1
|
Duran J, Rodríguez P, Vermeer W, Companyó X. Organocatalytic Asymmetric Allylic Benzylborylation via Fluoride-Assisted Catalytic Generation of α-Boryl Carbanionic Intermediates. Org Lett 2024; 26:8394-8399. [PMID: 39301847 PMCID: PMC11459515 DOI: 10.1021/acs.orglett.4c03242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Herein we describe the organocatalytic asymmetric allylic benzylborylation of allyl fluorides with α-silyl benzylboronic esters. The catalytic protocol leverages the singular features of fluoride as an unconventional leaving group, enabling the catalytic generation of reactive α-boryl carbanion species through desilylative activation. It allows the construction of a wide set of homoallylic benzylated organoboronates bearing two contiguous stereocenters. The chiral boronate installed in the products serves as a synthetic lynchpin to construct complex chemical architectures in a stereospecific manner.
Collapse
Affiliation(s)
- Jordi Duran
- Department of Inorganic and
Organic Chemistry, Section of Organic Chemistry, University of Barcelona, carrer Martí i Franquès 1, 08028 Barcelona, Spain
| | - Paula Rodríguez
- Department of Inorganic and
Organic Chemistry, Section of Organic Chemistry, University of Barcelona, carrer Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ward Vermeer
- Department of Inorganic and
Organic Chemistry, Section of Organic Chemistry, University of Barcelona, carrer Martí i Franquès 1, 08028 Barcelona, Spain
| | - Xavier Companyó
- Department of Inorganic and
Organic Chemistry, Section of Organic Chemistry, University of Barcelona, carrer Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Cai R, Zou P, Zhang Y, Chen Y. Chemoselective Synthesis of α-Tertiary Hydroxy Oximes via Photochemical 1,3-Boronate Rearrangement. Org Lett 2024; 26:7795-7799. [PMID: 39250595 DOI: 10.1021/acs.orglett.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Tertiary alcohols with adjacent nucleophilic labile groups are prevalent in bioactive molecules but are challenging to synthesize. Herein we introduce a direct, protecting group-free method to access α-tertiary hydroxy oximes via photochemical 1,3-boronate rearrangement. This reaction delivers high yields (up to 94%) using readily available boronic acids, is scalable to gram quantities, and allows for further derivatization to other nitrogen-containing molecules.
Collapse
Affiliation(s)
- Ruijing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Peng Zou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yixin Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiyun Chen
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Lei Y, Kong Y, Rong ZQ, Zhao W. Asymmetric dihydroboration of allenes enabled by ligand relay catalysis. Nat Commun 2024; 15:8186. [PMID: 39294125 PMCID: PMC11411108 DOI: 10.1038/s41467-024-51774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
Catalytic asymmetric hydroboration of unsaturated bonds has been recognized as the most straightforward method for the construction of chiral organoboron compounds. Although catalytic asymmetric hydroboration of alkenes has been well-developed, enantioselective hydroboration of allenes still remains rare probably due to the challenges in controlling the enantio-, stereo-, and regioselectivity. Additionally, the hydroboration products might go through over-borohydride, making the catalytic asymmetric dihydroboration of allenes challenging. Here, we report a cobalt-catalyzed asymmetric dihydroboration of allenes using a ligand relay strategy with two simple ligands. This protocol shows excellent enantio-, stereo-, and regioselectivity with positive functional group compatibilities in the construction of chiral 1,4-diboronate products. The applications of this reaction are demonstrated by various product derivatizations, gram-scale reactions, and the preparation of artigenin analogues. Mechanistic studies indicate that the achiral ligand controls the first hydroboration of allenes, and the chiral oxazoline iminopyridine ligand is responsible for the subsequent isomerization and asymmetric hydroboration.
Collapse
Affiliation(s)
- Yaqin Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Yu Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, China.
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China.
| |
Collapse
|
4
|
Tran MK, Ready JM. Chemoselective and Stereoselective Allylation of Bis(alkenyl)boronates. Angew Chem Int Ed Engl 2024; 63:e202407824. [PMID: 38781007 PMCID: PMC11347121 DOI: 10.1002/anie.202407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Bis(alkenyl)boronates react with optically active Ir(π-allyl) species in a process that involves allylation of the more substituted olefin and 1,2-metalate shift of the less substituted olefin. The method constructs valuable enantioenriched tertiary allylic boronic esters with high chemoselectivity, enantioselectivity and diastereoselectivity. Allylic functionalization reactions transform the 1,3-stereodiad to 1,5- and 1,6-stereochemical relationships.
Collapse
Affiliation(s)
- Minh-Khoa Tran
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, TX 75390-0938 (USA)
| | - Joseph M. Ready
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, TX 75390-0938 (USA)
| |
Collapse
|
5
|
Liu Q, Dong G. Carbenoids with Sulfinate as Nucleofuge for Matteson-Type Homologation: Direct Insertion of Oxygen- and Nitrogen-Substituted Units into Carbon-Boron Bonds. Angew Chem Int Ed Engl 2024:e202411980. [PMID: 39212603 DOI: 10.1002/anie.202411980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Carbenoid insertion into boronate carbon-boron bonds, namely the Matteson-type homologation, has been recognized as a powerful tool for constructing carbon-carbon bonds. However, some limitations and inconvenience still exist with the carbenoids currently employed, such as the use of highly cryogenic and basic conditions. Herein, we report a new class of stable carbenoids with sulfinate as nucleofuge for Matteson-type homologations, which directly introduce O- and N-substituted methylenes into carbon-boron bonds. Enabled by oxazaborolidines as the boronic substrates, the reaction is operatable at 0 °C or room temperature with weaker bases. Broad functional groups, including acidic C-H bonds, can be tolerated. The synthetic utility of this method has been demonstrated in the gram-scale synthesis and iterative insertion of various carbenoids.
