1
|
Higgins PM, Wehrli NG, Buller AR. Substrate-Multiplexed Assessment of Aromatic Prenyltransferase Activity. Chembiochem 2025; 26:e202400680. [PMID: 39317170 PMCID: PMC11727010 DOI: 10.1002/cbic.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
An increasingly effective strategy to identify synthetically useful enzymes is to sample the diversity already present in Nature. Here, we construct and assay a panel of phylogenetically diverse aromatic prenyltransferases (PTs). These enzymes catalyze a variety of C-C bond forming reactions in natural product biosynthesis and are emerging as tools for synthetic chemistry and biology. Homolog screening was further empowered through substrate-multiplexed screening, which provides direct information on enzyme specificity. We perform a head-to-head assessment of the model members of the PT family and further identify homologs with divergent sequences that rival these superb enzymes. This effort revealed the first bacterial O-Tyr PT and, together, provide valuable benchmarking for future synthetic applications of PTs.
Collapse
Affiliation(s)
- Peyton M. Higgins
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| | - Nicolette G. Wehrli
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| | - Andrew R. Buller
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| |
Collapse
|
2
|
Dimas DA, Kumar V, Mandal PS, Masterson JM, Tonelli M, Singh S. Chemoenzymatic Modification of Daptomycin: Aromatic Group Installation on Trp1. Chembiochem 2024; 25:e202400503. [PMID: 39019798 PMCID: PMC11576237 DOI: 10.1002/cbic.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Daptomycin is a cyclic lipodepsipeptide antibiotic used to treat infections caused by Gram-positive pathogens, including multi-drug resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The emergence of daptomycin-resistant bacterial strains has renewed interest in generating daptomycin analogs. Previous studies have shown that replacing the tryptophan of daptomycin with aromatic groups can generate analogs with enhanced potency. Additionally, we have demonstrated that aromatic prenyltransferases can attach diverse groups to the tryptophan of daptomycin. Here, we report the use of the prenyltransferase CdpNPT to derivatize the tryptophan of daptomycin with a library of benzylic and heterocyclic pyrophosphates. An analytical-scale study revealed that CdpNPT can transfer various aromatic groups onto daptomycin. Subsequent scaled-up and purified reactions indicated that the enzyme can attach aromatic groups to N1, C2, C5 and C6 positions of Trp1 of daptomycin. In vitro antibacterial activity assays using six of these purified compounds identified aromatic substituted daptomycin analogs show potency against both daptomycin-susceptible and resistant strains of Gram-positive bacteria. These findings suggest that installing aromatic groups on the Trp1 of daptomycin can lead to the generation of potent daptomycin analogs.
Collapse
Affiliation(s)
- Dustin A Dimas
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Vikas Kumar
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Prashant S Mandal
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Johanna M Masterson
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, 411 Babcock Drive, Madison, Wisconsin, 45005, United States
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| |
Collapse
|
3
|
Kumar V, Johnson BP, Mandal PS, Sheffield DR, Dimas DA, Das R, Maity S, Distefano MD, Singh S. The utility of Streptococcus mutans undecaprenol kinase for the chemoenzymatic synthesis of diverse non-natural isoprenoids. Bioorg Chem 2024; 151:107707. [PMID: 39128243 PMCID: PMC11365746 DOI: 10.1016/j.bioorg.2024.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Isoprene chemoenzymatic cascades (ICCs) overcome the complexity of natural pathways by leveraging a streamlined two-enzyme cascade, facilitating efficient synthesis of C5-isoprene diphosphate precursors from readily available alcohol derivatives. Despite the documented promiscuity of enzymes in ICCs, exploration of their potential for accessing novel compounds remains limited, and existing methods require additional enzymes for generating longer-chain diphosphates. In this study, we present the utility of Streptococcus mutans undecaprenol kinase (SmUdpK) for the chemoenzymatic synthesis of diverse non-natural isoprenoids. Using a library of 50 synthetic alcohols, we demonstrate that SmUdpK's promiscuity extends to allylic chains as small as four carbons and benzylic alcohols with various substituents. Subsequently, SmUdpK is utilized in an ICC with isopentenyl phosphate kinase and aromatic prenyltransferase to generate multiple non-natural isoprenoids. This work provides evidence that, with proper optimization, SmUdpK can act as the first enzyme in these ICCs, enhancing access to both valuable and novel compounds.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Bryce P Johnson
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Prashant S Mandal
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Daniel R Sheffield
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Dustin A Dimas
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States
| | - Riki Das
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Sanjay Maity
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, United States
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 1000, Norman, OK 73019, United States.
| |
Collapse
|
4
|
Inoue S, Thanh Nguyen D, Hamada K, Okuma R, Okada C, Okada M, Abe I, Sengoku T, Goto Y, Suga H. De Novo Discovery of Pseudo-Natural Prenylated Macrocyclic Peptide Ligands. Angew Chem Int Ed Engl 2024; 63:e202409973. [PMID: 38837490 DOI: 10.1002/anie.202409973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30 nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.
