1
|
Park S, Hwang JY, Shin J, Kim Y. N-Heterocyclic Carbene-Derived Carbon Disulfide Radical Ligands for Palladium Diradicals. J Am Chem Soc 2024. [PMID: 39353058 DOI: 10.1021/jacs.4c11082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
N-heterocyclic carbenes (NHCs) are recognized for their ability to stabilize various main group radicals; however, NHC-derived, sulfur-based radicals remain rare. In this study, we successfully synthesized and characterized a series of palladium diradical complexes that featured new sulfur-based radical ligands from NHC-carbon disulfide adducts. Spectroscopic and computational characterizations of the palladium complexes confirmed the open-shell singlet ground state, which resulted from the antiferromagnetic coupling of two unpaired electrons on each ligand. Proton nuclear magnetic resonance relaxometry was used to experimentally confirm the presence of these unpaired electrons. Moreover, the redox behavior of the complexes was localized on the ligand center, confirming the redox activity of the ligands. The discovery of this sulfur-based, redox-active radical ligand underscores the versatility and significance of NHC-derived radicals, thereby expanding the repertoire of radical ligands and opening new avenues for advanced material and catalytic systems.
Collapse
Affiliation(s)
- Subin Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Yoon Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongcheol Shin
- Department of Chemistry, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Youngsuk Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
- Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Ansari MA, Deka R, Thapper A, Orthaber A. Expanding the Landscape of Phosphorous-Based Open Shell Species: Stable Mono-, Di-, and Trianionic Radicals Based on a Contorted Triphosphaalkene. Angew Chem Int Ed Engl 2024:e202415684. [PMID: 39259433 DOI: 10.1002/anie.202415684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
The stepwise reduction of the highly contorted truxene-based triphosphaalkene 1 using KC8 led to the isolation of mono-, di-, and tri-anionic species. The solid-state molecular structures of mono- and diradical anionic species were elucidated by single crystal X-ray diffractions, revealing elongated P-C bonds and a pronounced "indene" aromatization compared to the parent system. All three radical species displayed distinct Electron Paramagnetic Resonance (EPR) spectra, providing compelling evidence for the open-shell electronic configuration of both the diradical and triradical species-an observation unprecedented in any previously reported phosphorous-based anionic polyradicals. Mulliken spin density calculations revealed a dominant localization of radical spin on a single phosphorous atom in the monoanion. In the dianion, spin localization is observed on two phosphorous atoms (~34 % each), with a minor contribution from the third phosphorous (0.13 %), while the trianion demonstrates a uniform distribution of spin density (~30 %) across each phosphorous atom.
Collapse
Affiliation(s)
- Mohd Asif Ansari
- Department of Chemistry-Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Rajesh Deka
- Department of Chemistry-Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Anders Thapper
- Department of Chemistry-Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| |
Collapse
|
3
|
Haberstroh J, Taube C, Fidelius J, Schulz S, Israel N, Dmitrieva E, Gomila RM, Frontera A, Wolf R, Schwedtmann K, Weigand JJ. A neutral diphosphene radical: synthesis, electronic structure and white phosphorus activation. Chem Commun (Camb) 2024; 60:8537-8540. [PMID: 38978475 DOI: 10.1039/d4cc02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
(ClImDipp)P-P(Dipp)˙ (1˙), a rare example of a neutral, mixed substituted diphosphene radical, has been prepared by reduction of (ClImDipp)PP(Dipp)[OTf] (2[OTf]) and (ClImDipp)PP(Cl)(Dipp) (3) with cobaltocene (CoCp2) (ClImDipp = 4,5-dichloro-1,3-bis(1,3-diisopropylphenyl)-imidazol-2-yl, Dipp = 2,6-diisopropylphenyl). Radical compound 1˙ readily activates white phosphorus (P4), resulting in the formation of an intriguing octaphosphane butterfly compound P8(ClImDipp)2(Dipp)2 (4).
Collapse
Affiliation(s)
- Jan Haberstroh
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Clemens Taube
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Jannis Fidelius
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Stephen Schulz
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Noel Israel
- Leibnitz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany
| | - Evgenia Dmitrieva
- Leibnitz Institute for Solid State and Materials Research Dresden, 01069 Dresden, Germany
| | - Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Robert Wolf
- Institute of Inorganic Chemistry, Universität Regensburg, 93040 Regensburg, Germany
| | - Kai Schwedtmann
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
4
|
Siwatch RK, Yang MC, Su MD, So CW. A Digermanium(III) 1,2-Dication Stabilized by Amidinate and cAAC-Phosphinidenide Ligands. Inorg Chem 2024; 63:8511-8515. [PMID: 38687917 DOI: 10.1021/acs.inorgchem.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A digermanium(III) 1,2-dication comprises two cationic centers located at two interconnected Ge atoms. The strong Coulombic repulsion between two positively charged germanium cations hinders their bond formation. Balancing these two oppositions was achieved by using amidinate and cyclic (alkyl)amino carbene (cAAC)-phosphinidenide ligands, where an amidinato cAAC-phosphinidenidogermylene complex, [LGeP(cAACMe)] (2, where L = PhC(NtBu)2, cAACMe = :C{C(Me)2CH2C(Me)2NAr}, and Ar = 2,6-iPr2C6H3), underwent one-electron oxidation with a bis(phosphinidene) radical cation, [(cAACMe)P]2•+, to form a digermanium(III) 1,2-dication, [LGeP(cAACMe)]22+, in compound 4.
Collapse
Affiliation(s)
- Rahul Kumar Siwatch
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371 Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371 Singapore
| |
Collapse
|
5
|
Liu S, Li Y, Lin J, Ke Z, Grützmacher H, Su CY, Li Z. Sequential radical and cationic reactivity at separated sites within one molecule in solution. Chem Sci 2024; 15:5376-5384. [PMID: 38577367 PMCID: PMC10988588 DOI: 10.1039/d4sc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.
Collapse
Affiliation(s)
- Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yinwu Li
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
6
|
LaPierre EA, Patrick BO, Manners I. Synthesis of Carbene-Stabilized PNPN Fragments and Their Carbene-Dependent Redox Properties. J Am Chem Soc 2024; 146:6326-6335. [PMID: 38408316 DOI: 10.1021/jacs.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein, we report the synthesis of carbene-stabilized 1,3-diaza-2,4-diphosphabutenes CAACMePNPNCAACMe 4CAAC (CAACMe = 1-[2,6-bis(isopropyl)phenyl]-3,3,5,5-tetramethyl-2-pyrrolidinylidene) and IPrPNPNIPr 4NHC (IPr = 1,3-Bis(2,6-diisopropylphenyl)-imidazol-2-ylidene). The bonding in both systems is defined by a delocalized polar covalent π-system, with 4NHC exhibiting increased conjugation relative to 4CAAC. The nature of the stabilizing carbene also influences the redox properties of the compound, with 4CAAC undergoing potassium-mediated reduction to the closed-shell P-P bonded dimer K252, which upon treatment with Kryptofix-2,2,2 converts to the transient radical anion [Kcrypt][5], the formal one-electron reduction product of 4CAAC. In contrast, 4NHC undergoes reversible one-electron oxidation to the stable radical cation [6NHC][SbF6]. Computational and spectroscopic analyses of both radical species are suggestive of unevenly delocalized spin, with the bulk of the spin density residing on phosphorus in both cases.