Collapse
Affiliation(s)
- Qianyi Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States
| |
Collapse
|
6
|
Huang H, Yu ZY, Han LY, Wu YQ, Jiang L, Li QZ, Huang W, Han B, Li JL. N-Heterocyclic carbene catalytic 1,2-boron migrative acylation accelerated by photocatalysis. SCIENCE ADVANCES 2024; 10:eadn8401. [PMID: 39047096 PMCID: PMC11268412 DOI: 10.1126/sciadv.adn8401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The transformation of organoboron compounds plays an important role in synthetic chemistry, and recent advancements in boron-migration reactions have garnered considerable attention. Here, we report an unprecedented 1,2-boron migrative acylation upon photocatalysis-facilitated N-heterocyclic carbene catalysis. The design of a redox-active boronic ester substrate, serving as an excellent β-boron radical precursor, is the linchpin to the success of this chemistry. With the established protocol, a wide spectrum of β-boryl ketones has been rapidly synthesized, which could further undergo various C─B bond transformations to give multifunctionalized products. The robustness of this catalytic strategy is underscored by its successful application in late-stage modification of drug-derived molecules and natural products. Preliminary mechanistic investigations, including several control experiments, photochemistry measurements, and computational studies, shed light on the catalytic radical reaction mechanism.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhao-Yuan Yu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu-Yao Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi-Qi Wu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
7
|
Meng X, Lan S, Chen T, Luo H, Zhu L, Chen N, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of Acylboronates: BMIDA as the Privileged Directing Group. J Am Chem Soc 2024; 146:20357-20369. [PMID: 38869937 DOI: 10.1021/jacs.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.
Collapse
Affiliation(s)
- Xiangjian Meng
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350007, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lixuan Zhu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Nanchu Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
8
|
Mendel M, Karl TM, Hamm J, Kaldas SJ, Sperger T, Mondal B, Schoenebeck F. Dynamic stereomutation of vinylcyclopropanes with metalloradicals. Nature 2024; 631:80-86. [PMID: 38898284 PMCID: PMC11222138 DOI: 10.1038/s41586-024-07555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
The ever increasing demands for greater sustainability and lower energy usage in chemical processes call for fundamentally new approaches and reactivity principles. In this context, the pronounced prevalence of odd-oxidation states in less precious metals bears untapped potential for fundamentally distinct reactivity modes via metalloradical catalysis1-3. Contrary to the well-established reactivity paradigm that organic free radicals, upon addition to a vinylcyclopropane, lead to rapid ring opening under strain release-a transformation that serves widely as a mechanistic probe (radical clock)4 for the intermediacy of radicals5-we herein show that a metal-based radical, that is, a Ni(I) metalloradical, triggers reversible cis/trans isomerization instead of opening. The isomerization proceeds under chiral inversion and, depending on the substitution pattern, occurs at room temperature in less than 5 min, requiring solely the addition of the non-precious catalyst. Our combined computational and experimental mechanistic studies support metalloradical catalysis as origin of this profound reactivity, rationalize the observed stereoinversion and reveal key reactivity features of the process, including its reversibility. These insights enabled the iterative thermodynamic enrichment of enantiopure cis/trans mixtures towards a single diastereomer through multiple Ni(I) catalysis rounds and also extensions to divinylcyclopropanes, which constitute strategic motifs in natural product- and total syntheses6. While the trans-isomer usually requires heating at approximately 200 °C to trigger thermal isomerization under racemization to cis-divinylcyclopropane, which then undergoes facile Cope-type rearrangement, the analogous contra-thermodynamic process is herein shown to proceed under Ni(I) metalloradical catalysis under mild conditions without any loss of stereochemical integrity, enabling a mild and stereochemically pure access to seven-membered rings, fused ring systems and spirocycles.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Teresa M Karl
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Jegor Hamm
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Sherif J Kaldas
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Bhaskar Mondal
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
9
|
Kojima Y, Nishii Y, Hirano K. Asymmetric Synthesis of SCF 3-Substituted Alkylboronates by Copper-Catalyzed Hydroboration of 1-Trifluoromethylthioalkenes. Angew Chem Int Ed Engl 2024; 63:e202403337. [PMID: 38472112 DOI: 10.1002/anie.202403337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
A synthetic method for preparation of optically active trifluoromethylthio (SCF3) compounds by a copper-catalyzed regio- and enantioselective hydroboration of 1-trifluoromethylthioalkenes with H-Bpin has been developed. The enantioselective hydrocupration of an in situ generated CuH species and subsequent boration reaction generate a chiral SCF3-containing alkylboronate, of which Bpin moiety can be further transformed to deliver various optically active SCF3 molecules. Computational studies suggest that the SCF3 group successfully controls the regioselectivity in the reaction.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Iwamoto T, Mitsubo T, Sakajiri K, Ishii Y. Vinylidene rearrangements of internal borylalkynes via 1,2-boryl migration. Dalton Trans 2024; 53:9715-9723. [PMID: 38804850 DOI: 10.1039/d4dt01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Vinylidene rearrangement of alkynes is a well-established and powerful method for alkyne transformations, while use of borylalkynes has remained largely unexplored. This paper describes vinylidene rearrangements of internal borylalkynes using a cationic ruthenium complex. This rearrangement is applicable to alkynes with both tri-(B(pin), B(dan)) and tetracoordinate (B(mida)) boryl groups, and the reaction rate is dramatically affected by the Lewis acidity of the boryl group. Mechanistic study revealed that the rearrangement proceeds via 1,2-boryl migration regardless of the coordination number of the boron center. The migration mode was elucidated by theoretical calculations to indicate that the migration of the tricoordinate boryl groups is an electrophilic process in contrast to the previous vinylidene rearrangements of internal alkynes with two carbon substituents.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Takuya Mitsubo
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Kosuke Sakajiri
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| |
Collapse
|
11
|
Xu MY, Jiang WT, Xia MZ, An ZL, Xie XY, Xiao B. Orthogonal sp 3-Ge/B Bimetallic Modules: Enantioselective Construction and Enantiospecific Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202317284. [PMID: 38342760 DOI: 10.1002/anie.202317284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In this study, a series of enantioenriched sp3-Ge/B bimetallic modules were successfully synthesized via an enantioselective copper-catalyzed hydroboration of carbagermatrane (Ge)-containing alkenes. Orthogonal cross-coupling selectivity under different Pd-catalyzed conditions was achieved in an enantiospecific manner. Notably, the chiral secondary Ge exhibited a remarkable transmetallation ability prior to primary or secondary Bpin. The effectiveness of this Ge/B bimetallic strategy was further demonstrated through the development of new functional small molecules with Aggregation-Induced Emission (AIE) and Circularly Polarized Luminescence (CPL) performance. This represents the first successful example of synthesis of enantioenriched alkylgermanium reagents that permit enantiospecific cross-coupling reactions.
