1
|
Chikhale RV, Choudhary R, Malhotra J, Eldesoky GE, Mangal P, Patil PC. Identification of novel hit molecules targeting M. tuberculosis polyketide synthase 13 by combining generative AI and physics-based methods. Comput Biol Med 2024; 176:108573. [PMID: 38723396 DOI: 10.1016/j.compbiomed.2024.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
In this work we investigated the Pks13-TE domain, which plays a critical role in the viability of the mycobacteria. In this report, we have used a series of AI and Physics-based tools to identify Pks13-TE inhibitors. The Reinvent 4, pKCSM, KDeep, and SwissADME are AI-ML-based tools. AutoDock Vina, PLANTS, MDS, and MM-GBSA are physics-based methods. A combination of these methods yields powerful support in the drug discovery cycle. Known inhibitors of Pks13-TE were collected, curated, and used as input for the AI-based tools, and Mol2Mol molecular optimisation methods generated novel inhibitors. These ligands were filtered based on physics-based methods like molecular docking and molecular dynamics using multiple tools for consensus generation. Rigorous analysis was performed on the selected compounds to reduce the chemical space while retaining the most promising compounds. The molecule interactions, stability of the protein-ligand complexes and the comparable binding energies with the native ligand were essential factors for narrowing the ligands set. The filtered ligands from docking, MDS, and binding energy colocations were further tested for their ADMET properties since they are among the essential criteria for this series of molecules. It was found that ligands Mt1 to Mt6 have excellent predicted pharmacokinetic, pharmacodynamic and toxicity profiles and good synthesisability.
Collapse
Affiliation(s)
- Rupesh V Chikhale
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, UK.
| | - Rinku Choudhary
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 5600413, India; Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to Be University, Pune-Satara Road, Pune, India
| | - Jagriti Malhotra
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 5600413, India; Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to Be University, Pune-Satara Road, Pune, India
| | - Gaber E Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parth Mangal
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 5600413, India; Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to Be University, Pune-Satara Road, Pune, India
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to Be University, Pune-Satara Road, Pune, India
| |
Collapse
|
2
|
Krieger IV, Yalamanchili S, Dickson P, Engelhart CA, Zimmerman MD, Wood J, Clary E, Nguyen J, Thornton N, Centrella PA, Chan B, Cuozzo JW, Gengenbacher M, Guié MA, Guilinger JP, Bienstock C, Hartl H, Hupp CD, Jetson R, Satoh T, Yeoman JTS, Zhang Y, Dartois V, Schnappinger D, Keefe AD, Sacchettini JC. Inhibitors of the Thioesterase Activity of Mycobacterium tuberculosis Pks13 Discovered Using DNA-Encoded Chemical Library Screening. ACS Infect Dis 2024; 10:1561-1575. [PMID: 38577994 PMCID: PMC11091879 DOI: 10.1021/acsinfecdis.3c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from Mycobacterium tuberculosis (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme. One of these inhibitors showed a favorable pharmacokinetic profile and demonstrated efficacy in an acute mouse model of tuberculosis (TB) infection. These findings and assay developments will aid in the advancement of TB drug discovery.
Collapse
Affiliation(s)
- Inna V. Krieger
- Department
of Biochemistry & Biophysics, Texas
A&M University, College
Station, Texas 77843, United States
| | | | - Paige Dickson
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Curtis A. Engelhart
- Department
of Microbiology and Immunology, Weill Cornell
Medicine, New York, New York 10021, United States
| | - Matthew D Zimmerman
- Center for
Discovery and Innovation, Hackensack Meridian
Health, Nutley, New Jersey 07110, United States
| | - Jeremy Wood
- Department
of Biochemistry & Biophysics, Texas
A&M University, College
Station, Texas 77843, United States
| | - Ethan Clary
- Department
of Biochemistry & Biophysics, Texas
A&M University, College
Station, Texas 77843, United States
| | - Jasmine Nguyen
- Department
of Biochemistry & Biophysics, Texas
A&M University, College
Station, Texas 77843, United States
| | - Natalie Thornton
- Department
of Microbiology and Immunology, Weill Cornell
Medicine, New York, New York 10021, United States
| | - Paolo A. Centrella
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Betty Chan
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
- Auron
Therapeutics, 55 Chapel
Street, Newton, Massachusetts 02458, United States
| | - John W Cuozzo
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
- Relay
Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02141, United States
| | - Martin Gengenbacher
- Center for
Discovery and Innovation, Hackensack Meridian
Health, Nutley, New Jersey 07110, United States
| | - Marie-Aude Guié
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - John P Guilinger
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Corey Bienstock
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Hajnalka Hartl
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
- Orogen
Therapeutics, 12 Gill
Street, Woburn, Massachusetts 01801, United States
| | - Christopher D. Hupp
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
- Ipsen Bioscience
Inc., 1 Main Street, Cambridge, Massachusetts 02142, United States
| | - Rachael Jetson
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
- Valo
Health, 75 Hayden Avenue, Lexington, Massachusetts 02141, United States
| | - Takashi Satoh
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
- EXO
Therapeutics, 150 Cambridgepark
Drive, suite 300, Cambridge, Massachusetts 02140, United States
| | - John T. S. Yeoman
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
- Recludix
Pharmaceuticals, 222
Third Street, Cambridge, Massachusetts 02142, United States
| | - Ying Zhang
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - Veronique Dartois
- Center for
Discovery and Innovation, Hackensack Meridian
Health, Nutley, New Jersey 07110, United States
- Hackensack
Meridian School of Medicine, Hackensack
Meridian Health, Nutley, New Jersey 07110, United States
| | - Dirk Schnappinger
- Department
of Microbiology and Immunology, Weill Cornell
Medicine, New York, New York 10021, United States
| | - Anthony D. Keefe
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| | - James C. Sacchettini
- Department
of Biochemistry & Biophysics, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Cai YX, Chen JX, Dong HM, Yang ZC. 19 Schiff bases as antimycobacterial agents: synthesis, molecular docking and a plausible mechanism of action. Future Med Chem 2024; 16:453-467. [PMID: 38314562 DOI: 10.4155/fmc-2023-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Aim: To discover novel anti-Mycobacterium tuberculosis (Mtb) drugs, 19 compounds were synthesized; their anti-Mtb effects were evaluated and mechanisms of action were preliminarily explored. Materials & methods: The compounds were synthesized and their anti-Mtb activity was elucidated using resazurin microtiter assays. The plausible target of the potential compound was investigated by microimaging techniques, gas chromatography-mass spectrometry analysis and molecular docking. Results: 19 compounds inhibited Mtb growth with minimum inhibitory concentrations ranging from 1 to 32 μg/ml. Compounds 1-17 showed inhibition of Mtb KatG enzyme. Compound 19, the most potent, might be an inhibitor of Pks13 polyketide synthase. Conclusion: This study suggests that 2-((6-fluoropyridin-3-yl)methylene) hydrazine-1-carbothioamide (19) is a potential anti-Mtb lead compound with a novel mechanism of action.
Collapse
Affiliation(s)
- Yu-Xiang Cai
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Jun-Xian Chen
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Hong-Mei Dong
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Zai-Chang Yang
- College of Pharmacy, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Shyam M, Kumar S, Singh V. Unlocking Opportunities for Mycobacterium leprae and Mycobacterium ulcerans. ACS Infect Dis 2024; 10:251-269. [PMID: 38295025 PMCID: PMC10862552 DOI: 10.1021/acsinfecdis.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
In the recent decade, scientific communities have toiled to tackle the emerging burden of drug-resistant tuberculosis (DR-TB) and rapidly growing opportunistic nontuberculous mycobacteria (NTM). Among these, two neglected mycobacteria species of the Acinetobacter family, Mycobacterium leprae and Mycobacterium ulcerans, are the etiological agents of leprosy and Buruli ulcer infections, respectively, and fall under the broad umbrella of neglected tropical diseases (NTDs). Unfortunately, lackluster drug discovery efforts have been made against these pathogenic bacteria in the recent decade, resulting in the discovery of only a few countable hits and majorly repurposing anti-TB drug candidates such as telacebec (Q203), P218, and TB47 for current therapeutic interventions. Major ignorance in drug candidate identification might aggravate the dramatic consequences of rapidly spreading mycobacterial NTDs in the coming days. Therefore, this Review focuses on an up-to-date account of drug discovery efforts targeting selected druggable targets from both bacilli, including the accompanying challenges that have been identified and are responsible for the slow drug discovery. Furthermore, a succinct discussion of the all-new possibilities that could be alternative solutions to mitigate the neglected mycobacterial NTD burden and subsequently accelerate the drug discovery effort is also included. We anticipate that the state-of-the-art strategies discussed here may attract major attention from the scientific community to navigate and expand the roadmap for the discovery of next-generation therapeutics against these NTDs.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department
of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mersa, Ranchi, Jharkhand 835215, India
| | - Sumit Kumar
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute
of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
5
|
Wang TT, Hu YL, Li YF, Kong XL, Li YM, Sun PY, Wang DX, Li YY, Zhang YZ, Han QL, Zhu XH, An QQ, Liu LL, Liu Y, Li HC. Polyketide synthases mutation in tuberculosis transmission revealed by whole genomic sequence, China, 2011-2019. Front Genet 2024; 14:1217255. [PMID: 38259610 PMCID: PMC10800454 DOI: 10.3389/fgene.2023.1217255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Tuberculosis (TB) is an infectious disease caused by a bacterium called Mycobacterium tuberculosis (Mtb). Previous studies have primarily focused on the transmissibility of multidrug-resistant (MDR) or extensively drug-resistant (XDR) Mtb. However, variations in virulence across Mtb lineages may also account for differences in transmissibility. In Mtb, polyketide synthase (PKS) genes encode large multifunctional proteins which have been shown to be major mycobacterial virulence factors. Therefore, this study aimed to identify the role of PKS mutations in TB transmission and assess its risk and characteristics. Methods: Whole genome sequences (WGSs) data from 3,204 Mtb isolates was collected from 2011 to 2019 in China. Whole genome single nucleotide polymorphism (SNP) profiles were used for phylogenetic tree analysis. Putative transmission clusters (≤10 SNPs) were identified. To identify the role of PKS mutations in TB transmission, we compared SNPs in the PKS gene region between "clustered isolates" and "non-clustered isolates" in different lineages. Results: Cluster-associated mutations in ppsA, pks12, and pks13 were identified among different lineage isolates. They were statistically significant among clustered strains, indicating that they may enhance the transmissibility of Mtb. Conclusion: Overall, this study provides new insights into the function of PKS and its localization in M. tuberculosis. The study found that ppsA, pks12, and pks13 may contribute to disease progression and higher transmission of certain strains. We also discussed the prospective use of mutant ppsA, pks12, and pks13 genes as drug targets.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan-Long Hu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Fan Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, China
| | - Xiang-Long Kong
- Shandong Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ya-Meng Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Da-Xing Wang
- People’s Hospital of Huaiyin Jinan, Jinan, China
| | - Ying-Ying Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu-Zhen Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qi-Lin Han
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue-Han Zhu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qi-Qi An
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to 11 Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Li-Li Liu
- People’s Hospital of Huaiyin Jinan, Jinan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to 11 Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huai-Chen Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to 11 Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
6
|
Khola S, Kumar S, Bhanwala N, Khatik GL. Polyketide Synthase 13 (Pks13) Inhibition: A Potential Target for New Class of Anti-tubercular Agents. Curr Top Med Chem 2024; 24:2362-2376. [PMID: 39297467 DOI: 10.2174/0115680266322983240906055750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 10/29/2024]
Abstract
Tuberculosis is one of the deadly infectious diseases that has resurfaced in multiple/ extensively resistant variants (MDR/XDR), threatening humankind. Today's world has a higher prevalence of tuberculosis (TB) than it has ever had throughout human history. Due to severe adverse effects, the marketed medications are not entirely effective in these forms. So, developing new drugs with a promising target is an immense necessity. Pks13 has emerged as a promising target for the mycobacterium. The concluding step of mycolic acid production involved Pks13, a crucial enzyme that helps form the precursor of mycolic acid via the Claisen-condensation reaction. It has five domains at the active site for targeting the enzyme and is used to test chemical entities for their antitubercular activity. Benzofurans, thiophenes, coumestans, N-phenyl indoles, and β lactones are the ligands that inhibit the Pks13 enzyme, showing potential antitubercular properties.
