1
|
Xu H, Li H, Goldfuss B, Schnakenburg G, Dickschat JS. Biosynthesis of the Non-Canonical C 17 Sesquiterpenoids Chlororaphen A and B from Pseudomonas Chlororaphis. Angew Chem Int Ed Engl 2024; 63:e202412040. [PMID: 39023217 DOI: 10.1002/anie.202412040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Chlororaphens A and B are structurally unique non-canonical C17 sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B. In addition, the uptake of up to 14 deuterium atoms from D2O was observed. These findings are explainable by a repeated late stage multistep rearrangement sequence. The absolute configurations of the chlororaphens and their biosynthetic intermediates were elucidated in stereoselective labelling experiments.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Heng Li
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute for Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
2
|
Xu H, Goldfuss B, Dickschat JS. Common Biosynthesis of Non-Canonical C 16 Terpenes through a Fragmentation-Recombination Mechanism. Angew Chem Int Ed Engl 2024; 63:e202408809. [PMID: 38924286 DOI: 10.1002/anie.202408809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The biosynthesis of six recently reported non-canonical C16 sesquiterpenoids named after ancient Greek philosophers, archimedene, aristotelene, eratosthenene, pythagorene, α-democritene and anaximandrene, was investigated through density functional theory (DFT) calculations and isotopic labeling experiments. The results revealed for all compounds except archimedene a unique fragmentation-recombination mechanism as previously demonstrated for sodorifen biosynthesis, in addition to a remarkable "dancing" mechanism for anaximandrene biosynthesis.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
3
|
Schröder MP, Pfeiffer IPM, Mordhorst S. Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry. Beilstein J Org Chem 2024; 20:1652-1670. [PMID: 39076295 PMCID: PMC11285071 DOI: 10.3762/bjoc.20.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
This review article aims to highlight the role of methyltransferases within the context of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products. Methyltransferases play a pivotal role in the biosynthesis of diverse natural products with unique chemical structures and bioactivities. They are highly chemo-, regio-, and stereoselective allowing methylation at various positions. The different possible acceptor regions in ribosomally synthesised peptides are described in this article. Furthermore, we will discuss the potential application of these methyltransferases as powerful biocatalytic tools in the synthesis of modified peptides and other bioactive compounds. By providing an overview of the various methylation options available, this review is intended to emphasise the biocatalytic potential of RiPP methyltransferases and their impact on the field of natural product chemistry.
Collapse
Affiliation(s)
- Maria-Paula Schröder
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Isabel P-M Pfeiffer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Petkowski JJ, Seager S, Bains W. Reasons why life on Earth rarely makes fluorine-containing compounds and their implications for the search for life beyond Earth. Sci Rep 2024; 14:15575. [PMID: 38971876 PMCID: PMC11227584 DOI: 10.1038/s41598-024-66265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Life on Earth is known to rarely make fluorinated carbon compounds, as compared to other halocarbons. We quantify this rarity, based on our exhaustive natural products database curated from available literature. We build on explanations for the scarcity of fluorine chemistry in life on Earth, namely that the exclusion of the C-F bond stems from the unique physico-chemical properties of fluorine, predominantly its extreme electronegativity and strong hydration shell. We further show that the C-F bond is very hard to synthesize and when it is made by life its potential biological functions can be readily provided by alternative functional groups that are much less costly to incorporate into existing biochemistry. As a result, the overall evolutionary cost-to-benefit balance of incorporation of the C-F bond into the chemical repertoire of life is not favorable. We argue that the limitations of organofluorine chemistry are likely universal in that they do not exclusively apply to specifics of Earth's biochemistry. C-F bonds, therefore, will be rare in life beyond Earth no matter its chemical makeup.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland.
- JJ Scientific, Warsaw, Mazowieckie, Poland.
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- School of Physics & Astronomy, Cardiff University, 4 The Parade, Cardiff, CF24 3AA, UK
- Rufus Scientific, Melbourn, Royston, Herts, UK
| |
Collapse
|
5
|
Jiang Y, Yao M, Feng J, Niu H, Qiao B, Li B, Wang B, Xiao W, Dong M, Yuan Y. Molecular Insights into Converting Hydroxide Adenosyltransferase into Halogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12685-12695. [PMID: 38771136 DOI: 10.1021/acs.jafc.4c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Halogenation plays a unique role in the design of agrochemicals. Enzymatic halogenation reactions have attracted great attention due to their excellent specificity and mild reaction conditions. S-adenosyl-l-methionine (SAM)-dependent halogenases mediate the nucleophilic attack of halide ions (X-) to SAM to produce 5'-XDA. However, only 11 SAM-dependent fluorinases and 3 chlorinases have been reported, highlighting the desire for additional halogenases. SAM-dependent hydroxide adenosyltransferase (HATase) has a similar reaction mechanism as halogenases but uses water as a substrate instead of halide ions. Here, we explored a HATase from the thermophile Thermotoga maritima MSB8 and transformed it into a halogenase. We identified a key dyad W8L/V71T for the halogenation reaction. We also obtained the best performing mutants for each halogenation reaction: M1, M2 and M4 for Cl-, Br- and I-, respectively. The M4 mutant retained the thermostability of HATase in the iodination reaction at 80 °C, which surpasses the natural halogenase SalL. QM/MM revealed that these mutants bind halide ions with more suitable angles for nucleophilic attack of C5' of SAM, thus conferring halogenation capabilities. Our work achieved the halide ion specificity of halogenases and generated thermostable halogenases for the first time, which provides new opportunities to expand the halogenase repertoire from hydroxylase.
