1
|
Serrano-Sanchez A, Rice M, Cassar J, White LJ, Popoola PIA, Thompson GS, Hiscock JR, Ortega-Roldan JL. A solution NMR methodology enabling the elucidation of small molecule phospholipid membrane adhesion and passive permeation parameters. Chem Commun (Camb) 2024; 60:11160-11163. [PMID: 39291600 DOI: 10.1039/d4cc01515k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Quantifying small molecule uptake across a biological membrane of a target cell is crucial for the development of efficacious and selective drugs. However, current methods to obtaining such data are not trivial. Herein, we present an accessible, higher-throughput (20 minutes), 1H NMR spectroscopy assay, which enables the quantification of small molecule phospholipid passive membrane permeation and membrane adhesion parameters.
Collapse
Affiliation(s)
| | - Matthew Rice
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | - Joseph Cassar
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | - Lisa J White
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK
| | - Precious I A Popoola
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK
| | - Gary S Thompson
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK
| | | |
Collapse
|
2
|
Xu C, Tran QG, Liu D, Zhai C, Wojtas L, Liu W. Charge-assisted hydrogen bonding in a bicyclic amide cage: an effective approach to anion recognition and catalysis in water. Chem Sci 2024:d4sc05236f. [PMID: 39309075 PMCID: PMC11409225 DOI: 10.1039/d4sc05236f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Hydrogen bonding is prevalent in biological systems, dictating a myriad of life-sustaining functions in aqueous environments. Leveraging hydrogen bonding for molecular recognition in water encounters significant challenges in synthetic receptors on account of the hydration of their functional groups. Herein, we introduce a water-soluble hydrogen bonding cage, synthesized via a dynamic approach, exhibiting remarkable affinities and selectivities for strongly hydrated anions, including sulfate and oxalate, in water. We illustrate the use of charge-assisted hydrogen bonding in amide-type synthetic receptors, offering a general molecular design principle that applies to a wide range of amide receptors for molecular recognition in water. This strategy not only revalidates the functions of hydrogen bonding but also facilitates the effective recognition of hydrophilic anions in water. We further demonstrate an unconventional catalytic mechanism through the encapsulation of the anionic oxalate substrate by the cationic cage, which effectively inverts the charges associated with the substrate and overcomes electrostatic repulsions to facilitate its oxidation by the anionic MnO4 -. Technical applications using this receptor are envisioned across various technical applications, including anion sensing, separation, catalysis, medical interventions, and molecular nanotechnology.
Collapse
Affiliation(s)
- Chengkai Xu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Quy Gia Tran
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Dexin Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Canjia Zhai
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| | - Wenqi Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Ave Tampa FL 33620 USA
| |
Collapse
|
3
|
Deng S, Li Z, Yuan L, Shen J, Zeng H. Light-Powered Propeller-like Transporter for Boosted Transmembrane Ion Transport. NANO LETTERS 2024; 24:10750-10758. [PMID: 39177063 DOI: 10.1021/acs.nanolett.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Membrane-active molecular machines represent a recently emerging, yet important line of expansion in the field of artificial transmembrane transporters. Their hitherto demonstrated limited types (molecular swing, ion fishers, shuttlers, rotors, etc.) certainly call for new inspiring developments. Here, we report a very first motorized ion-transporting carrier-type transporter, i.e., a modularly tunable, light-powered propeller-like transporter derived from Feringa's molecular motor for consistently boosting transmembrane ion transport under continuous UV light irradiation. Based on the EC50 values, the molecular propeller-mediated ion transport activities under UV light irradiation for 300 s are 2.31, 1.74, 2.29, 2.80, and 2.92 times those values obtained without irradiation for Li+, Na+, K+, Rb+, and Cs+ ions, respectively, with EC50 value as low as 0.71 mol % for K+ ion under light irradiation.
Collapse
Affiliation(s)
- Shaowen Deng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
4
|
de Jong J, Bos JE, Wezenberg SJ. Stimulus-Controlled Anion Binding and Transport by Synthetic Receptors. Chem Rev 2023; 123:8530-8574. [PMID: 37342028 PMCID: PMC10347431 DOI: 10.1021/acs.chemrev.3c00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 06/22/2023]
Abstract
Anionic species are omnipresent and involved in many important biological processes. A large number of artificial anion receptors has therefore been developed. Some of these are capable of mediating transmembrane transport. However, where transport proteins can respond to stimuli in their surroundings, creation of synthetic receptors with stimuli-responsive functions poses a major challenge. Herein, we give a full overview of the stimulus-controlled anion receptors that have been developed thus far, including their application in membrane transport. In addition to their potential operation as membrane carriers, the use of anion recognition motifs in forming responsive membrane-spanning channels is discussed. With this review article, we intend to increase interest in transmembrane transport among scientists working on host-guest complexes and dynamic functional systems in order to stimulate further developments.
Collapse
Affiliation(s)
| | | | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
5
|
Lee A, Yang JH, Oh JH, Hay BP, Lee K, Lynch VM, Sessler JL, Kim SK. Cyclo[2]carbazole[2]pyrrole: a preorganized calix[4]pyrrole analogue. Chem Sci 2023; 14:1218-1226. [PMID: 36756337 PMCID: PMC9891360 DOI: 10.1039/d2sc06376j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
A cyclo[2]carbazole[2]pyrrole (2) consisting of two carbazoles and two pyrroles has been synthesized by directly linking the carbazole 1- and 8-carbon atoms to the pyrrole α-carbon atoms. Macrocycle 2 is an extensively conjugated 16-membered macrocyclic ring that is fixed in a pseudo-1,3-alternate conformation. This provides a preorganized anion binding site consisting of two pyrrole subunits. 1H NMR spectroscopic analysis revealed that only the two diagonally opposed pyrrole NH protons, as opposed to the carbazole protons, take part in anion binding. Nevertheless, cyclo[2]carbazole[2]pyrrole 2 binds representative anions with higher affinity in CD2Cl2 than calix[4]pyrrole (1), a well-studied non-conjugated tetrapyrrole macrocycle that binds anions via four pyrrolic NH hydrogen bond interactions. On the basis of computational studies, the higher chloride anion affinity of receptor 2 relative to 1 is rationalized in terms of a larger binding energy and a lower host strain energy associated with anion complexation. In the presence of excess fluoride or bicarbonate anions, compound 2 loses two pyrrolic NH protons to produce a stable dianionic macrocycle [2-2H]2- displaying a quenched fluorescence.