Collapse
Affiliation(s)
- Sonia Khola
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Sachin Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Neeru Bhanwala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
7
|
Dong W, Wang G, Bai Y, Li Y, Zhao L, Lu W, Wang C, Zhang Z, Lu H, Wang X, Chen H, Tan C. Repurposing an Antioxidant to Kill Mycobacterium tuberculosis by Targeting the 50S Subunit of the Ribosome. Biomolecules 2023; 13:1793. [PMID: 38136663 PMCID: PMC10742058 DOI: 10.3390/biom13121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Tuberculosis and drug-resistant TB remain serious threats to global public health. It is urgent to develop novel anti-TB drugs in order to control it. In addition to redesigning and developing new anti-TB drugs, drug repurposing is also an innovative way to develop antibacterial drugs. Based on this method, we discovered SKQ-1 in the FDA-approved drug library and evaluated its anti-TB activity. In vitro, we demonstrated that SKQ-1 engaged in bactericidal activity against drug-sensitive and -resistant Mtb and confirmed the synergistic effects of SKQ1 with RIF and INH. Moreover, SKQ-1 showed a significant Mtb-killing effect in macrophages. In vivo, both the SKQ-1 treatment alone and the treatment in combination with RIF were able to significantly reduce the bacterial load and improve the survival rate of G. mellonella infected with Mtb. We performed whole-genome sequencing on screened SKQ-1-resistant strains and found that the SNP sites were concentrated in the 50S ribosomal subunit of Mtb. Furthermore, we proved that SKQ-1 can inhibit protein translation. In summary, from the perspective of drug repurposing, we discovered and determined the anti-tuberculosis effect of SKQ-1, revealed its synergistic effects with RIF and INH, and demonstrated its mechanism of action through targeting ribosomes and disrupting protein synthesis, thus making it a potential treatment option for DR-TB.
Collapse
Affiliation(s)
- Wenqi Dong
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gaoyan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yajuan Bai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yuxin Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liying Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenjia Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chenchen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhaoran Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hao Lu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.D.); (G.W.); (Y.B.); (Y.L.); (L.Z.); (W.L.); (C.W.); (Z.Z.); (H.L.); (X.W.); (H.C.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
8
|
Green SR, Wilson C, Eadsforth TC, Punekar AS, Tamaki FK, Wood G, Caldwell N, Forte B, Norcross NR, Kiczun M, Post JM, Lopez-Román EM, Engelhart CA, Lukac I, Zuccotto F, Epemolu O, Boshoff HIM, Schnappinger D, Walpole C, Gilbert IH, Read KD, Wyatt PG, Baragaña B. Identification and Optimization of Novel Inhibitors of the Polyketide Synthase 13 Thioesterase Domain with Antitubercular Activity. J Med Chem 2023; 66:15380-15408. [PMID: 37948640 PMCID: PMC10683028 DOI: 10.1021/acs.jmedchem.3c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
There is an urgent need for new tuberculosis (TB) treatments, with novel modes of action, to reduce the incidence/mortality of TB and to combat resistance to current treatments. Through both chemical and genetic methodologies, polyketide synthase 13 (Pks13) has been validated as essential for mycobacterial survival and as an attractive target for Mycobacterium tuberculosis growth inhibitors. A benzofuran series of inhibitors that targeted the Pks13 thioesterase domain, failed to progress to preclinical development due to concerns over cardiotoxicity. Herein, we report the identification of a novel oxadiazole series of Pks13 inhibitors, derived from a high-throughput screening hit and structure-guided optimization. This new series binds in the Pks13 thioesterase domain, with a distinct binding mode compared to the benzofuran series. Through iterative rounds of design, assisted by structural information, lead compounds were identified with improved antitubercular potencies (MIC < 1 μM) and in vitro ADMET profiles.
Collapse
Affiliation(s)
- Simon R. Green
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Caroline Wilson
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Thomas C. Eadsforth
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Avinash S. Punekar
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Fabio K. Tamaki
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Gavin Wood
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Nicola Caldwell
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Barbara Forte
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Neil R. Norcross
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Michael Kiczun
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - John M. Post
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Eva Maria Lopez-Román
- Global
Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid Spain
| | - Curtis A. Engelhart
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Iva Lukac
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Fabio Zuccotto
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Ola Epemolu
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Dirk Schnappinger
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Chris Walpole
- Structural
Genomics Consortium, Research Institute
of the McGill University Health Centre, 1001 Boulevard Décarie, Site Glen Block
E, ES1.1614, Montréal, QC H4A 3J1, Canada
| | - Ian H. Gilbert
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Kevin D. Read
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Paul G. Wyatt
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Beatriz Baragaña
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| |
Collapse
|
9
|
Xia F, Zhang H, Yang H, Zheng M, Min W, Sun C, Yuan K, Yang P. Targeting polyketide synthase 13 for the treatment of tuberculosis. Eur J Med Chem 2023; 259:115702. [PMID: 37544185 DOI: 10.1016/j.ejmech.2023.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/15/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Tuberculosis (TB) is one of the most threatening diseases for humans, however, the drug treatment strategy for TB has been stagnant and inadequate, which could not meet current treatment needs. TB is caused by Mycobacterial tuberculosis, which has a unique cell wall that plays a crucial role in its growth, virulence, and drug resistance. Polyketide synthase 13 (Pks13) is an essential enzyme that catalyzes the biosynthesis of the cell wall and its critical role is only found in Mycobacteria. Therefore, Pks13 is a promising target for developing novel anti-TB drugs. In this review, we first introduced the mechanism of targeting Pks13 for TB treatment. Subsequently, we focused on summarizing the recent advance of Pks13 inhibitors, including the challenges encountered during their discovery and the rational design strategies employed to overcome these obstacles, which could be helpful for the development of novel Pks13 inhibitors in the future.
Collapse
Affiliation(s)
- Fei Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haoling Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanaoyu Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mingming Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
10
|
Shee S, Veetil RT, Mohanraj K, Das M, Malhotra N, Bandopadhyay D, Beig H, Birua S, Niphadkar S, Nagarajan SN, Sinha VK, Thakur C, Rajmani RS, Chandra N, Laxman S, Singh M, Samal A, Seshasayee AN, Singh A. Biosensor-integrated transposon mutagenesis reveals rv0158 as a coordinator of redox homeostasis in Mycobacterium tuberculosis. eLife 2023; 12:e80218. [PMID: 37642294 PMCID: PMC10501769 DOI: 10.7554/elife.80218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.
Collapse
Affiliation(s)
- Somnath Shee
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | - Karthikeyan Mohanraj
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | - Mayashree Das
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | | | - Hussain Beig
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shalini Birua
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Sathya Narayanan Nagarajan
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Vikrant Kumar Sinha
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Areejit Samal
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| |
Collapse
|
11
|
Yan M, Ma M, Chen R, Cao Y, Zhang W, Liu X. Structural basis for the development of potential inhibitors targeting FadD23 from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2023; 79:208-216. [PMID: 37522751 PMCID: PMC10416763 DOI: 10.1107/s2053230x23005836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Sulfolipid-1 (SL-1) is a lipid that is abundantly found in the cell wall of Mycobacterium tuberculosis (Mtb). MtbFadD23 is crucial in the SL-1 synthesis pathway. Previously, 5'-O-[N-(11-phenoxyundecanoyl)sulfamoyl]adenosine (PhU-AMS) has been shown to be a general inhibitor of fatty-acid-adenylating enzymes (FadDs) in Mtb. However, the fatty acyl-AMP ligase (FAAL) class of FadDs, which includes MtbFadD23, appears to be functionally nonredundant in the production of multiple fatty acids. In this study, the ability of PhU-AMS to bind to MtbFadD23 was examined under in vitro conditions. The crystal structure of the MtbFadD23-PhU-AMS complex was determined at a resolution of 2.64 Å. Novel features were identified by structural analysis and comparison. Although PhU-AMS could bind to MtbFadD23, it did not inhibit the FAAL adenylation activity of MtbFadD23. However, PhU-AMS improved the main Tm value in a differential scanning fluorimetry assay, and a structural comparison of MtbFadD23-PhU-AMS with FadD32 and PA1221 suggested that PhU-AMS blocks the loading of the acyl chain onto Pks2. This study sheds light on the structure-based design of specific inhibitors of MtbFadD23 and general inhibitors of FAALs.