Collapse
Affiliation(s)
- Etienne A LaPierre
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
7
|
Yadav R, Das B, Singh A, Anmol, Sharma A, Majumder C, Kundu S. Bicyclic (alkyl)(amino)carbene (BICAAC)-supported phosphinidenes. Dalton Trans 2023; 52:16680-16687. [PMID: 37960973 DOI: 10.1039/d3dt02765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Herein, the synthesis and characterization of bicyclic (alkyl)(amino)carbene (BICAAC)-stabilized phosphinidenes (1-4) are reported. Compounds 1-3 were obtained by reacting trihalophosphine [PX3, X = Cl (1), Br (2), I (3)] with BICAAC in THF. A BICAAC-stabilized bis-phosphinidene (4) was obtained from the reduction of compound 2. All four compounds were characterized by X-ray crystallography and heteronuclear NMR spectroscopy. Theoretical calculations indicated the predominant C(carbene)P double bond characteristic in compounds 1-4.
Collapse
Affiliation(s)
- Ritu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Bindusagar Das
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Anmol
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Ankita Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Chinmoy Majumder
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
8
|
Du S, Cao F, Chen X, Rong H, Song H, Mo Z. A silylene-stabilized ditin(0) complex and its conversion to methylditin cation and distannavinylidene. Nat Commun 2023; 14:7474. [PMID: 37978294 PMCID: PMC10656547 DOI: 10.1038/s41467-023-42953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Due to their intrinsic high reactivity, isolation of tin(0) complexes remains challenging. Herein, we report the synthesis of a silylene-stabilized ditin(0) complex (2) by reduction of a silylene-supported dibromostannylene (1) with 1 equivalent of magnesium (I) dimer in toluene. The structure of 2 was established by single crystal X-ray diffraction analysis. Density Functional Theory calculations revealed that complex 2 bears a Sn=Sn double bond and one lone pair of electrons on each of the Sn(0) atoms. Remarkably, complex 2 is readily methylated to give a mixed-valent methylditin cation (4), which undergoes topomerization in solution though a reversible 1,2-Me migration along a Sn=Sn bond. Computational studies showed that the three-coordinate Sn atom in 4 is the dominant electrophilic center, and allows for facile reaction with KHBBus3 furnishing an unprecedented N-heterocyclic silylenes-stabilized distannavinylidene (5). The synthesis of 2, 4 and 5 demonstrates the exceptional ability of N-heterocyclic silylenes to stabilize low valent tin complexes.
Collapse
Affiliation(s)
- Shaozhi Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Fanshu Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xi Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Hua Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Haibin Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Zimmermann L, Riesinger C, Balázs G, Scheer M. Synthesis and Reactivity of Hetero-Pnictogen Diazonium Analogs Stabilized by Transition Metal Units. Chemistry 2023; 29:e202301974. [PMID: 37493637 DOI: 10.1002/chem.202301974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
The reactivity of the mixed dipnictogen complexes [{CpMo(CO)2 }2 (μ,η2 : 2 -PE)] (E=P, As, Sb) towards different group 14 electrophiles is reported. The resulting library of cationic compounds [{CpMo(CO)2 }2 (μ,η2 : 2 -EPR)]+ (R=Mes (2,4,6-C6 H2 Me3 ), CH3 , CPh3 , SnMe3 ) represents formally inorganic diazonium homologs which are stabilized by transition metal units. Modifying the steric and electronic properties of the electrophile drastically impacts the respective P-R bond lengths and is accompanied by increasing (SnMe3 >CPh3 >CH3 ) dynamic behavior in solution. In contrast to the well-studied organic analogs, the prepared compounds are stable at room temperature. The subsequent reaction of the model substrate [{CpMo(CO)2 }2 (μ,η2 : 2 -P2 Me)][OTf] ([OTf]- =[CF3 SO3 ]- ) with different N-heterocyclic carbenes (NHCs) leads to an addition at the unsubstituted P atom which is also predicted by computational methods. NMR spectroscopy confirms the formation of two isomers sync/gauche-[{CpMo(CO)2 }(μ,η2 : 1 -P(NHC)PMe){CpMo(CO)2 }][OTf]. X-ray crystallographic characterization and additional DFT calculations shed light on the spatial arrangement as well as on the possible formation pathways of the isomers.
Collapse
Affiliation(s)
- Lisa Zimmermann
- Department of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christoph Riesinger
- Department of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Gábor Balázs
- Department of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Manfred Scheer
- Department of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
10
|
Sharma MK, Weinert HM, Li B, Wölper C, Henthorn JT, Cutsail GE, Haberhauer G, Schulz S. Syntheses and Structures of 5-Membered Heterocycles Featuring 1,2-Diphospha-1,3-Butadiene and Its Radical Anion. Angew Chem Int Ed Engl 2023; 62:e202309466. [PMID: 37582227 DOI: 10.1002/anie.202309466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
LGa(P2 OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2 OC)cAAC][K(DB-18-c-6)] 3[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3⋅- was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6 F5 )4 ] (Fc=ferrocenium) to 2 and with TEMPO to [L-H Ga(P2 OC)cAAC][K(DB-18-c-6)] 4[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4- . The solid state structures of 2, 3K(DB-18-c-6], and 4[K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Bin Li
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Justin T Henthorn
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
11
|
Fan J, Koh AP, Zhou J, Zhang ZF, Wu CS, Webster RD, Su MD, So CW. Tetrakis( N-heterocyclic Carbene)-Diboron(0): Double Single-Electron-Transfer Reactivity. J Am Chem Soc 2023; 145:11669-11677. [PMID: 37201187 DOI: 10.1021/jacs.3c01801] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The use of 1,3,4,5-tetramethylimidazol-2-ylidene (IMe) to coordinate with diatomic B2 species afforded a tetrakis(N-heterocyclic carbene)-diboron(0) [(IMe)2B-B(IMe)2] (2). The singly bonded B2 moiety therein possesses a valence electronic configuration 1σg21πu21πg*2 with four vacant molecular orbitals (1σu*, 2σg, 1πu', 1πg'*) coordinated with IMe. Its unprecedented electronic structure is analogous to the energetically unfavorable planar hydrazine with a D2h symmetry. The two highly reactive πg* antibonding electrons enable double single-electron-transfer (SET) reactivity in small-molecule activation. Compound 2 underwent a double SET reduction with CO2 to form two carbon dioxide radical anions CO2•-, which then reduced pyridine to yield a carboxylated pyridine reductive coupling dianion [O2CNC5(H)5-C5(H)5NCO2]2- and converted compound 2 to the tetrakis(N-heterocyclic carbene)-diborene dication [(IMe)2B═B(IMe)2]2+ (32+). This is a remarkable transition-metal-free SET reduction of CO2 without ultraviolet/visible (UV/vis) light conditions.