Collapse
Affiliation(s)
- Areum Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 Korea
| | - Ju Ho Yang
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 Korea
| | - Ju Hyun Oh
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 Korea
| | | | - Kyounghoon Lee
- Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National UniversityJinju52828Korea
| | - Vincent M. Lynch
- Department of Chemistry, The University of Texas at Austin105 E. 24th, Street-Stop A5300AustinTexas 78712-1224USA
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin105 E. 24th, Street-Stop A5300AustinTexas 78712-1224USA
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University Jinju-si Gyeongsangnam-do 52828 Korea
| |
Collapse
|
6
|
Martínez‐Crespo L, Valkenier H. Transmembrane Transport of Bicarbonate by Anion Receptors. Chempluschem 2022; 87:e202200266. [PMID: 36414387 PMCID: PMC9827909 DOI: 10.1002/cplu.202200266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Indexed: 01/31/2023]
Abstract
The development of synthetic anion transporters is motivated by their potential application as treatment for diseases that originate from deficient anion transport by natural proteins. Transport of bicarbonate is important for crucial biological functions such as respiration and digestion. Despite this biological relevance, bicarbonate transport has not been as widely studied as chloride transport. Herein we present an overview of the synthetic receptors that have been studied as bicarbonate transporters, together with the different assays used to perform transport studies in large unilamellar vesicles. We highlight the most active transporters and comment on the nature of the functional groups present in active and inactive compounds. We also address recent mechanistic studies that have revealed different processes that can lead to net transport of bicarbonate, as well as studies reported in cells and tissues, and comment on the key challenges for the further development of bicarbonate transporters.
Collapse
Affiliation(s)
- Luis Martínez‐Crespo
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK,Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK,Université Libre de Bruxelles (ULB) Engineering of Molecular NanoSystemsEcole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/64B-1050BrusselsBelgium
| | - Hennie Valkenier
- Université Libre de Bruxelles (ULB) Engineering of Molecular NanoSystemsEcole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/64B-1050BrusselsBelgium
| |
Collapse
|
7
|
Oh JH, Hay BP, Lynch VM, Li H, Sessler JL, Kim SK. Calix[4]pyrrole-Based Molecular Capsule: Dihydrogen Phosphate-Promoted 1:2 Fluoride Anion Complexation. J Am Chem Soc 2022; 144:16996-17009. [PMID: 36074582 DOI: 10.1021/jacs.2c06284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular capsule (1) consisting of two calix[4]pyrroles connected via ethylene diamide linkers has been prepared as an anion receptor. 1H NMR spectroscopic studies carried out in CD2Cl2 revealed that receptor 1 recognizes a variety of anions with different binding modes and stoichiometries. For instance, receptor 1 binds fluoride and acetate with 1:2 receptor/anion stoichiometry and other test anions with 1:1 stoichiometry in solution when their respective tetrabutylammonium (TBA+) salts were used. In contrast, with tetraethylammnium (TEA+) salts, receptor 1 forms 1:2 complexes with chloride and bromide in addition to fluoride, overcoming expected Columbic repulsions between the anions co-bound in close proximity. Receptor 1 is also able to bind oxoanions, such as oxalate (C2O42-), dihydrogen phosphate (H2PO4-), sulfate (SO42-), and hydrogen pyrophosphate (HP2O73-), in the form of 1:1 complexes as the result of presumed cooperation between the two calix[4]pyrrole subunits. The selectivity of receptor 1 for fluoride versus dihydrogen phosphate varies depending on their relative concentrations. For instance, in the presence of less than 1.0 equiv of an equimolar mixture of fluoride and dihydrogen phosphate, receptor 1 shows high selectivity for dihydrogen phosphate. In contrast, in the presence of ≥2.0 anion equiv, receptor 1 binds fluoride preferentially, forming a 1:2 complex. Moreover, when treated with F-, the preformed 1:1 H2PO4- complex of receptor 1 is converted to the corresponding 1:2 receptor/fluoride complex with the release of the prebound dihydrogen phosphate anion. As inferred from gas-phase computations, this seemingly counterintuitive behavior is rationalized in terms of the precomplexed dihydrogen phosphate serving to reduce the reorganization energy required to bind two fluoride anions. The presence of a water molecule in addition to the bound fluoride anions may also favor the formation of the 1:2 F- complex. The present study provides a new approach for fine-tuning the binding selectivity of polytopic anion receptors.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, Korea
| | - Benjamin P Hay
- Supramolecular Design Institute, Oak Ridge, Tennessee 37830, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th, Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th, Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do 52828, Korea
| |
Collapse
|
8
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
9
|
A pH-targeted and NIR-responsive NaCl-nanocarrier for photothermal therapy and ion-interference therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102460. [PMID: 34530164 DOI: 10.1016/j.nano.2021.102460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022]
Abstract
Transport ions into cells through nanocarrier to achieve ion-interference therapy provides new inspiration for cancer treatment. In this work, a pH-targeted and NIR-responsive NaCl-nanocarrier is prepared using surfactant Vitamin E-O(EG2-Glu) and modified with polydopamine (PDA) and pH-sensitive zwitterionic chitosan (ZWC). The NaCl-nanocarrier is decorated with NH4HCO3 and IR-780 to introduce near-infrared (NIR)-responsive performance and imaging. Once the NaCl-nanocarrier is exposed to NIR laser, the temperature rises rapidly because of the excellent photothermal conversion ability of PDA, then NH4HCO3 is decomposed into NH3 and CO2, which burst the nanocarrier, resulting in Cl- and Na+ "bomb-like" release. This pH-targeted nanocarrier accumulates more at tumor site and when irradiating the site with NIR light, the temperature rises and excessive Cl- and Na+ are released to destroy the ion homeostasis and inhibit tumor growth effectively. Through this strategy, the unique combination of ion interference therapy and photothermal therapy is achieved.