Collapse
Affiliation(s)
- Yixun Jiang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Niu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bingzhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Jiang Y, Yao M, Niu H, Wang W, He J, Qiao B, Li B, Dong M, Xiao W, Yuan Y. Enzyme Engineering Renders Chlorinase the Activity of Fluorinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1203-1212. [PMID: 38179953 DOI: 10.1021/acs.jafc.3c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organofluorine compounds have attracted substantial attention owing to their wide application in agrochemistry. Fluorinase (FlA) is a unique enzyme in nature that can incorporate fluorine into an organic molecule. Chlorinase (SalL) has a similar mechanism as fluorinase and can use chloride but not fluoride as a substrate to generate 5'-chloro-deoxyadenosine (5'-ClDA) from S-adenosyl-l-methionine (SAM). Therefore, identifying the features that lead to this selectivity for halide ions is highly important. Here, we engineered SalL to gain the function of FlA. We found that residue Tyr70 plays a key role in this conversion through alanine scanning. Site-saturation mutagenesis experiments demonstrated that Y70A/C/S/T/G all exhibited obvious fluorinase activity. The G131S mutant of SalL, in which the previously thought crucial residue Ser158 for fluoride binding in FlA was introduced, did not exhibit fluorination activity. Compared with the Y70T single mutant, the double mutant Y70T/W129F increased 5'-fluoro-5-deoxyadenosine (5'-FDA) production by 76%. The quantum mechanics (QM)/molecular mechanics (MM) calculations suggested that the lower energy barriers and shorter nucleophilic distance from F- to SAM in the mutants than in the SalL wild-type may contribute to the activity. Therefore, our study not only renders SalL the activity of FlA but also sheds light on the enzyme selectivity between fluoride versus chloride.
Collapse
Affiliation(s)
- Yixun Jiang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Haoran Niu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrui Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiale He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bingzhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Abstract
Covering: from 2000 up to the very early part of 2023S-Adenosyl-L-methionine (SAM) is a naturally occurring trialkyl sulfonium molecule that is typically associated with biological methyltransfer reactions. However, SAM is also known to donate methylene, aminocarboxypropyl, adenosyl and amino moieties during natural product biosynthetic reactions. The reaction scope is further expanded as SAM itself can be modified prior to the group transfer such that a SAM-derived carboxymethyl or aminopropyl moiety can also be transferred. Moreover, the sulfonium cation in SAM has itself been found to be critical for several other enzymatic transformations. Thus, while many SAM-dependent enzymes are characterized by a methyltransferase fold, not all of them are necessarily methyltransferases. Furthermore, other SAM-dependent enzymes do not possess such a structural feature suggesting diversification along different evolutionary lineages. Despite the biological versatility of SAM, it nevertheless parallels the chemistry of sulfonium compounds used in organic synthesis. The question thus becomes how enzymes catalyze distinct transformations via subtle differences in their active sites. This review summarizes recent advances in the discovery of novel SAM utilizing enzymes that rely on Lewis acid/base chemistry as opposed to radical mechanisms of catalysis. The examples are categorized based on the presence of a methyltransferase fold and the role played by SAM within the context of known sulfonium chemistry.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Daan Ren
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Byungsun Jeon
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Xu H, Lauterbach L, Goldfuss B, Schnakenburg G, Dickschat JS. Fragmentation and [4 + 3] cycloaddition in sodorifen biosynthesis. Nat Chem 2023:10.1038/s41557-023-01223-z. [PMID: 37248344 DOI: 10.1038/s41557-023-01223-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Terpenes constitute the largest class of natural products. Their skeletons are formed by terpene cyclases (TCs) from acyclic oligoprenyl diphosphates through sophisticated enzymatic conversions. These enzyme reactions start with substrate ionization through diphosphate abstraction, followed by a cascade reaction via cationic intermediates. Based on isotopic-labelling experiments in combination with a computational study, the cyclization mechanism for sodorifen, a highly methylated sesquiterpene from the soil bacterium Serratia plymuthica, was resolved. A peculiar problem in its biosynthesis lies in the formation of several methyl groups from chain methylene carbons. The underlying mechanism involves a methyltransferase-mediated cyclization and unprecedented ring contraction with carbon extrusion from the chain to form a methyl group. A terpene cyclase subsequently catalyses a fragmentation into two reactive intermediates, followed by hydrogen transfers between them and recombination of the fragments by [4 + 3] cycloaddition. This study solves the intricate mechanistic problem of extra methyl group formation in sodorifen biosynthesis.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bernd Goldfuss
- Institut für Organische Chemie, Universität zu Köln, Köln, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
10
|
Haas R, Nikel PI. Challenges and opportunities in bringing nonbiological atoms to life with synthetic metabolism. Trends Biotechnol 2023; 41:27-45. [PMID: 35786519 DOI: 10.1016/j.tibtech.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
The relatively narrow spectrum of chemical elements within the microbial 'biochemical palate' limits the reach of biotechnology, because several added-value compounds can only be produced with traditional organic chemistry. Synthetic biology offers enabling tools to tackle this issue by facilitating 'biologization' of non-canonical chemical atoms. The interplay between xenobiology and synthetic metabolism multiplies routes for incorporating nonbiological atoms into engineered microbes. In this review, we survey natural assimilation routes for elements beyond the essential biology atoms [i.e., carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S)], discussing how these mechanisms could be repurposed for biotechnology. Furthermore, we propose a computational framework to identify chemical elements amenable to biologization, ranking reactions suitable to build synthetic metabolism. When combined and deployed in robust microbial hosts, these approaches will offer sustainable alternatives for smart chemical production.
Collapse
Affiliation(s)
- Robert Haas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Zhai G, Gong R, Lin Y, Zhang M, Li J, Deng Z, Sun J, Chen W, Zhang Z. Structural Insight into the Catalytic Mechanism of Non-Heme Iron Halogenase AdaV in 2′-Chloropentostatin Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guoqing Zhai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Rong Gong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaxin Lin
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Meng Zhang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiahui Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenqing Chen
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Abichem Biotech Joint Center for Pharmaceutical Innovation, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhengyu Zhang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
12
|
Barra L, Awakawa T, Abe I. Noncanonical Functions of Enzyme Cofactors as Building Blocks in Natural Product Biosynthesis. JACS AU 2022; 2:1950-1963. [PMID: 36186570 PMCID: PMC9516700 DOI: 10.1021/jacsau.2c00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Enzymes involved in secondary metabolite biosynthetic pathways have typically evolutionarily diverged from their counterparts functioning in primary metabolism. They often catalyze diverse and complex chemical transformations and are thus a treasure trove for the discovery of unique enzyme-mediated chemistries. Besides major natural product classes, such as terpenoids, polyketides, and ribosomally or nonribosomally synthesized peptides, biosynthetic investigations of noncanonical natural product biosynthetic pathways often reveal functionally distinct enzyme chemistries. In this Perspective, we aim to highlight challenges and opportunities of biosynthetic investigations on noncanonical natural product pathways that utilize primary metabolites as building blocks, otherwise generally considered as enzyme cofactors. A focus is made on the discovered chemical and enzymological novelties.