Collapse
Affiliation(s)
- Jun Fan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - An-Ping Koh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Jingsong Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Chi-Shiun Wu
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Richard D Webster
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
12
|
Chu G, Wang W, Zhao J, Zhou D. Transformation of phosphorus species during phosphoric acid-assisted pyrolysis of lignocellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161010. [PMID: 36549532 DOI: 10.1016/j.scitotenv.2022.161010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Phosphoric acid-assisted pyrolysis (PAAP) is a pyrolysis technique with potential for the engineered and environmental application. Nevertheless, the volatilisation, immobilisation, and dissolution of phosphorus (P) species have been neglected during PAAP of lignocellulose. Therefore, we compared the transformation of P species with direct-pyrolysis and PAAP system, using multiple techniques including gas chromatography tandem mass spectrometry (GCMS) and 31P nuclear magnetic resonance (NMR). It was also investigated that the properties of pyrogenic and modified carbons obtained from lignocellulose pyrolysis at 200-650 °C. As the temperature increased, volatile P species evolved into gas-phase during PAAP, inhibiting the formation of the macromolecular volatile components. Compared with pyrogenic carbons, modified carbons with more aromatic structures experienced a higher degree of dehydration and cyclisation via catalytic crosslinking reaction. PAAP system facilitated more generation of persistent free radical (PFR) below 500 °C and the attenuation of PFR signals was observed at 500-650 °C, which may be associated with the sequestration and elimination of P species between carbon matrix. Notably, three configurations of C3PO, CPO, and COP were the major combinations of P and C elements on modified carbons. Increased gaseous P and decreased soluble P were observed with elevated temperatures in PAAP system. The species proportion of immobilised P clearly demonstrated the transformation of partial P species from inorganic to organic through pyrolysis. The immobilised P could serve as a potential sustained-release source participating in P biogeochemical cycles. These findings are fundamental for the technical design of lignocellulose pyrolysis.
Collapse
Affiliation(s)
- Gang Chu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wangmin Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jing Zhao
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| | - Dandan Zhou
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
13
|
Wang Y, Robinson GH. Counterintuitive Chemistry: Carbene Stabilization of Zero-Oxidation State Main Group Species. J Am Chem Soc 2023; 145:5592-5612. [PMID: 36876997 DOI: 10.1021/jacs.2c13574] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Carbenes have evolved from transient laboratory curiosities to a robust, diverse, and surprisingly impactful ligand class. A variety of different carbenes have significantly contributed to the development of low-oxidation state main group chemistry. This Perspective focuses upon advances in the chemistry of carbene complexes containing main group element cores in the formal oxidation state of zero, including their diverse synthetic strategies, unusual bonding and structural motifs, and utility in transition metal coordination chemistry and activation of small molecules.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
14
|
Tang C, Song L, Zhou K, Ren P, Zhao E, He Z. Manipulating D-A interaction to achieve stable photoinduced organic radicals in triphenylphosphine crystals. Chem Sci 2023; 14:1871-1877. [PMID: 36819874 PMCID: PMC9930928 DOI: 10.1039/d2sc05753k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023] Open
Abstract
New strategies for the design and synthesis of stable organic radicals without additives are highly desirable. Herein, we design a series of donor-acceptor structured triarylphosphines and disclose the fast color change triggered by UV-irradiation in the crystalline state. Photoinduced organic radicals are undoubtedly verified and proved to be the reason for the color change by time-dependent and quantitative electron paramagnetic resonance analysis, X-ray crystallographic analysis, and theoretical calculations. It is revealed that the intrinsic symmetry breaking of peripheral architecture helps to form continuous molecular chains by donor-acceptor counterpart pairing. Intermolecular electron-transfer occurs among molecular chains and results in radical ion pairs upon photoirradiation.
Collapse
Affiliation(s)
- Chunlin Tang
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic Shenzhen Guangdong 518055 China
| | - Peng Ren
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen Guangdong 518055 China
- School of Chemical Engineering and Technology, Harbin Institute of Technology Harbin Heilongjiang 150001 China
| |
Collapse
|
15
|
Sabater E, Solà M, Salvador P, Andrada DM. Cage-size effects on the encapsulation of P 2 by fullerenes. J Comput Chem 2023; 44:268-277. [PMID: 35546081 DOI: 10.1002/jcc.26884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 01/03/2023]
Abstract
The classic pnictogen dichotomy stands for the great contrast between triply bonding very stable N2 molecules and its heavier congeners, which appear as dimers or oligomers. A banner example involves phosphorus as it occurs in nature as P4 instead of P2 , given its weak π-bonds or strong σ-bonds. The P2 synthetic value has brought Lewis bases and metal coordination stabilization strategies. Herein, we discuss the unrealized encapsulation alternative using the well-known fullerenes' capability to form endohedral and stabilize otherwise unstable molecules. We chose the most stable fullerene structures from Cn (n = 50, 60, 70, 80) and experimentally relevant from Cn (n = 90 and 100) to computationally study the thermodynamics and the geometrical consequences of encapsulating P2 inside the fullerene cages. Given the size differences between P2 and P4 , we show that the fullerenes C70 -C100 are suitable cages to side exclude P4 and host only one molecule of P2 with an intact triple bond. The thermodynamic analysis indicates that the process is favorable, overcoming the dimerization energy. Additionally, we have evaluated the host-guest interaction to explain the origins of their stability using energy decomposition analysis.
