1
|
Zhai G, Niu Z, Jiang Z, Zhao F, Wang S, Chen C, Zheng W, Wang A, Zang Y, Han Y, Zhang K. DPF2 reads histone lactylation to drive transcription and tumorigenesis. Proc Natl Acad Sci U S A 2024; 121:e2421496121. [PMID: 39636855 DOI: 10.1073/pnas.2421496121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Lysine lactylation (Kla) is a new type of histone mark implicated in the regulation of various functional processes such as transcription. However, how this histone mark acts in cancers remains unexplored due in part to a lack of knowledge about its reader proteins. Here, we observe that cervical cancer (CC) cells undergo metabolic reprogram by which lactate accumulation and thereby boosts histone lactylation, particularly H3K14la. Utilizing a multivalent photoaffinity probe in combination with quantitative proteomics approach, we identify DPF2 as a candidate target of H3K14la. Biochemical studies as well as CUT&Tag analysis reveal that DPF2 is capable of binding to H3K14la and colocalizes with it on promoters of oncogenic genes. Notably, disrupting the DPF2-H3K14la interaction through structure-guided mutation blunts those cancer-related gene expression along with cell survival. Together, our findings reveal DPF2 as a bona fide H3K14la effector that couples histone lactylation to gene transcription and cell survival, offering insight into how histone Kla engages in transcription and tumorigenesis.
Collapse
Affiliation(s)
- Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ziping Niu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zixin Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Zhao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Siyu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Chen Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zheng
- Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province 264000, China
| | - Aiyuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yong Zang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yanpu Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300070, China
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China
| |
Collapse
|
2
|
Yang S, Fan X, Yu W. Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer. Cells 2024; 13:1812. [PMID: 39513918 PMCID: PMC11545499 DOI: 10.3390/cells13211812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified in both histones and other proteins. In recent studies, crotonylation was found to play a role in various diseases and biological processes. This paper reviews the initial discovery and regulatory mechanisms of crotonylation, including various writer, reader, and eraser proteins. Finally, we emphasize the relationship of dysregulated protein crotonylation with eight common malignancies, including cervical, prostate, liver, and lung cancer, providing new potential therapeutic targets.
Collapse
Affiliation(s)
- Siyi Yang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
3
|
Yan W, Zhang Y, Dai Y, Ge J. Application of crotonylation modification in pan-vascular diseases. J Drug Target 2024; 32:996-1004. [PMID: 38922829 DOI: 10.1080/1061186x.2024.2372316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Pan-vascular diseases, based on systems biology theory, explore the commonalities and individualities of important target organs such as cardiovascular, cerebrovascular and peripheral blood vessels, starting from the systemic and holistic aspects of vascular diseases. The purpose is to understand the interrelationships and results between them, achieve vascular health or sub-health, and comprehensively improve the physical and mental health of the entire population. Post-translational modification (PTM) is an important part of epigenetics, including phosphorylation, acetylation, ubiquitination, methylation, etc., playing a crucial role in the pan-vascular system. Crotonylation is a novel type of PTM that has made significant progress in the research of pan-vascular related diseases in recent years. Based on the review of previous studies, this article summarises the various regulatory factors of crotonylation, physiological functions and the mechanisms of histone and non-histone crotonylation in regulating pan-vascular related diseases to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment and the value of clinical translation.
Collapse
Affiliation(s)
- Wendi Yan
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
| | - Yang Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yuxiang Dai
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
4
|
Chen F, He X, Xu W, Zhou L, Liu Q, Chen W, Zhu W, Zhang J. Chromatin lysine acylation: On the path to chromatin homeostasis and genome integrity. Cancer Sci 2024; 115:3506-3519. [PMID: 39155589 PMCID: PMC11531963 DOI: 10.1111/cas.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
The fundamental role of cells in safeguarding the genome's integrity against DNA double-strand breaks (DSBs) is crucial for maintaining chromatin homeostasis and the overall genomic stability. Aberrant responses to DNA damage, known as DNA damage responses (DDRs), can result in genomic instability and contribute significantly to tumorigenesis. Unraveling the intricate mechanisms underlying DDRs following severe damage holds the key to identify therapeutic targets for cancer. Chromatin lysine acylation, encompassing diverse modifications such as acetylation, lactylation, crotonylation, succinylation, malonylation, glutarylation, propionylation, and butyrylation, has been extensively studied in the context of DDRs and chromatin homeostasis. Here, we delve into the modifying enzymes and the pivotal roles of lysine acylation and their crosstalk in maintaining chromatin homeostasis and genome integrity in response to DDRs. Moreover, we offer a comprehensive perspective and overview of the latest insights, driven primarily by chromatin acylation modification and associated regulators.
Collapse
Affiliation(s)
- Feng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Xingkai He
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Wenchao Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Linmin Zhou
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Qi Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
- Cancer Research Institute, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Weicheng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Wei‐Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| | - Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenChina
| |
Collapse
|
5
|
Guo Y, Li J, Zhang K. Crotonylation modification and its role in diseases. Front Mol Biosci 2024; 11:1492212. [PMID: 39606030 PMCID: PMC11599741 DOI: 10.3389/fmolb.2024.1492212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Protein lysine crotonylation is a novel acylation modification discovered in 2011, which plays a key role in the regulation of various biological processes. Thousands of crotonylation sites have been identified in histone and non-histone proteins over the past decades. Crotonylation is conserved and is regulated by a series of enzymes including "writer", "eraser", and "reader". In recent years, crotonylation has received extensive attention due to its breakthrough progress in reproduction, development and pathogenesis of diseases. Here we brief the crotonylation-related enzyme systems, biological functions, and diseases caused by abnormal crotonylation, which provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
| | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Westerveld M, Besermenji K, Aidukas D, Ostrovitsa N, Petracca R. Cracking Lysine Crotonylation (Kcr): Enlightening a Promising Post-Translational Modification. Chembiochem 2024:e202400639. [PMID: 39462860 DOI: 10.1002/cbic.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Lysine crotonylation (Kcr) is a recently discovered post-translational modification (PTM). Both histone and non-histone Kcr-proteins have been associated with numerous diseases including cancer, acute kidney injury, HIV latency, and cardiovascular disease. Histone Kcr enhances gene expression to a larger extend than the extensively studied lysine acetylation (Kac), suggesting Kcr as a novel potential therapeutic target. Although numerous scientific reports on crotonylation were published in the last years, relevant knowledge gaps concerning this PTM and its regulation still remain. To date, only few selective Kcr-interacting proteins have been identified and selective methods for the enrichment of Kcr-proteins in chemical proteomics analysis are still lacking. The development of new techniques to study this underexplored PTM could then clarify its function in health and disease and hopefully accelerate the development of new therapeutics for Kcr-related disease. Herein we briefly review what is known about the regulation mechanisms of Kcr and the current methods used to identify Kcr-proteins and their interacting partners. This report aims to highlight the significant potential of Kcr as a therapeutic target and to identify the existing scientific gaps that new research must address.