Collapse
Affiliation(s)
- Mengrong Yan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Mengyuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Rong Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Yangzi Cao
- College of Pharmacy, Nankai University, Tianjin, People’s Republic of China
| | - Wei Zhang
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, People’s Republic of China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
12
|
Kumar G, C A. Natural products and their analogues acting against Mycobacterium tuberculosis: A recent update. Drug Dev Res 2023; 84:779-804. [PMID: 37086027 DOI: 10.1002/ddr.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases caused by Mycobacterium tuberculosis (M.tb). It is responsible for significant causes of mortality and morbidity worldwide. M.tb possesses robust defense mechanisms against most antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. Thus, the efficacy of existing front-line drugs is diminishing, and new and recurring cases of TB arising from multidrug-resistant M.tb are increasing. TB begs the scientific community to explore novel therapeutic avenues. A precise knowledge of the compounds with their mode of action could aid in developing new anti-TB agents that can kill latent and actively multiplying M.tb. This can help in the shortening of the anti-TB regimen and can improve the outcome of treatment strategies. Natural products have contributed several antibiotics for TB treatment. The sources of anti-TB drugs/inhibitors discussed in this work are target-based identification/cell-based and phenotypic screening from natural products. Some of the recently identified natural products derived leads have reached clinical stages of TB drug development, which include rifapentine, CPZEN-45, spectinamide-1599 and 1810. We believe these anti-TB agents could emerge as superior therapeutic compounds to treat TB over known Food and Drug Administration drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| | - Amrutha C
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Sreelatha S, Nagarajan U, Natarajan S. Protein targets in Mycobacterium tuberculosis and their inhibitors for therapeutic implications: A narrative review. Int J Biol Macromol 2023:125022. [PMID: 37244342 DOI: 10.1016/j.ijbiomac.2023.125022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Advancement in the area of anti-tubercular drug development has been full-fledged, yet, a very less number of drug molecules have reached phase II clinical trials, and therefore "End-TB" is still a global challenge. Inhibitors to specific metabolic pathways of Mycobacterium tuberculosis (Mtb) gain importance in strategizing anti-tuberculosis drug discovery. The lead compounds that target DNA replication, protein synthesis, cell wall biosynthesis, bacterial virulence and energy metabolism are emerging as potential chemotherapeutic options against Mtb growth and survival within the host. In recent times, the in silico approaches have become most promising tools in the identification of suitable inhibitors for specific protein targets of Mtb. An update in the fundamental understanding of these inhibitors and the mechanism of interaction may bring hope to future perspectives in novel drug development and delivery approaches. This review provides a collective impression of the small molecules with potential antimycobacterial activities and their target pathways in Mtb such as cell wall biosynthesis, DNA replication, transcription and translation, efflux pumps, antivirulence pathways and general metabolism. The mechanism of interaction of specific inhibitor with their respective protein targets has been discussed. The comprehensive knowledge of such an impactful area of research would essentially reflect in the discovery of novel drug molecules and effective delivery approaches. This narrative review encompasses the knowledge of emerging targets and promising n that could potentially translate in to the anti-TB-drug discovery.
Collapse
Affiliation(s)
- Souparnika Sreelatha
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | - Usharani Nagarajan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | - Saravanan Natarajan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India.
| |
Collapse
|
14
|
Altharawi A, Alossaimi MA, Alanazi MM, Alqahatani SM, Tahir Ul Qamar M. An integrated computational approach towards novel drugs discovery against polyketide synthase 13 thioesterase domain of Mycobacterium tuberculosis. Sci Rep 2023; 13:7014. [PMID: 37117557 PMCID: PMC10147368 DOI: 10.1038/s41598-023-34222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
The acquired drug resistance by Mycobacterium tuberculosis (M. tuberculosis) to antibiotics urges the need for developing novel anti-M. tuberculosis drugs that possess novel mechanism of action. Since traditional drug discovery is a labor-intensive and costly process, computer aided drug design is highly appreciated tool as it speeds up and lower the cost of drug development process. Herein, Asinex antibacterial compounds were virtually screened against thioesterase domain of Polyketide synthase 13, a unique enzyme that forms α-alkyl β-ketoesters as a direct precursor of mycolic acids which are essential components of the lipid-rich cell wall of M. tuberculosis. The study identified three drug-like compounds as the most promising leads; BBB_26582140, BBD_30878599 and BBC_29956160 with binding energy value of - 11.25 kcal/mol, - 9.87 kcal/mol and - 9.33 kcal/mol, respectively. The control molecule binding energy score is -9.25 kcal/mol. Also, the docked complexes were dynamically stable with maximum root mean square deviation (RMSD) value of 3 Å. Similarly, the MM-GB\PBSA method revealed highly stable complexes with mean energy values < - 75 kcal/mol for all three systems. The net binding energy scores are validated by WaterSwap and entropy energy analysis. Furthermore, The in silico druglike and pharmacokinetic investigation revealed that the compounds could be suitable candidates for additional experimentations. In summary, the study findings are significant, and the compounds may be used in experimental validation pipeline to develop potential drugs against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Safar M Alqahatani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| |
Collapse
|
15
|
Waller NJE, Cheung CY, Cook GM, McNeil MB. The evolution of antibiotic resistance is associated with collateral drug phenotypes in Mycobacterium tuberculosis. Nat Commun 2023; 14:1517. [PMID: 36934122 PMCID: PMC10024696 DOI: 10.1038/s41467-023-37184-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023] Open
Abstract
The increasing incidence of drug resistance in Mycobacterium tuberculosis has diminished the efficacy of almost all available antibiotics, complicating efforts to combat the spread of this global health burden. Alongside the development of new drugs, optimised drug combinations are needed to improve treatment success and prevent the further spread of antibiotic resistance. Typically, antibiotic resistance leads to reduced sensitivity, yet in some cases the evolution of drug resistance can lead to enhanced sensitivity to unrelated drugs. This phenomenon of collateral sensitivity is largely unexplored in M. tuberculosis but has the potential to identify alternative therapeutic strategies to combat drug-resistant strains that are unresponsive to current treatments. Here, by using drug susceptibility profiling, genomics and evolutionary studies we provide evidence for the existence of collateral drug sensitivities in an isogenic collection M. tuberculosis drug-resistant strains. Furthermore, in proof-of-concept studies, we demonstrate how collateral drug phenotypes can be exploited to select against and prevent the emergence of drug-resistant strains. This study highlights that the evolution of drug resistance in M. tuberculosis leads to collateral drug responses that can be exploited to design improved drug regimens.
Collapse
Affiliation(s)
- Natalie J E Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Kumar G, Kapoor S. Targeting mycobacterial membranes and membrane proteins: Progress and limitations. Bioorg Med Chem 2023; 81:117212. [PMID: 36804747 DOI: 10.1016/j.bmc.2023.117212] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Among the various bacterial infections, tuberculosis continues to hold center stage. Its causative agent, Mycobacterium tuberculosis, possesses robust defense mechanisms against most front-line antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. It is now well-established that bacteria change their membrane composition to optimize their environment to survive and elude drug action. Thus targeting membrane or membrane components is a promising avenue for exploiting the chemical space focussed on developing novel membrane-centric anti-bacterial small molecules. These approaches are more effective, non-toxic, and can attenuate resistance phenotype. We present the relevance of targeting the mycobacterial membrane as a practical therapeutic approach. The review highlights the direct and indirect targeting of membrane structure and function. Direct membrane targeting agents cause perturbation in the membrane potential and can cause leakage of the cytoplasmic contents. In contrast, indirect membrane targeting agents disrupt the function of membrane-associated proteins involved in cell wall biosynthesis or energy production. We discuss the chronological chemical improvements in various scaffolds targeting specific membrane-associated protein targets, their clinical evaluation, and up-to-date account of their ''mechanisms of action, potency, selectivity'' and limitations. The sources of anti-TB drugs/inhibitors discussed in this work have emerged from target-based identification, cell-based phenotypic screening, drug repurposing, and natural products. We believe this review will inspire the exploration of uncharted chemical space for informing the development of new scaffolds that can inhibit novel mycobacterial membrane targets.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Departemnt of Natural Products, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad 500037, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan.
| |
Collapse
|
17
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Imran M, Khan SA, Asdaq SMB, Almehmadi M, Abdulaziz O, Kamal M, Alshammari MK, Alsubaihi LI, Hussain KH, Alharbi AS, Alzahrani AK. An insight into the discovery, clinical studies, compositions, and patents of macozinone: A drug targeting the DprE1 enzyme of Mycobacterium tuberculosis. J Infect Public Health 2022; 15:1097-1107. [PMID: 36122509 DOI: 10.1016/j.jiph.2022.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022] Open
Abstract
Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1) inhibitors are an innovative and futuristic orally active group of antituberculosis agents. A few DprE1 inhibitors are in the clinical trial for tuberculosis (TB), including macozinone. This review highlights the discovery, developmental status, clinical studies, patents, and prospects of macozinone (MCZ). The patent and non-patent literature search was done by entering keywords such as macozinone; MCZ; PBTZ169; PBTZ-169 in Pubmed, Espacenet, Patentscope, and the USPTO databases. However, data on Sci-Finder was searched using CAS registry number: 1377239-83-2. MCZ clinical trial studies were retrieved from the clinicaltrials.gov database using the exact keywords. The chemical structure of MCZ was disclosed in 2009. Accordingly, patents/patent applications published from 2009 to June 12, 2022, have been discussed herein. MCZ and MCZ hydrochloride salt patents were granted in 2014 and 2019, respectively, in the USA. The patent literature and the clinical trial studies suggest capsule, tablet, and suspension formulations of crystalline MCZ and its hydrochloride salt as the possible and prospective dosage forms to treat TB. Some combinations of MCZ with other drugs (chloroquine, telacebec, tafenoquine, TBI-166, and sanfetrinem) with improved anti-TB efficacy have been documented. Based on the literature covered in this review article on the clinical studies and patents applied/granted to MCZ, it can be inferred that MCZ seems to be a promising DprE1 inhibitor and could help to tackle the emerging dilemma of drug-resistant either as a monotherapy or in combination with additional anti-TB agents. Furthermore, the authors anticipate the development of new combinations, salts, and polymorphs of MCZ as anti-TB agents shortly. This review article might prove beneficial to the scientific community as it summarizes chemistry, pharmacology and provides an update on the clinical studies and patents/patent applications of one of the emerging anti-TB drugs in one place.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat, Oman.
| | | | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | | | - Lojain Ibrahim Alsubaihi
- Department of Pharmaceutical Care, Prince Sultan Armed Forces Hospital, Medina 42313, Saudi Arabia.
| | - Khansa Hamza Hussain
- Department of Cardiac Science, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Abrar Saleh Alharbi
- Department of Pharmaceutical Sciences, Primary Healthcare Center, West Zone, Mecca 24341, Saudi Arabia.