Collapse
Affiliation(s)
- Sumika Inoue
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Dinh Thanh Nguyen
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Rika Okuma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Chikako Okada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Masahiro Okada
- Department of Material and Life Chemistry, Kanagawa University, Kanagawa-ku, 221-8686, Yokohama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, 606-8502, Kyoto, Japan
- Toyota Riken Rising Fellow, Toyota Physical and Chemical Research Institute, Sakyo, 606-8502, Kyoto, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| |
Collapse
|
5
|
Maleckis M, Wibowo M, Williams SE, Gotfredsen CH, Sigrist R, Souza LDO, Cowled MS, Charusanti P, Gren T, Saha S, Moreira JMA, Weber T, Ding L. Maramycin, a Cytotoxic Isoquinolinequinone Terpenoid Produced through Heterologous Expression of a Bifunctional Indole Prenyltransferase/Tryptophan Indole-Lyase in S. albidoflavus. ACS Chem Biol 2024; 19:1303-1310. [PMID: 38743035 DOI: 10.1021/acschembio.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Isoquinolinequinones represent an important family of natural alkaloids with profound biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase/tryptophan indole-lyase enzyme from Streptomyces mirabilis P8-A2 in S. albidoflavus J1074 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production of a novel isoquinolinequinone alkaloid, named maramycin (1). The structure of maramycin was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data. The prevalence of this bifunctional biosynthetic enzyme was explored and found to be a recent evolutionary event with only a few representatives in nature. Maramycin exhibited moderate cytotoxicity against human prostate cancer cell lines, LNCaP and C4-2B. The discovery of maramycin (1) enriched the chemical diversity of natural isoquinolinequinones and also provided new insights into crosstalk between the host biosynthetic genes and the heterologous biosynthetic genes in generating new chemical scaffolds.
Collapse
Affiliation(s)
- Matiss Maleckis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Sam E Williams
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs. Lyngby, Denmark
| | - Renata Sigrist
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Luciano D O Souza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Sino-Danish Center for Education and Research (SDC), Aarhus University, Dalgas Avenue 4, Building 3410, 8000 Aarhus C, Denmark
| | - Michael S Cowled
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Subhasish Saha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - José M A Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Mupparapu N, Syed B, Nguyen DN, Vo TH, Trujillo A, Elshahawi SI. Selective Late-Stage Functionalization of Tryptophan-Containing Peptides To Facilitate Bioorthogonal Tetrazine Ligation. Org Lett 2024; 26:2489-2494. [PMID: 38498918 PMCID: PMC10987333 DOI: 10.1021/acs.orglett.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Site-selective modification of complex peptides and the functionalization of their C-H bonds hold great promise for expanding their use in therapeutics and biomedical research. Herein, we leverage the power of late-stage chemoenzymatic catalysis using an indole prenyltransferase (IPT) enzyme and alkyl diphosphates to specifically modify the indole ring of tryptophan in clinically relevant peptides. Furthermore, the installed handle enables bioorthogonal click chemistry through an inverse electron-demand Diels-Alder (IEDDA) reaction with a biotin-conjugated tetrazine probe.
Collapse
Affiliation(s)
- Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Basir Syed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Diem N Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Thao H Vo
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Angelica Trujillo
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| |
Collapse
|
7
|
Miller ET, Tsodikov OV, Garneau-Tsodikova S. Structural insights into the diverse prenylating capabilities of DMATS prenyltransferases. Nat Prod Rep 2024; 41:113-147. [PMID: 37929638 DOI: 10.1039/d3np00036b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Covering: 2009 up to August 2023Prenyltransferases (PTs) are involved in the primary and the secondary metabolism of plants, bacteria, and fungi, and they are key enzymes in the biosynthesis of many clinically relevant natural products (NPs). The continued biochemical and structural characterization of the soluble dimethylallyl tryptophan synthase (DMATS) PTs over the past two decades have revealed the significant promise that these enzymes hold as biocatalysts for the chemoenzymatic synthesis of novel drug leads. This is a comprehensive review of DMATSs describing the structure-function relationships that have shaped the mechanistic underpinnings of these enzymes, as well as the application of this knowledge to the engineering of DMATSs. We summarize the key findings and lessons learned from these studies over the past 14 years (2009-2023). In addition, we identify current gaps in our understanding of these fascinating enzymes.