Collapse
Affiliation(s)
- Enric Sabater
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany.,Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona
| | - Diego M Andrada
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
16
|
Sharma MK, Chabbra S, Wölper C, Weinert HM, Reijerse EJ, Schnegg A, Schulz S. Modulating the frontier orbitals of L(X)Ga-substituted diphosphenes [L(X)GaP] 2 (X = Cl, Br) and their facile oxidation to radical cations. Chem Sci 2022; 13:12643-12650. [PMID: 36519043 PMCID: PMC9645402 DOI: 10.1039/d2sc04207j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Modulating the electronic structures of main group element compounds is crucial to control their chemical reactivity. Herein we report on the synthesis, frontier orbital modulation, and one-electron oxidation of two L(X)Ga-substituted diphosphenes [L(X)GaP]2 (X = Cl 2a, Br 2b; L = HC[C(Me)N(Ar)]2, Ar = 2,6-i-Pr2C6H3). Photolysis of L(Cl)GaPCO 1 gave [L(Cl)GaP]22a, which reacted with Me3SiBr with halide exchange to [L(Br)GaP]22b. Reactions with MeNHC (MeNHC = 1,3,4,5-tetramethylimidazol-2-ylidene) gave the corresponding carbene-coordinated complexes L(X)GaPP(MeNHC)Ga(X)L (X = Cl 3a, Br 3b). DFT calculations revealed that the carbene coordination modulates the frontier orbitals (i.e. HOMO/LUMO) of diphosphenes 2a and 2b, thereby affecting the reactivity of 3a and 3b. In marked contrast to diphosphenes 2a and 2b, the cyclic voltammograms (CVs) of the carbene-coordinated complexes each show one reversible redox event at E 1/2 = -0.65 V (3a) and -0.36 V (3b), indicating their one-electron oxidation to the corresponding radical cations as was confirmed by reactions of 3a and 3b with the [FeCp2][B(C6F5)4], yielding the radical cations [L(X)GaPP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 4a, Br 4b). The unpaired spin in 4a (79%) and 4b (80%) is mainly located at the carbene-uncoordinated phosphorus atoms as was revealed by DFT calculations and furthermore experimentally proven in reactions with n Bu3SnH, yielding the diphosphane cations [L(X)GaPHP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 5a, Br 5b). Compounds 2-5 were fully characterized by NMR and IR spectroscopy as well as by single crystal X-ray diffraction (sc-XRD), and compounds 4a and 4b were further studied by EPR spectroscopy, while their bonding nature was investigated by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Edward J Reijerse
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199 47057 Duisburg Germany
| |
Collapse
|
17
|
Budnikova YH. Phosphorus-Centered Radicals: Synthesis, Properties, and Applications. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
18
|
Ott A, Nagy PR, Benkő Z. Stability of Carbocyclic Phosphinyl Radicals: Effect of Ring Size, Delocalization, and Sterics. Inorg Chem 2022; 61:16266-16281. [PMID: 36197796 PMCID: PMC9583709 DOI: 10.1021/acs.inorgchem.2c01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this computational study, we report on the stability
of cyclic
phosphinyl radicals with an aim for a systematical assessment of stabilization
effects. The radical stabilization energies (RSEs) were calculated
using isodesmic reactions for a large number of carbocyclic radicals
possessing different ring sizes and grades of unsaturation. In general,
the RSE values range from −1.2 to −14.0 kcal·mol–1, and they show practically no correlation with the
spin populations at the P-centers. The RSE values correlate with the
reaction Gibbs free energies calculated for the dimerization of the
studied simple radicals. Therefore, the more easily accessible RSE
values offer a cost-effective estimation of global stability in a
straightforward manner. To explore the effect of unsaturation on the
RSE values, delocalization energies were determined using appropriate
isodesmic reactions. Introducing unsaturations beside the P-center
into the backbone of the rings leads to an additive increase in the
magnitude of the delocalization energy (∼10, 20, and 30 kcal·mol–1, respectively, for radicals with one, two, and three
C=C bonds in the conjugation). Parallelly, the spin populations
at the P-centers also dwindle gradually by ∼0.1 e in the same
order, indicating that the lone electron delocalizes over the π-system.
Radicals containing exocyclic C=C π-bonds were also investigated,
and all of these radicals have rather similar stabilities independently
of the ring size, outlining the primary importance of the two exocyclic
π-bonds in the conjugation. Among the radicals involved in our
study, those with the best electronic stabilization are the unsaturated
three-, five-, six-, and seven-membered rings containing the maximum
number of conjugated vinyl fragments. The largest delocalization energy
of 31.5 kcal·mol–1 and the lowest obtained
spin population of 0.665 e were found for the fully unsaturated seven-membered
radical (phosphepin derivative). Importantly, the electronic stabilization
effects alone are insufficient for stabilizing the radicals in monomeric
forms epitomized by the exothermic dimerization energies (−40
to −58 kcal·mol–1). Therefore, it is
essential to apply sterically demanding bulky substituents on the
α-C-atoms. Tweaking the steric congestion enabled us to propose
radicals that are expected to be stable against dimerization and,
consequently, may be realistic target species for synthetic investigations.
The effects contributing to the stability of radicals having sterically
encumbered substituents have also been explored. To systematically evaluate the stabilization
effects, the
radical stabilization energies of various carbocyclic phosphinyl radicals
having saturated backbones or unsaturation(s) in either endocyclic
or exocyclic manner have been determined and analyzed. As the electronic
stabilization is alone insufficient to hamper the possible dimerization
of these species, the effect of several sterically demanding substituents
has been explored for the congeners with best electronic stabilizations,
thus enabling us to propose synthetically accessible candidates in
the future.
Collapse
Affiliation(s)
- Anna Ott
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,ELKH-BME Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
19
|
Nag E, Francis M, Battuluri S, Sinu BB, Roy S. Isolation of Elusive Phosphinidene‐Chlorotetrylenes: The Heavier Cyanogen Chloride Analogues. Chemistry 2022; 28:e202201242. [DOI: 10.1002/chem.202201242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ekta Nag
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Maria Francis
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sridhar Battuluri
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Bhavya Bini Sinu
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| |
Collapse
|
20
|
Xiong Y, Dong S, Yao S, Dai C, Zhu J, Kemper S, Driess M. An Isolable 2,5‐Disila‐3,4‐Diphosphapyrrole and a Conjugated Si=P−Si=P−Si=N Chain Through Degradation of White Phosphorus with a
N,N
‐Bis(Silylenyl)Aniline. Angew Chem Int Ed Engl 2022; 61:e202209250. [PMID: 35876267 PMCID: PMC9545316 DOI: 10.1002/anie.202209250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/08/2022]
Abstract
White phosphorus (P4) undergoes degradation to P2 moieties if exposed to the new N,N‐bis(silylenyl)aniline PhNSi21 (Si=Si[N(tBu)]2CPh), furnishing the first isolable 2,5‐disila‐3,4‐diphosphapyrrole 2 and the two novel functionalized Si=P doubly bonded compounds 3 and 4. The pathways for the transformation of the non‐aromatic 2,5‐disila‐3,4‐diphosphapyrrole PhNSi2P22 into 3 and 4 could be uncovered. It became evident that 2 reacts readily with both reactants P4 and 1 to afford either the polycyclic Si=P‐containing product [PhNSi2P2]2P23 or the unprecedented conjugated Si=P−Si=P−Si=NPh chain‐containing compound 4, depending on the employed molar ratio of 1 and P4 as well as the reaction conditions. Compounds 3 and 4 can be converted into each other by reactions with 1 and P4, respectively. All new compounds 1–4 were unequivocally characterized including by single‐crystal X‐ray diffraction analysis. In addition, the electronic structures of 2–4 were established by Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Yun Xiong
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Shenglai Yao
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Sebastian Kemper
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
21
|
Nag E, Battuluri S, Sinu BB, Roy S. Carbene-Anchored Boryl- and Stibanyl-Phosphaalkenes as Precursors for Bis-Phosphaalkenyl Dichlorogermane and Mixed-Valence Ag I/Ag II Phosphinidenide. Inorg Chem 2022; 61:13007-13014. [PMID: 35939532 DOI: 10.1021/acs.inorgchem.2c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic alkyl(amino) carbene (cAAC)-anchored boryl- and stibanyl-phosphaalkenes with general formula cAAC = P-ER2 [E = B, R = (NiPr2)2 (3a-c); E = Sb, R = 2,4,6-triisopropylphenyl (5a-b)] have been synthesized and utilized as precursors for the bis-phosphaalkenyl dichlorogermane [(cAAC = P)2GeCl2] (6) and the first molecular example of a neutral polymeric mixed-valence AgI/AgII phosphinidenide complex [(cAACP)2Ag4IAgIICl4]n (7). All compounds have been characterized by single-crystal X-ray diffraction and further investigated by nuclear magnetic resonance (NMR), mass spectrometric analysis, and UV-vis/fluorescence measurements. The paramagnetic complex 7 has been characterized by ESR spectroscopy. Cyclic voltammetry studies of compounds 3/5 have suggested possible one-electron quasi-reversible reductions, indicating their redox noninnocent behavior in solution. Quantum chemical studies revealed the electron-sharing nature of the P-B and P-Sb σ bonds in compounds 3 and 5, and the polar CcAAC = P bonds in compounds 3, 5, and 6 prevailing their phosphaalkene structures over phosphinidenes.