Collapse
Affiliation(s)
- Lena Barra
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Takayoshi Awakawa
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative
Research Institute of Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuro Abe
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative
Research Institute of Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
14
|
Kumar V, Turnbull WB, Kumar A. Review on Recent Developments in Biocatalysts for Friedel–Crafts Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| |
Collapse
|
15
|
Liu Y, Zhang H, Xiao H, Li Y, Liu Y. Expression, purification and structure determination of the chlorinase ClA2. Biochem Biophys Res Commun 2022; 628:64-67. [DOI: 10.1016/j.bbrc.2022.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
|
16
|
Pardo I, Bednar D, Calero P, Volke DC, Damborský J, Nikel PI. A Nonconventional Archaeal Fluorinase Identified by In Silico Mining for Enhanced Fluorine Biocatalysis. ACS Catal 2022; 12:6570-6577. [PMID: 35692250 PMCID: PMC9173684 DOI: 10.1021/acscatal.2c01184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/15/2022] [Indexed: 12/28/2022]
Abstract
![]()
Fluorinases, the
only enzymes known to catalyze the transfer of
fluorine to an organic molecule, are essential catalysts for the biological
synthesis of valuable organofluorines. However, the few fluorinases
identified so far have low turnover rates that hamper biotechnological
applications. Here, we isolated and characterized putative fluorinases
retrieved from systematic in silico mining and identified a nonconventional
archaeal enzyme from Methanosaeta sp. that mediates
the fastest SN2 fluorination rate reported to date. Furthermore,
we demonstrate enhanced production of fluoronucleotides in vivo in
a bacterial host engineered with this archaeal fluorinase, paving
the way toward synthetic metabolism for efficient biohalogenation.
Collapse
Affiliation(s)
- Isabel Pardo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Patricia Calero
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiří Damborský
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 601 77 Brno, Czech Republic
- International Clinical Research Centre, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates. Appl Environ Microbiol 2022; 88:e0249721. [PMID: 35435717 DOI: 10.1128/aem.02497-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nonheme iron- and α-ketoglutarate (αKG)-dependent halogenases (NHFeHals), which catalyze the regio- and stereoselective halogenation of the unactivated C(sp3)-H bonds, exhibit tremendous potential in the challenging asymmetric halogenation. AdeV from Actinomadura sp. ATCC 39365 is the first identified carrier protein-free NHFeHal that catalyzes the chlorination of nucleotide 2'-deoxyadenosine-5'-monophosphate (2'-dAMP) to afford 2'-chloro-2'-deoxyadenosine-5'-monophosphate. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG at resolutions of 1.76 and 1.74 Å, respectively. AdeV possesses a typical β-sandwich topology with H194, H252, αKG, chloride, and one water molecule coordinating FeII in the active site. Molecular docking, mutagenesis, and biochemical analyses reveal that the hydrophobic interactions and hydrogen bond network between the substrate-binding pocket and the adenine, deoxyribose, and phosphate moieties of 2'-dAMP are essential for substrate recognition. Residues H111, R177, and H192 might play important roles in the second-sphere interactions that control reaction partitioning. This study provides valuable insights into the catalytic selectivity of AdeV and will facilitate the rational engineering of AdeV and other NHFeHals for synthesis of halogenated nucleotides. IMPORTANCE Halogenated nucleotides are a group of important antibiotics and are clinically used as antiviral and anticancer drugs. AdeV is the first carrier protein-independent nonheme iron- and α-ketoglutarate (αKG)-dependent halogenase (NHFeHal) that can selectively halogenate nucleotides and exhibits restricted substrate specificity toward several 2'-dAMP analogues. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG. Molecular docking, mutagenesis, and biochemical analyses provide important insights into the catalytic selectivity of AdeV. This study will facilitate the rational engineering of AdeV and other carrier protein-independent NHFeHals for synthesis of halogenated nucleotides.
Collapse
|
18
|
Murdoch RW, Chen G, Kara Murdoch F, Mack EE, Villalobos Solis MI, Hettich RL, Löffler FE. Identification and widespread environmental distribution of a gene cassette implicated in anaerobic dichloromethane degradation. GLOBAL CHANGE BIOLOGY 2022; 28:2396-2412. [PMID: 34967079 DOI: 10.1111/gcb.16068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities and natural processes release dichloromethane (DCM, methylene chloride), a toxic chemical with substantial ozone-depleting capacity. Specialized anaerobic bacteria metabolize DCM; however, the genetic basis for this process has remained elusive. Comparative genomics of the three known anaerobic DCM-degrading bacterial species revealed a homologous gene cluster, designated the methylene chloride catabolism (mec) gene cassette, comprising 8-10 genes encoding proteins with 79.6%-99.7% amino acid identities. Functional annotation identified genes encoding a corrinoid-dependent methyltransferase system, and shotgun proteomics applied to two DCM-catabolizing cultures revealed high expression of proteins encoded on the mec gene cluster during anaerobic growth with DCM. In a DCM-contaminated groundwater plume, the abundance of mec genes strongly correlated with DCM concentrations (R2 = 0.71-0.85) indicating their potential value as process-specific bioremediation biomarkers. mec gene clusters were identified in metagenomes representing peat bogs, the deep subsurface, and marine ecosystems including oxygen minimum zones (OMZs), suggesting a capacity for DCM degradation in diverse habitats. The broad distribution of anaerobic DCM catabolic potential infers a role for DCM as an energy source in various environmental systems, and implies that the global DCM flux (i.e., the rate of formation minus the rate of consumption) might be greater than emission measurements suggest.