Collapse
Affiliation(s)
- Meng-Yu Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wei-Tao Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Zhi Xia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Long An
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiu-Ying Xie
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Ahrweiler E, Schoetz MD, Singh G, Bindschaedler QP, Sorroche A, Schoenebeck F. Triply Selective & Sequential Diversification at C sp 3: Expansion of Alkyl Germane Reactivity for C-C & C-Heteroatom Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202401545. [PMID: 38386517 DOI: 10.1002/anie.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
We report the triply selective and sequential diversification of a single Csp 3 carbon carrying Cl, Bpin and GeEt3 for the modular and programmable construction of sp3-rich molecules. Various functionalizations of Csp 3-Cl and Csp 3-BPin (e.g. alkylation, arylation, homologation, amination, hydroxylation) were tolerated by the Csp 3-GeEt3 group. Moreover, the methodological repertoire of alkyl germane functionalization was significantly expanded beyond the hitherto known Giese addition and arylation to alkynylation, alkenylation, cyanation, halogenation, azidation, C-S bond formation as well as the first demonstration of stereo-selective functionalization of a Csp 3-[Ge] bond.
Collapse
Affiliation(s)
- Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Gurdeep Singh
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Quentin P Bindschaedler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Alba Sorroche
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| |
Collapse
|
13
|
Liashuk OS, Ryzhov IA, Hryshchuk OV, Volovenko YM, Grygorenko OO. [3+2] Cycloaddition of Alkynyl Boronates and in situ Generated Azomethine Ylide. Chemistry 2024; 30:e202303504. [PMID: 38059680 DOI: 10.1002/chem.202303504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Scalable [3+2] cycloaddition of alkynyl boronates and in situ generated unstabilized azomethine ylide is reported for the first time. The selective formation of either 1 : 1 or 1 : 2 cycloaddition products was achieved by carefully optimizing the reaction conditions, mainly by controlling the reactant stoichiometry, catalyst loading, and internal temperature. The developed protocol tolerated many valuable functional groups, including TMS, protected alcohol (as ether or THP derivatives), or aldehyde (as acetal). Further common C-C and C-heteroatom bond-forming reactions, as well as scaled-up procedures demonstrate the utility of the prepared compounds as building blocks for organic synthesis and drug discovery.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Ihor A Ryzhov
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr V Hryshchuk
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Yulian M Volovenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
14
|
Ning PF, Wei Y, Chen XY, Yang YF, Gao FC, Hong K. A General Method to Access Sterically Encumbered Geminal Bis(boronates) via Formal Umpolung Transformation of Terminal Diboron Compounds. Angew Chem Int Ed Engl 2024; 63:e202315232. [PMID: 38059757 DOI: 10.1002/anie.202315232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
General methods for the preparation of geminal bis(boronates) are of great interest due to their widespread applications in organic synthesis. While the terminal gem-diboron compounds are readily accessible, the construction of the sterically encumbered, internal analogues has remained a prominent challenge. Herein, we report a formal umpolung strategy to access these valuable building blocks. The readily available 1,1-diborylalkanes were first converted into the corresponding α-halogenated derivatives, which then serve as electrophilic components, undergoing a formal substitution with a diverse array of nucleophiles to form a series of C-C, C-O, C-S, and C-N bonds. This protocol features good tolerance to steric hindrance and a wide variety of functional groups and heterocycles. Notably, this strategy can also be extended to the synthesis of diaryl and terminal gem-diboron compounds, therefore providing a general approach to various types of geminal bis(boronates).
Collapse
Affiliation(s)
- Peng-Fei Ning
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Feng-Chen Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
15
|
Yang Y, Chen J, Shi Y, Liu P, Feng Y, Peng Q, Xu S. Catalytic Enantioselective Primary C-H Borylation for Acyclic All-Carbon Quaternary Stereocenters. J Am Chem Soc 2024; 146:1635-1643. [PMID: 38182551 DOI: 10.1021/jacs.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Creating a perfect catalyst to operate enzyme-like chiral recognition has been a long-sought aim. A challenging example in this context is constructing acyclic all-carbon quaternary stereogenic centers by transition metal-catalyzed enantioselective C-H activation. We now report highly enantioselective iridium-catalyzed primary C-H borylation of α-all-carbon substituted 2,2-dimethyl amides enabled by a tailor-made chiral bidentate boryl ligand (CBL). The success of the current transformation is attributed to the CBL/iridium catalyst, which has a confined chiral pocket. This protocol provides a diverse array of acyclic all-carbon quaternary stereocenters with excellent enantiocontrol and distinct structural features. Computational study reveals that steric hindrance of CBL could regulate the type of dominant orbital interaction between the catalyst and substrate, which is crucial to conferring high chiral induction.
Collapse
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jingyao Chen
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjia Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuxiang Feng
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
Fang T, Wang L, Wu M, Qi X, Liu C. Diborodichloromethane as Versatile Reagent for Chemodivergent Synthesis of gem-Diborylalkanes. Angew Chem Int Ed Engl 2024; 63:e202315227. [PMID: 38059834 DOI: 10.1002/anie.202315227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
The development of boron reagents is crucial for synthetic chemistry. Herein, we present a scalable and practical synthesis of diborodichloromethane (DBDCM) through the reaction of trichloromethyllithium with bis(pinacolato)diboron (B2 pin2 ). The resulting DBDCM reagent serves as a basic synthetic unit for the construction of various structurally diverse gem-diborylalkanes through controllable C-Cl functionalizations. Moreover, we have developed consecutive tetra-functionalizations of DBDCM for the construction of diverse tertiary and quaternary carbon containing molecules. The use of isotopically enriched 13 C-chloroform and 10 B2 pin2 enables the synthesis of isotopically enriched 13 C-DBDCM and 10 B-DBDCM reagents, which are beneficial for the convenient synthesis of carbon-13 and boron-10 molecules.