Collapse
Affiliation(s)
- Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Sridhar Battuluri
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Bhavya Bini Sinu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
22
|
Xiong Y, Dong S, Yao S, Dai C, Zhu J, Kemper S, Driess M. An Isolable 2,5‐Disila‐3,4‐Diphosphapyrrole and a Conjugated Si=P‐Si=P‐Si=N Chain Through Degradation of White Phosphorus with a N,N‐Bis(Silylenyl)Aniline. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yun Xiong
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | | | - Shenglai Yao
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | | | - Jun Zhu
- Xiamen University Chemistry CHINA
| | - Sebastian Kemper
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Matthias Driess
- Technische Universität Berlin Chemie Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| |
Collapse
|
23
|
Ho LP, Tamm M. N‐Heterocyclic Carbenes Carrying Weakly Coordinating Anions. Chemistry 2022; 28:e202200530. [PMID: 35357045 PMCID: PMC9325441 DOI: 10.1002/chem.202200530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Luong Phong Ho
- Institut für Anorganische und Analytische Chemie Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie Technische Universität Braunschweig Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
24
|
|
25
|
Koike T, Osawa R, Ishida S, Iwamoto T. Synthesis, Structure and Electronic Properties of a Stable π‐Type 3‐Electron‐2‐Center‐Bonded Species: A Silicon Analogue of a Bicyclo[1.1.0]butane Radical Anion. Angew Chem Int Ed Engl 2022; 61:e202117584. [DOI: 10.1002/anie.202117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Taichi Koike
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku, Sendai 980-8578 Japan
| | - Raiki Osawa
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku, Sendai 980-8578 Japan
| | - Shintaro Ishida
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku, Sendai 980-8578 Japan
| | - Takeaki Iwamoto
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku, Sendai 980-8578 Japan
| |
Collapse
|
26
|
Krüger J, Haak J, Wölper C, Cutsail GE, Haberhauer G, Schulz S. Single-Electron Oxidation of Carbene-Coordinated Pnictinidenes-Entry into Heteroleptic Radical Cations and Metalloid Clusters. Inorg Chem 2022; 61:5878-5884. [PMID: 35333051 DOI: 10.1021/acs.inorgchem.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stable heavy main group element radicals are challenging synthetic targets. Although several strategies have been developed to stabilize such odd-electron species, the number of heavier pnictogen-centered radicals is limited. We report on a series of two-coordinated pnictogen-centered radical cations [(MecAAC)EGa(Cl)L][B(C6F5)4] (MecAAC = [H2C(CMe2)2NDipp]C; Dipp = 2,6-i-Pr2C6H3; E = As 1, Sb 2, Bi 3; L = HC[C(Me)NDipp]2) synthesized by one-electron oxidation of L(Cl)Ga-substituted pnictinidenes (MecAAC)EGa(Cl)L (E = As I, Sb II, Bi III). 1-3 were characterized by electron paramagnetic resonance (EPR) spectroscopy and single crystal X-ray diffraction (sc-XRD) (1, 2), while quantum chemical calculations support their description as carbene-coordinated pnictogen-centered radical cations. The low thermal stability of 3 enables access to metalloid bismuth clusters as shown by formation of [{LGa(Cl)}3Bi6][B(C6F5)4] (4).
Collapse
Affiliation(s)
- Julia Krüger
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Julia Haak
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - George E Cutsail
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany.,Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany.,Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
27
|
Koike T, Osawa R, Ishida S, Iwamoto T. Synthesis, Structure and Electronic Properties of a Stable π‐Type 3‐Electron‐2‐Center‐Bonded Species: A Silicon Analogue of a Bicyclo[1.1.0]butane Radical Anion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taichi Koike
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku, Sendai 980-8578 Japan
| | - Raiki Osawa
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku, Sendai 980-8578 Japan
| | - Shintaro Ishida
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku, Sendai 980-8578 Japan
| | - Takeaki Iwamoto
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku, Sendai 980-8578 Japan
| |
Collapse
|
28
|
Brehm PC, Müller-Feyen AS, Schnakenburg G, Streubel R. 1,3,2-Diheterophospholane complexes: access to new tuneable precursors of phosphanoxyl complexes and P-functional polymers. Dalton Trans 2022; 51:4400-4405. [PMID: 35195141 DOI: 10.1039/d2dt00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synthesis of a testbed of P-H functional diheterophospholane complexes (3 and 6a,b) with no or little steric bulk at the α-position was achieved using [NEt4][WH(CO)5] as a combined reductant and complexation reagent. Reaction with TEMPO leads to P-OTEMP substituted tungsten complexes (4 and 7a,b) possessing different thermostabilities towards N-O bond cleavage. The transient phosphanoxyl complexes obtained were used for the polymerisation of styrene and acrylonitrile. DFT calculations were performed on the formation of various open-shell complexes and Loewdin spin density distributions.
Collapse
Affiliation(s)
- Philipp C Brehm
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Anne S Müller-Feyen
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Rainer Streubel
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
29
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
30
|
Yadav R, Sinhababu S, Yadav R, Kundu S. Base-stabilized formally zero-valent mono and diatomic molecular main-group compounds. Dalton Trans 2022; 51:2170-2202. [PMID: 35040452 DOI: 10.1039/d1dt03569j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various compounds are known for transition metals in their formal zero-oxidation state, while similar compounds of main-group elements are recently realized and limited to only a few examples. Lewis-base-stabilized mono and diatomic molecular species (B2, C, C2, Si, Si2, Ge, Ge2, Sn, P2, As2, Sb2) represent groundbreaking examples of main-group compounds with formally zero-oxidation state. In recent years, the isolation of low-valent main-group compounds has attracted increasing attention of both experimental and theoretical chemists. This is not only due to their fascinating electronic structures and exceptional reactivities, but also their use as valuable precursors for the synthesis of exotic yet important chemical species. This has led to a better understanding of the intricate balance of the donor-acceptor properties of the ligand(s) used to stabilize elements in a formally zero-oxidation state. Owing to the unusual oxidation state of the central element, many compounds containing formally zero-valent elements can efficiently activate otherwise inert small molecules. This review describes the synthesis, characterization, and reactivity of reported mono and diatomic formal zero-oxidation state main-group compounds. This review also emphasizes the comparative description of systems where different ligands are used to stabilize an element in its formal zero-oxidation state.