Collapse
Affiliation(s)
- Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Fadime Kara Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - E Erin Mack
- Corteva Environmental Remediation, Corteva Agriscience, Wilmington, Delaware, USA
| | | | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
19
|
Wang J, Pang X, Chen C, Gao C, Zhou X, Liu Y, Luo X. Chemistry, Biosynthesis, and Biological Activity of Halogenated Compounds Produced by Marine Microorganisms. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiamin Wang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Chenghai Gao
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaowei Luo
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
20
|
Lamiable-Oulaidi F, Harijan RK, Shaffer KJ, Crump DR, Sun Y, Du Q, Gulab SA, Khan AA, Luxenburger A, Woolhouse AD, Sidoli S, Tyler PC, Schramm VL. Synthesis and Characterization of Transition-State Analogue Inhibitors against Human DNA Methyltransferase 1. J Med Chem 2022; 65:5462-5494. [PMID: 35324190 DOI: 10.1021/acs.jmedchem.1c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypermethylation of CpG regions by human DNA methyltransferase 1 (DNMT1) silences tumor-suppression genes, and inhibition of DNMT1 can reactivate silenced genes. The 5-azacytidines are approved inhibitors of DNMT1, but their mutagenic mechanism limits their utility. A synthon approach from the analogues of S-adenosylhomocysteine, methionine, and deoxycytidine recapitulated the chemical features of the DNMT1 transition state in the synthesis of 16 chemically stable transition-state mimics. Inhibitors causing both full and partial inhibition of purified DNMT1 were characterized. The inhibitors show modest selectivity for DNMT1 versus DNMT3b. Active-site docking predicts inhibitor interactions with S-adenosyl-l-methionine and deoxycytidine regions of the catalytic site, validated by direct binding analysis. Inhibitor action with purified DNMT1 is not reflected in cultured cells. A partial inhibitor activated cellular DNA methylation, and a full inhibitor had no effect on cellular DNA methylation. These compounds provide chemical access to a new family of noncovalent DNMT chemical scaffolds for use in DNA methyltransferases.
Collapse
Affiliation(s)
- Farah Lamiable-Oulaidi
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Rajesh K Harijan
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Karl J Shaffer
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Douglas R Crump
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Yan Sun
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Quan Du
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Shivali A Gulab
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Ashna A Khan
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Andreas Luxenburger
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Anthony D Woolhouse
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Simone Sidoli
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Vern L Schramm
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
21
|
Braffman NR, Ruskoski TB, Davis KM, Glasser NR, Johnson C, Okafor CD, Boal AK, Balskus EP. Structural basis for an unprecedented enzymatic alkylation in cylindrocyclophane biosynthesis. eLife 2022; 11:75761. [PMID: 35212625 PMCID: PMC8916777 DOI: 10.7554/elife.75761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterial enzyme CylK assembles the cylindrocyclophane natural products by performing two unusual alkylation reactions, forming new carbon–carbon bonds between aromatic rings and secondary alkyl halide substrates. This transformation is unprecedented in biology, and the structure and mechanism of CylK are unknown. Here, we report X-ray crystal structures of CylK, revealing a distinctive fusion of a Ca2+-binding domain and a β-propeller fold. We use a mutagenic screening approach to locate CylK’s active site at its domain interface, identifying two residues, Arg105 and Tyr473, that are required for catalysis. Anomalous diffraction datasets collected with bound bromide ions, a product analog, suggest that these residues interact with the alkyl halide electrophile. Additional mutagenesis and molecular dynamics simulations implicate Asp440 in activating the nucleophilic aromatic ring. Bioinformatic analysis of CylK homologs from other cyanobacteria establishes that they conserve these key catalytic amino acids, but they are likely associated with divergent reactivity and altered secondary metabolism. By gaining a molecular understanding of this unusual biosynthetic transformation, this work fills a gap in our understanding of how alkyl halides are activated and used by enzymes as biosynthetic intermediates, informing enzyme engineering, catalyst design, and natural product discovery.
Collapse
Affiliation(s)
- Nathaniel R Braffman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Terry B Ruskoski
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Katherine M Davis
- Department of Chemistry, Pennsylvania State University, University Park, United States
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Cassidy Johnson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
22
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
23
|
Kittilä T, Calero P, Fredslund F, Lowe PT, Tezé D, Nieto-Domínguez M, O'Hagan D, Nikel PI, Welner DH. Oligomerization engineering of the fluorinase enzyme leads to an active trimer that supports synthesis of fluorometabolites in vitro. Microb Biotechnol 2022; 15:1622-1632. [PMID: 35084776 PMCID: PMC9049626 DOI: 10.1111/1751-7915.14009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
The fluorinase enzyme represents the only biological mechanism capable of forming stable C–F bonds characterized in nature thus far, offering a biotechnological route to the biosynthesis of value‐added organofluorines. The fluorinase is known to operate in a hexameric form, but the consequence(s) of the oligomerization status on the enzyme activity and its catalytic properties remain largely unknown. In this work, this aspect was explored by rationally engineering trimeric fluorinase variants that retained the same catalytic rate as the wild‐type enzyme. These results ruled out hexamerization as a requisite for the fluorination activity. The Michaelis constant (KM) for S‐adenosyl‐l‐methionine, one of the substrates of the fluorinase, increased by two orders of magnitude upon hexamer disruption. Such a shift in S‐adenosyl‐l‐methionine affinity points to a long‐range effect of hexamerization on substrate binding – likely decreasing substrate dissociation and release from the active site. A practical application of trimeric fluorinase is illustrated by establishing in vitro fluorometabolite synthesis in a bacterial cell‐free system.