Collapse
|
10
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
11
|
Shen J, Ye R, Zeng H. Crystal Packing‐Guided Construction of Hetero‐Oligomeric Peptidic Ensembles as Synthetic 3‐in‐1 Transporters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Shen
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Ruijuan Ye
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| | - Huaqiang Zeng
- Department of Chemistry College of Science Hainan University Haikou Hainan 570228 China
| |
Collapse
|
12
|
Martínez‐Crespo L, Hewitt SH, De Simone NA, Šindelář V, Davis AP, Butler S, Valkenier H. Transmembrane Transport of Bicarbonate Unravelled*. Chemistry 2021; 27:7367-7375. [PMID: 33932059 PMCID: PMC8251953 DOI: 10.1002/chem.202100491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Anion receptors can be used to transport ions across lipid bilayers, which has potential for therapeutic applications. Synthetic bicarbonate transporters are of particular interest, as defects in transmembrane transport of bicarbonate are associated with various diseases. However, no convenient method exists to directly observe bicarbonate transport and study the mechanisms involved. Here, an assay is presented that allows the kinetics of bicarbonate transport into liposomes to be monitored directly and with great sensitivity. The assay utilises an encapsulated europium(III) complex, which exhibits a large increase in emission intensity upon binding bicarbonate. Mechanisms involving CO2 diffusion and the dissipation of a pH gradient are shown to be able to lead to an increase in bicarbonate concentration within liposomes, without transport of the anion occurring at all. By distinguishing these alternative mechanisms from actual bicarbonate transport, this assay will inform the future development of bicarbonate transporters.
Collapse
Affiliation(s)
- Luis Martínez‐Crespo
- Université Libre de Bruxelles (ULB)Engineering of Molecular NanoSystems, Ecole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| | - Sarah H. Hewitt
- Loughborough UniversityDepartment of ChemistryEpinal WayLoughboroughLE11 3TUUK
| | | | - Vladimír Šindelář
- Masaryk UniversityDepartment of Chemistry and RECETOX, Faculty of ScienceKamenice 5625 00BrnoCzech Republic
| | - Anthony P. Davis
- University of BristolSchool of ChemistryCantock's CloseBristolBS8 1TSUK
| | - Stephen Butler
- Loughborough UniversityDepartment of ChemistryEpinal WayLoughboroughLE11 3TUUK
| | - Hennie Valkenier
- Université Libre de Bruxelles (ULB)Engineering of Molecular NanoSystems, Ecole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| |
Collapse
|
13
|
Shen J, Ye R, Zeng H. Crystal Packing-Guided Construction of Hetero-Oligomeric Peptidic Ensembles as Synthetic 3-in-1 Transporters. Angew Chem Int Ed Engl 2021; 60:12924-12930. [PMID: 33755290 DOI: 10.1002/anie.202101489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Strategies to generate heteromeric peptidic ensembles via a social self-sorting process are limited. Herein, we report a crystal packing-inspired social self-sorting strategy broadly applicable to diverse types of H-bonded peptidic frameworks. Specifically, a crystal structure of H-bonded alkyl chain-appended monopeptides reveals an inter-chain separation distance of 4.8 Å dictated by the H-bonded amide groups, which is larger than 4.1 Å separation distance desired by the tightly packed straight alkyl chains. This incompatibility results in loosely packed alkyl chains, prompting us to investigate and validate the feasibility of applying bulky tert-butyl groups, modified with an anion-binding group, to alternatively interpenetrate the straight alkyl chains, modified with a crown ether group. Structurally, this social self-sorting approach generates highly stable hetero-oligomeric ensembles, having alternated anion- and cation-binding units vertically aligned to the same side. Functionally, these hetero-oligomeric ensembles promote transmembrane transport of cations, anions and more interestingly zwitterionic species such as amino acids.
