developmental factors to those associated with disease progression. Together, these data support the idea that the plasticity and properties induced by elevated GRHL2 may provide a selective advantage to explain the association between GRHL2 and breast cancer progression.
Collapse
Affiliation(s)
- Christy Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kaelyn O. Allen
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tianrui Liu
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalia M. Solodin
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Phillipos K. Tsourkas
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica M. Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika R. Cromwell
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Szatkowski Ozers
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Proteovista LLC, Madison, WI 53719, USA
| | - Amy M. Fowler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T. Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Abstract
Metastasis is the ultimate and often lethal stage of cancer. Metastasis occurs in three phases that may vary across individuals: First, dissemination from the primary tumor. Second, tumor dormancy at the metastatic site where micrometastatic cancer cells remain quiescent or, in dynamic cycles of proliferation and elimination, remaining clinically undetectable. Finally, cancer cells are able to overcome microenvironmental constraints for outgrowth, or the formation of clinically detectable macrometastases that colonize distant organs and are largely incurable. A variety of approaches have been used to model metastasis to elucidate molecular mechanisms and identify putative therapeutic targets. In particular, metastatic dormancy has been challenging to model in vivo due to the sparse numbers of cancer cells in micrometastasis nodules and the long latency times required for tumor outgrowth. Here, we review state-of-the art genetically engineered mouse, syngeneic, and patient-derived xenograft approaches for modeling metastasis and dormancy. We describe the advantages and limitations of various metastasis models, novel findings enabled by such approaches, and highlight opportunities for future improvement.
Collapse
Affiliation(s)
- Ahmed Mahmoud
- Program in Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
19
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
20
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
21
|
Senchukova MA. Colorectal cancer and dormant metastases: Put to sleep or destroy? World J Gastrointest Oncol 2024; 16:2304-2317. [PMID: 38994146 PMCID: PMC11236221 DOI: 10.4251/wjgo.v16.i6.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
After reading the review by An et al "Biological factors driving colorectal cancer metastasis", which covers the problem of the metastasis of colorectal cancer (CRC), I had a desire to discuss with readers one of the exciting problems associated with dormant metastases. Most deaths from CRCs are caused by metastases, which can be detected both at diagnosis of the primary tumor and several years or even decades after treatment. This is because tumor cells that enter the bloodstream can be destroyed by the immune system, cause metastatic growth, or remain dormant for a long time. Dormant tumor cells may not manifest themselves throughout a person's life or, after some time and under appropriate conditions, may give rise to the growth of metastases. In this editorial, we will discuss the most important features of dormant metastases and the mechanisms of premetastatic niche formation, as well as factors that contribute to the activation of dormant metastases in CRCs. We will pay special attention to the possible mechanisms involved in the formation of circulating tumor cell complexes and the choice of therapeutic strategies that promote the dormancy or destruction of tumor cells in CRCs.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
22
|
Glotzbach A, Rohlf K, Gonscharow A, Lüke S, Demirci Ö, Begher-Tibbe B, Overbeck N, Reinders J, Cadenas C, Hengstler JG, Edlund K, Marchan R. EDI3 knockdown in ER-HER2+ breast cancer cells reduces tumor burden and improves survival in two mouse models of experimental metastasis. Breast Cancer Res 2024; 26:87. [PMID: 38816770 PMCID: PMC11138102 DOI: 10.1186/s13058-024-01849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Despite progress understanding the mechanisms underlying tumor spread, metastasis remains a clinical challenge. We identified the choline-producing glycerophosphodiesterase, EDI3 and reported its association with metastasis-free survival in endometrial cancer. We also observed that silencing EDI3 slowed cell migration and other cancer-relevant phenotypes in vitro. Recent work demonstrated high EDI3 expression in ER-HER2+ breast cancer compared to the other molecular subtypes. Silencing EDI3 in ER-HER2+ cells significantly reduced cell survival in vitro and decreased tumor growth in vivo. However, a role for EDI3 in tumor metastasis in this breast cancer subtype was not explored. Therefore, in the present work we investigate whether silencing EDI3 in ER-HER2+ breast cancer cell lines alters phenotypes linked to metastasis in vitro, and metastasis formation in vivo using mouse models of experimental metastasis. METHODS To inducibly silence EDI3, luciferase-expressing HCC1954 cells were transduced with lentiviral particles containing shRNA oligos targeting EDI3 under the control of doxycycline. The effect on cell migration, adhesion, colony formation and anoikis was determined in vitro, and significant findings were confirmed in a second ER-HER2+ cell line, SUM190PT. Doxycycline-induced HCC1954-luc shEDI3 cells were injected into the tail vein or peritoneum of immunodeficient mice to generate lung and peritoneal metastases, respectively and monitored using non-invasive bioluminescence imaging. Metabolite levels in cells and tumor tissue were analyzed using targeted mass spectrometry and MALDI mass spectrometry imaging (MALDI-MSI), respectively. RESULTS Inducibly silencing EDI3 reduced cell adhesion and colony formation, as well as increased susceptibility to anoikis in HCC1954-luc cells, which was confirmed in SUM190PT cells. No influence on cell migration was observed. Reduced luminescence was seen in lungs and peritoneum of mice injected with cells expressing less EDI3 after tail vein and intraperitoneal injection, respectively, indicative of reduced metastasis. Importantly, mice injected with EDI3-silenced cells survived longer. Closer analysis of the peritoneal organs revealed that silencing EDI3 had no effect on metastatic organotropism but instead reduced metastatic burden. Finally, metabolic analyses revealed significant changes in choline and glycerophospholipid metabolites in cells and in pancreatic metastases in vivo. CONCLUSIONS Reduced metastasis upon silencing supports EDI3's potential as a treatment target in metastasizing ER-HER2+ breast cancer.