Collapse
Affiliation(s)
- Tongchang Fang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Liwei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Miaomiao Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| |
Collapse
|
17
|
Valdés-Maqueda Á, López L, Plaza M, Valdés C. Synthesis of substituted benzylboronates by light promoted homologation of boronic acids with N-sulfonylhydrazones. Chem Sci 2023; 14:13765-13775. [PMID: 38075646 PMCID: PMC10699570 DOI: 10.1039/d3sc05678c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 07/30/2024] Open
Abstract
The synthesis of benzylboronates by photochemical homologation of boronic acids with N-tosylhydrazones under basic conditions is described. The reaction involves the photolysis of the N-tosylhydrazone salt to give a diazoalkane followed by the geminal carboborylation of the diazoalkane. Under the mild reaction conditions, the protodeboronation of the unstable benzylboronic acid is circumvented and the pinacolboronates can be isolated after reaction of the benzylboronic acid with pinacol. The metholodogy has been applied to the reactions of alkylboronic acids with N-tosylhydrazones of aromatic aldehydes and ketones, and to the reactions of arylboronic acids with N-tosylhydrazones of aliphatic ketones. Moreover, the employment of the DBU/DIPEA bases combination allows for homogeneous reactions which have been adapted to photochemical continuous flow conditions. Additionally, the synthetic versatility of boronates enables their further transformation via Csp3-C or Csp3-X bond forming reactions converting this methodology into a novel method for the geminal difunctionalization of carbonyls via N-tosylhydrazones.
Collapse
Affiliation(s)
- Álvaro Valdés-Maqueda
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
18
|
Zhao T, Xu H, Tian Y, Tang X, Dang Y, Ge S, Ma J, Zhang F. Copper-Catalyzed Regio- and Enantioselective Hydroboration of Difluoroalkyl-Substituted Internal Alkenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304194. [PMID: 37880870 PMCID: PMC10724385 DOI: 10.1002/advs.202304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Catalytic asymmetric hydroboration of fluoroalkyl-substituted alkenes is a straightforward approach to access chiral small molecules possessing both fluorine and boron atoms. However, enantioselective hydroboration of fluoroalkyl-substituted alkenes without fluorine elimination has been a long-standing challenge in this field. Herein, a copper-catalyzed hydroboration of difluoroalkyl-substituted internal alkenes with high levels of regio- and enantioselectivities is reported. The native carbonyl directing group, copper hydride system, and bisphosphine ligand play crucial roles in suppressing the undesired fluoride elimination. This atom-economic protocol provides a practical synthetic platform to obtain a wide scope of enantioenriched secondary boronates bearing the difluoromethylene moieties under mild conditions. Synthetic applications including functionalization of biorelevant molecules, versatile functional group interconversions, and preparation of difluoroalkylated Terfenadine derivative are also demonstrated.
Collapse
Affiliation(s)
- Tao‐Qian Zhao
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Hui Xu
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Yu‐Chen Tian
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Xiaodong Tang
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Yanfeng Dang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Shaozhong Ge
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Jun‐An Ma
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| | - Fa‐Guang Zhang
- Department of ChemistryTianjin Key Laboratory of Molecular Optoelectronic SciencesFrontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072P. R. China
| |
Collapse
|
19
|
Gao L, Liang X, He L, Li G, Chen S, Cao J, Ma J, Wang G, Li S. Base-mediated C-B bond activation of benzylic boronate for the rapid construction of β-silyl/boryl functionalized 1,1-diarylalkanes from aromatic alkenes. Chem Sci 2023; 14:11881-11889. [PMID: 37920335 PMCID: PMC10619622 DOI: 10.1039/d3sc03666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
The effect of tBuOK on the existing state of benzylic boronates in the solution phase has been investigated in detail by NMR analysis and DFT calculations. It was determined that simply using an excess of tBuOK (2.0 equivalents) can result in the full deborylation of benzylic boronates to afford free benzyl potassium species. These mechanistic insights were leveraged for the facile construction of β-silyl/boryl functionalized 1,1-diarylalkanes from aromatic alkenes via the combination of base-mediated silylboration or diborylation of aromatic alkenes and nucleophilic-type reactions with various electrophiles. Based on further machine-learning-assisted screening, the scope of electrophiles for this transformation can be generalized to the challenging aromatic heterocycles. Late-stage functionalization performed on several drug-relevant molecules generates the highly valuable 1,1-diaryl framework.
Collapse
Affiliation(s)
- Liuzhou Gao
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225009 China
| | - Xinyi Liang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Guoao Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shengda Chen
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jia Cao
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
20
|
Manna S, Paul S, Kong WY, Aich D, Sahoo R, Tantillo DJ, Panda S. Stereodivergent Zweifel Olefination and its Mechanistic Dichotomy. Angew Chem Int Ed Engl 2023; 62:e202309136. [PMID: 37495925 DOI: 10.1002/anie.202309136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Stereoselective Zweifel olefination using boronate complexes carrying two different reactive π-systems was achieved to synthesize vinyl heteroarenes and conjugated 1,3-dienes in good yield and up to 100 % stereoselectivity, which remains unexplored until now. Most importantly, we report the unprecedented formation of E vs. Z-vinyl heteroarenes for different heteroarenes under identical conditions. Density functional theory (DFT) investigations unveil the mechanistic dichotomy between olefin and heteroarene activation followed by 1,2-migration, leading to E or Z-vinyl heteroarenes respectively. We also report a previously unknown reversal of stereoselectivity by using 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an electrophile. The Zweifel olefination using a boronate complex that carries two different olefins was previously unexplored due to significant challenges associated with the site-selective activation of olefins. We have solved this problem and reported the site-selective activation of olefins for the stereoselective synthesis of 1,3-dienes.