Collapse
Affiliation(s)
- Marinda Westerveld
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, David De Wied Building, Universiteitsweg 99, 3584 CG, Utrecht, NL
| | - Kosta Besermenji
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, David De Wied Building, Universiteitsweg 99, 3584 CG, Utrecht, NL
| | - David Aidukas
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, David De Wied Building, Universiteitsweg 99, 3584 CG, Utrecht, NL
| | - Nikita Ostrovitsa
- Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin (TCD), 152-160 Pearse St., Dublin, D02 R590, Ireland
| | - Rita Petracca
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, David De Wied Building, Universiteitsweg 99, 3584 CG, Utrecht, NL
| |
Collapse
|
7
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
8
|
Hou L, Chen YJ, Zhong Q, Pei J, Liu L, Pi H, Xie M, Zhao G. Function and mechanism of lysine crotonylation in health and disease. QJM 2024; 117:695-708. [PMID: 38390964 DOI: 10.1093/qjmed/hcae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine crotonylation is a newly identified posttranslational modification that is different from the widely studied lysine acetylation in structure and function. In the last dozen years, great progress has been made in lysine crotonylation-related studies, and lysine crotonylation is involved in reproduction, development and disease. In this review, we highlight the similarities and differences between lysine crotonylation and lysine acetylation. We also summarize the methods and tools for the detection and prediction of lysine crotonylation. At the same time, we outline the recent advances in understanding the mechanisms of enzymatic and metabolic regulation of lysine crotonylation, as well as the regulating factors that selectively recognize this modification. Particularly, we discussed how dynamic changes in crotonylation status maintain physiological health and result in the development of disease. This review not only points out the new functions of lysine crotonylation but also provides new insights and exciting opportunities for managing various diseases.
Collapse
Affiliation(s)
- L Hou
- Guangzhou Huali Science and Technology Vocational College, Guangzhou, China
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - Y-J Chen
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Q Zhong
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - J Pei
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - L Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - H Pi
- School of basic medicine, Dali University, Dali, China
| | - M Xie
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - G Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| |
Collapse
|
9
|
Li X, Yu T, Li X, He X, Zhang B, Yang Y. Role of novel protein acylation modifications in immunity and its related diseases. Immunology 2024; 173:53-75. [PMID: 38866391 DOI: 10.1111/imm.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
10
|
Zhao H, Han Y, Zhou P, Guan H, Gao S. Protein lysine crotonylation in cellular processions and disease associations. Genes Dis 2024; 11:101060. [PMID: 38957707 PMCID: PMC11217610 DOI: 10.1016/j.gendis.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/05/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2024] Open
Abstract
Protein lysine crotonylation (Kcr) is one conserved form of posttranslational modifications of proteins, which plays an important role in a series of cellular physiological and pathological processes. Lysine ε-amino groups are the primary sites of such modification, resulting in four-carbon planar lysine crotonylation that is structurally and functionally distinct from the acetylation of these residues. High levels of Kcr modifications have been identified on both histone and non-histone proteins. The present review offers an update on the research progression regarding protein Kcr modifications in biomedical contexts and provides a discussion of the mechanisms whereby Kcr modification governs a range of biological processes. In addition, given the importance of protein Kcr modification in disease onset and progression, the potential viability of Kcr regulators as therapeutic targets is elucidated.
Collapse
Affiliation(s)
- Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Han
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
11
|
Martinez M, Kiselar J, Wang B, Sadalge D, Zawadzke L, Taherbhoy A, Musser D, Davenport Y, Setser J, Chance MR, Bellon S. Mass Spectrometry-Based Protein Footprinting Defines the Binding Pocket of Crotonylated H3K14 in the PHD1 Domain of BAF45D within the BAF Chromatin Remodeling Complex. ACS BIO & MED CHEM AU 2024; 4:204-213. [PMID: 39184054 PMCID: PMC11342342 DOI: 10.1021/acsbiomedchemau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 08/27/2024]
Abstract
The BRG-/BRM-associated factor (BAF) chromatin remodeling complex is a central actor in transcription. One mechanism by which BAF affects gene expression is via its various histone mark readers, including double plant homeodomains (DPF), located in the BAF45D subunit. DPF domains recognize lysine acetyl and acylations, including crotonylation, localized at promoters and enhancers. Despite a significant degree of conservation between DPF domains, attempts to crystallize BAF45D with a crotonylated histone 3 peptide (H3K14Cr) were unsuccessful. In addition, recent cryoEM and modeled structures failed to define the Req domain of BAF45D, which is responsible for reading lysine modifications. Thus, the precise mechanism of crotonyl group recognition and binding by BAF45D within the BAF complex remains unclear. We turned to protein footprinting mass spectrometry to map the binding interface between H3K14Cr and BAF45D. This technique is able to demarcate protein-binding interfaces by modifying surface-accessible residues and is not limited by protein size or composition. Experiments performed in the isolated DPF domain of BAF45D (BAF45DDPF)-delineated H3K14Cr peptide binding across the PHD1 and PHD2 pockets. We observed markedly similar effects on the BAF45D subunit when assessing H3K14Cr binding in the purified full BAF complex. The ATPase motor, BRM, also displayed H3K14Cr-protected peptides in two separate domains that were subsequently evaluated in direct binding assays. These data confirm the BAF45D-crotonylamide interaction within its obligate complex and are the first to demonstrate H3K14Cr direct binding to BRM.
Collapse
Affiliation(s)
- Marissa
R. Martinez
- Foghorn
Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States
| | - Janna Kiselar
- NeoProteomics, Moreland Hills, Ohio 44022, United States
- Center
for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, 10009 Euclid Ave, Cleveland, Ohio 44106, United States
| | - Benlian Wang
- Center
for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, 10009 Euclid Ave, Cleveland, Ohio 44106, United States
| | - Dipti Sadalge
- Foghorn
Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States
| | - Laura Zawadzke
- Foghorn
Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States
| | - Asad Taherbhoy
- Foghorn
Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States
| | - Derek Musser
- Foghorn
Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States
| | - Yunji Davenport
- Foghorn
Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States
| | - Jeremy Setser
- Foghorn
Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States
| | - Mark R. Chance
- NeoProteomics, Moreland Hills, Ohio 44022, United States
- Center
for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, 10009 Euclid Ave, Cleveland, Ohio 44106, United States
| | - Steve Bellon
- Foghorn
Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Li Y, Wang Z, Xu H, Hong Y, Shi M, Hu B, Wang X, Ma S, Wang M, Cao C, Zhu H, Hu D, Xu C, Lin Y, Xu G, Yao Y, Zeng R. Targeting the transmembrane cytokine co-receptor neuropilin-1 in distal tubules improves renal injury and fibrosis. Nat Commun 2024; 15:5731. [PMID: 38977708 PMCID: PMC11231174 DOI: 10.1038/s41467-024-50121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Neuropilin-1 (NRP1), a co-receptor for various cytokines, including TGF-β, has been identified as a potential therapeutic target for fibrosis. However, its role and mechanism in renal fibrosis remains elusive. Here, we show that NRP1 is upregulated in distal tubular (DT) cells of patients with transplant renal insufficiency and mice with renal ischemia-reperfusion (I-R) injury. Knockout of Nrp1 reduces multiple endpoints of renal injury and fibrosis. We find that Nrp1 facilitates the binding of TNF-α to its receptor in DT cells after renal injury. This signaling results in a downregulation of lysine crotonylation of the metabolic enzyme Cox4i1, decreases cellular energetics and exacerbation of renal injury. Furthermore, by single-cell RNA-sequencing we find that Nrp1-positive DT cells secrete collagen and communicate with myofibroblasts, exacerbating acute kidney injury (AKI)-induced renal fibrosis by activating Smad3. Dual genetic deletion of Nrp1 and Tgfbr1 in DT cells better improves renal injury and fibrosis than either single knockout. Together, these results reveal that targeting of NRP1 represents a promising strategy for the treatment of AKI and subsequent chronic kidney disease.