Collapse
Affiliation(s)
- Annika Glotzbach
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Katharina Rohlf
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Anastasia Gonscharow
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Simon Lüke
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Özlem Demirci
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
- Department of Biology, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Nina Overbeck
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany.
| |
Collapse
|
23
|
Perkas O, Schmidt A, Kuehnel C, Greiser J, Hermeyer H, Klingner C, Freesmeyer M, Winkens T. Different narcotic gases and concentrations for immobilization of ostrich embryos for in-ovo imaging. Exp Biol Med (Maywood) 2024; 249:10037. [PMID: 38854792 PMCID: PMC11157058 DOI: 10.3389/ebm.2024.10037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
In-ovo imaging using avian eggs has been described as a potential alternative to animal testing using rodents. However, imaging studies are hampered by embryonal motion producing artifacts. This study aims at systematically comparing isoflurane, desflurane and sevoflurane in three different concentrations in ostrich embryos. Biomagnetic signals of ostrich embryos were recorded analyzing cardiac action and motion. Ten groups comprising eight ostrich embryos each were investigated: Control, isoflurane (2%, 4%, and 6%), desflurane (6%, 12%, and 18%) and sevoflurane (3%, 5%, and 8%). Each ostrich egg was exposed to the same narcotic gas and concentration on development day (DD) 31 and 34. Narcotic gas exposure was upheld for 90 min and embryos were monitored for additional 75 min. Toxicity was evaluated by verifying embryo viability 24 h after the experiments. Initial heart rate of mean 148 beats/min (DD 31) and 136 beats/min (DD 34) decreased over time by 44-48 beats/minute. No significant differences were observed between groups. All narcotic gases led to distinct movement reduction after mean 8 min. Embryos exposed to desflurane 6% showed residual movements. Isoflurane 6% and sevoflurane 8% produced motion-free time intervals of mean 70 min after discontinuation of narcotic gas exposure. Only one embryo death occurred after narcotic gas exposure with desflurane 6%. This study shows that isoflurane, desflurane and sevoflurane are suitable for ostrich embryo immobilization, which is a prerequisite for motion-artifact free imaging. Application of isoflurane 6% and sevoflurane 8% is a) safe as no embryonal deaths occurred after exposure and b) effective as immobilization was observed for approx. 70 min after the end of narcotic gas exposure. These results should be interpreted with caution regarding transferability to other avian species as differences in embryo size and incubation duration exist.
Collapse
Affiliation(s)
- O. Perkas
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
- Translational Nuclear Medicine and Radiopharmacy, Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
| | - A. Schmidt
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - C. Kuehnel
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
- Translational Nuclear Medicine and Radiopharmacy, Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
| | - J. Greiser
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
- Translational Nuclear Medicine and Radiopharmacy, Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
| | - H. Hermeyer
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
| | - C. Klingner
- Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - M. Freesmeyer
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
- Translational Nuclear Medicine and Radiopharmacy, Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
| | - T. Winkens
- Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
- Translational Nuclear Medicine and Radiopharmacy, Clinic of Nuclear Medicine, Jena University Hospital, Jena, Thuringia, Germany
| |
Collapse
|
24
|
Iyer DP, Moyon L, Wittler L, Cheng CY, Ringeling FR, Canzar S, Marsico A, Bulut-Karslioğlu A. Combinatorial microRNA activity is essential for the transition of pluripotent cells from proliferation into dormancy. Genome Res 2024; 34:572-589. [PMID: 38719471 PMCID: PMC11146600 DOI: 10.1101/gr.278662.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 06/05/2024]
Abstract
Dormancy is a key feature of stem cell function in adult tissues as well as in embryonic cells in the context of diapause. The establishment of dormancy is an active process that involves extensive transcriptional, epigenetic, and metabolic rewiring. How these processes are coordinated to successfully transition cells to the resting dormant state remains unclear. Here we show that microRNA activity, which is otherwise dispensable for preimplantation development, is essential for the adaptation of early mouse embryos to the dormant state of diapause. In particular, the pluripotent epiblast depends on miRNA activity, the absence of which results in the loss of pluripotent cells. Through the integration of high-sensitivity small RNA expression profiling of individual embryos and protein expression of miRNA targets with public data of protein-protein interactions, we constructed the miRNA-mediated regulatory network of mouse early embryos specific to diapause. We find that individual miRNAs contribute to the combinatorial regulation by the network, and the perturbation of the network compromises embryo survival in diapause. We further identified the nutrient-sensitive transcription factor TFE3 as an upstream regulator of diapause-specific miRNAs, linking cytoplasmic MTOR activity to nuclear miRNA biogenesis. Our results place miRNAs as a critical regulatory layer for the molecular rewiring of early embryos to establish dormancy.
Collapse
Affiliation(s)
- Dhanur P Iyer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lambert Moyon
- Computational Health Center, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Chieh-Yu Cheng
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Francisca R Ringeling
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Stefan Canzar
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, 85764 Neuherberg, Germany;
| | | |
Collapse
|
25
|
Liu S, Liu Y, Qiu X, Suhail Y, Kshitiz. Tissue-of-origin for cancers determines HIF-1 activation induced phenotypic heterogeneity. Mol Carcinog 2024; 63:834-848. [PMID: 38372346 PMCID: PMC11013563 DOI: 10.1002/mc.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is the master regulator of cellular response to hypoxia, and is activated in many cancers contributing to many steps in the metastatic cascade by acting as a key transcription co-regulator for a large number of downstream genes. Presence of hypoxia within a tumor is spatially nonuniform, and can also by dynamic. Further, although HIF-1 is primarily stabilized and activated by lack of molecular O2, its stability is also affected by other factors present in the tumor microenvironment. HIF-1 also crosstalks with other transcription factors in co-regulating gene expression. Consequently, it is nontrivial to predict the gene expression patterns in cells in response to hypoxia, or HIF-1 activation. Additionally, cancers originating from tissue origins with different basal level of partial oxygen tension may activate HIF-1 at different threshold of hypoxia. We analyzed large published single cell RNAseq data for colorectal, lung, and pancreatic cancers to investigate the phenotypic outcome of HIF-1 activation in cancer cells. We found that cancers from tissues with different partial O2 tension levels exhibit HIF-1 activation at different stages of metastasis, and phenotypically respond differently to HIF-1 activation, likely by contextual co-option of different transcription factors. We experimentally confirmed these predictions by using cell lines representative of colorectal, lung, and pancreatic cancers, finding that while hypoxia enhances growth of colorectal cancer, it induces increased invasion of lung, and pancreatic cancers. Our analysis suggest that HIF-1 activation may act as a rheostat regulating downstream gene expression towards phenotypic outcomes differently in various cancers.