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia.
| |
Collapse
|
19
|
Zhang W, Lun S, Wang SS, Cai YP, Yang F, Tang J, Bishai WR, Yu LF. Structure-Based Optimization of Coumestan Derivatives as Polyketide Synthase 13-Thioesterase(Pks13-TE) Inhibitors with Improved hERG Profiles for Mycobacterium tuberculosis Treatment. J Med Chem 2022; 65:13240-13252. [PMID: 36174223 DOI: 10.1021/acs.jmedchem.2c01064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pks13 was identified as a key enzyme involved in the final step of mycolic acid biosynthesis. We previously identified antitubercular coumestans that targeted Pks13-TE, and these compounds exhibited high potency both in vitro and in vivo. However, lead compound 8 presented potential safety concerns because it inhibits the hERG potassium channel in electrophysiology patch-clamp assays (IC50 = 0.52 μM). By comparing the Pks13-TE-compound 8 complex and the ligand-binding pocket of the hERG ion channel, fluoro-substituted and oxazine-containing coumestans were designed and synthesized. Fluoro-substituted compound 23 and oxazine-containing coumestan 32 showed excellent antitubercular activity against both drug-susceptible and drug-resistant Mtb strains (MIC = 0.0039-0.0078 μg/mL) and exhibited limited hERG inhibition (IC50 ≥ 25 μM). Moreover, 32 exhibited improved metabolic stability relative to parent compound 8 while showing favorable bioavailability in mouse models via serum inhibition titration assays.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, Maryland 21231-1044, United States
| | - Shuang-Shuang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yan-Peng Cai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, Maryland 21231-1044, United States
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
20
|
Rudraraju RS, Daher SS, Gallardo-Macias R, Wang X, Neiditch MB, Freundlich JS. Mycobacterium tuberculosis KasA as a drug target: Structure-based inhibitor design. Front Cell Infect Microbiol 2022; 12:1008213. [PMID: 36189349 PMCID: PMC9519891 DOI: 10.3389/fcimb.2022.1008213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have reported the β-ketoacyl-acyl carrier protein KasA as a druggable target for Mycobacterium tuberculosis. This review summarizes the current status of major classes of KasA inhibitors with an emphasis on significant contributions from structure-based design methods leveraging X-ray crystal structures of KasA alone and in complex with inhibitors. The issues addressed within each inhibitor class are discussed while detailing the characterized interactions with KasA and structure-activity relationships. A critical analysis of these findings should lay the foundation for new KasA inhibitors to study the basic biology of M. tuberculosis and to form the basis of new antitubercular molecules of clinical significance with activity against drug-sensitive and drug-resistant infections.
Collapse
Affiliation(s)
- Reshma S. Rudraraju
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Samer S. Daher
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Ricardo Gallardo-Macias
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA, United States
| | - Matthew B. Neiditch
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, United States,*Correspondence: Matthew B. Neiditch, ; Joel S. Freundlich,
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States,Department of Medicine, Center for Emerging and Re-emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ, United States,*Correspondence: Matthew B. Neiditch, ; Joel S. Freundlich,
| |
Collapse
|
21
|
Identification of novel inhibitors for mycobacterial polyketide synthase 13 via in silico drug screening assisted by the parallel compound screening with genetic algorithm-based programs. J Antibiot (Tokyo) 2022; 75:552-558. [PMID: 35941150 DOI: 10.1038/s41429-022-00549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Identifying small compounds capable of inhibiting Mycobacterium tuberculosis polyketide synthase 13 (Pks13), in charge of final step of mycolic acid biosynthesis, could lead to the development of a novel antituberculosis drug. This study screened for lead compounds capable of targeting M. tuberculosis Pks13 from a chemical library comprising 154,118 compounds through multiple in silico docking simulations. The parallel compound screening (PCS), conducted via two genetic algorithm-based programs was applied in the screening strategy. Out of seven experimentally validated compounds, four compounds showed inhibitory effects on the growth of the model mycobacteria (Mycobacterium smegmatis). Subsequent docking simulation of analogs of the promising leads with the assistance of PCS resulted in the identification of three additional compounds with potent antimycobacterial effects (compounds A1, A2, and A5). Further, molecular dynamics simulation predicted stable interaction between M. tuberculosis Pks13 active site and compound A2, which showed potent antimycobacterial activity comparable to that of isoniazid. The present study demonstrated the efficacy of in silico structure-based drug screening through PCS in antituberculosis drug discovery.
Collapse
|
22
|
Bon C, Cabantous S, Julien S, Guillet V, Chalut C, Rima J, Brison Y, Malaga W, Sanchez-Dafun A, Gavalda S, Quémard A, Marcoux J, Waldo GS, Guilhot C, Mourey L. Solution structure of the type I polyketide synthase Pks13 from Mycobacterium tuberculosis. BMC Biol 2022; 20:147. [PMID: 35729566 PMCID: PMC9210659 DOI: 10.1186/s12915-022-01337-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I polyketide synthases (PKSs) are multifunctional enzymes responsible for the biosynthesis of a group of diverse natural compounds with biotechnological and pharmaceutical interest called polyketides. The diversity of polyketides is impressive despite the limited set of catalytic domains used by PKSs for biosynthesis, leading to considerable interest in deciphering their structure-function relationships, which is challenging due to high intrinsic flexibility. Among nineteen polyketide synthases encoded by the genome of Mycobacterium tuberculosis, Pks13 is the condensase required for the final condensation step of two long acyl chains in the biosynthetic pathway of mycolic acids, essential components of the cell envelope of Corynebacterineae species. It has been validated as a promising druggable target and knowledge of its structure is essential to speed up drug discovery to fight against tuberculosis. RESULTS We report here a quasi-atomic model of Pks13 obtained using small-angle X-ray scattering of the entire protein and various molecular subspecies combined with known high-resolution structures of Pks13 domains or structural homologues. As a comparison, the low-resolution structures of two other mycobacterial polyketide synthases, Mas and PpsA from Mycobacterium bovis BCG, are also presented. This study highlights a monomeric and elongated state of the enzyme with the apo- and holo-forms being identical at the resolution probed. Catalytic domains are segregated into two parts, which correspond to the condensation reaction per se and to the release of the product, a pivot for the enzyme flexibility being at the interface. The two acyl carrier protein domains are found at opposite sides of the ketosynthase domain and display distinct characteristics in terms of flexibility. CONCLUSIONS The Pks13 model reported here provides the first structural information on the molecular mechanism of this complex enzyme and opens up new perspectives to develop inhibitors that target the interactions with its enzymatic partners or between catalytic domains within Pks13 itself.
Collapse
Affiliation(s)
- Cécile Bon
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Stéphanie Cabantous
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Los Alamos National Laboratory, Bioscience Division B-N2, Los Alamos, NM, 87545, USA
- Present address: Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylviane Julien
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julie Rima
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yoann Brison
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Present address: Toulouse White Biotechnology, 31400, Toulouse, France
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Angelique Sanchez-Dafun
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Present address: Carbios, Biopole Clermont Limagne, 63360, Saint-Beauzire, France
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geoffrey S Waldo
- Los Alamos National Laboratory, Bioscience Division B-N2, Los Alamos, NM, 87545, USA
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
23
|
Cai Y, Zhang W, Lun S, Zhu T, Xu W, Yang F, Tang J, Bishai WR, Yu L. Design, Synthesis and Biological Evaluation of N-phenylindole Derivatives as Pks13 Inhibitors against Mycobacterium tuberculosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092844. [PMID: 35566191 PMCID: PMC9106008 DOI: 10.3390/molecules27092844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Polyketide synthase 13 (Pks13), an essential enzyme for the survival of Mycobacterium tuberculosis (Mtb), is an attractive target for new anti-TB agents. In our previous work, we have identified 2-phenylindole derivatives against Mtb. The crystallography studies demonstrated that the two-position phenol was solvent-exposed in the Pks13-TE crystal structure and a crucial hydrogen bond was lost while introducing bulkier hydrophobic groups at indole N moieties. Thirty-six N-phenylindole derivatives were synthesized and evaluated for antitubercular activity using a structure-guided approach. The structure-activity relationship (SAR) studies resulted in the discovery of the potent Compounds 45 and 58 against Mtb H37Rv, with an MIC value of 0.0625 μg/mL and 0.125 μg/mL, respectively. The thermal stability analysis showed that they bind with high affinity to the Pks13-TE domain. Preliminary ADME evaluation showed that Compound 58 displayed modest human microsomal stability. This report further validates that targeting Pks13 is a valid strategy for the inhibition of Mtb and provides a novel scaffold for developing leading anti-TB compounds.
Collapse
Affiliation(s)
- Yanpeng Cai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.C.); (W.Z.); (T.Z.); (W.X.); (F.Y.)
| | - Wei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.C.); (W.Z.); (T.Z.); (W.X.); (F.Y.)
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA;
| | - Tongtong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.C.); (W.Z.); (T.Z.); (W.X.); (F.Y.)
| | - Weijun Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.C.); (W.Z.); (T.Z.); (W.X.); (F.Y.)
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.C.); (W.Z.); (T.Z.); (W.X.); (F.Y.)
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China;
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA;
- Correspondence: (W.R.B.); (L.Y.)
| | - Lifang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; (Y.C.); (W.Z.); (T.Z.); (W.X.); (F.Y.)