Collapse
Affiliation(s)
- Yinzheng Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zheng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Huzi Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yu Hong
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Mengxia Shi
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bin Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiuru Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Shulin Ma
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Danni Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Chang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yanping Lin
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, China.
| |
Collapse
|
13
|
Li D, Lin L, Xu F, Feng T, Tao Y, Miao H, Yang F. Protein crotonylation: Basic research and clinical diseases. Biochem Biophys Rep 2024; 38:101694. [PMID: 38586826 PMCID: PMC10997999 DOI: 10.1016/j.bbrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Crotonylation is an importantly conserved post-translational modification, which is completely different from acetylation. In recent years, it has been confirmed that crotonylation occurs on histone and non-histone. Crotonylated Histone primarily affects gene expression through transcriptional regulation, while non-histone Crotonylation mainly regulates protein functions including protein activity, localization, and stability, as well as protein-protein interactions. The change in protein expression and function will affect the physiological process of cells and even cause disease. Reviewing previous studies, this article summarizes the mechanisms of histone and non-histone crotonylation in regulating diseases and cellular physiological processes to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment.
Collapse
Affiliation(s)
- Dongling Li
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Ling Lin
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Fan Xu
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Tianlin Feng
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Tao
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing, 400000, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fan Yang
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
14
|
Tian G, Li X, Li XD. Genetically Encoded Epitope Tag for Probing Lysine Acylation-Mediated Protein-Protein Interactions. ACS Chem Biol 2024; 19:1376-1386. [PMID: 38829775 DOI: 10.1021/acschembio.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Histone lysine acetylation (Kac) and crotonylation (Kcr) marks mediate the recruitment of YEATS domains to chromatin. In this way, YEATS domain-containing proteins such as AF9 participate in the regulation of DNA-templated processes. Our previous study showed that the replacement of Kac/Kcr by a 2-furancarbonyllysine (Kfu) residue led to greatly enhanced affinity toward the AF9 YEATS domain, rendering Kfu-containing peptides useful chemical tools to probe the AF9 YEATS-Kac/Kcr interactions. Here, we report the genetic incorporation of Kfu in Escherichia coli and mammalian cells through the amber codon suppression technology. We develop a Kfu-containing epitope tag, termed RAY-tag, which can robustly and selectively engage with the AF9 YEATS domain in vitro and in cellulo. We further demonstrate that the fusion of RAY-tag to different protein modules, including fluorescent proteins and DNA binding proteins, can facilitate the interrogation of the histone lysine acylation-mediated recruitment of the AF9 YEATS domain in different biological contexts.
Collapse
Affiliation(s)
- Gaofei Tian
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Xin Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| |
Collapse
|
15
|
Hao B, Chen K, Zhai L, Liu M, Liu B, Tan M. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae019. [PMID: 38862432 DOI: 10.1093/gpbjnl/qzae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 06/13/2024]
Abstract
Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.
Collapse
Affiliation(s)
- Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaifeng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
16
|
Becht DC, Kanai A, Biswas S, Halawa M, Zeng L, Cox KL, Poirier MG, Zhou MM, Shi X, Yokoyama A, Kutateladze TG. The winged helix domain of MORF binds CpG islands and the TAZ2 domain of p300. iScience 2024; 27:109367. [PMID: 38500836 PMCID: PMC10946326 DOI: 10.1016/j.isci.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Acetylation of histones by lysine acetyltransferases (KATs) provides a fundamental mechanism by which chromatin structure and transcriptional programs are regulated. Here, we describe a dual binding activity of the first winged helix domain of human MORF KAT (MORFWH1) that recognizes the TAZ2 domain of p300 KAT (p300TAZ2) and CpG rich DNA sequences. Structural and biochemical studies identified distinct DNA and p300TAZ2 binding sites, allowing MORFWH1 to independently engage either ligand. Genomic data show that MORF/MOZWH1 colocalizes with H3K18ac, a product of enzymatic activity of p300, on CpG rich promoters of target genes. Our findings suggest a functional cooperation of MORF and p300 KATs in transcriptional regulation.
Collapse
Affiliation(s)
- Dustin C. Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Khan L. Cox
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Zong Y, Weiss N, Wang K, Pagano AE, Heissel S, Perveen S, Huang J. Development of Complementary Photo-arginine/lysine to Promote Discovery of Arg/Lys hPTMs Interactomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307526. [PMID: 38298064 PMCID: PMC11005723 DOI: 10.1002/advs.202307526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Indexed: 02/02/2024]
Abstract
Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.
Collapse
Affiliation(s)
- Yu Zong
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew York10065USA
| | - Nicole Weiss
- Program of PharmacologyWeill Cornell Medical College of Cornell UniversityNew York10065USA
| | - Ke Wang
- Chemical Biology ProgramMemorial Sloan Kettering Cancer CenterNew York10065USA
| | | | - Søren Heissel
- Proteomics Resource CenterRockefeller UniversityNew York10065USA
| | - Sumera Perveen
- Structural Genomics ConsortiumUniversity of TorontoTorontoM5S3H2Canada
| | - Jian Huang
- Department of Molecular BiologyPrinceton UniversityPrinceton08544USA
| |
Collapse
|
18
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
19
|
Fan S, Kong C, Zhou R, Zheng X, Ren D, Yin Z. Protein Post-Translational Modifications Based on Proteomics: A Potential Regulatory Role in Animal Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6077-6088. [PMID: 38501450 DOI: 10.1021/acs.jafc.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, β-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.
Collapse
Affiliation(s)
- Shuhao Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Kong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
20
|
Kashiwagi K, Yoshida J, Kimura H, Shinjo K, Kondo Y, Horie K. Mutation of the SWI/SNF complex component Smarce1 decreases nucleosome stability in embryonic stem cells and impairs differentiation. J Cell Sci 2024; 137:jcs260467. [PMID: 38357971 DOI: 10.1242/jcs.260467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
The SWI/SNF chromatin remodeling complex consists of more than ten component proteins that form a large protein complex of >1 MDa. The catalytic proteins Smarca4 or Smarca2 work in concert with the component proteins to form a chromatin platform suitable for transcriptional regulation. However, the mechanism by which each component protein works synergistically with the catalytic proteins remains largely unknown. Here, we report on the function of Smarce1, a component of the SWI/SNF complex, through the phenotypic analysis of homozygous mutant embryonic stem cells (ESCs). Disruption of Smarce1 induced the dissociation of other complex components from the SWI/SNF complex. Histone binding to DNA was loosened in homozygous mutant ESCs, indicating that disruption of Smarce1 decreased nucleosome stability. Sucrose gradient sedimentation analysis suggested that there was an ectopic genomic distribution of the SWI/SNF complex upon disruption of Smarce1, accounting for the misregulation of chromatin conformations. Unstable nucleosomes remained during ESC differentiation, impairing the heterochromatin formation that is characteristic of the differentiation process. These results suggest that Smarce1 guides the SWI/SNF complex to the appropriate genomic regions to generate chromatin structures adequate for transcriptional regulation.