Collapse
Affiliation(s)
- Shaofei Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA
| | - Xihua Qiu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, Connecticut, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
26
|
Jakab M, Lee KH, Uvarovskii A, Ovchinnikova S, Kulkarni SR, Jakab S, Rostalski T, Spegg C, Anders S, Augustin HG. Lung endothelium exploits susceptible tumor cell states to instruct metastatic latency. NATURE CANCER 2024; 5:716-730. [PMID: 38308117 PMCID: PMC11136671 DOI: 10.1038/s43018-023-00716-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/15/2023] [Indexed: 02/04/2024]
Abstract
In metastasis, cancer cells travel around the circulation to colonize distant sites. Due to the rarity of these events, the immediate fates of metastasizing tumor cells (mTCs) are poorly understood while the role of the endothelium as a dissemination interface remains elusive. Using a newly developed combinatorial mTC enrichment approach, we provide a transcriptional blueprint of the early colonization process. Following their arrest at the metastatic site, mTCs were found to either proliferate intravascularly or extravasate, thereby establishing metastatic latency. Endothelial-derived angiocrine Wnt factors drive this bifurcation, instructing mTCs to follow the extravasation-latency route. Surprisingly, mTC responsiveness towards niche-derived Wnt was established at the epigenetic level, which predetermined tumor cell behavior. Whereas hypomethylation enabled high Wnt activity leading to metastatic latency, methylated mTCs exhibited low activity and proliferated intravascularly. Collectively the data identify the predetermined methylation status of disseminated tumor cells as a key regulator of mTC behavior in the metastatic niche.
Collapse
Affiliation(s)
- Moritz Jakab
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| | - Ki Hong Lee
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexey Uvarovskii
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
- Evotec SE, Göttingen, Germany
| | - Svetlana Ovchinnikova
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
- Bioquant Center, Heidelberg University, Heidelberg, Germany
| | - Shubhada R Kulkarni
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Sevinç Jakab
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Rostalski
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Carleen Spegg
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
- Bioquant Center, Heidelberg University, Heidelberg, Germany
| | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany.
| |
Collapse
|
27
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
28
|
Zarrer J, Taipaleenmäki H. The osteoblast in regulation of tumor cell dormancy and bone metastasis. J Bone Oncol 2024; 45:100597. [PMID: 38550395 PMCID: PMC10973597 DOI: 10.1016/j.jbo.2024.100597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 11/12/2024] Open
Abstract
Breast and prostate cancer are among the most common malignancies worldwide. After treatment of the primary tumor, distant metastases often occur after a long disease-free interval. Bone is a major site for breast and prostate cancer metastasis and approximately 70% of patients with advanced disese suffer from osteolytic or osteoblastic bone metastases, a stage at which the disease is incurable. In bone, the disseminated tumor cells (DTCs) can become quiescent or "dormant", a state where they are alive but not actively dividing. Alternatively, the cancer cells can proliferate, disturb the bone homeostasis, and form metastatic lesions. The fate of cancer cells is largely dependent on the bone microenvironment, particularly the bone forming osteoblasts and bone resorbing osteoclasts. Osteoblasts originate from mesenchymal precursors through a tightly regulated cascade. The main function of osteoblasts is to synthesize bone matrix, coordinate mineralization and maintain bone remodeling by regulating osteoclast activity and bone resorption. In metastatic bone environment, osteoblasts can create a niche within the bone where DTCs cells become dormant and induce quiescence in cancer cells keeping them in a non-proliferative state. Osteoblasts also contribute to metastatic outgrowth and actively promote tumor growth in bone. In this article, we review the recent literature on the role of osteoblasts in cancer cell dormancy and bone metastasis and describe the underlying mechanisms by which osteoblasts regulate cancer cell fate in bone. In addition, we discuss the possibility of targeting osteoblasts to treat osteolytic bone metastases.
Collapse
Affiliation(s)
- Jennifer Zarrer
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Germany
| |
Collapse
|
29
|
Michelatti D, Beyes S, Bernardis C, Negri ML, Morelli L, Bediaga NG, Poli V, Fagnocchi L, Lago S, D'Annunzio S, Cona N, Gaspardo I, Bianchi A, Jovetic J, Gianesello M, Turdo A, D'Accardo C, Gaggianesi M, Dori M, Forcato M, Crispatzu G, Rada-Iglesias A, Sosa MS, Timmers HTM, Bicciato S, Todaro M, Tiberi L, Zippo A. Oncogenic enhancers prime quiescent metastatic cells to escape NK immune surveillance by eliciting transcriptional memory. Nat Commun 2024; 15:2198. [PMID: 38503727 PMCID: PMC10951355 DOI: 10.1038/s41467-024-46524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Michelatti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Sven Beyes
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Chiara Bernardis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Maria Luce Negri
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Leonardo Morelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Naiara Garcia Bediaga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- The South Australian Immunogenomics Cancer Institute, Faculty of Medicine Nursing and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Vittoria Poli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Istituto Italiano di Tecnologia IIT, Milan, Italy
| | - Luca Fagnocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Department of Epigenetics Van Andel Institute, Grand Rapids, MI, USA
| | - Sara Lago
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Sarah D'Annunzio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Nicole Cona
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Ilaria Gaspardo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Aurora Bianchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Jovana Jovetic
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Matteo Gianesello
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Martina Dori
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Santander, Spain
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H T Marc Timmers
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) partner site Freiburg, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Luca Tiberi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
30
|
Richbourg NR, Irakoze N, Kim H, Peyton SR. Outlook and opportunities for engineered environments of breast cancer dormancy. SCIENCE ADVANCES 2024; 10:eadl0165. [PMID: 38457510 PMCID: PMC10923521 DOI: 10.1126/sciadv.adl0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Dormant, disseminated breast cancer cells resist treatment and may relapse into malignant metastases after decades of quiescence. Identifying how and why these dormant breast cancer cells are triggered into outgrowth is a key unsolved step in treating latent, metastatic breast cancer. However, our understanding of breast cancer dormancy in vivo is limited by technical challenges and ethical concerns with triggering the activation of dormant breast cancer. In vitro models avoid many of these challenges by simulating breast cancer dormancy and activation in well-controlled, bench-top conditions, creating opportunities for fundamental insights into breast cancer biology that complement what can be achieved through animal and clinical studies. In this review, we address clinical and preclinical approaches to treating breast cancer dormancy, how precisely controlled artificial environments reveal key interactions that regulate breast cancer dormancy, and how future generations of biomaterials could answer further questions about breast cancer dormancy.