Collapse
Affiliation(s)
- Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
14
|
Kumar V. Urea/Thiourea Based Optical Sensors for Toxic Analytes: A Convenient Path for Detection of First Nerve Agent (Tabun). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200285] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vinod Kumar
- Process Technology Development Division, Defence Research and Development Establishment, Jhansi Road, Gwalior-474002, India
| |
Collapse
|
15
|
Wang ZK, Hong XQ, Hu J, Xing YY, Chen WH. Synthesis and biological activity of squaramido-tethered bisbenzimidazoles as synthetic anion transporters. RSC Adv 2021; 11:3972-3980. [PMID: 35424339 PMCID: PMC8694315 DOI: 10.1039/d0ra10189c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
A series of squaramido-tethered bisbenzimidazoles were synthesized from the reaction of diethyl squarate with substituted 2-aminomethylbenzimidazoles. These conjugates exhibit moderate binding affinity toward chloride anions. They are able to facilitate the transmembrane transport of chloride anions most probably via an anion exchange process, and tend to be more active at acidic pH than at physiological pH. The viability of these conjugates toward four selected solid tumor cell lines was evaluated using an MTT assay and the results suggest that some of these conjugates exhibit moderate cytotoxicity probably in an apoptotic fashion. A series of squaramido-tethered bisbenzimidazoles were synthesized and found to exhibit moderate anion transport and cytotoxicity.![]()
Collapse
Affiliation(s)
- Zhong-Kun Wang
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Xiao-Qiao Hong
- School of Pharmaceutical Sciences
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Yuan-Yuan Xing
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- P. R. China
- State Key Laboratory of Chemical Oncogenomics
| |
Collapse
|
16
|
Oh JH, Yang JH, Choi H, Kim SK. Bicarbonate Recognition Features of a
Naphthobipyrrole‐strapped
Calix[4]pyrrole. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ju Hyun Oh
- Department of Chemistry and Research Institute of Natural Science Gyeongsang National University Jinju 52828 Korea
| | - Ju Ho Yang
- Department of Chemistry and Research Institute of Natural Science Gyeongsang National University Jinju 52828 Korea
| | - Han‐Byeol Choi
- Department of Chemistry and Research Institute of Natural Science Gyeongsang National University Jinju 52828 Korea
| | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science Gyeongsang National University Jinju 52828 Korea
| |
Collapse
|
17
|
Liu Y, Fan C, Pu S. A cyclometalated iridium(III) complex-based luminescent probe for HCO3− and CO32− detection and its application by test strips. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Facilitated Diffusion of Proline across Membranes of Liposomes and Living Cells by a Calix[4]pyrrole Cavitand. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Zheng S, Huang L, Sun Z, Barboiu M. Self‐Assembled Artificial Ion‐Channels toward Natural Selection of Functions. Angew Chem Int Ed Engl 2020; 60:566-597. [DOI: 10.1002/anie.201915287] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
20
|
Zheng S, Huang L, Sun Z, Barboiu M. Selbstorganisierte künstliche Ionenkanäle für die natürliche Selektion von Funktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| |
Collapse
|
21
|
Hong XQ, He XY, Tam KY, Chen WH. Synthesis and biological effect of lysosome-targeting fluorescent anion transporters with enhanced anionophoric activity. Bioorg Med Chem Lett 2020; 30:127461. [PMID: 32755679 DOI: 10.1016/j.bmcl.2020.127461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/27/2022]
Abstract
Two lysosome-targeting fluorescent anion transporters derived from coumarins, trifluoromethylated arylsquaramides and morpholines were synthesized, and their specificity and efficiency to target and alkalize lysosomes were investigated. They are able to target lysosomes specifically. Compared with the previous analogue without trifluoromethyl substituents, these two conjugates, in particular the one having a 3,5-bis(trifluoromethyl) substituent, exhibit significantly higher ability to facilitate the transport of chloride anions, alkalize lysosomes and reduce the activity of lysosomal Cathepsin B enzyme. The present finding suggests that improving the anionophoric activity of lysosome-targeting fluorescent anion transporters is favorable to the efficiency to alkalize lysosomes and deactivate lysosomal Cathepsin B enzyme.
Collapse
Affiliation(s)
- Xiao-Qiao Hong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xiang-Yu He
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Kin Yip Tam
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, PR China
| | - Wen-Hua Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; School of Biotechnology and Health Sciences, International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
22
|
Heo NJ, Yang JH, Lynch VM, Ko BJ, Sessler JL, Kim SK. Capture and displacement-based release of the bicarbonate anion by calix[4]pyrroles with small rigid straps. Chem Sci 2020; 11:8288-8294. [PMID: 34094182 PMCID: PMC8163245 DOI: 10.1039/d0sc03445b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Two-phenoxy walled calix[4]pyrroles 1 and 2 strapped with small rigid linkers containing pyridine and benzene, respectively, have been synthesized. 1H NMR spectroscopic analyses carried out in CDCl3 revealed that both of receptors 1 and 2 recognize only F- and HCO3 - among various test anions with high preference for HCO3 - (as the tetraethylammonium, TEA+ salt) relative to F- (as the TBA+ salt). The bound HCO3 - anion was completely released out of the receptors upon the addition of F- (as the tetrabutylammonium, TBA+ salt) as a result of significantly enhanced affinities and selectivities of the receptors for F- once converted to the TEAHCO3 complexes. Consequently, relatively stable TEAF complexes of receptors 1 and 2 were formed via anion metathesis occurring within the receptor cavities. By contrast, the direct addition of TEAF to receptors 1 and 2 produces different complexation products initially, although eventually the same TEAF complexes are produced as via sequential TEAHCO3 and TBAF addition. These findings are rationalized in terms of the formation of different ion pair complexes involving interactions both inside and outside of the core receptor framework.
Collapse
Affiliation(s)
- Nam Jung Heo
- Department of Chemistry, Research Institute of Natural Science, Gyeongsang National University Jinju 660-701 Korea
| | - Ju Ho Yang
- Department of Chemistry, Research Institute of Natural Science, Gyeongsang National University Jinju 660-701 Korea
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street-Stop A5300 Austin Texas 78712-1224 USA
| | - Byoung Joon Ko
- New Drug Development Center, Osong Medical Innovation Foundation Chungbuk Korea 28160
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 E. 24th Street-Stop A5300 Austin Texas 78712-1224 USA
| | - Sung Kuk Kim
- Department of Chemistry, Research Institute of Natural Science, Gyeongsang National University Jinju 660-701 Korea
| |
Collapse
|
23
|
Shen FF, Dai SY, Wong NK, Deng S, Wong AST, Yang D. Mediating K +/H + Transport on Organelle Membranes to Selectively Eradicate Cancer Stem Cells with a Small Molecule. J Am Chem Soc 2020; 142:10769-10779. [PMID: 32441923 DOI: 10.1021/jacs.0c02134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecules that are capable of disrupting cellular ion homeostasis offer unique opportunities to treat cancer. However, previously reported synthetic ion transporters showed limited value, as promiscuous ionic disruption caused toxicity to both healthy cells and cancer cells indiscriminately. Here we report a simple yet efficient synthetic K+ transporter that takes advantage of the endogenous subcellular pH gradient and membrane potential to site-selectively mediate K+/H+ transport on the mitochondrial and lysosomal membranes in living cells. Consequent mitochondrial and lysosomal damages enhanced cytotoxicity to chemo-resistant ovarian cancer stem cells (CSCs) via apoptosis induction and autophagy suppression with remarkable selectivity (up to 47-fold). The eradication of CSCs blunted tumor formation in mice. We believe this strategy can be exploited in the structural design and applications of next-generation synthetic cation transporters for the treatment of cancer and other diseases related to dysfunctional K+ channels.