Collapse
Affiliation(s)
- Katsunobu Kashiwagi
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
21
|
Xie JY, Ju J, Zhou P, Chen H, Wang SC, Wang K, Wang T, Chen XZ, Chen YC, Wang K. The mechanisms, regulations, and functions of histone lysine crotonylation. Cell Death Discov 2024; 10:66. [PMID: 38331935 PMCID: PMC10853258 DOI: 10.1038/s41420-024-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Histone lysine crotonylation (Kcr) is a new acylation modification first discovered in 2011, which has important biological significance for gene expression, cell development, and disease treatment. In the past over ten years, numerous signs of progress have been made in the research on the biochemistry of Kcr modification, especially a series of Kcr modification-related "reader", "eraser", and "writer" enzyme systems are identified. The physiological function of crotonylation and its correlation with development, heredity, and spermatogenesis have been paid more and more attention. However, the development of disease is usually associated with abnormal Kcr modification. In this review, we summarized the identification of crotonylation modification, Kcr-related enzyme system, biological functions, and diseases caused by abnormal Kcr. This knowledge supplies a theoretical basis for further exploring the function of crotonylation in the future.
Collapse
Affiliation(s)
- Jing-Yi Xie
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
- Department of Physiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China.
| | - Ping Zhou
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Hao Chen
- Department of Physiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Shao-Cong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yan-Chun Chen
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang, 261053, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
22
|
Shi H, Cui W, Qin Y, Chen L, Yu T, Lv J. A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cell Mol Life Sci 2024; 81:76. [PMID: 38315203 PMCID: PMC10844364 DOI: 10.1007/s00018-023-05104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Weigang Cui
- Central Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
23
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
24
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
25
|
Zeng H, Li D, Dong J, Zhou X, Ou M, Xue W, Zhang R, Zou Y, Tang D, Yin L, Dai Y. Qualitative Proteome-wide Lysine Crotonylation Profiling Reveals Protein Modification Alteration in the Leukocyte Extravasation Pathway in Systemic Lupus Erythematosus. ACS OMEGA 2023; 8:44905-44919. [PMID: 38046296 PMCID: PMC10688171 DOI: 10.1021/acsomega.3c06293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a severe systemic autoimmune disease with multiple manifestations. Lysine crotonylation (Kcr) is a newly discovered posttranslational modification epigenetic pattern that may affect gene expression and is linked to diseases causally. METHODS We collected blood samples from 11 SLE individuals and 36 healthy subjects. Then, we used highly sensitive liquid chromatography-mass spectrometry technology to carry out proteomics and quantitative crotonylome analysis of SLE peripheral blood mononuclear cells in this investigation, which indicated the unique etiology of SLE. Finally, we verified the expression of critical protein in the leukocyte extravasation pathway by online database analysis and Western blot. RESULTS There were 618 differentially expressed proteins (DEPs), and 612 crotonylated lysine sites for 272 differentially modified proteins (DMPs) found. These DEPs and DMPs are primarily enriched in the leukocyte extravasation signaling pathway, such as MMP8, MMP9, and ITGAM. CONCLUSIONS This is the first study of crotonylated modification proteomics in SLE. The leukocyte extravasation signaling pathway had a considerable concentration of DEPs and DMPs, indicating that this pathway may be involved in the pathogenic development of SLE.
Collapse
Affiliation(s)
- Huiyi Zeng
- Institute
of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
- The First
Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Dandan Li
- Department
of Clinical Medical Research Center, The
Second Clinical Medical College of Jinan University, Shenzhen People’s
Hospital, Shenzhen, Guangdong 518020, China
- Experimental
Center, Shenzhen Pingle Orthopedic Hospital
(Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, Guangdong 518118, China
- The First
Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Jingjing Dong
- Institute
of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
- Department
of Clinical Medical Research Center, The
Second Clinical Medical College of Jinan University, Shenzhen People’s
Hospital, Shenzhen, Guangdong 518020, China
| | - Xianqing Zhou
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Minglin Ou
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Wen Xue
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Ruohan Zhang
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Yaoshuang Zou
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
| | - Donge Tang
- Department
of Clinical Medical Research Center, The
Second Clinical Medical College of Jinan University, Shenzhen People’s
Hospital, Shenzhen, Guangdong 518020, China
| | - Lianghong Yin
- Institute
of Nephrology and Blood Purification, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
- Huangpu
Institute of Materials, Guangzhou, Guangdong 510663, China
| | - Yong Dai
- Department
of Clinical Medical Research Center, The
Second Clinical Medical College of Jinan University, Shenzhen People’s
Hospital, Shenzhen, Guangdong 518020, China
- Guangxi
Key Laboratory of Metabolic Diseases Research, No. 924 Hospital of PLA Joint Logistic Support
Force, Guilin, Guangxi 541002, China
- The First
Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
26
|
Bilgin N, Türkmen VA, Hammami N, Christensen NR, Hintzen JCJ, Mecinović J. Reading and erasing of histone crotonyllysine mimics by the AF9 YEATS domain and SIRT2 deacylase. Bioorg Med Chem 2023; 95:117500. [PMID: 37839329 DOI: 10.1016/j.bmc.2023.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Lysine acylations on histones and their recognition by chromatin-binding reader domains and removal by histone deacylases function as an important mechanism for eukaryotic gene regulation. Histone lysine crotonylation (Kcr) is an epigenetic mark associated with active transcription, and its installation and removal are dynamically regulated by cellular epigenetic enzymes. Here, we report binding studies and enzyme assays with histone H3K9 peptides bearing simplest Kcr analogs with varying hydrocarbon chain length, bulkiness, rigidity and polarity. We demonstrate that the AF9 YEATS domain displays selectivity for binding of different acylation modifications on histone H3K9 peptides and exhibits preference for bulkier cinnamoylated lysine over crotonylated lysine and its mimics. SIRT2 shows deacylase activity against most of acylated H3K9 peptides bearing different crotonyllysine mimics, however, it displays a poor ability for the removal of cinnamoyl and trifluorocrotonyl groups. These results demonstrate different substrate selectivities of epigenetic proteins acting on crotonyllysine and pave the way for rational design and development of AF9 YEATS and SIRT2 inhibitors for treatment of human diseases, including cancer.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Vildan A Türkmen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Nesrin Hammami
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Nadja R Christensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
27
|
Guo X, Wang Y, An Y, Liu Z, Liu J, Chen J, Zhan MM, Liang M, Hou Z, Wan C, Yin F, Wang R, Li Z. Development of Lysine Crotonyl-Mimic Probe to Covalently Identify H3K27Cr Interacting Proteins. Chemistry 2023; 29:e202301624. [PMID: 37587551 DOI: 10.1002/chem.202301624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Histone lysine crotonylation (Kcr) is one newly discovered acylation modification and regulates numerous pathophysiological processes. The binding affinity between Kcr and its interacting proteins is generally weak, which makes it difficult to effectively identify Kcr-interacting partners. Changing the amide of crotonyl to an ester increased reactivity with proximal cysteines and retained specificity for Kcr antibody. The probe "H3g27Cr" was designed by incorporating the ester functionality into a H3K27 peptide. Using this probe, multiple Kcr-interacting partners including STAT3 were successfully identified, and this has not been reported previously. Further experiments suggested that STAT3 possibly could form complexes with Histone deacetylase HDACs to downregulate the acetylation and crotonylation of Histone H3K27. Our unique design provided intriguing tools to further explore Kcr-interacting proteins and elucidate their working mechanisms.