Collapse
Affiliation(s)
- Nathan R. Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst Amherst, MA 01003, USA
| |
Collapse
|
31
|
Mancini C, Lori G, Pranzini E, Taddei ML. Metabolic challengers selecting tumor-persistent cells. Trends Endocrinol Metab 2024; 35:263-276. [PMID: 38071164 DOI: 10.1016/j.tem.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 03/14/2024]
Abstract
Resistance to anticancer therapy still represents one of the main obstacles to cancer treatment. Numerous components of the tumor microenvironment (TME) contribute significantly to the acquisition of drug resistance. Microenvironmental pressures arising during cancer evolution foster tumor heterogeneity (TH) and facilitate the emergence of drug-resistant clones. In particular, metabolic pressures arising in the TME may favor epigenetic adaptations supporting the acquisition of persistence features in tumor cells. Tumor-persistent cells (TPCs) are characterized by high phenotypic and metabolic plasticity, representing a noticeable advantage in chemo- and radio-resistance. Understanding the crosslink between the evolution of metabolic pressures in the TME, epigenetics, and TPC evolution is significant for developing novel therapeutic strategies specifically targeting TPC vulnerabilities to overcome drug resistance.
Collapse
Affiliation(s)
- Caterina Mancini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
32
|
Nakamichi K, Yamamoto Y, Semba K, Nakayama J. Metastatic potentials classified with hypoxia-inducible factor 1 downstream genes in pan-cancer cell lines. Genes Cells 2024; 29:169-177. [PMID: 38158708 DOI: 10.1111/gtc.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Hypoxia-inducible factor 1 (HIF1) is a transcription factor that is stabilized under hypoxia conditions via post-translational modifications. HIF1 regulates tumor malignancy and metastasis by gene transcriptions, such as Warburg effect and angiogenesis-related genes, in cancer cells. However, the HIF1 downstream genes show varied expressional patterns in different cancer types. Herein, we performed the hierarchical clustering based on the HIF1 downstream gene expression patterns using 1406 cancer cell lines crossing 30 types of cancer to understand the relationship between HIF1 downstream genes and the metastatic potential of cancer cell lines. Two types of cancers, including bone and breast cancers, were classified based on HIF1 downstream genes with significantly altered metastatic potentials. Furthermore, different HIF1 downstream gene subsets were extracted to discriminate each subtype for these cancer types. HIF1 downstream subtyping classification will help to understand the novel insight into tumor malignancy and metastasis in each cancer type.
Collapse
Affiliation(s)
- Kazuya Nakamichi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
33
|
Dai L, Xian H, Wang H, Li M, Zhang M, Liang XH, Tang YL. Hypoxia induced cell dormancy of salivary adenoid cystic carcinoma through miR-922/DEC2 axis. Transl Oncol 2024; 40:101868. [PMID: 38141378 PMCID: PMC10751830 DOI: 10.1016/j.tranon.2023.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Hypoxia has been shown to induce cancer cells to become dormant meanwhile these cells inclined to disseminate and eventually cause metastasis. However, the molecular mechanism is still elusive. The purpose is to explore whether dormancy-associated microRNAs (DmiRs) get involved in hypoxia-induced cell dormancy of salivary adenoid cystic carcinoma (SACC). MATERIAL AND METHODS This study performed multi-perspective investigation of the biological effects of miR-922/DEC2 on SACC based on clinical samples, 2D and 3D in vitro model and nude mice in vivo model, based on our previous study of overexpression of DEC2 inducing SACC cellular dormancy. RESULTS According to the existing microRNA array of SACC tissue, we found that miR-922 was upregulated in SACC tissue and was inversely correlated with DEC2, suggesting that miR-922 might participate in the activation of SACC cell dormancy as a DmiR. Then, we found miR-922 low SACC cells exhibited cell dormancy and a low level of fatty acid oxidation with propensity for lipid droplets accumulation through DEC2. Moreover, HIF1a downregulated the level of miR-922 to induce SACC cell dormancy. In addition, in xenografts of nude mice the inhibition of miR-922 attenuated the growth of primary tumor and the lung metastasis of SACC. CONCLUSIONS miR-922/DEC2 axis was necessary to hypoxia-induced cell dormancy and played an important role in the lipid metabolism reprogramming of SACC.