- Correspondence: (W.R.B.); (L.Y.)
| |
Collapse
|
24
|
Liu H, Su L, Zhu T, Zhu X, Zhu Y, Peng Y, Zhang K, Wang L, Hu C, Chen H, Chen Y, Guo A. Comparative Analysis on Proteomics Profiles of Intracellular and Extracellular M.tb and BCG From Infected Human Macrophages. Front Genet 2022; 13:847838. [PMID: 35419023 PMCID: PMC8995892 DOI: 10.3389/fgene.2022.847838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis is the second cause in infectious diseases leading to human death. Understanding the virulence mechanism is inevitable if the disease needs to be fully cured. Therefore, this study aimed to reveal this mechanism by comparing proteomic profiles of intracellular and extracellular virulent strain M.tb and bacille Calmette–Guérin (BCG) from infected THP-1cells. First, M.tb and BCG infected THP-1 at MOI 10:1. Twelve hours postinfection, intracellular bacteria of M.tb and BCG were collected, whereas the two bacilli cultured in 7H9 broth media were used as the control. Then four groups of bacilli were subjected to proteomic analysis, and differential proteomic profiles between M.tb and BCG were comparatively analyzed with bioinformatics tools. As a result, we identified a total of 1,557 proteins. Further, they were divided into four groups for comparison of M.tb versus BCG under 7H9 culture (shorten as out), M.tb in (intracellular) versus M.tb out, BCG in versus BCG out and M.tb in versus BCG in. Between M.tb in versus BCG in, a total of 211 differentially expressed proteins were found. Eight proteins like ESAT-6 distributed in six RDs and some known proteins related to virulence. Besides, five uncharacterized proteins were differentially expressed. Further analysis revealed enriched pathways were associated with glyoxylate and dicarboxylate metabolism pathways. In M.tb out versus BCG out, a total of 144 differential proteins were identified and mainly involved in metabolism pathways. Then, 121 differential proteins in the group of M.tb in versus M.tb out were enriched in ribosome and oxidative phosphorylation related to adaptation to the host environment. The group of BCG in versus BCG out shared the same trend of different pathways to the M.tb in versus M.tb out. Finally, 42 proteins were identified to be up-regulated only in intracellular M.tb including eight RD proteins, whereas 22 up-regulated uniquely in intracellular BCG. Besides, only two proteins (Pks13 and Rv1405c) were commonly up-regulated in intracellular M.tb and BCG. Further, some unknown proteins were uniquely up-regulated in the intracellular M.tb and BCG. These findings provide valuable data for further exploration of molecular mechanism for M.tb virulence and BCG immune response.
Collapse
Affiliation(s)
- Han Liu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Li Su
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojie Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yifan Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yonchong Peng
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kailun Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Longwei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Kuang W, Zhang H, Wang X, Yang P. Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Acta Pharm Sin B 2022; 12:3201-3214. [PMID: 35967276 PMCID: PMC9366312 DOI: 10.1016/j.apsb.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) utilizes multiple mechanisms to obtain antibiotic resistance during the treatment of infections. In addition, the biofilms, secreted by MTB, can further protect the latter from the contact with drug molecules and immune cells. These self-defending mechanisms lay a formidable challenge to develop effective therapeutic agents against chronic and recurring antibiotic-tolerant MTB infections. Although several inexpensive and effective drugs (isoniazid, rifampicin, pyrazinamide and ethambutol) have been discovered for the treatment regimen, MTB continues to cause considerable morbidity and mortality worldwide. Antibiotic resistance and tolerance remain major global issues, and innovative therapeutic strategies are urgently needed to address the challenges associated with pathogenic bacteria. Gratifyingly, the cell wall synthesis of tubercle bacilli requires the participation of many enzymes which exclusively exist in prokaryotic organisms. These enzymes, absent in human hepatocytes, are recognized as promising targets to develop anti-tuberculosis drug. In this paper, we discussed the critical roles of potential drug targets in regulating cell wall synthesis of MTB. And also, we systematically reviewed the advanced development of novel bioactive compounds or drug leads for inhibition of cell wall synthesis, including their discovery, chemical modification, in vitro and in vivo evaluation.
Collapse
Affiliation(s)
- Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haolin Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding author.
| |
Collapse
|
26
|
Lane TR, Urbina F, Rank L, Gerlach J, Riabova O, Lepioshkin A, Kazakova E, Vocat A, Tkachenko V, Cole S, Makarov V, Ekins S. Machine Learning Models for Mycobacterium tuberculosisIn Vitro Activity: Prediction and Target Visualization. Mol Pharm 2022; 19:674-689. [PMID: 34964633 PMCID: PMC9121329 DOI: 10.1021/acs.molpharmaceut.1c00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a major global health challenge, with approximately 1.4 million deaths per year. There is still a need to develop novel treatments for patients infected with Mycobacterium tuberculosis (Mtb). There have been many large-scale phenotypic screens that have led to the identification of thousands of new compounds. Yet, there is very limited investment in TB drug discovery which points to the need for new methods to increase the efficiency of drug discovery against Mtb. We have used machine learning approaches to learn from the public Mtb data, resulting in many data sets and models with robust enrichment and hit rates leading to the discovery of new active compounds. Recently, we have curated predominantly small-molecule Mtb data and developed new machine learning classification models with 18 886 molecules at different activity cutoffs. We now describe the further validation of these Bayesian models using a library of over 1000 molecules synthesized as part of EU-funded New Medicines for TB and More Medicines for TB programs. We highlight molecular features which are enriched in these active compounds. In addition, we provide new regression and classification models that can be used for scoring compound libraries or used to design new molecules. We have also visualized these molecules in the context of known molecular targets and identified clusters in chemical property space, which may aid in future target identification efforts. Finally, we are also making these data sets publicly available, representing a significant increase to the available Mtb inhibition data in the public domain.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Laura Rank
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Olga Riabova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | | | - Elena Kazakova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Valery Tkachenko
- Science Data Experts, 14909 Forest Landing Cir, Rockville, MD 20850
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| |
Collapse
|
27
|
Wilson C, Ray P, Zuccotto F, Hernandez J, Aggarwal A, Mackenzie C, Caldwell N, Taylor M, Huggett M, Mathieson M, Murugesan D, Smith A, Davis S, Cocco M, Parai MK, Acharya A, Tamaki F, Scullion P, Epemolu O, Riley J, Stojanovski L, Lopez-Román EM, Torres-Gómez PA, Toledo AM, Guijarro-Lopez L, Camino I, Engelhart CA, Schnappinger D, Massoudi LM, Lenaerts A, Robertson GT, Walpole C, Matthews D, Floyd D, Sacchettini JC, Read KD, Encinas L, Bates RH, Green SR, Wyatt PG. Optimization of TAM16, a Benzofuran That Inhibits the Thioesterase Activity of Pks13; Evaluation toward a Preclinical Candidate for a Novel Antituberculosis Clinical Target. J Med Chem 2022; 65:409-423. [PMID: 34910486 PMCID: PMC8762665 DOI: 10.1021/acs.jmedchem.1c01586] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 11/28/2022]
Abstract
With increasing drug resistance in tuberculosis (TB) patient populations, there is an urgent need for new drugs. Ideally, new agents should work through novel targets so that they are unencumbered by preexisting clinical resistance to current treatments. Benzofuran 1 was identified as a potential lead for TB inhibiting a novel target, the thioesterase domain of Pks13. Although, having promising activity against Mycobacterium tuberculosis, its main liability was inhibition of the hERG cardiac ion channel. This article describes the optimization of the series toward a preclinical candidate. Despite improvements in the hERG liability in vitro, when new compounds were assessed in ex vivo cardiotoxicity models, they still induced cardiac irregularities. Further series development was stopped because of concerns around an insufficient safety window. However, the demonstration of in vivo activity for multiple series members further validates Pks13 as an attractive novel target for antitubercular drugs and supports development of alternative chemotypes.
Collapse
Affiliation(s)
- Caroline Wilson
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Peter Ray
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Fabio Zuccotto
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Jorge Hernandez
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Anup Aggarwal
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Claire Mackenzie
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Nicola Caldwell
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Malcolm Taylor
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Margaret Huggett
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Michael Mathieson
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Dinakaran Murugesan
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Alasdair Smith
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Susan Davis
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Mattia Cocco
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Maloy K. Parai
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Arjun Acharya
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Fabio Tamaki
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Paul Scullion
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Ola Epemolu
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Jennifer Riley
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Laste Stojanovski
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Eva Maria Lopez-Román
- Global
Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | | | - Ana Maria Toledo
- Global
Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Laura Guijarro-Lopez
- Global
Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Isabel Camino
- Global
Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Curtis A. Engelhart
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Dirk Schnappinger
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Lisa M. Massoudi
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology, and
Pathology, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523-1682, United States
| | - Anne Lenaerts
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology, and
Pathology, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523-1682, United States
| | - Gregory T. Robertson
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology, and
Pathology, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523-1682, United States
| | - Chris Walpole
- Structural
Genomics Consortium, Research Institute
of the McGill University Health Centre, 1001 Boulevard Décarie, Site Glen Block
E, ES1.1614, Montréal, Québec H4A 3J1, Canada
| | - David Matthews
- Structural
Genomics Consortium, Research Institute
of the McGill University Health Centre, 1001 Boulevard Décarie, Site Glen Block
E, ES1.1614, Montréal, Québec H4A 3J1, Canada
| | - David Floyd
- Structural
Genomics Consortium, Research Institute
of the McGill University Health Centre, 1001 Boulevard Décarie, Site Glen Block
E, ES1.1614, Montréal, Québec H4A 3J1, Canada
| | - James C. Sacchettini
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kevin D. Read
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Lourdes Encinas
- Global
Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Robert H. Bates
- Global
Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Simon R. Green
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Paul G. Wyatt
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| |
Collapse
|
28
|
Dotsenko VV, Bespalov AV, Vashurin AS, Aksenov NA, Aksenova IV, Chigorina EA, Krivokolysko SG. 2-Amino-4,5-dihydrothiophene-3-carbonitriles: A New Synthesis, Quantum Chemical Studies, and Mannich-Type Reactions Leading to New Hexahydrothieno[2,3-d]pyrimidines. ACS OMEGA 2021; 6:32571-32588. [PMID: 34901606 PMCID: PMC8655800 DOI: 10.1021/acsomega.1c04141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
trans-2-Amino-4-aryl-5-benzoyl-4,5-dihydrothiophene-3-carbonitriles were prepared either by the reaction of 3-aryl-2-cyanothioacrylamides with α-thiocyanatoacetophenone or by the Michael-type addition of cyanothioacetamide to α-bromochalcones followed by intramolecular cyclization. The mechanism of the first reaction was studied using high-level quantum chemical calculations. Density functional theory (DFT) studies were carried out to determine the mechanism of the first reaction. A new approach toward the construction of the thieno[2,3-d]pyrimidine core system was demonstrated by the reaction of the prepared dihydrothiophenes with HCHO and RNH2 under noncatalyzed Mannich conditions.