Collapse
Affiliation(s)
- Samir Manna
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Swagata Paul
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Debasis Aich
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
21
|
Liu J, Gao S, Miliordos E, Chen M. Asymmetric Syntheses of ( Z)- or ( E)-β,γ-Unsaturated Ketones via Silane-Controlled Enantiodivergent Catalysis. J Am Chem Soc 2023; 145:19542-19553. [PMID: 37639380 PMCID: PMC11144060 DOI: 10.1021/jacs.3c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cu-catalyzed highly stereoselective and enantiodivergent syntheses of (Z)- or (E)-β,γ-unsaturated ketones from 1,3-butadienyl silanes are developed. The nature of the silyl group of the dienes has a significant impact on the stereo- and enantioselectivity of the reactions. Under the developed catalytic systems, the reactions of acyl fluorides with phenyldiemthylsilyl-substituted 1,3-diene gave (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereogenic center with excellent enantioselectivities and high Z-selectivities, where the reactions with triisopropylsilyl-substituted 1,3-butadiene formed (E)-β,γ-unsaturated ketones with high optical purities and excellent E-selectivities. The products generated from the reactions contain three functional groups with orthogonal chemical reactivities, which can undergo a variety of transformations to afford synthetically valuable intermediates.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
22
|
Xie Q, Zhang R, Dong G. Programmable Amine Synthesis via Iterative Boron Homologation. Angew Chem Int Ed Engl 2023; 62:e202307118. [PMID: 37417916 DOI: 10.1002/anie.202307118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
The value of Matteson-type reactions has been increasingly recognized for developing automated organic synthesis. However, the typical Matteson reactions almost exclusively focus on homologation of carbon units. Here, we report the detailed development of sequential insertion of nitrogen and carbon atoms into boronate C-B bonds, which provides a modular and iterative approach to access functionalized tertiary amines. A new class of nitrenoid reagents is uncovered to allow direct formation of aminoboranes from aryl or alkyl boronates via N-insertion. The one-pot N-insertion followed by controlled mono- or double-carbenoid insertion has been realized with widely available aryl boronates. The resulting aminoalkyl boronate products can undergo further homologation and various other transformations. Preliminary success on homologation of N,N-dialkylaminoboranes and sequential N- and C-insertions with alkyl boronates have also been achieved. To broaden the synthetic utility, selective removal of a benzyl or aryl substituent permits access to secondary or primary amine products. The application of this method has been demonstrated in the modular synthesis of bioactive compounds and the programmable construction of diamines and aminoethers. A plausible reaction mechanism, supported by preliminary NMR (nuclear magnetic resonance) and computational studies, is also proposed.
Collapse
Affiliation(s)
- Qiqiang Xie
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave., Chicago, IL, 60637, USA
| | - Rui Zhang
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave., Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave., Chicago, IL, 60637, USA
| |
Collapse
|
23
|
Shen HC, Popescu MV, Wang ZS, de Lescure L, Noble A, Paton RS, Aggarwal VK. Iridium-Catalyzed Asymmetric Difunctionalization of C-C σ-Bonds Enabled by Ring-Strained Boronate Complexes. J Am Chem Soc 2023. [PMID: 37471704 PMCID: PMC10401714 DOI: 10.1021/jacs.3c03248] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Enantioenriched organoboron intermediates are important building blocks in organic synthesis and drug discovery. Recently, transition metal-catalyzed enantioselective 1,2-metalate rearrangements of alkenylboronates have emerged as an attractive protocol to access these valuable reagents by installing two different carbon fragments across C═C π-bonds. Herein, we report the development of an iridium-catalyzed asymmetric allylation-induced 1,2-metalate rearrangement of bicyclo[1.1.0]butyl (BCB) boronate complexes enabled by strain release, which allows asymmetric difunctionalization of C-C σ-bonds, including dicarbonation and carboboration. This protocol provides a variety of enantioenriched three-dimensional 1,1,3-trisubstituted cyclobutane products bearing a boronic ester that can be readily derivatized. Notably, the reaction gives trans diastereoisomers that result from an anti-addition across the C-C σ-bond, which is in contrast to the syn-additions observed for reactions promoted by PdII-aryl complexes and other electrophiles in our previous works. The diastereoselectivity has been rationalized based on a combination of experimental data and density functional theory calculations, which suggest that the BCB boronate complexes are highly nucleophilic and react via early transition states with low activation barriers.
Collapse
Affiliation(s)
- Hong-Cheng Shen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Mihai V Popescu
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Ze-Shu Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Louis de Lescure
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
24
|
Ramesh Naidu V, Rafi AA, Tai CW, Bäckvall JE, Córdova A. Regio- and Stereoselective Carbon-Boron Bond Formation via Heterogeneous Palladium-Catalyzed Hydroboration of Enallenes. Chemistry 2023; 29:e202203950. [PMID: 36719323 DOI: 10.1002/chem.202203950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
A highly efficient regio- and stereoselective heterogeneous palladium-catalyzed hydroboration reaction of enallenes was developed. Nanopalladium immobilized on microcrystalline cellulose (MCC) was successfully employed as an efficient catalyst for the enallene hydroboration reaction. The nanopalladium particles were shown by HAADF-STEM to have an average size of 2.4 nm. The cellulose-supported palladium catalyst exhibits high stability and provides vinyl boron products in good to high isolated yields (up to 90 %). The nanopalladium catalyst can be efficiently recycled and it was demonstrated that the catalyst can be used in 7 runs with a maintained high yield (>80 %). The vinylboron compounds prepared from enallenes are important synthetic intermediates that can be used in various organic synthetic transformations.
Collapse
Affiliation(s)
- Veluru Ramesh Naidu
- Arrhenius Laboratory, Department of Organic University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Abdolrahim A Rafi
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| | - Jan-E Bäckvall
- Arrhenius Laboratory, Department of Organic University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| |
Collapse
|
25
|
McGettigan JE, Ready JM. Diastereoselective Alkylation of Activated Nitrogen Heterocycles with Alkenyl Boronate Complexes. Angew Chem Int Ed Engl 2023; 62:e202216961. [PMID: 36780188 PMCID: PMC10073296 DOI: 10.1002/anie.202216961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Alkenyl boronate complexes react with acylated quinolines and isoquinolines via 1,2-metalate rearrangement to give alkylated, dearomatized heterocycles in good yields, diastereoselectivities, and regioselectivities. This multi-component coupling is highly modular and can be used to access a wide scope of heterocyclic scaffolds. Chiral boronic esters made through this methodology possess high synthetic potential and can be transformed into various functional groups in one step without racemization.