Collapse
Affiliation(s)
- Li Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Hongchun Xian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haofan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Park S, Choi S, Shimpi AA, Estroff LA, Fischbach C, Paszek MJ. COLLAGEN MINERALIZATION DECREASES NK CELL-MEDIATED CYTOTOXICITY OF BREAST CANCER CELLS VIA INCREASED GLYCOCALYX THICKNESS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576377. [PMID: 38328161 PMCID: PMC10849468 DOI: 10.1101/2024.01.20.576377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Skeletal metastasis is common in patients with advanced breast cancer, and often caused by immune evasion of disseminated tumor cells (DTCs). In the skeleton, tumor cells not only disseminate to the bone marrow, but also to osteogenic niches in which they interact with newly mineralizing bone extracellular matrix (ECM). However, it remains unclear how mineralization of collagen type I, the primary component of bone ECM, regulates tumor-immune cell interactions. Here, we have utilized a combination of synthetic bone matrix models with controlled mineral content, nanoscale optical imaging, and flow cytometry to evaluate how collagen type I mineralization affects the biochemical and biophysical properties of the tumor cell glycocalyx, a dense layer of glycosylated proteins and lipids decorating their cell surface. Our results suggest that collagen mineralization upregulates mucin-type O-glycosylation and sialylation by tumor cells, which increased their glycocalyx thickness while enhancing resistance to attack by Natural Killer (NK) cells. These changes were functionally linked as treatment with a sialylation inhibitor decreased mineralization-dependent glycocalyx thickness and made tumor cells more susceptible to NK cell attack. Together, our results suggest that interference with glycocalyx sialylation may represent a therapeutic strategy to enhance cancer immunotherapies targeting bone-metastatic breast cancer.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
35
|
Asfaha Y, Bollmann LM, Skerhut AJ, Fischer F, Horstick N, Roth D, Wecker M, Mammen C, Smits SHJ, Fluegen G, Kassack MU, Kurz T. 5-(Trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based highly selective class IIa HDAC inhibitors exhibit synergistic anticancer activity in combination with bortezomib. Eur J Med Chem 2024; 263:115907. [PMID: 37979441 DOI: 10.1016/j.ejmech.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/20/2023]
Abstract
Clinically used pan and class I HDACi cause severe side effects, whereas class IIa HDACi are less cytotoxic. Here, we present the synthesis and anticancer effects of a series of 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO)-based amides and alkoxyamides derived from the previously reported class IIa HDACi YAK540. The most active class IIa inhibitor 1a showed nanomolar inhibition of the class IIa enzymes 4, 5, 7 (IC50 HDAC4: 12 nM) and high selectivity (selectivity index >318 for HDAC4) over non-class IIa HDACs. Instead of a hydroxamic acid group, 1a has a trifluoromethyloxadiazolyl (TFMO) moiety as a non-chelating Zinc-binding group (ZBG). Applying the Chou-Talalay-method we found an increased synergistic cytotoxic effect of 1a in combination with bortezomib in THP1 cells. 1a in combination with bortezomib enhanced expression of p21 leading to increased caspase-induced apoptosis. Eventually, growth inhibition by 1a of the head-neck cancer cell line Cal27 was increased upon HDAC4 overexpression in Cal27 in cell culture and using the in vivo chorioallantoic membrane model. The class IIa HDACi 1a outperforms previously described HDAC class IIa inhibitor YAK540 regarding anticancer effects and may constitute a novel option compared to pan and class I HDACi in anticancer combination treatments.
Collapse
Affiliation(s)
- Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Lukas M Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alexander J Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nadine Horstick
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Dennis Roth
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Maria Wecker
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christian Mammen
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry I, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany; Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Georg Fluegen
- Department of Surgery (A), Medical Faculty, University Hospital of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
36
|
Maleki EH, Bahrami AR, Matin MM. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis 2024; 11:189-204. [PMID: 37588236 PMCID: PMC10425754 DOI: 10.1016/j.gendis.2022.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 01/15/2023] Open
Abstract
Intra-tumor heterogeneity is now arguably one of the most-studied topics in tumor biology, as it represents a major obstacle to effective cancer treatment. Since tumor cells are highly diverse at genetic, epigenetic, and phenotypic levels, intra-tumor heterogeneity can be assumed as an important contributing factor to the nullification of chemotherapeutic effects, and recurrence of the tumor. Based on the role of heterogeneous subpopulations of cancer cells with varying cell-cycle dynamics and behavior during cancer progression and treatment; herein, we aim to establish a comprehensive definition for adaptation of neoplastic cells against therapy. We discuss two parallel and yet distinct subpopulations of tumor cells that play pivotal roles in reducing the effects of chemotherapy: "resistant" and "tolerant" populations. Furthermore, this review also highlights the impact of the quiescent phase of the cell cycle as a survival mechanism for cancer cells. Beyond understanding the mechanisms underlying the quiescence, it provides an insightful perspective on cancer stem cells (CSCs) and their dual and intertwined functions based on their cell cycle state in response to treatment. Moreover, CSCs, epithelial-mesenchymal transformed cells, circulating tumor cells (CTCs), and disseminated tumor cells (DTCs), which are mostly in a quiescent state of the cell cycle are proved to have multiple biological links and can be implicated in our viewpoint of cell cycle heterogeneity in tumors. Overall, increasing our knowledge of cell cycle heterogeneity is a key to identifying new therapeutic solutions, and this emerging concept may provide us with new opportunities to prevent the dreadful cancer recurrence.
Collapse
Affiliation(s)
- Ebrahim H. Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 31-007 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, 917751376 Mashhad, Iran
| |
Collapse
|
37
|
Traboulsi W, Reynaud D, Abi Nahed R, Sergent F, Alfaidy N, Benharouga M. In Vivo Quantitative Assessment of Gestational Choriocarcinoma Development and Progression Using Luminescent Trophoblast Cells. Methods Mol Biol 2024; 2728:77-85. [PMID: 38019392 DOI: 10.1007/978-1-0716-3495-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Gestational trophoblastic diseases (GTD) are a group of pregnancy-related disorders representing rare human tumors. Among GTD is the gestational choriocarcinoma (CC), which is a highly malignant gestational trophoblastic tumor that causes high mortality without timely treatment. The incidence of CC is about 1 in 50,000 pregnancies in developed countries and even higher in developing countries. CC developed from molar pregnancies exhibits even higher incidence rates (3-20 in 1000 pregnancies). In the present invention, we developed the first orthotopic animal model of CC. We demonstrate how to mimic the development of this cancer and observe rapid metastasis, which is seen in CC patients, by injecting the luciferase-positive JEG-3 (JEG-3-Luc) cells directly in the placenta of gravid SCID mice. Gravid mice were injected at 7.5 days post coitus (dpc) and followed throughout gestation to assess the parameters of CC development and metastasis. Mice imaged at day 19.5 dpc showed placental tumor development and large sites of metastases in the liver, spleen, lung, and peritoneum. This finding emphasizes the importance of placental vascularization in the rapid dissemination of tumor cells. Morphological analyses and histopathological examinations were performed to confirm JEG-3 cell dissemination in different organs of the gravid mice. This is the first time a CC model was developed by injection of tumor cells within the placenta. This technique offers a new tool to study tumor progression with strong perspectives to test anti-tumor agents in vivo.