Collapse
Affiliation(s)
- Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yuhao An
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zhihong Liu
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Jianbo Liu
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Jiaxin Chen
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Mei-Miao Zhan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Mingcha Liang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Feng Yin
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Rui Wang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| |
Collapse
|
28
|
Martin EC, Le Targa L, Tsakou-Ngouafo L, Fan TP, Lin CY, Xiao J, Huang Z, Yuan S, Xu A, Su YH, Petrescu AJ, Pontarotti P, Schatz DG. Insights into RAG Evolution from the Identification of "Missing Link" Family A RAGL Transposons. Mol Biol Evol 2023; 40:msad232. [PMID: 37850912 PMCID: PMC10629977 DOI: 10.1093/molbev/msad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
Collapse
Affiliation(s)
- Eliza C Martin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, USA
| | - Lorlane Le Targa
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
| | - Louis Tsakou-Ngouafo
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jianxiong Xiao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, USA
| | - Ziwen Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Pierre Pontarotti
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
- CNRS SNC 5039, 13005 Marseille, France
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520-8011, USA
| |
Collapse
|
29
|
Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases. Genes Dis 2023; 10:2479-2490. [PMID: 37554202 PMCID: PMC10404885 DOI: 10.1016/j.gendis.2022.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications (PTM) are covalent modifications of proteins or peptides caused by proteolytic cleavage or the attachment of moieties to one or more amino acids. PTMs play essential roles in biological function and regulation and have been linked with several diseases. Modifications of protein acylation (Kac), a type of PTM, are known to induce epigenetic regulatory processes that promote various diseases. Thus, an increasing number of studies focusing on acylation modifications are being undertaken. Butyrylation (Kbu) is a new acylation process found in animals and plants. Kbu has been recently linked to the onset and progression of several diseases, such as cancer, cardiovascular diseases, diabetes, and vascular dementia. Moreover, the mode of action of certain drugs used in the treatment of lymphoma and colon cancer is based on the regulation of butyrylation levels, suggesting that butyrylation may play a therapeutic role in these diseases. In addition, butyrylation is also commonly involved in rice gene expression and thus plays an important role in the growth, development, and metabolism of rice. The tools and analytical methods that could be utilized for the prediction and detection of lysine butyrylation have also been investigated. This study reviews the potential role of histone Kbu, as well as the mechanisms underlying this process. It also summarizes various enzymes and analytical methods associated with Kbu, with the goal of providing new insights into the role of Kbu in gene regulation and diseases.
Collapse
Affiliation(s)
- Qianqian Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hong Li
- Clinical Laboratory, Central Laboratory. The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xiaoxin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lu Zou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
30
|
Kikuchi M, Takase S, Konuma T, Noritsugu K, Sekine S, Ikegami T, Ito A, Umehara T. GAS41 promotes H2A.Z deposition through recognition of the N terminus of histone H3 by the YEATS domain. Proc Natl Acad Sci U S A 2023; 120:e2304103120. [PMID: 37844223 PMCID: PMC10614846 DOI: 10.1073/pnas.2304103120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023] Open
Abstract
Glioma amplified sequence 41 (GAS41), which has the Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain that recognizes lysine acetylation (Kac), regulates gene expression as a subunit of the SRCAP (SNF2-related CREBBP activator protein) complex that deposits histone H2A.Z at promoters in eukaryotes. The YEATS domains of the proteins AF9 and ENL recognize Kac by hydrogen bonding the aromatic cage to arginine situated just before K9ac or K27ac in the N-terminal tail of histone H3. Curiously, the YEATS domain of GAS41 binds most preferentially to the sequence that contains K14ac of H3 (H3K14ac) but lacks the corresponding arginine. Here, we biochemically and structurally elucidated the molecular mechanism by which GAS41 recognizes H3K14ac. First, stable binding of the GAS41 YEATS domain to H3K14ac required the N terminus of H3 (H3NT). Second, we revealed a pocket in the GAS41 YEATS domain responsible for the H3NT binding by crystallographic and NMR analyses. This pocket is away from the aromatic cage that recognizes Kac and is unique to GAS41 among the YEATS family. Finally, we showed that E109 of GAS41, a residue essential for the formation of the H3NT-binding pocket, was crucial for chromatin occupancy of H2A.Z and GAS41 at H2A.Z-enriched promoter regions. These data suggest that binding of GAS41 to H3NT via its YEATS domain is essential for its intracellular function.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama230-0045, Japan
| | - Shohei Takase
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Tsuyoshi Konuma
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama230-0045, Japan
| | - Kota Noritsugu
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Saaya Sekine
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Takahisa Ikegami
- Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama230-0045, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo192-0392, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama230-0045, Japan
| |
Collapse
|
31
|
Ji P, Zhang G, Guo Y, Song H, Yuan X, Hu X, Guo Z, Xia P, Shen R, Wang D. Protein crotonylation: An emerging regulator in DNA damage response. Life Sci 2023; 331:122059. [PMID: 37652154 DOI: 10.1016/j.lfs.2023.122059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
DNA damage caused by internal or external factors lead to increased genomic instability and various diseases. The DNA damage response (DDR) is a crucial mechanism that maintaining genomic stability through detecting and repairing DNA damage timely. Post-translational modifications (PTMs) play significant roles in regulation of DDR. Among the present PTMs, crotonylation has emerged as a novel identified modification that is involved in a wide range of biological processes including gene expression, spermatogenesis, cell cycle, and the development of diverse diseases. In the past decade, numerous crotonylation sites have been identified in histone and non-histone proteins, leading to a more comprehensive and deep understanding of the function and mechanisms in protein crotonylation. This review provides a comprehensive overview of the regulatory mechanisms of protein crotonylation and the effect of crotonylation in DDR. Furthermore, the effect of protein crotonylation in tumor development and progression is presented, to inspire and explore the novel strategies for tumor therapy.
Collapse
Affiliation(s)
- Pengfei Ji
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Guokun Zhang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Yanan Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Haoyun Song
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xinyi Yuan
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Xiaohui Hu
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Zhao Guo
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Peng Xia
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Rong Shen
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China.
| | - Degui Wang
- School of basic medical sciences, Lanzhou University, Lanzhou, Gansu Province 73000, China; NHC Key Laboratory of diagnosis and therapy of Gastrointestinal Tumor, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
32
|
Scumaci D, Zheng Q. Epigenetic meets metabolism: novel vulnerabilities to fight cancer. Cell Commun Signal 2023; 21:249. [PMID: 37735413 PMCID: PMC10512595 DOI: 10.1186/s12964-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Histones undergo a plethora of post-translational modifications (PTMs) that regulate nucleosome and chromatin dynamics and thus dictate cell fate. Several evidences suggest that the accumulation of epigenetic alterations is one of the key driving forces triggering aberrant cellular proliferation, invasion, metastasis and chemoresistance pathways. Recently a novel class of histone "non-enzymatic covalent modifications" (NECMs), correlating epigenome landscape and metabolic rewiring, have been described. These modifications are tightly related to cell metabolic fitness and are able to impair chromatin architecture. During metabolic reprogramming, the high metabolic flux induces the accumulation of metabolic intermediate and/or by-products able to react with histone tails altering epigenome homeostasis. The accumulation of histone NECMs is a damaging condition that cancer cells counteracts by overexpressing peculiar "eraser" enzymes capable of removing these modifications preserving histones architecture. In this review we explored the well-established NECMs, emphasizing the role of their corresponding eraser enzymes. Additionally, we provide a parterre of drugs aiming to target those eraser enzymes with the intent to propose novel routes of personalized medicine based on the identification of epi-biomarkers which might be selectively targeted for therapy. Video Abstract.