Collapse
Affiliation(s)
- Tiia Kittilä
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Patricia Calero
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Folmer Fredslund
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Phillip T Lowe
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - David Tezé
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Ditte H Welner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
24
|
Chan PWY, Chakrabarti N, Ing C, Halgas O, To TKW, Wälti M, Petit AP, Tran C, Savchenko A, Yakunin AF, Edwards EA, Pomès R, Pai EF. Defluorination Capability of l-2-Haloacid Dehalogenases in the HAD-Like Hydrolase Superfamily Correlates with Active Site Compactness. Chembiochem 2022; 23:e202100414. [PMID: 34643018 PMCID: PMC10281000 DOI: 10.1002/cbic.202100414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Indexed: 11/11/2022]
Abstract
l-2-Haloacid dehalogenases, industrially and environmentally important enzymes that catalyse cleavage of the carbon-halogen bond in S-2-halocarboxylic acids, were known to hydrolyse chlorinated, brominated and iodinated substrates but no activity towards fluorinated compounds had been reported. A screen for novel dehalogenase activities revealed four l-2-haloacid dehalogenases capable of defluorination. We now report crystal structures for two of these enzymes, Bpro0530 and Rha0230, as well as for the related proteins PA0810 and RSc1362, which hydrolyse chloroacetate but not fluoroacetate, all at ∼2.2 Å resolution. Overall structure and active sites of these enzymes are highly similar. In molecular dynamics (MD) calculations, only the defluorinating enzymes sample more compact conformations, which in turn allow more effective interactions with the small fluorine atom. Structural constraints, based on X-ray structures and MD calculations, correctly predict the defluorination activity of the homologous enzyme ST2570.
Collapse
Affiliation(s)
- Peter W Y Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Present address: Zymeworks, Inc., 1385 West 8th Avenue Suite 540, Vancouver, British Columbia, V6H 3 V9, Canada
- Princess Margaret Cancer Centre, The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | | | - Chris Ing
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Present address: ProteinQure, Inc., 119 Spadina Avenue suite 304, Toronto, Ontario, M5V 2L1, Canada
| | - Ondrej Halgas
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Terence K W To
- Princess Margaret Cancer Centre, The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Present address: International Point of Care, Inc., 135 The West Mall, Unit 9, Toronto, Ontario, M9C 1C2, Canada
| | - Marielle Wälti
- Princess Margaret Cancer Centre, The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Present address: Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0510, USA
| | - Alain-Pierre Petit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Present address: Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Christopher Tran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Present address: Ramboll Environment & Health, 2400 Meadowpine Boulevard, Suite 100, Mississauga, Ontario, L5N 6S2, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Present address: Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Health Research Innovation Centre, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Régis Pomès
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Emil F Pai
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Princess Margaret Cancer Centre, The Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
25
|
Tang Q, Aslan-Üzel AS, Schuiten ED, Badenhorst CPS, Pavlidis IV, Bornscheuer UT. Enzymatic Photometric Assays for the Selective Detection of Halides. Methods Mol Biol 2022; 2487:361-375. [PMID: 35687247 DOI: 10.1007/978-1-0716-2269-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halides are substrates and products of a number of biotechnologically important enzymes like dehalogenases, halide methyltransferases, and halogenases. Therefore, the determination of halide concentrations in samples is important. The classical methods based on mercuric thiocyanate are very dangerous, produce hazardous waste, and do not discriminate between chloride, bromide, and iodide. In this chapter, we describe a detailed protocol for the determination of halide concentrations based on the haloperoxidase-catalyzed oxidation of halides. The resulting hypohalous acids are detected using commercially available colorimetric or fluorimetric probes. The biocatalytic nature of the assays allows them to be implemented in one-pot cascade reactions with halide-generating enzymes. Since chloride is ubiquitous in biological systems, we also describe convenient photometric assays for the selective detection of bromide and iodide in the presence of chloride, obviating the need for laborious dialyses to obtain halide-free enzymes and reagents.
Collapse
Affiliation(s)
- Qingyun Tang
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Askin S Aslan-Üzel
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Eva D Schuiten
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | | | | | - Uwe T Bornscheuer
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
26
|
Adak S, Moore BS. Cryptic halogenation reactions in natural product biosynthesis. Nat Prod Rep 2021; 38:1760-1774. [PMID: 34676862 DOI: 10.1039/d1np00010a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: Up to December 2020Enzymatic halogenation reactions are essential for the production of thousands of halogenated natural products. However, in recent years, scientists discovered several halogenases that transiently incorporate halogen atoms in intermediate biosynthetic molecules to activate them for further chemical reactions such as cyclopropanation, terminal alkyne formation, C-/O-alkylation, biaryl coupling, and C-C rearrangements. In each case, the halogen atom is lost in the course of biosynthesis to the final product and is hence termed "cryptic". In this review, we provide an overview of our current knowledge of cryptic halogenation reactions in natural product biosynthesis.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
27
|
|
28
|
Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, Goss RJM. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Chem Soc Rev 2021; 50:9443-9481. [PMID: 34368824 PMCID: PMC8407142 DOI: 10.1039/d0cs01551b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.
Collapse
Affiliation(s)
- Charlotte Crowe
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Samuel Molyneux
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Sunil V. Sharma
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Ying Zhang
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Danai S. Gkotsi
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Helen Connaris
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Rebecca J. M. Goss
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| |
Collapse
|
29
|
Niu S, Liu D, Shao Z, Huang J, Fan A, Lin W. Chlorinated metabolites with antibacterial activities from a deep-sea-derived Spiromastix fungus. RSC Adv 2021; 11:29661-29667. [PMID: 35479535 PMCID: PMC9041095 DOI: 10.1039/d1ra05736g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatographic separation of the solid cultures of a deep-sea-derived Spiromastix fungus (MCCC 3A00308) resulted in the isolation of eight compounds. Their structures were identified on the basis of the spectroscopic data. Compounds 1–8 are classified as depsidone-type (1–4), isocoumarin-type (5 and 6), and benzothiazole-type (7 and 8), of which 1–7 are new compounds and 1–3 along with 5 and 6 are chlorinated. Compound 3 is characterized by trichlorination and shows potent activities against Gram-positive pathogenic bacteria including Staphylococcus aureus ATCC 25923, Bacillus thuringiensis ATCC 10792, and Bacillus subtilis CMCC 63501, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 1.0 μg mL−1. This study extends the chemical diversity of chlorinated natural products from marine-derived fungi and provides a promising lead for the development of antibacterial agents. Chromatographic separation of the solid cultures of a deep-sea-derived Spiromastix fungus (MCCC 3A00308) resulted in the isolation of five chlorinated compounds with antibacterial activities.![]()
Collapse
Affiliation(s)
- Siwen Niu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Beijing 100191 P. R. China .,Third Institute of Oceanography, SOA Xiamen 361005 P. R. China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Beijing 100191 P. R. China
| | - Zongze Shao
- Third Institute of Oceanography, SOA Xiamen 361005 P. R. China
| | - Jiang Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Beijing 100191 P. R. China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Beijing 100191 P. R. China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Beijing 100191 P. R. China .,Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University Beijing 100191 P. R. China
| |
Collapse
|
30
|
Tang Q, Pavlidis IV, Badenhorst CPS, Bornscheuer UT. From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases. Chembiochem 2021; 22:2584-2590. [PMID: 33890381 PMCID: PMC8453949 DOI: 10.1002/cbic.202100153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Halide methyltransferases (HMTs) enable the enzymatic synthesis of S-adenosyl-l-methionine (SAM) from S-adenosyl-l-homocysteine (SAH) and methyl iodide. Characterisation of a range of naturally occurring HMTs and subsequent protein engineering led to HMT variants capable of synthesising ethyl, propyl, and allyl analogues of SAM. Notably, HMTs do not depend on chemical synthesis of methionine analogues, as required by methionine adenosyltransferases (MATs). However, at the moment MATs have a much broader substrate scope than the HMTs. Herein we provide an overview of the discovery and engineering of promiscuous HMTs and how these strategies will pave the way towards a toolbox of HMT variants for versatile chemo- and regioselective biocatalytic alkylations.