Collapse
Affiliation(s)
- Wael Traboulsi
- Lombardi Comprehensive Cancer Center, Laboratory for Immuno-Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Grenoble, France
- University Grenoble-Alpes, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Grenoble, France
- University Grenoble-Alpes, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Frédéric Sergent
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Grenoble, France
- University Grenoble-Alpes, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Grenoble, France.
- University Grenoble-Alpes, Grenoble, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France.
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Grenoble, France
- University Grenoble-Alpes, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| |
Collapse
|
38
|
Weinstein AG, Gilkes DM, Godet I. Mapping the Fate of Hypoxic Cells Using an Irreversible Fluorescent Switch. Methods Mol Biol 2024; 2755:49-61. [PMID: 38319568 DOI: 10.1007/978-1-0716-3633-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Hypoxia has been reported to promote tumor progression and metastasis in murine models, and patients with hypoxic tumors have a worse prognosis. Besides its effect on cancer, normal processes like embryogenesis, or other pathologies such as ischemia, depend on hypoxia-regulated mechanisms. Given the degradable nature of HIF-1/2α in the presence of oxygen, defining the role of hypoxia in modeling biological processes becomes challenging when a cell enters oxygen-rich regions within a tissue. Here, we describe a unique approach to permanently mark cells that experience hypoxia with a fluorescent protein switch that is maintained even after a cell is reoxygenated. This method consists of a dual-viral delivery system that can be transduced into any mammalian cell line.
Collapse
Affiliation(s)
- Alyssa G Weinstein
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biochemistry and Molecular Biology Program, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Inês Godet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
39
|
Calvo V, Zheng W, Adam-Artigues A, Staschke KA, Huang X, Cheung JF, Nobre AR, Fujisawa S, Liu D, Fumagalli M, Surguladze D, Stokes ME, Nowacek A, Mulvihill M, Farias EF, Aguirre-Ghiso JA. A PERK-Specific Inhibitor Blocks Metastatic Progression by Limiting Integrated Stress Response-Dependent Survival of Quiescent Cancer Cells. Clin Cancer Res 2023; 29:5155-5172. [PMID: 37982738 PMCID: PMC10842363 DOI: 10.1158/1078-0432.ccr-23-1427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE The integrated stress response (ISR) kinase PERK serves as a survival factor for both proliferative and dormant cancer cells. We aim to validate PERK inhibition as a new strategy to specifically eliminate solitary disseminated cancer cells (DCC) in secondary sites that eventually reawake and originate metastasis. EXPERIMENTAL DESIGN A novel clinical-grade PERK inhibitor (HC4) was tested in mouse syngeneic and PDX models that present quiescent/dormant DCCs or growth-arrested cancer cells in micro-metastatic lesions that upregulate ISR. RESULTS HC4 significantly blocks metastasis, by killing quiescent/slow-cycling ISRhigh, but not proliferative ISRlow DCCs. HC4 blocked expansion of established micro-metastasis that contained ISRhigh slow-cycling cells. Single-cell gene expression profiling and imaging revealed that a significant proportion of solitary DCCs in lungs were indeed dormant and displayed an unresolved ER stress as revealed by high expression of a PERK-regulated signature. In human breast cancer metastasis biopsies, GADD34 expression (PERK-regulated gene) and quiescence were positively correlated. HC4 effectively eradicated dormant bone marrow DCCs, which usually persist after rounds of therapies. Importantly, treatment with CDK4/6 inhibitors (to force a quiescent state) followed by HC4 further reduced metastatic burden. In HNSCC and HER2+ cancers HC4 caused cell death in dormant DCCs. In HER2+ tumors, PERK inhibition caused killing by reducing HER2 activity because of sub-optimal HER2 trafficking and phosphorylation in response to EGF. CONCLUSIONS Our data identify PERK as a unique vulnerability in quiescent or slow-cycling ISRhigh DCCs. The use of PERK inhibitors may allow targeting of pre-existing or therapy-induced growth arrested "persister" cells that escape anti-proliferative therapies.
Collapse
Affiliation(s)
- Veronica Calvo
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Current affiliation: Pathos, Chicago, IL, USA
| | - Wei Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Adam-Artigues
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Xin Huang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julie F. Cheung
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sho Fujisawa
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Liu
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Maria Fumagalli
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - David Surguladze
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | | | - Ari Nowacek
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Mark Mulvihill
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
| | - Eduardo F. Farias
- HiberCell, Inc, 619 West 54th Street, 8th Floor, New York, NY USA
- Current affiliation: Serinus Biosciences, New York, NY, USA
| | - Julio A. Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
40
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
41
|
Mukhopadhyay D, Goel HL, Xiong C, Goel S, Kumar A, Li R, Zhu LJ, Clark JL, Brehm MA, Mercurio AM. The calcium channel TRPC6 promotes chemotherapy-induced persistence by regulating integrin α6 mRNA splicing. Cell Rep 2023; 42:113347. [PMID: 37910503 PMCID: PMC10872598 DOI: 10.1016/j.celrep.2023.113347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.