Collapse
Affiliation(s)
- Fang-Fang Shen
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sheng-Yao Dai
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nai-Kei Wong
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Shan Deng
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
24
|
Shen Y, Zhong Y, Fei F, Sun J, Czajkowsky DM, Gong B, Shao Z. Ultrasensitive liposome-based assay for the quantification of fundamental ion channel properties. Anal Chim Acta 2020; 1112:8-15. [PMID: 32334685 DOI: 10.1016/j.aca.2020.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/16/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
One of the most widely used approaches to characterize transmembrane ion transport through nanoscale synthetic or biological channels is a straightforward, liposome-based assay that monitors changes in ionic flux across the vesicle membrane using pH- or ion-sensitive dyes. However, failure to account for the precise experimental conditions, in particular the complete ionic composition on either side of the membrane and the inherent permeability of ions through the lipid bilayer itself, can prevent quantifications and lead to fundamentally incorrect conclusions. Here we present a quantitative model for this assay based on the Goldman-Hodgkin-Katz flux theory, which enables accurate measurements and identification of optimal conditions for the determination of ion channel permeability and selectivity. Based on our model, the detection sensitivity of channel permeability is improved by two orders of magnitude over the commonly used experimental conditions. Further, rather than obtaining qualitative preferences of ion selectivity as is typical, we determine quantitative values of these parameters under rigorously controlled conditions even when the experimental results would otherwise imply (without our model) incorrect behavior. We anticipate that this simply employed ultrasensitive assay will find wide application in the quantitative characterization of synthetic or biological ion channels.
Collapse
Affiliation(s)
- Yi Shen
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yulong Zhong
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, 14260, United States
| | - Fan Fei
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bing Gong
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, NY, 14260, United States.
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
25
|
Bąk KM, van Kolck B, Maslowska-Jarzyna K, Papadopoulou P, Kros A, Chmielewski MJ. Oxyanion transport across lipid bilayers: direct measurements in large and giant unilamellar vesicles. Chem Commun (Camb) 2020; 56:4910-4913. [PMID: 32238998 DOI: 10.1039/c9cc09888g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simple di(thioamido)carbazole 1 serves as a potent multispecific transporter for various biologically relevant oxyanions, such as drugs, metabolites and model organic phosphate. The transport kinetics of a wide range of oxyanions can be easily quantified by a modified lucigenin assay in both large and giant unilamellar vesicles.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Bartjan van Kolck
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Krystyna Maslowska-Jarzyna
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| | - Panagiota Papadopoulou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| |
Collapse
|
26
|
A Novel Genetically Encoded Single Use Sensory Cellular Test System Measures Bicarbonate Concentration Changes in Living Cells. SENSORS 2020; 20:s20061570. [PMID: 32168979 PMCID: PMC7146495 DOI: 10.3390/s20061570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Bicarbonate plays a central role in human physiology from cellular respiration to pH homeostasis. However, so far, the measurement of bicarbonate concentration changes in living cells has only been possible by measuring intracellular pH changes. In this article, we report the development of a genetically encoded pH-independent fluorescence-based single-use sensory cellular test system for monitoring intracellular bicarbonate concentration changes in living cells. We describe the usefulness of the developed biosensor in characterizing the bicarbonate transport activities of anionophores-small molecules capable of facilitating the membrane permeation of this anion. We also demonstrate the ability of the bicarbonate sensory cellular test system to measure intracellular bicarbonate concentration changes in response to activation and specific inhibition of wild-type human CFTR protein when co-expressed with the bicarbonate sensing and reporting units in living cells. A valuable benefit of the bicarbonate sensory cellular test system could be the screening of novel anionophore library compounds for bicarbonate transport activity with efficiencies close to the natural anion channel CFTR, which is not functional in the respiratory epithelia of cystic fibrosis patients.
Collapse
|
27
|
Heo NJ, Oh JH, Lee JT, He Q, Sessler JL, Kim SK. Phenanthroline-strapped calix[4]pyrroles: anion receptors displaying affinity reversal as a function of solvent polarity. Org Chem Front 2020. [DOI: 10.1039/c9qo01377f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calix[4]pyrroles 1 and 2, diametrically strapped with a phenanthroline via ester and amide linkages, respectively, have been synthesized as anion receptors.