Collapse
Affiliation(s)
- Victor V. Dotsenko
- Kuban
State University, Department of Chemistry
& High Technologies, 149 Stavropolskaya st., Krasnodar 350040, Russian Federation
- North
Caucasus Federal University, Department
of Organic Chemistry, 1 Pushkina st., Stavropol 355009, Russian Federation
- Ivanovo
State University of Chemistry and Technology, Department of Inorganic Chemistry, 7 Sheremetievskiy Avenue, Ivanovo 153000, Russian Federation
| | - Alexander V. Bespalov
- Kuban
State University, Department of Chemistry
& High Technologies, 149 Stavropolskaya st., Krasnodar 350040, Russian Federation
| | - Arthur S. Vashurin
- Ivanovo
State University of Chemistry and Technology, Department of Inorganic Chemistry, 7 Sheremetievskiy Avenue, Ivanovo 153000, Russian Federation
| | - Nicolai A. Aksenov
- North
Caucasus Federal University, Department
of Organic Chemistry, 1 Pushkina st., Stavropol 355009, Russian Federation
| | - Inna V. Aksenova
- North
Caucasus Federal University, Department
of Organic Chemistry, 1 Pushkina st., Stavropol 355009, Russian Federation
| | - Elena A. Chigorina
- NRC
“Kurchatov Institute”, 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation
- National
Research Center “Kurchatov Institute”−IREA, 3 Bogorodsky Val, Moscow 107076, Russian Federation
| | - Sergey G. Krivokolysko
- Kuban
State University, Department of Chemistry
& High Technologies, 149 Stavropolskaya st., Krasnodar 350040, Russian Federation
| |
Collapse
|
29
|
Deb PK, Al-Shar’i NA, Venugopala KN, Pillay M, Borah P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2021; 36:869-884. [PMID: 34060396 PMCID: PMC8172222 DOI: 10.1080/14756366.2021.1900162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming increase in multi- and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (MTB) has triggered the scientific community to search for novel, effective, and safer therapeutics. To this end, a series of 3,5-disubstituted-1,2,4-oxadiazole derivatives (3a-3i) were tested against H37Rv, MDR and XDR strains of MTB. Of which, compound 3a with para-trifluorophenyl substituted oxadiazole showed excellent activity against the susceptible H37Rv and MDR-MTB strain with a MIC values of 8 and 16 µg/ml, respectively.To understand the mechanism of action of these compounds (3a-3i) and identify their putative drug target, molecular docking and dynamics studies were employed against a panel of 20 mycobacterial enzymes reported to be essential for mycobacterial growth and survival. These computational studies revealed polyketide synthase (Pks13) enzyme as the putative target. Moreover, in silico ADMET predictions showed satisfactory properties for these compounds, collectively, making them, particularly compound 3a, promising leads worthy of further optimisation.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| |
Collapse
|
30
|
Kumar A, Karkara BB, Panda G. Novel candidates in the clinical development pipeline for TB drug development and their Synthetic Approaches. Chem Biol Drug Des 2021; 98:787-827. [PMID: 34397161 DOI: 10.1111/cbdd.13934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is an infection caused by Mycobacterium tuberculosis (Mtb) and one of the deadliest infectious diseases in the world. Mtb has the ability to become dormant within the host and to develop resistance. Hence, new antitubercular agents are required to overcome problems in the treatment of multidrug resistant-Tb (MDR-Tb) and extensively drug resistant-Tb (XDR-Tb) along with shortening the treatment time. Several efforts are being made to develop very effective new drugs for Tb, within the pharmaceutical industry, the academia, and through public private partnerships. This review will address the anti-tubercular activities, biological target, mode of action, synthetic approaches and thoughtful concept for the development of several new drugs currently in the clinical trial pipeline (up to October 2019) for tuberculosis. The aim of this review may be very useful in scheming new chemical entities (NCEs) for Mtb.
Collapse
Affiliation(s)
- Amit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Bidhu Bhusan Karkara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,Department of Pharmaceutical Science, Vignan's Foundation for Science, Technology and Research University, Guntur, 522213, AP, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| |
Collapse
|
31
|
Wang X, Zhao W, Wang B, Ding W, Guo H, Zhao H, Meng J, Liu S, Lu Y, Liu Y, Zhang D. Identification of inhibitors targeting polyketide synthase 13 of Mycobacterium tuberculosis as antituberculosis drug leads. Bioorg Chem 2021; 114:105110. [PMID: 34175719 DOI: 10.1016/j.bioorg.2021.105110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Polyketide synthase 13 (Pks13) is an essential enzyme in the synthesis of mycolic acids in Mtb. Therefore, Pks13 is a promising drug target for tuberculosis treatment. We used a structure-guided approach to identify novel chemotype inhibitors of Pks13 and assessed them using a Pks13 enzymatic assay and surface plasmon resonance. The structure-activity relationships (SAR) results demonstrated that the substituents at the 2, 5, and 6 positions of the 4H-chromen-4-one scaffold are critical for maintaining the MIC. Compound 6e with 2-hydroxyphenyl at the 2 position of the 4H-chromen-4-one scaffold, exhibited potent activity against Mtb H37Rv (MIC = 0.45 μg/mL) and displayed good Pks13 affinity and inhibition (IC50 = 14.3 μM). This study described here could provide an avenue to explore a novel inhibitor class for Pks13 and aid the further development of antituberculosis drugs.
Collapse
Affiliation(s)
- Xiao Wang
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Tiantan Xili #1, Beijing 100050, PR China
| | - Wenting Zhao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, PR China
| | - Wei Ding
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hao Guo
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hongyi Zhao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jianzhou Meng
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Tiantan Xili #1, Beijing 100050, PR China
| | - Sihan Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Tiantan Xili #1, Beijing 100050, PR China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, PR China
| | - Yishuang Liu
- National Laboratory for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Tiantan Xili #1, Beijing 100050, PR China.
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
32
|
Therapeutic potential of coumestan Pks13 inhibitors for tuberculosis. Antimicrob Agents Chemother 2021; 95:AAC.02190-20. [PMID: 33558290 PMCID: PMC8092898 DOI: 10.1128/aac.02190-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polyketide synthase 13 (Pks13) is an important enzyme found in Mycobacterium tuberculosis (M. tuberculosis) that condenses two fatty acyl chains to produce α-alkyl β-ketoesters, which in turn serve as the precursors for the synthesis of mycolic acids that are essential building blocks for maintaining the cell wall integrity of M. tuberculosis Coumestan derivatives have recently been identified in our group as a new chemotype that exert their antitubercular effects via targeting of Pks13. These compounds were active on both drug-susceptible and drug-resistant strains of M. tuberculosis as well as showing low cytotoxicity to healthy cells and a promising selectivity profile. No cross-resistance was found between the coumestan derivatives and first-line TB drugs. Here we report that treatment of M. tuberculosis bacilli with 15 times the MIC of compound 1, an optimized lead coumestan compound, resulted in a colony forming unit (CFU) reduction from 6.0 log10 units to below the limit of detection (1.0 log10 units) per mL culture, demonstrating a bactericidal mechanism of action. Single dose (10 mg/kg) pharmacokinetic studies revealed favorable parameters with a relative bioavailability of 19.4%. In a mouse infection and chemotherapy model, treatment with 1 showed dose-dependent mono-therapeutic activity, whereas treatment with 1 in combination with rifampin showed clear synergistic effects. Together these data suggest that coumestan derivatives are promising agents for further TB drug development.
Collapse
|
33
|
Sharma A, De Rosa M, Singla N, Singh G, Barnwal RP, Pandey A. Tuberculosis: An Overview of the Immunogenic Response, Disease Progression, and Medicinal Chemistry Efforts in the Last Decade toward the Development of Potential Drugs for Extensively Drug-Resistant Tuberculosis Strains. J Med Chem 2021; 64:4359-4395. [PMID: 33826327 DOI: 10.1021/acs.jmedchem.0c01833] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is a slow growing, potentially debilitating disease that has plagued humanity for centuries and has claimed numerous lives across the globe. Concerted efforts by researchers have culminated in the development of various strategies to combat this malady. This review aims to raise awareness of the rapidly increasing incidences of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, highlighting the significant modifications that were introduced in the TB treatment regimen over the past decade. A description of the role of pathogen-host immune mechanisms together with strategies for prevention of the disease is discussed. The struggle to develop novel drug therapies has continued in an effort to reduce the treatment duration, improve patient compliance and outcomes, and circumvent TB resistance mechanisms. Herein, we give an overview of the extensive medicinal chemistry efforts made during the past decade toward the discovery of new chemotypes, which are potentially active against TB-resistant strains.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India.,UIPS, Panjab University, Chandigarh 160014, India
| | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- UIPS, Panjab University, Chandigarh 160014, India
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
34
|
Oh S, Trifonov L, Yadav VD, Barry CE, Boshoff HI. Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets. Front Cell Infect Microbiol 2021; 11:611304. [PMID: 33791235 PMCID: PMC8005628 DOI: 10.3389/fcimb.2021.611304] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
More than two decades have elapsed since the publication of the first genome sequence of Mycobacterium tuberculosis (Mtb) which, shortly thereafter, enabled methods to determine gene essentiality in the pathogen. Despite this, target-based approaches have not yielded drugs that have progressed to clinical testing. Whole-cell screening followed by elucidation of mechanism of action has to date been the most fruitful approach to progressing inhibitors into the tuberculosis drug discovery pipeline although target-based approaches are gaining momentum. This review discusses scaffolds that have been identified over the last decade from screens of small molecule libraries against Mtb or defined targets where mechanism of action investigation has defined target-hit couples and structure-activity relationship studies have described the pharmacophore.
Collapse
Affiliation(s)
- Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lena Trifonov
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Veena D Yadav
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
35
|
Mori M, Stelitano G, Chiarelli LR, Cazzaniga G, Gelain A, Barlocco D, Pini E, Meneghetti F, Villa S. Synthesis, Characterization, and Biological Evaluation of New Derivatives Targeting MbtI as Antitubercular Agents. Pharmaceuticals (Basel) 2021; 14:155. [PMID: 33668554 PMCID: PMC7918538 DOI: 10.3390/ph14020155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of Mycobacterium tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new antitubercular agents is the salicylate synthase MbtI, an essential enzyme for the mycobacterial siderophore biochemical machinery, absent in human cells. A set of analogues of I and II, two of the most potent MbtI inhibitors identified to date, was synthesized, characterized, and tested to elucidate the structural requirements for achieving an efficient MbtI inhibition and a potent antitubercular activity with this class of compounds. The structure-activity relationships (SAR) here discussed evidenced the importance of the furan as part of the pharmacophore and led to the preparation of six new compounds (IV-IX), which gave us the opportunity to examine a hitherto unexplored position of the phenyl ring. Among them emerged 5-(3-cyano-5-(trifluoromethyl)phenyl)furan-2-carboxylic acid (IV), endowed with comparable inhibitory properties to the previous leads, but a better antitubercular activity, which is a key issue in MbtI inhibitor research. Therefore, compound IV offers promising prospects for future studies on the development of novel agents against mycobacterial infections.