Collapse
Affiliation(s)
- Evan T Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
8
|
Bitter J, Pfeiffer M, Borg AJE, Kuhlmann K, Pavkov-Keller T, Sánchez-Murcia PA, Nidetzky B. Enzymatic β-elimination in natural product O- and C-glycoside deglycosylation. Nat Commun 2023; 14:7123. [PMID: 37932298 PMCID: PMC10628242 DOI: 10.1038/s41467-023-42750-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Biological degradation of natural product glycosides involves, alongside hydrolysis, β-elimination for glycosidic bond cleavage. Here, we discover an O-glycoside β-eliminase (OGE) from Agrobacterium tumefaciens that converts the C3-oxidized O-β-D-glucoside of phloretin (a plant-derived flavonoid) into the aglycone and the 2-hydroxy-3-keto-glycal elimination product. While unrelated in sequence, OGE is structurally homologous to, and shows effectively the same Mn2+ active site as, the C-glycoside deglycosylating enzyme (CGE) from a human intestinal bacterium implicated in β-elimination of 3-keto C-β-D-glucosides. We show that CGE catalyzes β-elimination of 3-keto O- and C-β-D-glucosides while OGE is specific for the O-glycoside substrate. Substrate comparisons and mutagenesis for CGE uncover positioning of aglycone for protonic assistance by the enzyme as critically important for C-glycoside cleavage. Collectively, our study suggests convergent evolution of active site for β-elimination of 3-keto O-β-D-glucosides. C-Glycoside cleavage is a specialized feature of this active site which is elicited by substrate through finely tuned enzyme-aglycone interactions.
Collapse
Affiliation(s)
- Johannes Bitter
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria
| | - Kirill Kuhlmann
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, A-8010, Graz, Austria
- BioHealth Field of Excellence, University of Graz, Humboldtstraße 50, A-8010, Graz, Austria
| | - Pedro A Sánchez-Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingstalstraße 6/III, A-8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, A-8010, Graz, Austria.
| |
Collapse
|
9
|
Gardner ED, Johnson BP, Dimas DA, McClurg HE, Severance ZC, Burgett AW, Singh S. Unlocking New Prenylation Modes: Azaindoles as a New Substrate Class for Indole Prenyltransferases. ChemCatChem 2023; 15:e202300650. [PMID: 37954549 PMCID: PMC10634513 DOI: 10.1002/cctc.202300650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 11/14/2023]
Abstract
Aza-substitution, the replacement of aromatic CH groups with nitrogen atoms, is an established medicinal chemistry strategy for increasing solubility, but current methods of accessing functionalized azaindoles are limited. In this work, indole-alkylating aromatic prenyltransferases (PTs) were explored as a strategy to directly functionalize azaindole-substituted analogs of natural products. For this, a series of aza-l-tryptophans (Aza-Trp) featuring N-substitution of every aromatic CH position of the indole ring and their corresponding cyclic Aza-l-Trp-l-proline dipeptides (Aza-CyWP), were synthesized as substrate mimetics for the indole-alkylating PTs FgaPT2, CdpNPT, and FtmPT1. We then demonstrated most of these substrate analogs were accepted by a PT, and the regioselectivity of each prenylation was heavily influenced by the position of the N-substitution. Remarkably, FgaPT2 was found to produce cationic N-prenylpyridinium products, representing not only a new substrate class for indole PTs but also a previously unobserved prenylation mode. The discovery that nitrogenous indole bioisosteres can be accepted by PTs thus provides access to previously unavailable chemical space in the search for bioactive indolediketopiperazine analogs.
Collapse
Affiliation(s)
- Eric D. Gardner
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Bryce P. Johnson
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Dustin A. Dimas
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Heather E. McClurg
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Zachary C. Severance
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Anthony W. Burgett
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| |
Collapse
|
10
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
11
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Aoun AR, Mupparapu N, Nguyen DN, Kim TH, Nguyen CM, Pan Z, Elshahawi SI. Structure-guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases. ChemCatChem 2023; 15:e202300423. [PMID: 37366495 PMCID: PMC10292028 DOI: 10.1002/cctc.202300423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/28/2023]
Abstract
Indole is a significant structural moiety and functionalization of the C-H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl, C5 carbon units, on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific C6 IPTs. Our results also demonstrate that substitution of PriB_His312 to Tyr leads to the synthesis of analogs prenylated at different positions than C6. This work contributes to understanding of how certain IPTs can access a challenging position in indole-derived compounds.