Collapse
Affiliation(s)
- Nam Jung Heo
- Department of Chemistry and Research Institute of Natural Science
- Gyeongsang National University
- Jinju 52828
- Korea
| | - Ju Hyun Oh
- Department of Chemistry and Research Institute of Natural Science
- Gyeongsang National University
- Jinju 52828
- Korea
| | - Jeong Tae Lee
- Department of Chemistry and Institute of Applied Chemistry
- Hallym University
- Chuncheon 24252
- Korea
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | | | - Sung Kuk Kim
- Department of Chemistry and Research Institute of Natural Science
- Gyeongsang National University
- Jinju 52828
- Korea
| |
Collapse
|
28
|
Howe ENW, Gale PA. Fatty Acid Fueled Transmembrane Chloride Transport. J Am Chem Soc 2019; 141:10654-10660. [DOI: 10.1021/jacs.9b02116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ethan N. W. Howe
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
29
|
Plajer AJ, Zhu J, Proehm P, Bond AD, Keyser UF, Wright DS. Tailoring the Binding Properties of Phosphazane Anion Receptors and Transporters. J Am Chem Soc 2019; 141:8807-8815. [DOI: 10.1021/jacs.9b00504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Alex J. Plajer
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jinbo Zhu
- Cavendish Laboratory, Department of Physics, Cambridge University, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Patrick Proehm
- Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, Fabeckstraße 34-36 14159 Berlin, Germany
| | - Andrew D. Bond
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ulrich F. Keyser
- Cavendish Laboratory, Department of Physics, Cambridge University, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Dominic S. Wright
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
30
|
Synthesis and biological evaluation of aza-crown ether–squaramide conjugates as anion/cation symporters. Future Med Chem 2019; 11:1091-1106. [DOI: 10.4155/fmc-2018-0595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Anion/cation symport across cellular membranes may lead to cell apoptosis and be developed as a strategy for new anticancer drug discovery. Methodology: Four aza-crown ether–squaramide conjugates were synthesized and characterized. Their anion recognition, anion/cation symport, cytotoxicity and probable mechanism of action were investigated in details. Conclusion: These conjugates are able to form ion-pairing complexes with chloride anions and facilitate the transmembrane transport of anions via an anion/cation symport process. They can disrupt the cellular homeostasis of chloride anions and sodium cations and induce the basification of acidic organelles in live cells. These conjugates exhibit moderate cytotoxicity toward the tested cancer cells and trigger cell apoptosis by mediating the influx of chloride anions and sodium cations into live cells.
Collapse
|
31
|
Young Lee G, Bay KL, Houk KN. Evaluation of DFT Methods and Implicit Solvation Models for Anion‐Binding Host‐Guest Systems. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ga Young Lee
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| | - Katherine L. Bay
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| | - Kendall N. Houk
- Department of Chemistry and BiochemistryUniversity of California Los Angeles 607 Charles E. Young Drive. East California 90095 United States
| |
Collapse
|
32
|
Muraglia KA, Chorghade RS, Kim BR, Tang XX, Shah VS, Grillo AS, Daniels PN, Cioffi AG, Karp PH, Zhu L, Welsh MJ, Burke MD. Small-molecule ion channels increase host defences in cystic fibrosis airway epithelia. Nature 2019; 567:405-408. [PMID: 30867598 PMCID: PMC6492938 DOI: 10.1038/s41586-019-1018-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/11/2019] [Indexed: 01/10/2023]
Abstract
Loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) compromise epithelial HCO3− and Cl− secretion, reduce airway surface liquid (ASL) pH, and impair respiratory host defenses in people with cystic fibrosis (CF) 1–3. Here we report that apical addition of an unselective ion channel-forming small molecule, amphotericin B (AmB), restored HCO3− secretion and increased ASL pH in cultured human CF airway epithelia. These effects required the basolateral Na+/K+ ATPase, indicating that apical AmB channels functionally interfaced with this driver of anion secretion. AmB also restored ASL pH, viscosity, and antibacterial activity in primary cultures of airway epithelia from people with CF caused by different mutations, including ones that yield no CFTR, and increased ASL pH in CFTR-null pigs in vivo. Thus, unselective small molecule ion channels can restore CF airway host defenses via a mechanism that is CFTR-independent and therefore genotype-independent.
Collapse
Affiliation(s)
- Katrina A Muraglia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rajeev S Chorghade
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bo Ram Kim
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiao Xiao Tang
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Viral S Shah
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Anthony S Grillo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Page N Daniels
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander G Cioffi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Philip H Karp
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lingyang Zhu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael J Welsh
- Department of Internal Medicine and HHMI, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Martin D Burke
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA. .,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
33
|
Valkenier H, Akrawi O, Jurček P, Sleziaková K, Lízal T, Bartik K, Šindelář V. Fluorinated Bambusurils as Highly Effective and Selective Transmembrane Cl−/HCO3− Antiporters. Chem 2019. [DOI: 10.1016/j.chempr.2018.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
34
|
Yu XH, Hong XQ, Chen WH. Fluorinated bisbenzimidazoles: a new class of drug-like anion transporters with chloride-mediated, cell apoptosis-inducing activity. Org Biomol Chem 2019; 17:1558-1571. [DOI: 10.1039/c8ob03036g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorinated bisbenzimidazoles were synthesized as a new class of drug-like anion transporters with chloride-mediated, cell apoptosis-inducing activity.
Collapse
Affiliation(s)
- Xi-Hui Yu
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xiao-Qiao Hong
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
35
|
Ravi A, Krishnarao PS, Shumilova TA, Khrustalev VN, Rüffer T, Lang H, Kataev EA. Cation Molecular Exchanger Based on a Conformational Hinge. Org Lett 2018; 20:6211-6214. [DOI: 10.1021/acs.orglett.8b02687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anil Ravi
- Institute of Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | | | - Tatiana A. Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Victor N. Khrustalev
- National Research Center Kurchatov Institute, Acad Kurchatov Square 1, 123182 Moscow, Russian Federation
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay Street 6, 117198 Moscow, Russian Federation
| | - Tobias Rüffer
- Institute of Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Heinrich Lang
- Institute of Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Evgeny A. Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
36
|
Yang YD, Sessler JL, Gong HY. Flexible imidazolium macrocycles: building blocks for anion-induced self-assembly. Chem Commun (Camb) 2018; 53:9684-9696. [PMID: 28766599 DOI: 10.1039/c7cc04661h] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This feature article summarises recent contributions of the authors in the area of anion-induced supramolecular self-assembly. It is based on the chemistry of a set of tetracationic imidazolium macrocycles, specifically the so-called 'Texas-sized' molecular box, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene) (14+), and its congeners, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,2-dimethylenebenzene) (24+), cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,3-dimethylenebenzene) (34+), and cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](2,6-dimethylenepyridine) (44+). These systems collectively have been demonstrated as being versatile building blocks that interact with organic carboxylate or sulfonate anions, as well as substrates (e.g., neutral molecules or metal cations). Most work to date has been carried out with 14+, a system that has been found to support the construction of a number of stimuli responsive self-assembled ensembles. This macrocycle and others of the 'Texas-sized' box family also show the potential to react as carbene precursors and to undergo post-synthetic modification (PSM) to produce new functional macrocycles, such as trans- and cis-cyclo[2]((Z)-N-(2-((6-(1H-imidazol-1-yl)pyridin-2-yl)amino)vinyl)formamide)[2](1,4-bismethylbenzene) (52+ and 62+, respectively). On the basis of the work reviewed in this Feature article, we propose that the imidazolium macrocycles 14+-44+ can be considered as useful tools for the construction of ensembles with environmentally responsive features, including control over self-assembly and an ability to undergo precursor-specific PSM.