Collapse
Affiliation(s)
- Qingyun Tang
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417489GreifswaldGermany
| | - Ioannis V. Pavlidis
- Dept. of ChemistryUniversity of CreteVoutes University Campus70013HeraklionGreece
| | | | - Uwe T. Bornscheuer
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417489GreifswaldGermany
| |
Collapse
|
31
|
Popadić D, Mhaindarkar D, Dang Thai MHN, Hailes HC, Mordhorst S, Andexer JN. A bicyclic S-adenosylmethionine regeneration system applicable with different nucleosides or nucleotides as cofactor building blocks. RSC Chem Biol 2021; 2:883-891. [PMID: 34179784 PMCID: PMC8190896 DOI: 10.1039/d1cb00033k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous cofactor S-adenosyl-l-methionine (SAM) is part of numerous biochemical reactions in metabolism, epigenetics, and cancer development. As methylation usually improves physiochemical properties of compounds relevant for pharmaceutical use, the sustainable use of SAM as a methyl donor in biotechnological applications is an important goal. SAM-dependent methyltransferases are consequently an emerging biocatalytic tool for environmentally friendly and selective alkylations. However, SAM shows undesirable characteristics such as degradation under mild conditions and its stoichiometric use is economically not reasonable. Here, we report an optimised biomimetic system for the regeneration of SAM and SAM analogues consisting of effective nucleoside triphosphate formation and an additional l-methionine regeneration cycle without by-product accumulation. The bicyclic system uses seven enzymes, S-methylmethionine as methyl donor and a surplus of inorganic polyphosphate, along with catalytic amounts of l-methionine and cofactor building block reaching conversions of up to 99% (up to 200 turnovers). We also show that the cycle can be run with cofactor building blocks containing different purine and pyrimidine nucleobases, which can be fed in at the nucleoside or nucleotide stage. These alternative cofactors are in turn converted to the corresponding SAM analogues, which are considered to be a key for the development of bioorthogonal systems. In addition to purified enzymes, the bicyclic system can also be used with crude lysates highlighting its broad biocatalytic applicability.
Collapse
Affiliation(s)
- Désirée Popadić
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Dipali Mhaindarkar
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Mike H N Dang Thai
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Helen C Hailes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg Albertstr. 25 79104 Freiburg Germany
| |
Collapse
|
32
|
Chhun A, Sousoni D, Aguiló‐Ferretjans MDM, Song L, Corre C, Christie‐Oleza JA. Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium Salinispora tropica. Microb Biotechnol 2021; 14:291-306. [PMID: 33280260 PMCID: PMC7888443 DOI: 10.1111/1751-7915.13722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022] Open
Abstract
Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.
Collapse
Affiliation(s)
- Audam Chhun
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | - Lijiang Song
- Department of ChemistryUniversity of WarwickCoventryUK
| | - Christophe Corre
- School of Life SciencesUniversity of WarwickCoventryUK
- Department of ChemistryUniversity of WarwickCoventryUK
| | - Joseph A. Christie‐Oleza
- School of Life SciencesUniversity of WarwickCoventryUK
- University of the Balearic IslandsPalmaSpain
- IMEDEA (CSIC‐UIB)EsporlesSpain
| |
Collapse
|
33
|
Kornfuehrer T, Romanowski S, de Crécy-Lagard V, Hanson AD, Eustáquio AS. An Enzyme Containing the Conserved Domain of Unknown Function DUF62 Acts as a Stereoselective (R s ,S c )-S-Adenosylmethionine Hydrolase. Chembiochem 2020; 21:3495-3499. [PMID: 32776704 DOI: 10.1002/cbic.202000349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Indexed: 11/09/2022]
Abstract
Homochirality is a signature of biological systems. The essential and ubiquitous cofactor S-adenosyl-l-methionine (SAM) is synthesized in cells from adenosine triphosphate and l-methionine to yield exclusively the (S,S)-SAM diastereomer. (S,S)-SAM plays a crucial role as the primary methyl donor in transmethylation reactions important to the development and homeostasis of all organisms from bacteria to humans. However, (S,S)-SAM slowly racemizes at the sulfonium center to yield the inactive (R,S)-SAM, which can inhibit methyltransferases. Control of SAM homochirality has been shown to involve homocysteine S-methyltransferases in plants, insects, worms, yeast, and in ∼18 % of bacteria. Herein, we show that a recombinant protein containing a domain of unknown function (DUF62) from the actinomycete bacterium Salinispora tropica functions as a stereoselective (R,S)-SAM hydrolase (adenosine-forming). DUF62 proteins are encoded in the genomes of 21 % of bacteria and 42 % of archaea and potentially represent a novel mechanism to remediate SAM damage.