Collapse
Affiliation(s)
- Ravi Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India. .,Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA.
| | - Ritu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| |
Collapse
|
31
|
Nag E, Kulkarni A, Gorantla SMNVT, Graw N, Francis M, Herbst-Irmer R, Stalke D, Roesky HW, Mondal KC, Roy S. Fluorescent organo-antimony compounds as precursors for syntheses of redox-active trimeric and dimeric alkali metal antimonides: an insight into electron transfer reduction processes. Dalton Trans 2022; 51:1791-1805. [PMID: 35023531 DOI: 10.1039/d1dt03398k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(Tip)2SbCl (1, Tip = 2,4,6-triisopropylphenyl) has been utilized as a precursor for the synthesis of the distibane (Tip)4Sb2 (4) via one-electron reduction using KC8. The two-electron reduction of 1 and 4 afforded the novel trinuclear antimonide cluster [K3((Tip)2Sb)3(THF)5] (6). Changing the reducing agent from KC8 to a different alkali metal resulted in the solid-state isolation of corresponding stable dimeric alkali metal antimonides with the general formula [M2((Tip)2Sb)2(THF)p-x(tol)x] (M = Li (14), Na (15), Cs (16)). In this report, different aspects of the various reducing agents [K metal, KC8, and [K2(Naph)2(THF)]] used have been studied, correlating the experimental observations with previous reports. Additional reactivity studies involving 1 and AgNTf2 (Tf = trifluoromethanesulfonyl) afforded the corresponding antimony cation (Tip)2Sb+NTf2- (19). The Lewis acidic character of 19 has been unambiguously proved via treatment with Lewis bases to produce the corresponding adducts 20 and 21. Interestingly, the precursors 1 and 4 have been observed to be highly luminescent, emitting green light under short-wavelength UV radiation. All the reported compounds have been characterized via NMR, UV-vis, mass spectrometry, and single-crystal X-ray diffraction analysis. Cyclic voltammetry (CV) studies of 1 in THF showed possible two electron reduction, suggesting the in situ generation of the corresponding radical-anion intermediate 1˙- and its subsequent conversion to the monomeric intermediate (Tip)2Sb- (5) upon further reduction. 5 undergoes oligomerization in the solid state to produce 6. The existence of 1˙- was proved using electron paramagnetic resonance (EPR) spectroscopy in solution. CV studies of 6 suggested its potential application as a reducing agent, which was further proved via the conversion of Tip-PCl2 to trimeric (Tip)3P3 (17), and cAACP-Cl (cAAC = cyclic alkyl(amino)carbene) to (cAAC)2P2 (18) and 4, utilizing 6 as a stoichiometric reducing agent.
Collapse
Affiliation(s)
- Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| | - Aditya Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| | | | - Nico Graw
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraβe 4, 37077-Göttingen, Germany
| | - Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraβe 4, 37077-Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraβe 4, 37077-Göttingen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraβe 4, 37077-Göttingen, Germany
| | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| |
Collapse
|
32
|
Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Kundu S, Das B, Makol A. Phosphorus radicals and radical ions. Dalton Trans 2022; 51:12404-12426. [DOI: 10.1039/d2dt01499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and characterization of isolable radicals of main-group elements have been a long-pursued quest. Although there has been considerable progress in this area, particularly in isolating carbon- radicals, the isolation...
Collapse
|
34
|
Weinert HM, Wölper C, Haak J, Cutsail GE, Schulz S. Synthesis, structure and bonding nature of heavy dipnictene radical anions. Chem Sci 2021; 12:14024-14032. [PMID: 34760185 PMCID: PMC8565390 DOI: 10.1039/d1sc04230k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/28/2021] [Indexed: 12/02/2022] Open
Abstract
Cyclic voltammetry (CV) studies of two L(X)Ga-substituted dipnictenes [L(R2N)GaE]2 (E = Sb, R = Me 1; E = Bi; R = Et 2; L = HC[C(Me)NDipp]2; Dipp = 2,6-i-Pr2C6H3) showed reversible reduction events. Single electron reduction of 1 and 2 with KC8 in DME in the presence of benzo-18-crown-6 (B-18-C-6) gave the corresponding dipnictenyl radical anions (DME)[K(B-18-C-6)][L(R2N)GaE]2 (E = Sb, R = Me 3; E = Bi, R = Et 4). Radical anions 3 and 4 were characterized by EPR, UV-vis and single crystal X-ray diffraction, while quantum chemical calculations gave deeper insight into the nature of the chemical bonding.
Collapse
Affiliation(s)
- Hanns M Weinert
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Julia Haak
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
- Max Planck Institute for Chemical Energy Conversion (CEC) Stiftstraße 34-36 45470 Mülheim a. d. Ruhr Germany
| | - George E Cutsail
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
- Max Planck Institute for Chemical Energy Conversion (CEC) Stiftstraße 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| |
Collapse
|
35
|
Siewert JE, Schumann A, Hering-Junghans C. Phosphine-catalysed reductive coupling of dihalophosphanes. Dalton Trans 2021; 50:15111-15117. [PMID: 34611690 DOI: 10.1039/d1dt03095g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Classically tetraaryl diphosphanes have been synthesized through Wurtz-type reductive coupling of halophosphanes R2PX or more recently, through the dehydrocoupling of phosphines R2PH. Catalytic variants of the dehydrocoupling reaction have been reported, but are limited to R2PH compounds. Using PEt3 as a catalyst, we now show that TipPBr2 (Tip = 2,4,6-iPr3C6H2) is selectively coupled to give the dibromodiphosphane (TipPBr)2 (1), a compound not accessible using classic Mg reduction. Surprisingly, when using DipPBr2 (Dip = 2,6-iPr3C6H3) in the PEt3 catalysed reductive coupling the diphosphene (PDip)2 (2) with a PP double was formed selectively. In benzene solutions (PDip)2 has a half life time of ca. 28 days and can be utilized with NHCs to access NHC-phosphinidene adducts. To show that this protocol is more widely applicable, we show that Ph2PCl and Mes2PX (X = Cl, Br) are efficiently coupled using 10 mol% of PEt3 to give (Ph2P)2 and (Mes2P)2, respectively. Control experiments show that [BrPEt3]Br is a potential oxidation product in the catalytic cycle, which can be debrominated by Zn dust as a sacrificial reductant.
Collapse
Affiliation(s)
- Jan-Erik Siewert
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - André Schumann
- Leibniz Institut für Katalyse e.V. (LIKAT), A.-Einstein-Str. 29a, 18059 Rostock, Germany.
| | | |
Collapse
|
36
|
Weinert HM, Wölper C, Schulz S. Redox Potentials of Group 13 Metal-Substituted Dipnictenes: A Comparative Cyclic Voltammetry Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Philipp MSM, Krahfuss MJ, Radacki K, Radius U. N‐Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Antimony(III). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Michael S. M. Philipp
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Mirjam J. Krahfuss
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institute of Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
38
|
Sun J, Verplancke H, Schweizer JI, Diefenbach M, Würtele C, Otte M, Tkach I, Herwig C, Limberg C, Demeshko S, Holthausen MC, Schneider S. Stabilizing P≡P: P22–, P2⋅–, and P20 as bridging ligands. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Kim Y, Byeon JE, Jeong GY, Kim SS, Song H, Lee E. Highly Stable 1,2-Dicarbonyl Radical Cations Derived from N-Heterocyclic Carbenes. J Am Chem Soc 2021; 143:8527-8532. [PMID: 33974426 DOI: 10.1021/jacs.1c00707] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stable organic radicals have been of great academic interest not only in the context of fundamental understanding of reactive intermediates but also because of their numerous applications as functional materials. Apart from the early examples of triphenylmethyl and TEMPO derivatives, reports on air- and water-stable organic radicals are scarce, and their development remains a challenge. Herein, we present the design and synthesis of a novel organic radical based on a 1,2-dicarbonyl scaffold supported by N-heterocyclic carbenes (NHCs). The presented radical cations exhibit remarkable stability toward various harsh conditions, such as the presence of reactive chemicals (reductants, oxidants, strong acids, and bases) or high temperatures, by far exceeding the stability of triphenylmethyl and TEMPO radicals. In addition, physiological conditions including aqueous buffer and blood serum are tolerated. The steric and electronic stabilization provided by the two NHC moieties enabled the successful design of the highly stable radical.