Collapse
Affiliation(s)
- James E McGettigan
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-0938, USA
| | - Joseph M Ready
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-0938, USA
| |
Collapse
|
26
|
Miao X, Chen W, Lv S, Li A, Li Y, Zhang Q, Yue Y, Zhao H, Liu L, Guo S, Guo L. Stabilizing Single-Atomic Pt by Forming PtFe Bonds for Efficient Diboration of Alkynes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211790. [PMID: 36632699 DOI: 10.1002/adma.202211790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Precisely tailoring the oxidation state of single-atomic metal in heterogeneous catalysis is an efficient way to stabilize the single-atomic site and promote their activity, but realizing this approach remains a grand challenge to date. Herein, a class of stable single-atomic catalysts with well-tuned oxidation state of Pt by forming PtFe atomic bonds is reported, which are supported by defective Fe2 O3 nanosheets on reduced graphene oxide (PFARFNs). These as-synthesized materials can greatly enhance the catalytic activity, stability, and selectivity for the diboration of alkynes. The PFARFNs exhibit high conversion of 99% at 100 °C with an outstanding turnover frequency (TOF) of 545 h-1 , and a relatively high conversion of 58% at room temperature (25 °C) with a TOF of 310 h-1 , which has been hardly achieved previously. Through both experimental and theoretical investigation, it is demonstrated that the fast electron transfer from Fe to Pt in Fe-Pt-O atomic sites in PFARFNs can not only stabilize the single-atomic Pt, but also significantly improve their catalytic activity.
Collapse
Affiliation(s)
- Xiang Miao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuning Lv
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Anran Li
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Yanhong Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yonghai Yue
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Hewei Zhao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Limin Liu
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
27
|
Xie T, Chen L, Shen Z, Xu S. Simple Ether-Directed Enantioselective C(sp 3 )-H Borylation of Cyclopropanes Enabled by Iridium Catalysis. Angew Chem Int Ed Engl 2023; 62:e202300199. [PMID: 36762972 DOI: 10.1002/anie.202300199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/11/2023]
Abstract
Reported here is an efficient and simple ether-directed iridium-catalyzed enantioselective C(sp3 )-H borylation of cyclopropanes. Various functional groups were well-tolerated, affording a vast array of chiral cyclopropanes with high enantioselectivities. We also demonstrated that the turnover numbers of the current reaction could be up to 335.
Collapse
Affiliation(s)
- Tian Xie
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
28
|
Guo P, Jin H, Han J, Xu L, Li P, Zhan M. Nickel-Catalyzed Negishi Cross-Coupling of Alkyl Halides, Including Unactivated Tertiary Halides, with a Boron-Stabilized Organozinc Reagent. Org Lett 2023. [PMID: 36866526 DOI: 10.1021/acs.orglett.3c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Nickel-catalyzed cross-coupling of unactivated tertiary alkyl electrophiles with alkylmetal reagents is still a challenge. We report herein a nickel-catalyzed Negishi cross-coupling of alkyl halides, including unactivated tertiary halides, with boron-stabilized organozinc reagent BpinCH2ZnI, yielding versatile organoboron products with high functional-group tolerance. Importantly, the Bpin group was found to be indispensable for accessing the quaternary carbon center. The synthetic practicability of the prepared quaternary organoboronates was demonstrated by their conversion to other useful compounds.
Collapse
Affiliation(s)
- Panchi Guo
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Hao Jin
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jinhui Han
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China
| | - Miao Zhan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
29
|
Iterative synthesis of 1,3-polyboronic esters with high stereocontrol and application to the synthesis of bahamaolide A. Nat Chem 2023; 15:248-256. [PMID: 36424454 DOI: 10.1038/s41557-022-01087-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
Abstract
Polyketide natural products often contain common repeat motifs, for example, propionate, acetate and deoxypropionate, and so can be synthesized by iterative processes. We report here a highly efficient iterative strategy for the synthesis of polyacetates based on boronic ester homologation that does not require functional group manipulation between iterations. This process involves sequential asymmetric diboration of a terminal alkene, forming a 1,2-bis(boronic ester), followed by regio- and stereoselective homologation of the primary boronic ester with a butenyl metallated carbenoid to generate a 1,3-bis(boronic ester). Each transformation independently controls the stereochemical configuration, making the process highly versatile, and the sequence can be iterated prior to stereospecific oxidation of the 1,3-polyboronic ester to yield the 1,3-polyol. This methodology has been applied to a 14-step synthesis of the oxopolyene macrolide bahamaolide A, and the versatility of the 1,3-polyboronic esters has been demonstrated in various stereospecific transformations, leading to polyalkenes, -alkynes, -ketones and -aromatics with full stereocontrol.
Collapse
|
30
|
McDonald TR, Rousseaux SAL. Synthesis of 3-borylated cyclobutanols from epihalohydrins or epoxy alcohol derivatives. Chem Sci 2023; 14:963-969. [PMID: 36755731 PMCID: PMC9890513 DOI: 10.1039/d2sc06088d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is an increasing interest in cyclobutanes within the medicinal chemistry community. Therefore, methods to prepare cyclobutanes that contain synthetic handles for further elaboration are of interest. Herein, we report a new approach for the synthesis of 3-borylated cyclobutanols via a formal [3 + 1]-cycloaddition using readily accessible 1,1-diborylalkanes and epihalohydrins or epoxy alcohol derivatives. 1-Substituted epibromohydrin starting materials provide access to borylated cyclobutanols containing substituents at three of the four positions on the cyclobutane core, and enantioenriched epibromohydrins lead to enantioenriched cyclobutanols with high levels of enantiospecificity (>98%). Finally, derivatization studies demonstrate the synthetic utility of both the OH and Bpin handles.
Collapse
Affiliation(s)
- Tyler R. McDonald
- Department of Chemistry, University of Toronto. 80 St. George StreetTorontoONCanada
| | | |
Collapse
|
31
|
Ma B, Zhang M, Li Z, Peng J, Chen C. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
32
|
Li M, Peng GR, Yang X, Ma ZN, Xie JB. Enantio- and diastereoselective boron conjugate addition to α-alkyl α,β-unsaturated esters. Org Biomol Chem 2022; 21:53-58. [PMID: 36468637 DOI: 10.1039/d2ob01928k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We developed a copper-catalyzed enantio- and diastereoselective boron conjugate addition to α-alkyl α,β-unsaturated esters under base-free conditions. The approach showed excellent enantioselectivities (87-99% ee) and moderate to good conversions (51-99%), albeit with moderate diastereoselectivities (1 : 1-17 : 1 dr). The synthetic utility of this protocol was demonstrated.