Collapse
Affiliation(s)
- Yu-Dong Yang
- College of Chemistry, Beijing Normal University, Xinjiekouwaidajie 19, Beijing, 100875, P. R. China.
| | | | | |
Collapse
|
37
|
Li Z, Yu XH, Chen Y, Yuan DQ, Chen WH. Synthesis, Anion Recognition, and Transmembrane Anionophoric Activity of Tripodal Diaminocholoyl Conjugates. J Org Chem 2017; 82:13368-13375. [DOI: 10.1021/acs.joc.7b02447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Zhi Li
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xi-Hui Yu
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yun Chen
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| | - De-Qi Yuan
- Faculty
of Pharmaceutical Sciences, Kobe Gakuin University, Minatojima 1-1-3, Chuo-ku, Kobe 650-8586, Japan
| | - Wen-Hua Chen
- Guangdong
Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical
Sciences, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
38
|
Miao W, Dai E, Sheng W, Yu C, Hao E, Liu W, Wei Y, Jiao L. Direct Synthesis of Dipyrrolyldipyrrins from SNAr Reaction on 1,9-Dihalodipyrrins with Pyrroles and Their NIR Fluorescence “Turn-On” Response to Zn2+. Org Lett 2017; 19:6244-6247. [DOI: 10.1021/acs.orglett.7b03206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Miao
- Laboratory
of Functional Molecular Solids, Ministry of Education; School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - En Dai
- Laboratory
of Functional Molecular Solids, Ministry of Education; School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Wanle Sheng
- Laboratory
of Functional Molecular Solids, Ministry of Education; School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Changjiang Yu
- Laboratory
of Functional Molecular Solids, Ministry of Education; School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- Laboratory
of Functional Molecular Solids, Ministry of Education; School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Wanxiao Liu
- Laboratory
of Functional Molecular Solids, Ministry of Education; School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yun Wei
- Laboratory
of Functional Molecular Solids, Ministry of Education; School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- Laboratory
of Functional Molecular Solids, Ministry of Education; School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
39
|
Cova TF, Nunes SC, Valente AJ, Pinho e Melo TM, Pais AA. Properties and patterns in anion-receptors: A closer look at bambusurils. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Abstract
Synthetic pyrrole-based anion receptors date back to the 1990s. They have been extensively developed in the context of macrocyclic systems as expanded porphyrins and calixpyrroles, and related systems. The chemistry of open-chain pyrrolic systems is, in many respects, no less venerable. It also has more direct analogy to naturally occurring pyrrole-based anion binding motifs. However, it has not been the subject of a comprehensive review. Presented herein is a summary of efforts devoted to the creation of de novo pyrrole-based receptors, as well as the anion recognition chemistry of naturally occurring pyrrolic systems as prodigiosins and their synthetic analogues.
Collapse
|
41
|
|
42
|
Li Z, Chen Y, Yuan DQ, Chen WH. Synthesis of a dimeric 3α-hydroxy-7α,12α-diamino-5β-cholan-24-oate conjugate and its derivatives, and the effect of lipophilicity on their anion transport efficacy. Org Biomol Chem 2017; 15:2831-2840. [DOI: 10.1039/c7ob00289k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A dimeric 3α-hydroxy-7α,12α-diamino-5β-cholan-24-oate conjugate and its derivatives were synthesized, and lipophilicity was found to significantly affect their anion transport efficacy.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Yun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - De-Qi Yuan
- Faculty of Pharmaceutical Sciences
- Kobe Gakuin University
- Kobe 650-8586
- Japan
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
43
|
Clarke HJ, Howe ENW, Wu X, Sommer F, Yano M, Light ME, Kubik S, Gale PA. Transmembrane Fluoride Transport: Direct Measurement and Selectivity Studies. J Am Chem Soc 2016; 138:16515-16522. [PMID: 27998094 DOI: 10.1021/jacs.6b10694] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluoride has been overlooked as a target in the development of synthetic anion transporters despite natural fluoride transport channels being recently discovered. In this paper we report the direct measurement of fluoride transport across lipid bilayers facilitated by a series of strapped calix[4]pyrroles and show that these compounds facilitate transport via an electrogenic mechanism (determined using valinomycin and monensin coupled transport assays and an additional osmotic response assay). An HPTS transport assay was used to quantify this electrogenic process and assess the interference of naturally occurring fatty acids with the transport process and Cl- over H+/OH- transport selectivity.