Collapse
Affiliation(s)
- Domenica Scumaci
- Research Center On Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
33
|
Yang P, Qin Y, Zeng L, He Y, Xie Y, Cheng X, Huang W, Cao L. Crotonylation and disease: Current progress and future perspectives. Biomed Pharmacother 2023; 165:115108. [PMID: 37392654 DOI: 10.1016/j.biopha.2023.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Histone lysine crotonylation was first identified as a new type of post-translational modification in 2011. In recent years, prominent progress has been made in the study of histone and nonhistone crotonylation in reproduction, development, and disease. Although the regulatory enzyme systems and targets of crotonylation partially overlap with those of acetylation, the peculiar CC bond structure of crotonylation suggests that crotonylation may have specific biological functions. In this review, we summarize the latest research progress regarding crotonylation, especially its regulatory factors and relationship with diseases, which suggest further research directions for crotonylation and provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
- Ping Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Lisha Zeng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Yumei Xie
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China.
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
34
|
Martin EC, Le Targa L, Tsakou-Ngouafo L, Fan TP, Lin CY, Xiao J, Su YH, Petrescu AJ, Pontarotti P, Schatz DG. Insights into RAG evolution from the identification of "missing link" family A RAGL transposons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.553239. [PMID: 37645967 PMCID: PMC10462144 DOI: 10.1101/2023.08.20.553239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events is not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, PflRAG2L-A and echinoderm RAG2L-A contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g., the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
Collapse
Affiliation(s)
- Eliza C. Martin
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT, 06520-8011, United States
| | - Lorlane Le Targa
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France
| | - Louis Tsakou-Ngouafo
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Jianxiong Xiao
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT, 06520-8011, United States
| | - Yi Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031, Bucharest, Romania
| | - Pierre Pontarotti
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France
- CNRS SNC 5039, 13005 Marseille, France
| | - David G. Schatz
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT, 06520-8011, United States
| |
Collapse
|
35
|
Valencia AM, Sankar A, van der Sluijs PJ, Satterstrom FK, Fu J, Talkowski ME, Vergano SAS, Santen GWE, Kadoch C. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders. Nat Genet 2023; 55:1400-1412. [PMID: 37500730 PMCID: PMC10412456 DOI: 10.1038/s41588-023-01451-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
DNA sequencing-based studies of neurodevelopmental disorders (NDDs) have identified a wide range of genetic determinants. However, a comprehensive analysis of these data, in aggregate, has not to date been performed. Here, we find that genes encoding the mammalian SWI/SNF (mSWI/SNF or BAF) family of ATP-dependent chromatin remodeling protein complexes harbor the greatest number of de novo missense and protein-truncating variants among nuclear protein complexes. Non-truncating NDD-associated protein variants predominantly disrupt the cBAF subcomplex and cluster in four key structural regions associated with high disease severity, including mSWI/SNF-nucleosome interfaces, the ATPase-core ARID-armadillo repeat (ARM) module insertion site, the Arp module and DNA-binding domains. Although over 70% of the residues perturbed in NDDs overlap with those mutated in cancer, ~60% of amino acid changes are NDD-specific. These findings provide a foundation to functionally group variants and link complex aberrancies to phenotypic severity, serving as a resource for the chromatin, clinical genetics and neurodevelopment communities.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Chemical Biology Program, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Akshay Sankar
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - F Kyle Satterstrom
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Jack Fu
- Massachusetts General Hospital, Boston, MA, USA
| | - Michael E Talkowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Samantha A Schrier Vergano
- Children's Hospital of the King's Daughters, Norfolk, Virginia, USA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
36
|
Sun Z, Lin Y, Islam MT, Koche R, Hedehus L, Liu D, Huang C, Vierbuchen T, Sawyers CL, Helin K. Chromatin regulation of transcriptional enhancers and cell fate by the Sotos syndrome gene NSD1. Mol Cell 2023; 83:2398-2416.e12. [PMID: 37402365 PMCID: PMC10529604 DOI: 10.1016/j.molcel.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.
Collapse
Affiliation(s)
- Zhen Sun
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Yuan Lin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohammed T Islam
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Hedehus
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biotech Research and Innovation Centre, University of Copenhagen 2200 Copenhagen N, Denmark
| | - Dingyu Liu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chang Huang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, UK
| | - Thomas Vierbuchen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kristian Helin
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biotech Research and Innovation Centre, University of Copenhagen 2200 Copenhagen N, Denmark; Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
37
|
Mas G, Man N, Nakata Y, Martinez-Caja C, Karl D, Beckedorff F, Tamiro F, Chen C, Duffort S, Itonaga H, Mookhtiar AK, Kunkalla K, Valencia AM, Collings CK, Kadoch C, Vega F, Kogan SC, Shiekhattar R, Morey L, Bilbao D, Nimer SD. The SWI/SNF chromatin-remodeling subunit DPF2 facilitates NRF2-dependent antiinflammatory and antioxidant gene expression. J Clin Invest 2023; 133:e158419. [PMID: 37200093 PMCID: PMC10313367 DOI: 10.1172/jci158419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2023] [Indexed: 05/20/2023] Open
Abstract
During emergency hematopoiesis, hematopoietic stem cells (HSCs) rapidly proliferate to produce myeloid and lymphoid effector cells, a response that is critical against infection or tissue injury. If unresolved, this process leads to sustained inflammation, which can cause life-threatening diseases and cancer. Here, we identify a role of double PHD fingers 2 (DPF2) in modulating inflammation. DPF2 is a defining subunit of the hematopoiesis-specific BAF (SWI/SNF) chromatin-remodeling complex, and it is mutated in multiple cancers and neurological disorders. We uncovered that hematopoiesis-specific Dpf2-KO mice developed leukopenia, severe anemia, and lethal systemic inflammation characterized by histiocytic and fibrotic tissue infiltration resembling a clinical hyperinflammatory state. Dpf2 loss impaired the polarization of macrophages responsible for tissue repair, induced the unrestrained activation of Th cells, and generated an emergency-like state of HSC hyperproliferation and myeloid cell-biased differentiation. Mechanistically, Dpf2 deficiency resulted in the loss of the BAF catalytic subunit BRG1 from nuclear factor erythroid 2-like 2-controlled (NRF2-controlled) enhancers, impairing the antioxidant and antiinflammatory transcriptional response needed to modulate inflammation. Finally, pharmacological reactivation of NRF2 suppressed the inflammation-mediated phenotypes and lethality of Dpf2Δ/Δ mice. Our work establishes an essential role of the DPF2-BAF complex in licensing NRF2-dependent gene expression in HSCs and immune effector cells to prevent chronic inflammation.