Collapse
Affiliation(s)
- Meng Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Guang-Rui Peng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Xuan Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Zhen-Ning Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Jian-Bo Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
33
|
Dixit VA, Kulkarni A. Applications of Bond Energy‐Based Thermodynamic Analysis to the Feasibility of Unfunctionalized C−C Cross‐Coupling Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Guwahati NIPER Guwahati) Department of Pharmaceuticals Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halu-gurisuk) Changsari Kamrup 781101 Guwahati Assam India
| | - Aniket Kulkarni
- Department of Pharmacy Birla Institute of Technology and Sciences Pilani (BITS Pilani) Vidya Vihar Campus, 41 Pilani 333031 Rajasthan India
| |
Collapse
|
34
|
Nishino S, Nishii Y, Hirano K. anti-Selective synthesis of β-boryl-α-amino acid derivatives by Cu-catalysed borylamination of α,β-unsaturated esters. Chem Sci 2022; 13:14387-14394. [PMID: 36545143 PMCID: PMC9749109 DOI: 10.1039/d2sc06003e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
A copper-catalysed regio- and diastereoselective borylamination of α,β-unsaturated esters with B2pin2 and hydroxylamines has been developed to deliver acyclic β-boryl-α-amino acid derivatives with high anti-diastereoselectivity (up to >99 : 1), which is difficult to obtain by the established methods. A chiral phosphoramidite ligand also successfully induces the enantioselectivity, giving the optically active β-borylated α-amino acids. The products can be stereospecifically transformed into β-functionalised α-amino acids, which are of potent interest in medicinal chemistry.
Collapse
Affiliation(s)
- Soshi Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
35
|
Rigotti T, Bach T. Bicyclo[2.1.1]hexanes by Visible Light-Driven Intramolecular Crossed [2 + 2] Photocycloadditions. Org Lett 2022; 24:8821-8825. [PMID: 36414533 DOI: 10.1021/acs.orglett.2c03606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bicyclo[2.1.1]hexanes have become increasingly popular building blocks in medicinal chemistry as bridged scaffolds that provide unexplored chemical space. We herein report a visible light-driven approach to these compounds that relies on an intramolecular crossed [2 + 2] photocycloaddition of styrene derivatives enabled by triplet energy transfer. Bicyclo[2.1.1]hexanes were obtained in good to high yields (19 examples, 61%-quantitative yield) and allowed for further functionalizations by consecutive reactions, thereby opening different pathways to decorate the aliphatic core structure.
Collapse
Affiliation(s)
- Thomas Rigotti
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747Garching, Germany
| | - Thorsten Bach
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747Garching, Germany
| |
Collapse
|
36
|
Li B, Bunescu A, Gaunt MJ. Multicomponent synthesis of α-chloro alkylboronic esters via visible-light-mediated dual catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Kojima Y, Nishii Y, Hirano K. Ligand-Enabled Copper-Catalyzed Regio- and Stereoselective Allylboration of 1-Trifluoromethylalkenes. Org Lett 2022; 24:7450-7454. [DOI: 10.1021/acs.orglett.2c03024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Liashuk OS, Ryzhov IA, Hryshchuk OV, Vashchenko BV, Melnychuk PV, Volovenko YM, Grygorenko OO. Synthesis of 3‐Borylated Pyrrolidines by 1,3‐Dipolar Cycloaddition of Alkenyl Boronates and Azomethine Ylide. Chemistry 2022; 28:e202202117. [DOI: 10.1002/chem.202202117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr S. Liashuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Ihor A. Ryzhov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Yulian M. Volovenko
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
39
|
Xu J, He Z, Zhang J, Chen J, Huang Y. A Thioether‐Catalyzed Cross‐Coupling Reaction of Allyl Halides and Arylboronic Acids. Angew Chem Int Ed Engl 2022; 61:e202211408. [DOI: 10.1002/anie.202211408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jingwei Xu
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
- Pingshan Translational Medicine Center Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Zhiqi He
- State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jiwei Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| | - Jiean Chen
- Pingshan Translational Medicine Center Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Yong Huang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong SAR China
| |
Collapse
|
40
|
Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen‐Containing Molecules. Angew Chem Int Ed Engl 2022; 61:e202209079. [DOI: 10.1002/anie.202209079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Chiwon Hwang
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Yeosan Lee
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Minjae Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Younggyu Seo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE) Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
41
|
Ghosh S, Chakrabortty R, Kumar S, Das A, Ganesh V. Copper-Catalyzed Protoboration of 1,3-Diynes as a Platform for Iterative Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suman Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajesh Chakrabortty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shailendra Kumar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aniruddha Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
42
|
Xu J, He Z, Zhang J, Chen J, Huang Y. A Thioether‐Catalyzed Cross‐Coupling Reaction of Allyl Halides and Arylboronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jingwei Xu
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Zhiqi He
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Jiwei Zhang
- Hong Kong University of Science and Technology School of Science Department of Chemistry HONG KONG
| | - Jiean Chen
- SZBL: Shenzhen Bay Laboratory Pingshan Translational Medicine Center CHINA
| | - Yong Huang
- The Hong Kong University of Science and Technology Chemistry Clear Water Bay 00000 Hong Kong HONG KONG
| |
Collapse
|
43
|
Davis CR, Fu Y, Liu P, Ready JM. Mechanistic Basis for the Iridium-Catalyzed Enantioselective Allylation of Alkenyl Boronates. J Am Chem Soc 2022; 144:16118-16130. [PMID: 36036508 DOI: 10.1021/jacs.2c06493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iridium(phosphoramidite) complexes catalyze an enantio- and diastereoselective three-component coupling reaction of alkenyl boronic esters, organolithium reagents, and secondary allylic carbonates. The reaction proceeds through an allylation-induced 1,2-metalate shift of the alkenyl boronate to form non-adjacent stereocenters. Mechanistic investigations outline the overall catalytic cycle and reveal trends in reactivity and selectivity. Analysis of relative stereochemistry in products derived from a variety of 1,1-disubtituted alkenyl boronates provides insight into the transition state of the addition and indicates a concerted pathway. Kinetic analysis of the reaction revealed the kinetic order dependence in boronate, the catalyst, and both the slow- and fast-reacting enantiomer of allylic carbonate as well as the turnover-limiting step of the reaction. Determination of nucleophile-specific parameters N and sN for alkenyl boronate complexes enabled comparison to other classes of nucleophiles. DFT calculations indicate the addition of the alkenyl boronate to the cationic Ir(π-allyl) intermediate and the 1,2-metalate shift occur in a concerted mechanism. The stereoselectivity is determined by ligand-substrate steric repulsions and dispersion interactions in the syn addition transition state. Hammett studies supported the computational results with regard to electronic trends observed with both aryl-derived alkenyl boronates and aryl carbonates.