Collapse
Affiliation(s)
- Taylor Kornfuehrer
- Department of Pharmaceutical Sciences and, Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Sean Romanowski
- Department of Pharmaceutical Sciences and, Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science and, Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences and, Center for Biomolecular Sciences, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
34
|
Halogenases: structures and functions. Curr Opin Struct Biol 2020; 65:51-60. [DOI: 10.1016/j.sbi.2020.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/23/2022]
|
35
|
Gozari M, Alborz M, El-Seedi HR, Jassbi AR. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem 2020; 210:112957. [PMID: 33160760 DOI: 10.1016/j.ejmech.2020.112957] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
The marine environment with its vast biological diversity encompasses many organisms that produce bioactive natural products. Marine microorganisms are rich sources of compounds from many structural classes with a multitude of biological activities. The biosynthesis of microbial natural products depends on a variety of biotic and abiotic factors in the marine environment, including temperature, nutrients, salinity and interaction with other microorganisms. Terpenoids, as one of the most important groups of natural products in terrestrial microorganisms are important metabolites for marine microorganisms. Here, we have reviewed the chemistry, biosynthesis and pharmacological activities of terpenoids, extracted from marine microbes, and then survey their potential applications in drug development. We also discussed the different habitats in which marine microorganisms are found including sediments, the flora, such as seaweeds, sea grasses, and mangroves as well as the fauna like sponges and corals. Amongst these habitats, marine sediments are the major source for terpenoids producing microorganisms. The marine bacteria produce mostly meroterpenoids, while the fungi are well known for production of isoprenoids. Interestingly, marine-derived microbial terpenoids have some structural characteristics such as halogenation, which are catalyzed by specific enzymes with distinct substrate specificity. These compounds have anticancer, antibacterial, antifungal, antimalarial and anti-inflammatory properties. The information collected here might provide useful clues for developing new medications.
Collapse
Affiliation(s)
- Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Bandar Abbas, Iran
| | - Maryam Alborz
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23, Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, PR China
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
36
|
Menon BRK, Richmond D, Menon N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1823788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binuraj R. K. Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Richmond
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Navya Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
37
|
Crystal structure of ClA1, a type of chlorinase from soil bacteria. Biochem Biophys Res Commun 2020; 530:42-46. [PMID: 32828313 DOI: 10.1016/j.bbrc.2020.06.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/23/2022]
Abstract
Halogenated compounds are widely discovered in nature, and many of them exhibit biological activities, such as an important chlorinated natural product salinosporamide A serving as a potential anticancer agent. Compared with bromination, iodination and fluorination, chlorination is the mainly important modification. To shed light on the mechanism of SAM-dependent chlorinases, a recombinant chlorinase ClA1 was expressed in Escherichia coli and further purified for crystallization and X-ray diffraction experiments. The flake crystals of ClA1 were able to diffract to a resolution of 1.85 Å. The crystals belonged to space group R3, with unit-cell parameters α = β = 90.0°, γ = 120.0°. By determining the structure of ClA1, it is revealed that the side chain of Arg242 in ClA1 may have contacts with the L-Met. However, in SalL the equivalent Arg243's side chain is far from L-Met. Considering the ClA1 and SalL are from different environments and their enzyme kinetics are quite different, it is suggested that the side chain conformation differences of the conserved arginine are possibly related with the enzyme activity differences of the two chlorinases.
Collapse
|
38
|
Mordhorst S, Andexer JN. Round, round we go - strategies for enzymatic cofactor regeneration. Nat Prod Rep 2020; 37:1316-1333. [PMID: 32582886 DOI: 10.1039/d0np00004c] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | | |
Collapse
|
39
|
McKean IJW, Hoskisson PA, Burley GA. Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Late‐Stage Functionalization. Chembiochem 2020; 21:2890-2897. [DOI: 10.1002/cbic.202000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Iain J. W. McKean
- Department of Pure & Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy & Biomedical Sciences University of Strathclyde 161 Cathedral Street Glasgow G4 0RE United Kingdom
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL United Kingdom
| |
Collapse
|
40
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
41
|
Exploring the Biocatalytic Potential of Fe/α‐Ketoglutarate‐Dependent Halogenases. Chemistry 2020; 26:7336-7345. [DOI: 10.1002/chem.201905752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/18/2022]
|
42
|
Zhao C, Yan S, Li Q, Zhu H, Zhong Z, Ye Y, Deng Z, Zhang Y. An Fe 2+ - and α-Ketoglutarate-Dependent Halogenase Acts on Nucleotide Substrates. Angew Chem Int Ed Engl 2020; 59:9478-9484. [PMID: 32160364 DOI: 10.1002/anie.201914994] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/04/2020] [Indexed: 11/08/2022]
Abstract
While halogenated nucleosides are used as common anticancer and antiviral drugs, naturally occurring halogenated nucleosides are rare. Adechlorin (ade) is a 2'-chloro nucleoside natural product first identified from Actinomadura sp. ATCC 39365. However, the installation of chlorine in the ade biosynthetic pathway remains elusive. Reported herein is a Fe2+ -α-ketoglutarate halogenase AdeV that can install a chlorine atom at the C2' position of 2'-deoxyadenosine monophosphate to afford 2'-chloro-2'-deoxyadenosine monophosphate. Furthermore, 2',3'-dideoxyadenosine-5'-monophosphate and 2'-deoxyinosine-5'-monophosphate can also be converted, albeit 20-fold and 2-fold, respectively, less efficiently relative to the conversion of 2'-deoxyadenosine monophosphate. AdeV represents the first example of a Fe2+ -α-ketoglutarate-dependent halogenase that converts nucleotides into chlorinated analogues.