Collapse
Affiliation(s)
- Gloria Mas
- Sylvester Comprehensive Cancer Center and
| | - Na Man
- Sylvester Comprehensive Cancer Center and
| | - Yuichiro Nakata
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Chuan Chen
- Sylvester Comprehensive Cancer Center and
| | | | | | | | | | - Alfredo M. Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Chemical Biology Program, Harvard University, Cambridge, Massachusetts, USA
| | - Clayton K. Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Francisco Vega
- Sylvester Comprehensive Cancer Center and
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Scott C. Kogan
- Helen Diller Family Comprehensive Cancer Center and
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center and
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center and
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center and
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
38
|
Bilgin N, Moesgaard L, Rahman MM, Türkmen VA, Kongsted J, Mecinović J. Molecular Recognition of Methacryllysine and Crotonyllysine by the AF9 YEATS Domain. Int J Mol Sci 2023; 24:ijms24087002. [PMID: 37108167 PMCID: PMC10138300 DOI: 10.3390/ijms24087002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Histone lysine methacrylation and crotonylation are epigenetic marks that play important roles in human gene regulation. Here, we explore the molecular recognition of histone H3 peptides possessing methacryllysine and crotonyllysine at positions 18 and 9 (H3K18 and H3K9) by the AF9 YEATS domain. Our binding studies demonstrate that the AF9 YEATS domain displays a higher binding affinity for histones possessing crotonyllysine than the isomeric methacryllysine, indicating that AF9 YEATS distinguishes between the two regioisomers. Molecular dynamics simulations reveal that the crotonyllysine/methacryllysine-mediated desolvation of the AF9 YEATS domain provides an important contribution to the recognition of both epigenetic marks. These results provide important knowledge for the development of AF9 YEATS inhibitors, an area of biomedical interest.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Mohammad M Rahman
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Vildan A Türkmen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
39
|
Atypical histone targets of PHD fingers. J Biol Chem 2023; 299:104601. [PMID: 36907441 PMCID: PMC10124903 DOI: 10.1016/j.jbc.2023.104601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Plant homeodomain (PHD) fingers are structurally conserved zinc fingers that selectively bind unmodified or methylated at lysine 4 histone H3 tails. This binding stabilizes transcription factors and chromatin-modifying proteins at specific genomic sites, which is required for vital cellular processes, including gene expression and DNA repair. Several PHD fingers have recently been shown to recognize other regions of H3 or histone H4. In this review, we detail molecular mechanisms and structural features of the non-canonical histone recognition, discuss biological implications of the atypical interactions, highlight therapeutic potential of PHD fingers, and compare inhibition strategies.
Collapse
|
40
|
Development and Validation of a Prognostic Signature Based on the Lysine Crotonylation Regulators in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4444869. [PMID: 36814797 PMCID: PMC9940974 DOI: 10.1155/2023/4444869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
Background Lysine crotonylation (Kcr) is a newly identified posttranslational modification type regulated by various enzymes and coenzymes, including lysine crotonyltransferase, lysine decrotonylase, and binding proteins. However, the role of Kcr regulators in head and neck squamous cell carcinoma (HNSCC) remains unknown. The aim of this study was to establish and validate a Kcr-related prognostic signature of HNSCC and to assess the clinical predictive value of this signature. Methods The mRNA expression profiles and clinicopathological data from The Cancer Genome Atlas (TCGA) database were downloaded to explore the clinical significance and prognostic value of these regulators in HNSCC. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to generate the Kcr-related prognostic signature for HNSCC. Subsequently, the GSE65858 dataset from the Gene Expression Omnibus (GEO) database was used to validate the signature. The prognostic value of the signature was evaluated using the Kaplan-Meier survival, receiver operating characteristic (ROC) curve, and univariate and multivariate Cox regression analyses. Results We established a nine-gene risk signature associated with the prognosis of HNSCC based on Kcr regulators. High-risk patients demonstrated significantly poorer overall survival (OS) than low-risk patients in the training (TCGA) and validation (GEO) datasets. Then, the time-dependent receiver operating characteristic (ROC) curve analysis showed that the nine-gene risk signature was more accurate for predicting the 5-year OS than other clinical parameters, including age, gender, T stage, N stage, and histologic grade in the TCGA and GEO datasets. Moreover, the Cox regression analysis showed that the constructed risk signature was an independent risk factor for HNSCC. Conclusion Our study identified and validated a nine-gene signature for HNSCC based on Kcr regulators. These results might contribute to prognosis stratification and treatment escalation for HNSCC patients.
Collapse
|
41
|
Becht DC, Klein BJ, Kanai A, Jang SM, Cox KL, Zhou BR, Phanor SK, Zhang Y, Chen RW, Ebmeier CC, Lachance C, Galloy M, Fradet-Turcotte A, Bulyk ML, Bai Y, Poirier MG, Côté J, Yokoyama A, Kutateladze TG. MORF and MOZ acetyltransferases target unmethylated CpG islands through the winged helix domain. Nat Commun 2023; 14:697. [PMID: 36754959 PMCID: PMC9908889 DOI: 10.1038/s41467-023-36368-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Human acetyltransferases MOZ and MORF are implicated in chromosomal translocations associated with aggressive leukemias. Oncogenic translocations involve the far amino terminus of MOZ/MORF, the function of which remains unclear. Here, we identified and characterized two structured winged helix (WH) domains, WH1 and WH2, in MORF and MOZ. WHs bind DNA in a cooperative manner, with WH1 specifically recognizing unmethylated CpG sequences. Structural and genomic analyses show that the DNA binding function of WHs targets MORF/MOZ to gene promoters, stimulating transcription and H3K23 acetylation, and WH1 recruits oncogenic fusions to HOXA genes that trigger leukemogenesis. Cryo-EM, NMR, mass spectrometry and mutagenesis studies provide mechanistic insight into the DNA-binding mechanism, which includes the association of WH1 with the CpG-containing linker DNA and binding of WH2 to the dyad of the nucleosome. The discovery of WHs in MORF and MOZ and their DNA binding functions could open an avenue in developing therapeutics to treat diseases associated with aberrant MOZ/MORF acetyltransferase activities.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
| | - Suk Min Jang
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sabrina K Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Ruo-Wen Chen
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | | | - Catherine Lachance
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Maxime Galloy
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Amelie Fradet-Turcotte
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada.
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
42
|
Nguyen MC, Strahl BD, Kutateladze TG. Engaging with benzoyllysine through a π-π-π mechanism. Curr Opin Chem Biol 2023; 72:102252. [PMID: 36566617 PMCID: PMC9870921 DOI: 10.1016/j.cbpa.2022.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Epigenetic modifications have been gaining in prominence as fundamental components of the chromatin regulatory machinery. In this review, we summarize the molecular and structural mechanisms of reading, writing, and erasing of lysine benzoylation, a recently discovered posttranslational modification (PTM) in histones. We highlight a unique nature of the conjugated π system of benzoyllysine that may aid in the development of benzoyllysine-specific effectors indifferent to the saturated acyllysine modifications. We also discuss transcriptional and metabolic functions associated with benzoylation of histones and implications of ingesting of sodium benzoate for human health.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
43
|
Weber LM, Jia Y, Stielow B, Gisselbrecht S, Cao Y, Ren Y, Rohner I, King J, Rothman E, Fischer S, Simon C, Forné I, Nist A, Stiewe T, Bulyk M, Wang Z, Liefke R. The histone acetyltransferase KAT6A is recruited to unmethylated CpG islands via a DNA binding winged helix domain. Nucleic Acids Res 2023; 51:574-594. [PMID: 36537216 PMCID: PMC9881136 DOI: 10.1093/nar/gkac1188] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
The lysine acetyltransferase KAT6A (MOZ, MYST3) belongs to the MYST family of chromatin regulators, facilitating histone acetylation. Dysregulation of KAT6A has been implicated in developmental syndromes and the onset of acute myeloid leukemia (AML). Previous work suggests that KAT6A is recruited to its genomic targets by a combinatorial function of histone binding PHD fingers, transcription factors and chromatin binding interaction partners. Here, we demonstrate that a winged helix (WH) domain at the very N-terminus of KAT6A specifically interacts with unmethylated CpG motifs. This DNA binding function leads to the association of KAT6A with unmethylated CpG islands (CGIs) genome-wide. Mutation of the essential amino acids for DNA binding completely abrogates the enrichment of KAT6A at CGIs. In contrast, deletion of a second WH domain or the histone tail binding PHD fingers only subtly influences the binding of KAT6A to CGIs. Overexpression of a KAT6A WH1 mutant has a dominant negative effect on H3K9 histone acetylation, which is comparable to the effects upon overexpression of a KAT6A HAT domain mutant. Taken together, our work revealed a previously unrecognized chromatin recruitment mechanism of KAT6A, offering a new perspective on the role of KAT6A in gene regulation and human diseases.