Collapse
Affiliation(s)
- Colton R Davis
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, United States
| |
Collapse
|
44
|
Fairchild ME, Noble A, Aggarwal VK. Diastereodivergent Synthesis of Cyclopentyl Boronic Esters Bearing Contiguous Fully Substituted Stereocenters. Angew Chem Int Ed Engl 2022; 61:e202205816. [PMID: 35639345 PMCID: PMC9542923 DOI: 10.1002/anie.202205816] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 01/02/2023]
Abstract
The synthesis of molecules bearing two or more contiguous, quaternary stereocenters is challenging, owing to the difficulty in controlling stereochemistry whilst simultaneously constructing a sterically congested motif. Herein, we report the electrophile-induced ring contractive 1,2-metallate rearrangement of 6-membered cyclic alkenyl boronate complexes for the synthesis of cyclopentyl boronic esters bearing two contiguous, fully substituted stereocenters with high levels of stereocontrol. Remarkably, simple variation of the reaction solvent enabled their diastereodivergent construction with facile access to complementary diastereomeric pairs. The utility of our methodology is demonstrated in the asymmetric total synthesis of (+)-herbertene-1,14-diol.
Collapse
Affiliation(s)
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
45
|
Fan Z, Ye M, Wang Y, Qiu J, Li W, Ma X, Yang K, Song Q. Enantioselective Copper-Catalyzed sp 2/sp 3 Diborylation of 1-Chloro-1-Trifluoromethylalkenes. ACS CENTRAL SCIENCE 2022; 8:1134-1144. [PMID: 36032759 PMCID: PMC9413839 DOI: 10.1021/acscentsci.2c00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 05/03/2023]
Abstract
Fluorine-containing organoboron compounds have emerged as novel building blocks in chemical synthesis; among them, fluorinated sp2/sp3 diborylated compounds are particularly appealing, since they might undergo chemoselective and diversified transformations of different C-B bonds with fluorinated functionality, thus bringing versatility and complexity to the eventual products. However, expedient, synthetic strategies for the construction of such fluorinated diborylative compounds are very sparse. Herein, we disclose enantioselective Cu-catalyzed sp2/sp3 diborylations of 1-chloro-1-trifluoromethylalkenes, leading to diborylated compounds bearing a gem-difluoroalkenyl moiety; most intriguingly, the new formed C-B bonds include one stereoselective and optically pure Csp3-B bond. Further transformations on the eventual products demonstrated the values of our presented strategy.
Collapse
Affiliation(s)
- Zhenwei Fan
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Mingxing Ye
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Yahao Wang
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Jian Qiu
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Wangyang Li
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Kai Yang
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key
Laboratory of Molecule Synthesis and Function Discovery, Fujian Province
University, College of Chemistry at Fuzhou
University, Fuzhou, Fujian 350108, China
- Institute
of Next Generation Matter Transformation, College of Material Sciences
Engineering, Huaqiao University, Xiamen, Fujian 361021, China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
46
|
Wang H, Han W, Noble A, Aggarwal VK. Dual Nickel/Photoredox-Catalyzed Site-Selective Cross-Coupling of 1,2-Bis-Boronic Esters Enabled by 1,2-Boron Shifts. Angew Chem Int Ed Engl 2022; 61:e202207988. [PMID: 35779000 PMCID: PMC9543306 DOI: 10.1002/anie.202207988] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Site-selective transition-metal-catalyzed mono-deboronative cross-couplings of 1,2-bis-boronic esters are valuable methods for the synthesis of functionalized organoboron compounds. However, such cross-couplings are limited to reaction of the sterically less hindered primary boronic ester. Herein, we report a nickel/photoredox-catalyzed mono-deboronative arylation of 1,2-bis-boronic esters that is selective for coupling of the more sterically hindered secondary/tertiary position. This is achieved by taking advantage of a 1,2-boron shift of primary β-boryl radicals to the thermodynamically favored secondary/tertiary radicals, which are subsequently intercepted by the nickel catalyst to enable arylation. The mild conditions are amenable to a broad range of aryl halides to give β-aryl boronic ester products in good yields and with high regioselectivity. This method also allows stereodivergent coupling of cyclic cis-1,2-bis-boronic esters to give trans-substituted products.
Collapse
Affiliation(s)
- Hui Wang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Key Laboratory of Functional Molecular Solids (Ministry of Education)Anhui Key Laboratory of Molecular Based MaterialsCollege of Chemistry and Materials ScienceAnhui Normal UniversityWuhu241002China
| | - Wangyujing Han
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
47
|
Akagawa H, Tsuchiya N, Morinaga A, Katayama Y, Sumimoto M, Nishikata T. Carboxamide-Directed Stereospecific Couplings of Chiral Tertiary Alkyl Halides with Terminal Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroki Akagawa
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Naoki Tsuchiya
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Asuka Morinaga
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Yu Katayama
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Michinori Sumimoto
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| | - Takashi Nishikata
- Graiduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
48
|
Lewis base promoted photoredox catalyzed addition of allylic radicals to Michael acceptors. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen‐Containing Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chiwon Hwang
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Yeosan Lee
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Minjae Kim
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Younggyu Seo
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Seung Hwan Cho
- Pohang University of Science and Technology (POSTECH) Chemistry San 31, HyojadongNamgu 37673 Pohang KOREA, REPUBLIC OF
| |
Collapse
|
50
|
Schiwek C, Stegbauer S, Pickl T, Bach T. Rhodium(CAAC)‐Catalyzed Arene Hydrogenation of Benzo‐fused N‐Heterocycles to Saturated Building Blocks with an all‐cis Configuration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|