Collapse
Affiliation(s)
- Youngsuk Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jung Eun Byeon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gu Yoon Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seoung Su Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
40
|
Walley JE, Warring LS, Kertész E, Wang G, Dickie DA, Benkő Z, Gilliard RJ. Indirect Access to Carbene Adducts of Bismuth- and Antimony-Substituted Phosphaketene and Their Unusual Thermal Transformation to Dipnictines and [(NHC) 2OCP][OCP]. Inorg Chem 2021; 60:4733-4743. [PMID: 33689349 PMCID: PMC8277130 DOI: 10.1021/acs.inorgchem.0c03683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
The
synthesis and thermal redox chemistry of the first antimony
(Sb)– and bismuth (Bi)–phosphaketene adducts are described.
When diphenylpnictogen chloride [Ph2PnCl (Pn = Sb or Bi)]
is reacted with sodium 2-phosphaethynolate [Na[OCP]·(dioxane)x], tetraphenyldipnictogen (Ph2Pn–PnPh2) compounds are produced, and an insoluble
precipitate forms from solution. In contrast, when the N-heterocyclic carbene adduct (NHC)–PnPh2Cl is combined
with [Na[OCP]·(dioxane)x], Sb–
and Bi–phosphaketene complexes are isolated. Thus, NHC serves
as an essential mediator for the reaction. Immediately after the formation
of an intermediary pnictogen–phosphaketene NHC adduct [NHC–PnPh2(PCO)], the NHC ligand transfers from the Pn center to the
phosphaketene carbon atom, forming NHC–C(O)P-PnPh2 [Pn = Sb (3) or Bi (4)]. In the solid
state, 3 and 4 are dimeric with short intermolecular
Pn–Pn interactions. When compounds 3 and 4 are heated in THF at 90 and 70 °C, respectively, the
pnictogen center PnIII is thermally reduced to PnII to form tetraphenyldipnictines (Ph2Pn–PnPh2) and an unusual bis-carbene-supported OCP
salt, [(NHC)2OCP][OCP] (5). The formation
of compound 5 and Ph2Pn–PnPh2 from 3 or 4 is unique in comparison to
the known thermal reactivity for group 14 carbene–phosphaketene
complexes, further highlighting the diverse reactivity of [OCP]− with main-group elements. All new compounds have been
fully characterized by single-crystal X-ray diffraction, multinuclear
NMR spectroscopy (1H, 13C, and 31P), infrared spectroscopy, and elemental analysis (1, 2, and 5). The electronic structure of 5 and the mechanism of formation were investigated using density
functional theory (DFT). An N-heterocyclic carbene (NHC) was used
to support the otherwise unstable Ph2Sb—P=C=O
and Ph2Bi—P=C=O moieties. Exploration
of the thermal chemistry of these NHC−phosphaketene adducts
reveals the formation of the salt [NHC2OCP][OCP]. This
present work demonstrates the thermal chemistry of the 2-phospaethynolate
anion with heavier pnictogens (Sb and Bi).
Collapse
Affiliation(s)
- Jacob E Walley
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Levi S Warring
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Erik Kertész
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Guocang Wang
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22903, United States
| |
Collapse
|
41
|
Sharma MK, Rottschäfer D, Neumann B, Stammler HG, Danés S, Andrada DM, van Gastel M, Hinz A, Ghadwal RS. Metalloradical Cations and Dications Based on Divinyldiphosphene and Divinyldiarsene Ligands. Chemistry 2021; 27:5803-5809. [PMID: 33470468 PMCID: PMC8048781 DOI: 10.1002/chem.202100213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/09/2023]
Abstract
Metalloradicals are key species in synthesis, catalysis, and bioinorganic chemistry. Herein, two iron radical cation complexes (3‐E)GaCl4 [(3‐E).+ = [{(IPr)C(Ph)E}2Fe(CO)3].+, E = P or As; IPr = C{(NDipp)CH}2, Dipp = 2,6‐iPr2C6H3] are reported as crystalline solids. Treatment of the divinyldipnictenes {(IPr)C(Ph)E}2 (1‐E) with Fe2(CO)9 affords [{(IPr)C(Ph)E}2Fe(CO)3] (2‐E), in which 1‐E binds to the Fe atom in an allylic (η3‐EECvinyl) fashion and functions as a 4e donor ligand. Complexes 2‐E undergo 1e oxidation with GaCl3 to yield (3‐E)GaCl4. Spin density analysis revealed that the unpaired electron in (3‐E).+ is mainly located on the Fe (52–64 %) and vinylic C (30–36 %) atoms. Further 1e oxidation of (3‐E)GaCl4 leads to unprecedented η3‐EECvinyl to η3‐ECvinylCPh coordination shuttling to form the dications (4‐E)(GaCl4)2.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Sergi Danés
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
42
|
Reichl S, Grünbauer R, Balázs G, Scheer M. Reactivity of P 4 butterfly complexes towards NHCs - generation of a metal-bridged P 2 dumbbell complex. Chem Commun (Camb) 2021; 57:3383-3386. [PMID: 33683260 DOI: 10.1039/d1cc00615k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The reactivity of the P4 butterfly complexes [{Cp'''Fe(CO)2}2(μ,η1:1-P4)] (A, Cp''' = C5H2tBu3) and [{Cp*Cr(CO)3}2(μ,η1:1-P4)] (B, Cp* = C5(CH3)5) towards the N-heterocyclic carbene IMe (1,3,4,5-tetramethyl-imidazol-2-ylidene) is reported. The reaction of A affords [P(IMe)2][Fe(CO)2Cp'''] (1) or [P(IMe)2][{Cp'''Fe}2(μ,η3:3-P3)] (2), the latter possessing a P3-allylic moiety. In contrast, the reaction of B yields [P(IMe)2][Cr(CO)3Cp*] (3) and [{Cp*Cr(CO)2}(η2-P2IMe2)][Cr(CO)3Cp*] (4), featuring a novel metal-bridged P2 dumbbell.