Collapse
Affiliation(s)
- Harriet J Clarke
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Ethan N W Howe
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Xin Wu
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Fabian Sommer
- Department of Chemistry-Organic Chemistry, Kaiserslautern University of Technology , Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Masafumi Yano
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Mark E Light
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Stefan Kubik
- Department of Chemistry-Organic Chemistry, Kaiserslautern University of Technology , Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| | - Philip A Gale
- Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|
44
|
Roy A, Saha D, Mukherjee A, Talukdar P. One-Pot Synthesis and Transmembrane Chloride Transport Properties of C3-Symmetric Benzoxazine Urea. Org Lett 2016; 18:5864-5867. [DOI: 10.1021/acs.orglett.6b02940] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arundhati Roy
- Department
of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune, 411008 Maharashtra, India
| | - Debasis Saha
- Department
of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune, 411008 Maharashtra, India
| | - Arnab Mukherjee
- Department
of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune, 411008 Maharashtra, India
| | - Pinaki Talukdar
- Department
of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha
Road, Pashan, Pune, 411008 Maharashtra, India
| |
Collapse
|
45
|
Li J, Zhang Q, Yin J, Yu C, Cheng K, Wei Y, Hao E, Jiao L. Metal-Free and Versatile Synthetic Routes to Natural and Synthetic Prodiginines from Boron Dipyrrin. Org Lett 2016; 18:5696-5699. [DOI: 10.1021/acs.orglett.6b02924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Li
- Laboratory
of Functional
Molecular Solids, Ministry of Education; School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241000, China
| | - Qian Zhang
- Laboratory
of Functional
Molecular Solids, Ministry of Education; School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241000, China
| | - Jian Yin
- Laboratory
of Functional
Molecular Solids, Ministry of Education; School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241000, China
| | - Changjiang Yu
- Laboratory
of Functional
Molecular Solids, Ministry of Education; School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241000, China
| | - Kai Cheng
- Laboratory
of Functional
Molecular Solids, Ministry of Education; School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241000, China
| | - Yun Wei
- Laboratory
of Functional
Molecular Solids, Ministry of Education; School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- Laboratory
of Functional
Molecular Solids, Ministry of Education; School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- Laboratory
of Functional
Molecular Solids, Ministry of Education; School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
46
|
Urso K, Charles JF, Shull GE, Aliprantis AO, Balestrieri B. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans. PLoS One 2016; 11:e0158893. [PMID: 27391897 PMCID: PMC4938408 DOI: 10.1371/journal.pone.0158893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
Anion exchanger 2 (Ae2; gene symbol, Slc4a2) is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans) and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated.
Collapse
Affiliation(s)
- Katia Urso
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Julia F. Charles
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary E. Shull
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Antonios O. Aliprantis
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara Balestrieri
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s, Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Howe ENW, Busschaert N, Wu X, Berry SN, Ho J, Light ME, Czech DD, Klein HA, Kitchen JA, Gale PA. pH-Regulated Nonelectrogenic Anion Transport by Phenylthiosemicarbazones. J Am Chem Soc 2016; 138:8301-8. [PMID: 27299473 DOI: 10.1021/jacs.6b04656] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gated ion transport across biological membranes is an intrinsic process regulated by protein channels. Synthetic anion carriers (anionophores) have potential applications in biological research; however, previously reported examples are mostly nonspecific, capable of mediating both electrogenic and electroneutral (nonelectrogenic) transport processes. Here we show the transmembrane Cl(-) transport studies of synthetic phenylthiosemicarbazones mimicking the function of acid-sensing (proton-gated) ion channels. These anionophores have remarkable pH-switchable transport properties with up to 640-fold increase in transport efficacy on going from pH 7.2 to 4.0. This "gated" process is triggered by protonation of the imino nitrogen and concomitant conformational change of the anion-binding thiourea moiety from anti to syn. By using a combination of two cationophore-coupled transport assays, with either monensin or valinomycin, we have elucidated the fundamental transport mechanism of phenylthiosemicarbazones which is shown to be nonelectrogenic, inseparable H(+)/Cl(-) cotransport. This study demonstrates the first examples of pH-switchable nonelectrogenic anion transporters.
Collapse
Affiliation(s)
- Ethan N W Howe
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | | | - Xin Wu
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | - Stuart N Berry
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | - Junming Ho
- Institute of High Performance Computing, Agency for Science Technology and Research , 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632
| | - Mark E Light
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | - Dawid D Czech
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | - Harry A Klein
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| | | | - Philip A Gale
- Chemistry, University of Southampton , Southampton, SO17 1BJ, U.K
| |
Collapse
|
48
|
Ghorai A, Achari B, Chattopadhyay P. Self-assembly of cyclic peptides and peptidomimetic macrocycles: linking structure with function. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Berry SN, Busschaert N, Frankling CL, Salter D, Gale PA. Aromatic isophthalamides aggregate in lipid bilayers: evidence for a cooperative transport mechanism. Org Biomol Chem 2016; 13:3136-43. [PMID: 25633557 DOI: 10.1039/c4ob02631d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The synthesis and anion transport properties of a series of transmembrane anion transporters based on an isophthalamide scaffold with phenyl, naphthyl or anthracenyl central rings are reported. Anion transport studies using POPC vesicles, showed that the compounds have Hill coefficients >1. This is indicative of higher order complex formation, evidence that leads us to suggest that the compounds are not functioning solely as mobile carriers but rather that a cooperative transport mechanism is being observed. Fluorescence spectroscopy was used to show that the compounds aggregate in the phospholipid bilayer, which provides evidence that these compounds function as a self-assembled anion-conducting aggregate.
Collapse
Affiliation(s)
- Stuart N Berry
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|
50
|
Langton MJ, Serpell CJ, Beer PD. Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective. Angew Chem Int Ed Engl 2016; 55:1974-87. [PMID: 26612067 PMCID: PMC4755225 DOI: 10.1002/anie.201506589] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 12/22/2022]
Abstract
The recognition of anions in water remains a key challenge in modern supramolecular chemistry, and is essential if proposed applications in biological, medical, and environmental arenas that typically require aqueous conditions are to be achieved. However, synthetic anion receptors that operate in water have, in general, been the exception rather than the norm to date. Nevertheless, a significant step change towards routinely conducting anion recognition in water has been achieved in the past few years, and this Review highlights these approaches, with particular focus on controlling and using the hydrophobic effect, as well as more exotic interactions such as C-H hydrogen bonding and halogen bonding. We also look beyond the field of small-molecule recognition into the macromolecular domain, covering recent advances in anion recognition based on biomolecules, polymers, and nanoparticles.
Collapse
Affiliation(s)
- Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Serpell
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK.
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|