Collapse
Affiliation(s)
- Matteo Mori
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Giovanni Stelitano
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via A. Ferrata 9, 27100 Pavia, Italy; (G.S.); (L.R.C.)
| | - Laurent R. Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, via A. Ferrata 9, 27100 Pavia, Italy; (G.S.); (L.R.C.)
| | - Giulia Cazzaniga
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Arianna Gelain
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Elena Pini
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| | - Stefania Villa
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy; (M.M.); (G.C.); (A.G.); (D.B.); (E.P.); (S.V.)
| |
Collapse
|
36
|
Zhang W, Liu LL, Lun S, Wang SS, Xiao S, Gunosewoyo H, Yang F, Tang J, Bishai WR, Yu LF. Design and synthesis of mycobacterial pks13 inhibitors: Conformationally rigid tetracyclic molecules. Eur J Med Chem 2021; 213:113202. [PMID: 33516983 DOI: 10.1016/j.ejmech.2021.113202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
We previously reported a series of coumestans-a naturally occurring tetracyclic scaffold containing a δ-lactone-that effectively target the thioesterase domain of polyketide synthase 13 (Pks13) in Mycobacterium tuberculosis (Mtb), resulting in superior anti-tuberculosis (TB) activity. Compared to the corresponding 'open-form' ethyl benzofuran-3-carboxylates, the enhanced anti-TB effects seen with the conformationally restricted coumestan series could be attributed to the extra π-π stacking interactions between the benzene ring of coumestans and the phenyl ring of F1670 residue located in the Pks13-TE binding domain. To further probe this binding feature, novel tetracyclic analogues were synthesized and evaluated for their anti-TB activity against the Mtb strain H37Rv. Initial comparison of the 'open-form' analogueues against the tetracyclic counterparts again showed that the latter is superior in terms of anti-TB activity. In particular, the δ-lactam-containing 5H-benzofuro [3,2-c]quinolin-6-ones gave the most promising results. Compound 65 demonstrated potent activity against Mtb H37Rv with MIC value between 0.0313 and 0.0625 μg/mL, with high selectivity to Vero cells (64-128 fold). The thermal stability analysis supports the notion that the tetracyclic compounds bind to the Pks13-TE domain as measured by nano DSF, consistent with the observed SAR trends. Compound 65 also showed excellent selectivity against actinobacteria and therefore unlikely to develop potential drug resistance to nonpathogenic bacteria.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Ling-Ling Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States
| | - Shuang-Shuang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shiqi Xiao
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States.
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
37
|
Bose P, Harit AK, Das R, Sau S, Iyer AK, Kashaw SK. Tuberculosis: current scenario, drug targets, and future prospects. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Meena CL, Singh P, Shaliwal RP, Kumar V, Kumar A, Tiwari AK, Asthana S, Singh R, Mahajan D. Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosis. Eur J Med Chem 2020; 208:112772. [PMID: 32920342 DOI: 10.1016/j.ejmech.2020.112772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
Herein, we report the synthesis and anti-tubercular studies of novel molecules based on thiophene scaffold. We identified two novel small molecules 4a and 4b, which demonstrated 2-fold higher in vitro activity (MIC99: 0.195 μM) compared to first line TB drug, isoniazid (0.39 μM). The identified leads demonstrated additive effect with front line TB drugs (isoniazid, rifampicin and levofloxacin) and synergistic effect with a recently FDA-approved drug, bedaquiline. Mechanistic studies (i) negated the role of Pks13 and (ii) suggested the involvement of KatG in the anti-tubercular activity of these identified leads.
Collapse
Affiliation(s)
- Chhuttan L Meena
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Padam Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ravi P Shaliwal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Varun Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Arun Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Anoop Kumar Tiwari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| | - Dinesh Mahajan
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
39
|
Kumar G, Narayan R, Kapoor S. Chemical Tools for Illumination of Tuberculosis Biology, Virulence Mechanisms, and Diagnosis. J Med Chem 2020; 63:15308-15332. [PMID: 33307693 DOI: 10.1021/acs.jmedchem.0c01337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases and begs the scientific community to up the ante for research and exploration of completely novel therapeutic avenues. Chemical biology-inspired design of tunable chemical tools has aided in clinical diagnosis, facilitated discovery of therapeutics, and begun to enable investigation of virulence mechanisms at the host-pathogen interface of Mycobacterium tuberculosis. This Perspective highlights chemical tools specific to mycobacterial proteins and the cell lipid envelope that have furnished rapid and selective diagnostic strategies and provided unprecedented insights into the function of the mycobacterial proteome and lipidome. We discuss chemical tools that have enabled elucidating otherwise intractable biological processes by leveraging the unique lipid and metabolite repertoire of mycobacterial species. Some of these probes represent exciting starting points with the potential to illuminate poorly understood aspects of mycobacterial pathogenesis, particularly the host membrane-pathogen interactions.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda 403 401, Goa, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India.,Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
40
|
Batt SM, Burke CE, Moorey AR, Besra GS. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surf 2020; 6:100044. [PMID: 32995684 PMCID: PMC7502851 DOI: 10.1016/j.tcsw.2020.100044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host's defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.
Collapse
Affiliation(s)
- Sarah M. Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher E. Burke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice R. Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
41
|
Korol CB, Shallom SJ, Arora K, Boshoff HI, Freeman AF, King A, Agrawal S, Daugherty SC, Jancel T, Kabat J, Ganesan S, Torrero MN, Sampaio EP, Barry C, Holland SM, Tettelin H, Rosenzweig SD, Zelazny AM. Tissue specific diversification, virulence and immune response to Mycobacterium bovis BCG in a patient with an IFN-γ R1 deficiency. Virulence 2020; 11:1656-1673. [PMID: 33356838 PMCID: PMC7781554 DOI: 10.1080/21505594.2020.1848108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Summary: We characterized Mycobacterium bovis BCG isolates found in lung and brain samples from a previously vaccinated patient with IFNγR1 deficiency. The isolates collected displayed distinct genomic and phenotypic features consistent with host adaptation and associated changes in antibiotic susceptibility and virulence traits. Background: We report a case of a patient with partial recessive IFNγR1 deficiency who developed disseminated BCG infection after neonatal vaccination (BCG-vaccine). Distinct M. bovis BCG-vaccine derived clinical strains were recovered from the patient's lungs and brain. Methods: BCG strains were phenotypically (growth, antibiotic susceptibility, lipid) and genetically (whole genome sequencing) characterized. Mycobacteria cell infection models were used to assess apoptosis, necrosis, cytokine release, autophagy, and JAK-STAT signaling. Results: Clinical isolates BCG-brain and BCG-lung showed distinct Rv0667 rpoB mutations conferring high- and low-level rifampin resistance; the latter displayed clofazimine resistance through Rv0678 gene (MarR-like transcriptional regulator) mutations. BCG-brain and BCG-lung showed mutations in fadA2, fadE5, and mymA operon genes, respectively. Lipid profiles revealed reduced levels of PDIM in BCG-brain and BCG-lung and increased TAGs and Mycolic acid components in BCG-lung, compared to parent BCG-vaccine. In vitro infected cells showed that the BCG-lung induced a higher cytokine release, necrosis, and cell-associated bacterial load effect when compared to BCG-brain; conversely, both strains inhibited apoptosis and altered JAK-STAT signaling. Conclusions: During a chronic-disseminated BCG infection, BCG strains can evolve independently at different sites likely due to particular microenvironment features leading to differential antibiotic resistance, virulence traits resulting in dissimilar responses in different host tissues.
Collapse
Affiliation(s)
- Cecilia B. Korol
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | | | - Kriti Arora
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Helena I. Boshoff
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Alejandra King
- Department of Pediatric Immunology, Hospital Luis Calvo MacKenna, Universidad De, Chile, Chile
| | - Sonia Agrawal
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Sean C. Daugherty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Timothy Jancel
- Department of Pharmacy, Clinical Center, NIH, Bethesda, USA
| | - Juraj Kabat
- Department Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Sundar Ganesan
- Department Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Marina N. Torrero
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | - Elizabeth P. Sampaio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Clifton Barry
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Steve M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | | | - Adrian M. Zelazny
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| |
Collapse
|
42
|
Shaku M, Ealand C, Kana BD. Cell Surface Biosynthesis and Remodeling Pathways in Mycobacteria Reveal New Drug Targets. Front Cell Infect Microbiol 2020; 10:603382. [PMID: 33282752 PMCID: PMC7688586 DOI: 10.3389/fcimb.2020.603382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the leading cause of death from an infectious bacterium and is responsible for 1.8 million deaths annually. The emergence of drug resistance, together with the need for a shorter more effective regimen, has prompted the drive to identify novel therapeutics with the bacterial cell surface emerging as a tractable area for drug development. Mtb assembles a unique, waxy, and complex cell envelope comprised of the mycolyl-arabinogalactan-peptidoglycan complex and an outer capsule like layer, which are collectively essential for growth and pathogenicity while serving as an inherent barrier against antibiotics. A detailed understanding of the biosynthetic pathways required to assemble the polymers that comprise the cell surface will enable the identification of novel drug targets as these structures provide a diversity of biochemical reactions that can be targeted. Herein, we provide an overview of recently described mycobacterial cell wall targeting compounds, novel drug combinations and their modes of action. We anticipate that this summary will enable prioritization of the best pathways to target and triage of the most promising molecules to progress for clinical assessment.
Collapse
Affiliation(s)
- Moagi Shaku
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher Ealand
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Bavesh D Kana
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
43
|
Abstract
Trehalose is a disaccharide of two D-glucose molecules linked by a glycosidic linkage, which plays both structural and functional roles in bacteria. Trehalose can be synthesized and degraded by several pathways, and induction of trehalose biosynthesis is typically associated with exposure to abiotic stress. The ability of trehalose to protect against abiotic stress has been exploited to stabilize a range of bacterial vaccines. More recently, there has been interest in the role of this molecule in microbial virulence. There is now evidence that trehalose or trehalose derivatives play important roles in virulence of a diverse range of Gram-positive and Gram-negative pathogens of animals or plants. Trehalose and/or trehalose derivatives can play important roles in host colonization and growth in the host, and can modulate the interactions with host defense mechanisms. However, the roles are typically pathogen-specific. These findings suggest that trehalose metabolism may be a target for novel pathogen-specific rather than broad spectrum interventions.