Collapse
Affiliation(s)
- Chunhua Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shan Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyu Zhong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
43
|
Zhao C, Yan S, Li Q, Zhu H, Zhong Z, Ye Y, Deng Z, Zhang Y. An Fe
2+
‐ and α‐Ketoglutarate‐Dependent Halogenase Acts on Nucleotide Substrates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chunhua Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Shan Yan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zhiyu Zhong
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationSchool of Pharmaceutical SciencesWuhan University Wuhan 430071 P. R. China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationSchool of Pharmaceutical SciencesWuhan University Wuhan 430071 P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource EvaluationSchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
44
|
Sooklal SA, De Koning C, Brady D, Rumbold K. Identification and characterisation of a fluorinase from Actinopolyspora mzabensis. Protein Expr Purif 2020; 166:105508. [DOI: 10.1016/j.pep.2019.105508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023]
|
45
|
Pereira PRM, Araújo JDO, Silva JRA, Alves CN, Lameira J, Lima AH. Exploring Chloride Selectivity and Halogenase Regioselectivity of the SalL Enzyme through Quantum Mechanical/Molecular Mechanical Modeling. J Chem Inf Model 2020; 60:738-746. [DOI: 10.1021/acs.jcim.9b01079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Paulo R. M. Pereira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - Jéssica de O. Araújo
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - Cláudio N. Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
- Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brasil
| |
Collapse
|
46
|
Jimenez PC, Wilke DV, Branco PC, Bauermeister A, Rezende‐Teixeira P, Gaudêncio SP, Costa‐Lotufo LV. Enriching cancer pharmacology with drugs of marine origin. Br J Pharmacol 2020; 177:3-27. [PMID: 31621891 PMCID: PMC6976878 DOI: 10.1111/bph.14876] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Marine natural products have proven, over the last half-century, to be effective biological modulators. These molecules have revealed new targets for cancer therapy as well as dissimilar modes of action within typical classes of drugs. In this scenario, innovation from marine-based pharmaceuticals has helped advance cancer chemotherapy in many aspects, as most of these are designated as first-in-class drugs. Here, by examining the path from discovery to development of clinically approved drugs of marine origin for cancer treatment-cytarabine (Cytosar-U®), trabectedin (Yondelis®), eribulin (Halaven®), brentuximab vedotin (Adcetris®), and plitidepsin (Aplidin®)- together with those in late clinical trial phases-lurbinectedin, plinabulin, marizomib, and plocabulin-the present review offers a critical analysis of the contributions given by these new compounds to cancer pharmacotherapy.
Collapse
Affiliation(s)
- Paula C. Jimenez
- Departamento de Ciências do MarUniversidade Federal de São PauloSantosSPBrasil
| | - Diego V. Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos (NPDM), Departamento de Fisiologia e Farmacologia, Faculdade de MedicinaUniversidade Federal do CearáFortalezaCEBrasil
| | - Paola C. Branco
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Paula Rezende‐Teixeira
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| | - Susana P. Gaudêncio
- UCIBIO, Department of Chemistry, Blue Biotechnology and Biomedicine Lab, Faculty of Science and TechnologyNOVA University of LisbonCaparicaPortugal
| | - Leticia V. Costa‐Lotufo
- Departamento de Farmacologia, Instituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasil
| |
Collapse
|
47
|
Zhang F, Braun DR, Chanana S, Rajski SR, Bugni TS. Phallusialides A-E, Pyrrole-Derived Alkaloids Discovered from a Marine-Derived Micromonospora sp. Bacterium Using MS-Based Metabolomics Approaches. JOURNAL OF NATURAL PRODUCTS 2019; 82:3432-3439. [PMID: 31794218 PMCID: PMC7784719 DOI: 10.1021/acs.jnatprod.9b00808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Integrating MS-based metabolomics approaches, LC-MS-PCA and molecular networking enabled the targeted isolation of five new pyrrole-derived alkaloids, phallusialides A-E (1-5), from a marine-derived Micromonospora sp. bacterium. The structures of 1-5 were elucidated by analysis of their HRMS, MS/MS, and NMR spectroscopic data. The absolute configuration of phallusialide A (1) was determined on the basis of comparisons of experimental and theoretically calculated ECD spectra. Compounds 1 and 2 exhibited antibacterial activity against methicillin resistant S. aureus (MRSA) and E. coli, with MIC values of 32 and 64 μg/mL, respectively, whereas 3-5 showed no antibacterial activity even at 256 μg/mL, yielding important SAR insights for this class of compounds.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
48
|
McKean IJW, Sadler JC, Cuetos A, Frese A, Humphreys LD, Grogan G, Hoskisson PA, Burley GA. S-Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C-Alkylation. Angew Chem Int Ed Engl 2019; 58:17583-17588. [PMID: 31573135 DOI: 10.1002/anie.201908681] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Indexed: 01/10/2023]
Abstract
A tandem enzymatic strategy to enhance the scope of C-alkylation of small molecules via the in situ formation of S-adenosyl methionine (SAM) cofactor analogues is described. A solvent-exposed channel present in the SAM-forming enzyme SalL tolerates 5'-chloro-5'-deoxyadenosine (ClDA) analogues modified at the 2-position of the adenine nucleobase. Coupling SalL-catalyzed cofactor production with C-(m)ethyl transfer to coumarin substrates catalyzed by the methyltransferase (MTase) NovO forms C-(m)ethylated coumarins in superior yield and greater substrate scope relative to that obtained using cofactors lacking nucleobase modifications. Establishing the molecular determinants that influence C-alkylation provides the basis to develop a late-stage enzymatic platform for the preparation of high value small molecules.
Collapse
Affiliation(s)
- Iain J W McKean
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Joanna C Sadler
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG12NY, UK
| | - Anibal Cuetos
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Amina Frese
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Luke D Humphreys
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, SG12NY, UK
| | - Gideon Grogan
- Department or Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Glenn A Burley
- Department or Pure and Applied Chemistry, University of Strathclyde, 298 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
49
|
McKean IJW, Sadler JC, Cuetos A, Frese A, Humphreys LD, Grogan G, Hoskisson PA, Burley GA. S
‐Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule
C
‐Alkylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Iain J. W. McKean
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Joanna C. Sadler
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Anibal Cuetos
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Amina Frese
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Luke D. Humphreys
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Gideon Grogan
- Department or ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Glenn A. Burley
- Department or Pure and Applied ChemistryUniversity of Strathclyde 298 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
50
|
Tsutsumi H, Katsuyama Y, Ohnishi Y. Formation of 5- or 6-Membered Ring via Nitrene Formation and Addition by a Cytochrome P450 in Benzastatin Biosynthesis. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|