Collapse
Affiliation(s)
- Stephan Reichl
- Institute of Inorganic Chemistry, University Regensburg, Universitaetsstrasse 31, Regensburg, D-93053, UK.
| | | | | | | |
Collapse
|
43
|
Lamb JR, Brown CM, Johnson JA. N-Heterocyclic carbene-carbodiimide (NHC-CDI) betaine adducts: synthesis, characterization, properties, and applications. Chem Sci 2021; 12:2699-2715. [PMID: 34164037 PMCID: PMC8179359 DOI: 10.1039/d0sc06465c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
N-Heterocyclic carbenes (NHCs) are an important class of reactive organic molecules used as ligands, organocatalysts, and σ-donors in a variety of electroneutral ylide or betaine adducts with main-group compounds. An emerging class of betaine adducts made from the reaction of NHCs with carbodiimides (CDIs) form zwitterionic amidinate-like structures with tunable properties based on the highly modular NHC and CDI scaffolds. The adduct stability is controlled by the substituents on the CDI nitrogens, while the NHC substituents greatly affect the configuration of the adduct in the solid state. This Perspective is intended as a primer to these adducts, touching on their history, synthesis, characterization, and general properties. Despite the infancy of the field, NHC-CDI adducts have been applied as amidinate-type ligands for transition metals and nanoparticles, as junctions in zwitterionic polymers, and to stabilize distonic radical cations. These applications and potential future directions are discussed.
Collapse
Affiliation(s)
- Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
44
|
Kim H, Kim M, Song H, Lee E. Indol‐2‐ylidene (IdY): Ambiphilic N‐Heterocyclic Carbene Derived from Indole**. Chemistry 2021; 27:3849-3854. [DOI: 10.1002/chem.202004879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Hyunho Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Minseop Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Hayoung Song
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| | - Eunsung Lee
- Department of Chemistry Pohang University of Science and Technology Pohang 790-784 Republic of Korea
| |
Collapse
|
45
|
Ho LP, Tamm M. Stabilization of a bismuth–bismuth double bond by anionic N-heterocyclic carbenes. Dalton Trans 2021; 50:1202-1205. [DOI: 10.1039/d1dt00140j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anionic N-heterocyclic carbenes have been employed for the isolation of the first dicarbene–dibismuth complex; the resulting dibismuthene features a trans-bent geometry with a Bi–Bi double bond and short intramolecular Bi–Cipso contacts.
Collapse
Affiliation(s)
- Luong Phong Ho
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
46
|
Chen X, Liu LL, Liu S, Grützmacher H, Li Z. A Room‐Temperature Stable Distonic Radical Cation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
| |
Collapse
|
47
|
Chen X, Liu LL, Liu S, Grützmacher H, Li Z. A Room-Temperature Stable Distonic Radical Cation. Angew Chem Int Ed Engl 2020; 59:23830-23835. [PMID: 32914528 DOI: 10.1002/anie.202011677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites have, so far, largely been observed by gas-phase mass spectrometry and/or matrix isolation spectroscopy work. Herein, we disclose the isolation of a crystalline dicarbondiphosphide-based β-distonic radical cation salt 3.+ (BARF) (BARF=[B(3,5-(CF3 )2 C6 H3 )4 )]- ) stable at room temperature and formed by a one-electron-oxidation-induced intramolecular skeletal rearrangement reaction. Such a species has been validated by electron paramagnetic resonance (EPR) spectroscopy, single-crystal X-ray diffraction, UV/Vis spectroscopy and density functional theory (DFT) calculations. Compound 3.+ (BARF) exhibits a large majority of spin density at a two-coordinate phosphorus atom (0.74 a.u.) and a cationic charge located predominantly at the four-coordinate phosphorus atom (1.53 a.u.), which are separated by one carbon atom. This species represents an isolable entity of a phosphorus radical cation that is the closest to a genuine phosphorus DRC to date.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China.,Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China
| |
Collapse
|
48
|
Kulkarni A, Arumugam S, Francis M, Reddy PG, Nag E, Gorantla SMNVT, Mondal KC, Roy S. Solid-State Isolation of Cyclic Alkyl(Amino) Carbene (cAAC)-Supported Structurally Diverse Alkali Metal-Phosphinidenides. Chemistry 2020; 27:200-206. [PMID: 32810317 DOI: 10.1002/chem.202003505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/12/2020] [Indexed: 01/09/2023]
Abstract
Cyclic alkyl(amino) carbene (cAAC)-supported, structurally diverse alkali metal-phosphinidenides 2-5 of general formula ((cAAC)P-M)n (THF)x [2: M=K, n=2, x=4; 3: M=K, n=6, x=2; 4: M=K, n=4, x=4; 5: M=Na, n=3, x=1] have been synthesized by the reduction of cAAC-stabilized chloro-phosphinidene cAAC=P-Cl (1) utilizing metallic K or KC8 and Na-naphthalenide as reducing agents. Complexes 2-5 have been structurally characterized in solid state by NMR studies and single crystal X-ray diffraction. The proposed mechanism for the electron transfer process has been well-supported by cyclic voltammetry (CV) studies and Density Functional Theory (DFT) calculations. The solid state oligomerization process has been observed to be largely dependent on the ionic radii of alkali metal ions, steric bulk of cAAC ligands and solvation/de-solvation/recombination of the dimeric unit [(cAAC)P-M(THF)x ]2 .
Collapse
Affiliation(s)
- Aditya Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Selvakumar Arumugam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Pulikanti Guruprasad Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | | | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| |
Collapse
|
49
|
Riedlberger F, Todisco S, Mastrorilli P, Timoshkin AY, Seidl M, Scheer M. NHCs as Neutral Donors towards Polyphosphorus Complexes. Chemistry 2020; 26:16251-16255. [PMID: 32745336 PMCID: PMC7756228 DOI: 10.1002/chem.202003393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/16/2022]
Abstract
The first adducts of NHCs (=N‐heterocyclic carbenes) with aromatic polyphosphorus complexes are reported. The reactions of [Cp*Fe(η5‐P5)] (1) (Cp*=pentamethyl‐cyclopentadienyl) with IMe (=1,3,4,5‐tetramethylimidazolin‐2‐ylidene), IMes (=1,3‐bis(2,4,6‐trimethylphenyl)‐imidazolin‐2‐ylidene) and IDipp (=1,3‐bis(2,6‐diisopropylphenyl)‐imidazolin‐2‐ylidene) led to the corresponding neutral adducts which can be isolated in the solid state. However, in solution, they quickly undergo a dissociative equilibrium between the adduct and 1 including the corresponding NHC. The equilibrium is influenced by the bulkiness of the NHC. [Cp′′Ta(CO)2(η4‐P4)] (Cp′′=1,3‐di‐tert‐butylcyclopentadienyl) reacts with IMe under P atom abstraction to give an unprecedented cyclo‐P3‐containing anionic tantalum complex. DFT calculations shed light onto the energetics of the reaction pathways.
Collapse
Affiliation(s)
- Felix Riedlberger
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Stefano Todisco
- Dipartimento di Ingeneria Civile, Ambientale, del Territorito Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
| | - Piero Mastrorilli
- Dipartimento di Ingeneria Civile, Ambientale, del Territorito Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy
| | - Alexey Y Timoshkin
- Institute of Chemistry, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia
| | - Michael Seidl
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
50
|
Wang Y, Szilvási T, Yao S, Driess M. A bis(silylene)-stabilized diphosphorus compound and its reactivity as a monophosphorus anion transfer reagent. Nat Chem 2020; 12:801-807. [DOI: 10.1038/s41557-020-0518-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022]
|