Collapse
Affiliation(s)
- Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University , Bangkok, Thailand
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter , Exeter, UK
| |
Collapse
|
44
|
Sethiya JP, Sowards MA, Jackson M, North EJ. MmpL3 Inhibition: A New Approach to Treat Nontuberculous Mycobacterial Infections. Int J Mol Sci 2020; 21:E6202. [PMID: 32867307 PMCID: PMC7503588 DOI: 10.3390/ijms21176202] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Outside of Mycobacterium tuberculosis and Mycobacterium leprae, nontuberculous mycobacteria (NTM) are environmental mycobacteria (>190 species) and are classified as slow- or rapid-growing mycobacteria. Infections caused by NTM show an increased incidence in immunocompromised patients and patients with underlying structural lung disease. The true global prevalence of NTM infections remains unknown because many countries do not require mandatory reporting of the infection. This is coupled with a challenging diagnosis and identification of the species. Current therapies for treatment of NTM infections require multidrug regimens for a minimum of 18 months and are associated with serious adverse reactions, infection relapse, and high reinfection rates, necessitating discovery of novel antimycobacterial agents. Robust drug discovery processes have discovered inhibitors targeting mycobacterial membrane protein large 3 (MmpL3), a protein responsible for translocating mycolic acids from the inner membrane to periplasm in the biosynthesis of the mycobacterial cell membrane. This review focuses on promising new chemical scaffolds that inhibit MmpL3 function and represent interesting and promising putative drug candidates for the treatment of NTM infections. Additionally, agents (FS-1, SMARt-420, C10) that promote reversion of drug resistance are also reviewed.
Collapse
Affiliation(s)
- Jigar P. Sethiya
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| | - Melanie A. Sowards
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Elton Jeffrey North
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| |
Collapse
|
45
|
Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072278] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.
Collapse
|
46
|
A Preclinical Candidate Targeting Mycobacterium tuberculosis KasA. Cell Chem Biol 2020; 27:560-570.e10. [PMID: 32197094 DOI: 10.1016/j.chembiol.2020.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/26/2020] [Accepted: 02/26/2020] [Indexed: 01/22/2023]
Abstract
Published Mycobacterium tuberculosis β-ketoacyl-ACP synthase KasA inhibitors lack sufficient potency and/or pharmacokinetic properties. A structure-based approach was used to optimize existing KasA inhibitor DG167. This afforded indazole JSF-3285 with a 30-fold increase in mouse plasma exposure. Biochemical, genetic, and X-ray studies confirmed JSF-3285 targets KasA. JSF-3285 offers substantial activity in an acute mouse model of infection and in the corresponding chronic infection model, with efficacious reductions in colony-forming units at doses as low as 5 mg/kg once daily orally and improvement of the efficacy of front-line drugs isoniazid or rifampicin. JSF-3285 is a promising preclinical candidate for tuberculosis.
Collapse
|
47
|
Zhao W, Wang B, Liu Y, Fu L, Sheng L, Zhao H, Lu Y, Zhang D. Design, synthesis, and biological evaluation of novel 4H-chromen-4-one derivatives as antituberculosis agents against multidrug-resistant tuberculosis. Eur J Med Chem 2020; 189:112075. [DOI: 10.1016/j.ejmech.2020.112075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
|
48
|
Wang X, Inoyama D, Russo R, Li SG, Jadhav R, Stratton TP, Mittal N, Bilotta JA, Singleton E, Kim T, Paget SD, Pottorf RS, Ahn YM, Davila-Pagan A, Kandasamy S, Grady C, Hussain S, Soteropoulos P, Zimmerman MD, Ho HP, Park S, Dartois V, Ekins S, Connell N, Kumar P, Freundlich JS. Antitubercular Triazines: Optimization and Intrabacterial Metabolism. Cell Chem Biol 2020; 27:172-185.e11. [PMID: 31711854 PMCID: PMC7035970 DOI: 10.1016/j.chembiol.2019.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023]
Abstract
The triazine antitubercular JSF-2019 was of interest due to its in vitro efficacy and the nitro group shared with the clinically relevant delamanid and pretomanid. JSF-2019 undergoes activation requiring F420H2 and one or more nitroreductases in addition to Ddn. An intrabacterial drug metabolism (IBDM) platform was leveraged to demonstrate the system kinetics, evidencing formation of NO⋅ and a des-nitro metabolite. Structure-activity relationship studies focused on improving the solubility and mouse pharmacokinetic profile of JSF-2019 and culminated in JSF-2513, relying on the key introduction of a morpholine. Mechanistic studies with JSF-2019, JSF-2513, and other triazines stressed the significance of achieving potent in vitro efficacy via release of intrabacterial NO⋅ along with inhibition of InhA and, more generally, the FAS-II pathway. This study highlights the importance of probing IBDM and its potential to clarify mechanism of action, which in this case is a combination of NO⋅ release and InhA inhibition.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Daigo Inoyama
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Shao-Gang Li
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Ravindra Jadhav
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Thomas P Stratton
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Nisha Mittal
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joseph A Bilotta
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Eric Singleton
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Thomas Kim
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Steve D Paget
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Richard S Pottorf
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Yong-Mo Ahn
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Alejandro Davila-Pagan
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Srinivasan Kandasamy
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Courtney Grady
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Seema Hussain
- Genomics Center, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Patricia Soteropoulos
- Genomics Center, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Matthew D Zimmerman
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Hsin Pin Ho
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Steven Park
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Véronique Dartois
- Public Health Research Institute, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Sean Ekins
- Collaborations in Chemistry Inc., Raleigh, NC 27606, USA
| | - Nancy Connell
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Pradeep Kumar
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
49
|
Arora G, Gagandeep, Behura A, Gosain TP, Shaliwal RP, Kidwai S, Singh P, Kandi SK, Dhiman R, Rawat DS, Singh R. NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular Mycobacterium tuberculosis by Induction of Autophagy. Front Microbiol 2020; 10:3051. [PMID: 32063889 PMCID: PMC6999026 DOI: 10.3389/fmicb.2019.03051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The increasing incident rates of drug-resistant tuberculosis (DR-TB) is a global health concern and has been further complicated by the emergence of extensive and total drug-resistant strains. Identification of new chemical entities which are compatible with first-line TB drugs, possess activity against DR-, and metabolically less active bacteria is required to tackle this epidemic. Here, we have performed phenotypic screening of a small molecule library against Mycobacterium bovis BCG and identified 24 scaffolds that exhibited MIC99 values of at least 2.5 μM. The most potent small molecule identified in our study was a nitroso containing pyrazole derivative, NSC 18725. We observed a significant reduction in viable bacilli load of starved Mycobacterium tuberculosis upon exposure to NSC 18725. The action of NSC 18725 was “synergistic” with isoniazid (INH) and “additive” with other drugs in our checkerboard assays. Structure-activity relationship (SAR) studies of the parent compound revealed that pyrazole derivatives without a functional group at fourth position lacked anti-mycobacterial activity in vitro. The derivative with para-chlorophenyl substitution at the first position of the pyrazole ring was the most active scaffold. We also demonstrate that NSC 18725 is able to induce autophagy in differentiated THP-1 macrophages. The induction of autophagy by NSC 18725 is the major mechanism for the killing of intracellular slow and fast-growing mycobacteria. Taken together, these observations support the identification of NSC 18725 as an antimycobacterial compound, which synergizes with INH, is active against non-replicative mycobacteria and induces autophagy in macrophages.
Collapse
Affiliation(s)
- Garima Arora
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Gagandeep
- Department of Chemistry, Faculty of Science, University of Delhi, New Delhi, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Ravi P Shaliwal
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Padam Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Diwan S Rawat
- Department of Chemistry, Faculty of Science, University of Delhi, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
50
|
Santos NCDS, Scodro RBDL, Sampiron EG, Ieque AL, Carvalho HCD, Santos TDS, Ghiraldi Lopes LD, Campanerut-Sá PAZ, Siqueira VLD, Caleffi-Ferracioli KR, Teixeira JJV, Cardoso RF. Minimum Bactericidal Concentration Techniques in Mycobacterium tuberculosis: A Systematic Review. Microb Drug Resist 2020; 26:752-765. [PMID: 31977277 DOI: 10.1089/mdr.2019.0191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Minimum bactericidal concentration (MBC) assay is an accepted parameter for evaluating new antimicrobial agents, and it is frequently used as a research tool to provide a prediction of bacterial eradication. To the best of our knowledge, there is no standardization among researchers regarding the technique used to detect a drug's MBC in Mycobacterium tuberculosis. Thus, the aim of this systematic review is to discuss the available literature in determining a drug's MBC in M. tuberculosis, to find the most commonly used technique and standardize the process. A broad and rigorous literature search of three electronic databases (PubMed, Web of Knowledge, and LILACS) was performed according to the PRISMA statement. We considered studies that were published from January 1, 1990 to February 19, 2019. Google Scholar was also searched to increase the number of publications. We searched for articles using the MeSH terms "microbiological techniques," "Mycobacterium," "antibacterial agents." In addition, free terms were used in the search. The search yielded 6,674 publications. After filter application, 5,348 publications remained. Of these, we evaluated the full text of 187 publications. By applying the inclusion criteria, 69 studies were included in the present systematic review. In the literature analyzed, a great variety in the techniques used to determine a drug's MBC in M. tuberculosis was observed. The most common variability is related to the culture media used, culture incubation time, and the percentage of bacterial death for the drug to be considered as bactericidal. The most commonly used technique for drug's MBC determination was carried out using the drug's minimum inhibitory concentration (MIC) assay. Aliquots from prior MIC values were subcultured in Middlebrook agar and incubated for 4 weeks at 35°C for determining the colony forming unit (CFU) with relevance to detect 99.9% bacilli killed or reduction in 3 log10 viable bacilli.
Collapse
Affiliation(s)
| | - Regiane Bertin de Lima Scodro
- Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | | | | | | | - Thais da Silva Santos
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil
| | - Luciana Dias Ghiraldi Lopes
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Paula Aline Zanetti Campanerut-Sá
- Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| |
Collapse
|