Collapse
Affiliation(s)
- Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L Clark
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Abstract
The pattern of delayed recurrence in a subset of breast cancer patients has long been explained by a model that incorporates a variable period of cellular or tumor mass dormancy prior to disease relapse. In this review, we critically evaluate existing data to develop a framework for inferring the existence of dormancy in clinical contexts of breast cancer. We integrate these clinical data with rapidly evolving mechanistic insights into breast cancer dormancy derived from a broad array of genetically engineered mouse models as well as experimental models of metastasis. Finally, we propose actionable interventions and discuss ongoing clinical trials that translate the wealth of knowledge gained in the laboratory to the long-term clinical management of patients at a high risk of developing recurrence.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Amulya Sreekumar
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Department of Oncology, Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Cancer Center, Gruss Lipper Biophotonics Center, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lewis A Chodosh
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Medicine, Abramson Cancer Center, and 2-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
43
|
Ni Y, Liang Y, Li M, Lin Y, Zou X, Han F, Cao J, Li L. The updates on metastatic mechanism and treatment of colorectal cancer. Pathol Res Pract 2023; 251:154837. [PMID: 37806170 DOI: 10.1016/j.prp.2023.154837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is a main cause of cancer death worldwide. Metastasis is a major cause of cancer-related death in CRC. The treatment of metastatic CRC has progressed minimally. However, the potential molecular mechanisms involved in CRC metastasis have remained to be comprehensively clarified. An improved understanding of the CRC mechanistic determinants is needed to better prevent and treat metastatic cancer. In this review, based on evidence from a growing body of research in metastatic cancers, we discuss the cellular and molecular mechanisms involved in CRC metastasis. This review reveals both the molecular mechanisms of metastases and identifies new opportunities for developing more effective strategies to target metastatic relapse and improve CRC patient outcomes.
Collapse
Affiliation(s)
- Yunfei Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - You Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin Zou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Fangyi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jianing Cao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Liang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Soureas K, Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Cancer quiescence: non-coding RNAs in the spotlight. Trends Mol Med 2023; 29:843-858. [PMID: 37516569 DOI: 10.1016/j.molmed.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Cancer quiescence reflects the ability of cancer cells to enter a reversible slow-cycling or mitotically dormant state and represents a powerful self-protecting mechanism preventing cancer cell 'damage' from hypoxic conditions, nutrient deprivation, immune surveillance, and (chemo)therapy. When stress conditions are restrained, and tumor microenvironment becomes beneficial, quiescent cancer cells re-enter cell cycle to facilitate tumor spread and cancer progression/metastasis. Recent studies have highlighted the dynamic role of regulatory non-coding RNAs (ncRNAs) in orchestrating cancer quiescence. The elucidation of regulatory ncRNA networks will shed light on the quiescence-proliferation equilibrium and, ultimately, pave the way for new treatment options. Herein, we have summarized the ever-growing role of ncRNAs upon cancer quiescence regulation and their impact on treatment resistance and modern cancer therapeutics.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece.
| |
Collapse
|
45
|
Chang HL, Schwettmann B, McArthur HL, Chan IS. Antibody-drug conjugates in breast cancer: overcoming resistance and boosting immune response. J Clin Invest 2023; 133:e172156. [PMID: 37712425 PMCID: PMC10503805 DOI: 10.1172/jci172156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a revolutionary therapeutic class, combining the precise targeting ability of monoclonal antibodies with the potent cytotoxic effects of chemotherapeutics. Notably, ADCs have rapidly advanced in the field of breast cancer treatment. This innovative approach holds promise for strengthening the immune system through antibody-mediated cellular toxicity, tumor-specific immunity, and adaptive immune responses. However, the development of upfront and acquired resistance poses substantial challenges in maximizing the effectiveness of these therapeutics, necessitating a deeper understanding of the underlying mechanisms. These mechanisms of resistance include antigen loss, derangements in ADC internalization and recycling, drug clearance, and alterations in signaling pathways and the payload target. To overcome resistance, ongoing research and development efforts are focused on urgently identifying biomarkers, integrating immune therapy approaches, and designing novel cytotoxic payloads. This Review provides an overview of the mechanisms and clinical effectiveness of ADCs, and explores their unique immune-boosting function, while also highlighting the complex resistance mechanisms and safety challenges that must be addressed. A continued focus on how ADCs impact the tumor microenvironment will help to identify new payloads that can improve patient outcomes.
Collapse
Affiliation(s)
- Hannah L. Chang
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Blake Schwettmann
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Heather L. McArthur
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
| | - Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology
- Harold C. Simmons Comprehensive Cancer Center, and
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
46
|
De Dios-Figueroa GT, Aguilera-Márquez JDR, García-Uriostegui L, Hernández-Gutiérrez R, Camacho-Villegas TA, Lugo-Fabres PH. Embedded Living HER2+ Cells in a 3D Gelatin-Alginate Hydrogel as an In Vitro Model for Immunotherapy Delivery for Breast Cancer. Polymers (Basel) 2023; 15:3726. [PMID: 37765581 PMCID: PMC10535529 DOI: 10.3390/polym15183726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Epidermal growth factor receptor 2 (HER2) is the second target molecule most commonly used in breast cancer treatment. Both recurrence and metastasis are still deadly for HER2+ breast cancer patients. Hydrogels can be an option for developing three-dimensional (3D) cell culture systems that resemble tumor features better than monolayer cultures and could be used for preclinical screening for new biotherapeutics. Biopolymers (gelatin and alginate) were used to develop a hydrogel capable of encapsulating living HER2+ breast cancer cells BT-474/GFP. The hydrogel was physicochemically characterized, and the viability of embedded cells was evaluated. The hydrogel developed had suitable physical properties, with swelling of 38% of its original mass at 20 h capacity and pore sizes between 20 and 125 µm that allowed cells to maintain their morphology in a 3D environment, in addition to being biocompatible and preserving 90% of cell viability at 10 days. Furthermore, encapsulated BT-474/GFP cells maintained HER2 expression that could be detected by the Trastuzumab-fluorescent antibody, so this hydrogel could be used to evaluate new HER2-targeted therapies.