Collapse
Affiliation(s)
- Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Yulin Jia
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Iris Rohner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Jessica King
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Martinsried 82152, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| |
Collapse
|
44
|
Viita T, Côté J. The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Front Cell Dev Biol 2023; 10:1115903. [PMID: 36712963 PMCID: PMC9873972 DOI: 10.3389/fcell.2022.1115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.
Collapse
Affiliation(s)
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| |
Collapse
|
45
|
Wen H, Shi X. Histone Readers and Their Roles in Cancer. Cancer Treat Res 2023; 190:245-272. [PMID: 38113004 PMCID: PMC11395558 DOI: 10.1007/978-3-031-45654-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Histone proteins in eukaryotic cells are subjected to a wide variety of post-translational modifications, which are known to play an important role in the partitioning of the genome into distinctive compartments and domains. One of the major functions of histone modifications is to recruit reader proteins, which recognize the epigenetic marks and transduce the molecular signals in chromatin to downstream effects. Histone readers are defined protein domains with well-organized three-dimensional structures. In this Chapter, we will outline major histone readers, delineate their biochemical and structural features in histone recognition, and describe how dysregulation of histone readout leads to human cancer.
Collapse
Affiliation(s)
- Hong Wen
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Xiaobing Shi
- Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
46
|
Fu Y, Yu J, Li F, Ge S. Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. J Exp Clin Cancer Res 2022; 41:144. [PMID: 35428309 PMCID: PMC9013066 DOI: 10.1186/s13046-022-02338-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
AbstractMetabolites are intermediate products of cellular metabolism catalysed by various enzymes. Metabolic remodelling, as a biochemical fingerprint of cancer cells, causes abnormal metabolite accumulation. These metabolites mainly generate energy or serve as signal transduction mediators via noncovalent interactions. After the development of highly sensitive mass spectrometry technology, various metabolites were shown to covalently modify proteins via forms of lysine acylation, including lysine acetylation, crotonylation, lactylation, succinylation, propionylation, butyrylation, malonylation, glutarylation, 2-hydroxyisobutyrylation and β-hydroxybutyrylation. These modifications can regulate gene expression and intracellular signalling pathways, highlighting the extensive roles of metabolites. Lysine acetylation is not discussed in detail in this review since it has been broadly investigated. We focus on the nine aforementioned novel lysine acylations beyond acetylation, which can be classified into two categories: histone acylations and nonhistone acylations. We summarize the characteristics and common functions of these acylation types and, most importantly, provide a glimpse into their fine-tuned control of tumorigenesis and potential value in tumour diagnosis, monitoring and therapy.
Collapse
|
47
|
Yokoyama A. Role of the MOZ/MLL-mediated transcriptional activation system for self-renewal in normal hematopoiesis and leukemogenesis. FEBS J 2022; 289:7987-8002. [PMID: 34482632 PMCID: PMC10078767 DOI: 10.1111/febs.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Homeostasis in the blood system is maintained by the balance between self-renewing stem cells and nonstem cells. To promote self-renewal, transcriptional regulators maintain epigenetic information during multiple rounds of cell division. Mutations in such transcriptional regulators cause aberrant self-renewal, leading to leukemia. MOZ, a histone acetyltransferase, and MLL, a histone methyltransferase, are transcriptional regulators that promote the self-renewal of hematopoietic stem cells. Gene rearrangements of MOZ and MLL generate chimeric genes encoding fusion proteins that function as constitutively active forms. These MOZ and MLL fusion proteins constitutively activate transcription of their target genes and cause aberrant self-renewal in committed hematopoietic progenitors, which normally do not self-renew. Recent progress in the field suggests that MOZ and MLL are part of a transcriptional activation system that activates the transcription of genes with nonmethylated CpG-rich promoters. The nonmethylated state of CpGs is normally maintained during cell divisions from the mother cell to the daughter cells. Thus, the MOZ/MLL-mediated transcriptional activation system replicates the expression profile of mother cells in daughter cells by activating the transcription of genes previously transcribed in the mother cell. This review summarizes the functions of the components of the MOZ/MLL-mediated transcriptional activation system and their roles in the promotion of self-renewal.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
48
|
Post-Translational Modifications by Lipid Metabolites during the DNA Damage Response and Their Role in Cancer. Biomolecules 2022; 12:biom12111655. [DOI: 10.3390/biom12111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Genomic DNA damage occurs as an inevitable consequence of exposure to harmful exogenous and endogenous agents. Therefore, the effective sensing and repair of DNA damage are essential for maintaining genomic stability and cellular homeostasis. Inappropriate responses to DNA damage can lead to genomic instability and, ultimately, cancer. Protein post-translational modifications (PTMs) are a key regulator of the DNA damage response (DDR), and recent progress in mass spectrometry analysis methods has revealed that a wide range of metabolites can serve as donors for PTMs. In this review, we will summarize how the DDR is regulated by lipid metabolite-associated PTMs, including acetylation, S-succinylation, N-myristoylation, palmitoylation, and crotonylation, and the implications for tumorigenesis. We will also discuss potential novel targets for anti-cancer drug development.
Collapse
|
49
|
Xiang T, Zhao S, Wu Y, Li L, Fu P, Ma L. Novel post-translational modifications in the kidneys for human health and diseases. Life Sci 2022; 311:121188. [DOI: 10.1016/j.lfs.2022.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
50
|
Huang Y, Zhai G, Li Y, Han Y, Chen C, Lu C, Zhang K. Deciphering the Interactome of Histone Marks in Living Cells via Genetic Code Expansion Combined with Proximity Labeling. Anal Chem 2022; 94:10705-10714. [PMID: 35862615 DOI: 10.1021/acs.analchem.2c01042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deciphering the endogenous interactors of histone post-translational modifications (hPTMs, also called histone marks) is essential to understand the mechanisms of epigenetic regulation. However, most of the analytical methods to determine hPTM interactomes are in vitro settings, lacking interrogating native chromatin. Although lysine crotonylation (Kcr) has recently been considered an important hPTM for the regulation of gene transcription, the interactors of Kcr still remain to be explored. Herein, we present a general approach relying upon a genetic code expansion system, APEX2 (engineered peroxidase)-mediated proximity labeling, and quantitative proteomics to profile interactomes of the selected hPTMs in living cells. We genetically fused APEX2 to the recombinant histone H3 with a crotonyl lysine inserted site specifically to generate APEX2-H3K9cr that incorporated into native chromatin. Upon activation, APEX2 triggered in vivo biotin labeling of H3K9cr interactors that can then be enriched with streptavidin beads and identified by mass spectrometry. Proteomic analysis further revealed the endogenous interactomes of H3K9cr and confirmed the reliability of the method. Moreover, DPF2 was identified as a candidate interactor, and the binding interaction of DPF2 to H3K9c was further characterized and verified. This study provides a novel strategy for the identification of hPTM interactomes in living cells, and we envision that this is key to elucidating epigenetic regulatory pathways.
Collapse
Affiliation(s)
- Yepei Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Micro-environment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Guijin Zhai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yanan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yue Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Congcong Lu
- College of Life Sciences, Nankai University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Micro-environment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|