Collapse
Affiliation(s)
- G. Tonantzin De Dios-Figueroa
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (G.T.D.D.-F.); (J.d.R.A.-M.); (R.H.-G.)
| | - Janette del Rocío Aguilera-Márquez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (G.T.D.D.-F.); (J.d.R.A.-M.); (R.H.-G.)
| | - Lorena García-Uriostegui
- CONAHCYT—Departamento de Madera, Celulosa y Papel, Universidad de Guadalajara (UDG), Guadalajara 44100, Jalisco, Mexico;
| | - Rodolfo Hernández-Gutiérrez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico; (G.T.D.D.-F.); (J.d.R.A.-M.); (R.H.-G.)
| | - Tanya A. Camacho-Villegas
- CONAHCYT—Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico;
| | - Pavel H. Lugo-Fabres
- CONAHCYT—Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Jalisco, Mexico;
| |
Collapse
|
47
|
Cuesta-Borràs E, Salvans C, Arqués O, Chicote I, Ramírez L, Cabellos L, Martínez-Quintanilla J, Mur-Espinosa A, García-Álvarez A, Hernando J, Tejedor JR, Mirallas O, Élez E, Fraga MF, Tabernero J, Nuciforo P, Capdevila J, Palmer HG, Puig I. DPPA3-HIF1α axis controls colorectal cancer chemoresistance by imposing a slow cell-cycle phenotype. Cell Rep 2023; 42:112927. [PMID: 37537841 DOI: 10.1016/j.celrep.2023.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Tumor relapse is linked to rapid chemoresistance and represents a bottleneck for cancer therapy success. Engagement of a reduced proliferation state is a non-mutational mechanism exploited by cancer cells to bypass therapy-induced cell death. Through combining functional pulse-chase experiments in engineered cells and transcriptomic analyses, we identify DPPA3 as a master regulator of slow-cycling and chemoresistant phenotype in colorectal cancer (CRC). We find a vicious DPPA3-HIF1α feedback loop that downregulates FOXM1 expression via DNA methylation, thereby delaying cell-cycle progression. Moreover, downregulation of HIF1α partially restores a chemosensitive proliferative phenotype in DPPA3-overexpressing cancer cells. In cohorts of CRC patient samples, DPPA3 overexpression acts as a predictive biomarker of chemotherapeutic resistance that subsequently requires reduction in its expression to allow metastatic outgrowth. Our work demonstrates that slow-cycling cancer cells exploit a DPPA3/HIF1α axis to support tumor persistence under therapeutic stress and provides insights on the molecular regulation of disease progression.
Collapse
Affiliation(s)
- Estefania Cuesta-Borràs
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Cándida Salvans
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Oriol Arqués
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Irene Chicote
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain
| | - Lorena Ramírez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Laia Cabellos
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Alex Mur-Espinosa
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Alejandro García-Álvarez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Jorge Hernando
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Oriol Mirallas
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Elena Élez
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Josep Tabernero
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; UVic-UCC, IOB-Quiron, 08023 Barcelona, Spain
| | - Paolo Nuciforo
- CIBERONC, 08029 Madrid, Spain; Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jaume Capdevila
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; IOB-Teknon, 08023 Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| | - Isabel Puig
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| |
Collapse
|
48
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
49
|
Friedman-DeLuca M, Patel PP, Karadal-Ferrena B, Barth ND, Duran CL, Ye X, Papanicolaou M, Condeelis JS, Oktay MH, Borriello L, Entenberg D. Tracking Tumor Cell Dissemination from Lung Metastases Using Photoconversion. J Vis Exp 2023:10.3791/65732. [PMID: 37486129 PMCID: PMC10832329 DOI: 10.3791/65732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Metastasis - the systemic spread of cancer - is the leading cause of cancer-related deaths. Although metastasis is commonly thought of as a unidirectional process wherein cells from the primary tumor disseminate and seed metastases, tumor cells in existing metastases can also redisseminate and give rise to new lesions in tertiary sites in a process known as "metastasis-from-metastases" or "metastasis-to-metastasis seeding." Metastasis-to-metastasis seeding may increase the metastatic burden and decrease the patient's quality of life and survival. Therefore, understanding the processes behind this phenomenon is crucial to refining treatment strategies for patients with metastatic cancer. Little is known about metastasis-to-metastasis seeding, due in part to logistical and technological limitations. Studies on metastasis-to-metastasis seeding rely primarily on sequencing methods, which may not be practical for researchers studying the exact timing of metastasis-to-metastasis seeding events or what promotes or prevents them. This highlights the lack of methodologies that facilitate the study of metastasis-to-metastasis seeding. To address this, we have developed - and describe herein - a murine surgical protocol for the selective photoconversion of lung metastases, allowing specific marking and fate tracking of tumor cells redisseminating from the lung to tertiary sites. To our knowledge, this is the only method for studying tumor cell redissemination and metastasis-to-metastasis seeding from the lungs that does not require genomic analysis.
Collapse
Affiliation(s)
- Madeline Friedman-DeLuca
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Prachiben P Patel
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Burcu Karadal-Ferrena
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Nicole D Barth
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Camille L Duran
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Xianjun Ye
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Michael Papanicolaou
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center
| | - John S Condeelis
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Lucia Borriello
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Fox Chase Cancer Center;
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center;
| |
Collapse
|
50
|
Si H, Esquivel M, Mendoza Mendoza E, Roarty K. The covert symphony: cellular and molecular accomplices in breast cancer metastasis. Front Cell Dev Biol 2023; 11:1221784. [PMID: 37440925 PMCID: PMC10333702 DOI: 10.3389/fcell.2023.1221784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer has emerged as the most commonly diagnosed cancer and primary cause of cancer-related deaths among women worldwide. Although significant progress has been made in targeting the primary tumor, the effectiveness of systemic treatments to prevent metastasis remains limited. Metastatic disease continues to be the predominant factor leading to fatality in the majority of breast cancer patients. The existence of a prolonged latency period between initial treatment and eventual recurrence in certain patients indicates that tumors can both adapt to and interact with the systemic environment of the host, facilitating and sustaining the progression of the disease. In order to identify potential therapeutic interventions for metastasis, it will be crucial to gain a comprehensive framework surrounding the mechanisms driving the growth, survival, and spread of tumor cells, as well as their interaction with supporting cells of the microenvironment. This review aims to consolidate recent discoveries concerning critical aspects of breast cancer metastasis, encompassing the intricate network of cells, molecules, and physical factors that contribute to metastasis, as well as the molecular mechanisms governing cancer dormancy.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|