Collapse
Affiliation(s)
- Ahmed R Aoun
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Diem N Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Christopher M Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Zhengfeiyue Pan
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| |
Collapse
|
13
|
Zhang Y, Goto Y, Suga H. Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases. Trends Biochem Sci 2023; 48:360-374. [PMID: 36564250 DOI: 10.1016/j.tibs.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Prenylation is a post-translational modification (PTM) widely found in primary and secondary metabolism. This modification can enhance the lipophilicity of molecules, enabling them to interact with lipid membranes more effectively. The prenylation of peptides is often carried out by cyanobactin prenyltransferases (PTases) from cyanobacteria. These enzymes are of interest due to their ability to add prenyl groups to unmodified peptides, thus making them more effective therapeutics through the subsequent acquisition of increased membrane permeability and bioavailability. Herein we review the current knowledge of cyanobactin PTases, focusing on their discovery, biochemistry, and bioengineering, and highlight the potential application of them as peptide alkylation biocatalysts to generate peptide therapeutics.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
14
|
An T, Feng X, Li C. Prenylation: A Critical Step for Biomanufacturing of Prenylated Aromatic Natural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2211-2233. [PMID: 36716399 DOI: 10.1021/acs.jafc.2c07287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prenylated aromatic natural products (PANPs) have received much attention due to their biomedical benefits for human health. The prenylation of aromatic natural products (ANPs), which is mainly catalyzed by aromatic prenyltransferases (aPTs), contributes significantly to their structural and functional diversity by providing higher lipophilicity and enhanced bioactivity. aPTs are widely distributed in bacteria, fungi, animals, and plants and play a key role in the regiospecific prenylation of ANPs. Recent studies have greatly advanced our understanding of the characteristics and application of aPTs. In this review, we comment on research progress regarding sources, evolutionary relationships, structural features, reaction mechanism, engineering modification, and application of aPTs. Particular emphasis is also placed on recent advances, challenges, and prospects about applications of aPTs in microbial cell factories for producing PANPs. Generally, this review could provide guidance for using aPTs as robust biocatalytic tools to produce various PANPs with high efficiency.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemical Engineering, Key Lab for Industrial Biocatalysis, Ministry of Education, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Hamdy SA, Kodama T, Nakashima Y, Han X, Morita H. Catalytic potential of a fungal indole prenyltransferase toward β-carbolines, harmine and harman, and their prenylation effects on antibacterial activity. J Biosci Bioeng 2022; 134:311-317. [PMID: 35931602 DOI: 10.1016/j.jbiosc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
The prenylation of compounds has attracted much attention, since it often adds bioactivity to non-prenylated compounds. We employed an enzyme assay with CdpNPT, an indole prenyltransferase from Aspergillus fumigatus with two naturally occurring β-carbolines, harmine (3) and harman (4) as prenyl acceptors, in the presence of dimethylallyl diphosphate (DMAPP) as the prenyl donor. The enzyme accepted these two prenyl acceptor substrates to produce 6-(3',3'-dimethylallyl)harmine (5) from 3 and 9-(3',3'-dimethylallyl)harman (6) and 6-(3',3'-dimethylallyl)harman (7) from 4. The X-ray crystal structure analysis of the CdpNPT (38-440) truncated mutant complexed with 4, and docking simulation studies of DMAPP to the crystal structure of the CdpNPT (38-440) mutant, suggested that CdpNPT could employ the two-step prenylation mechanism to produce 7, while the enzyme produced 6 with either one- or two-step prenylation mechanisms. Furthermore, the antibacterial assays revealed that the 3',3'-dimethylallylation of 3 and 4, as well as harmol (1), at C-6 enhanced the activities against Staphylococcus aureus and Bacillus subtilis.
Collapse
Affiliation(s)
- Sherif Ahmed Hamdy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Xiaojie Han
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
16
|
Enzymatic formation of a prenyl β-carboline by a fungal indole prenyltransferase. J Nat Med 2022; 76:873-879. [PMID: 35767141 DOI: 10.1007/s11418-022-01635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
CdpNPT from Aspergillus fumigatus is a fungal indole prenyltransferase (IPT) with remarkable substrate promiscuity to generate prenylated compounds. Our first investigation of the catalytic potential of CdpNPT against a β-carboline, harmol (1), revealed that the enzyme also accepts 1 as the prenyl acceptor with dimethylallyl diphosphate (DMAPP) as the prenyl donor and selectively prenylates the C-6 position of 1 by the "regular-type" dimethylallylation to produce 6-(3-dimethylallyl)harmol (2). Furthermore, our X-ray crystal structure analysis of the C-His6-tagged CdpNPT (38-440) truncated mutant complexed with 1 and docking studies of DMAPP to the crystal structure of the CdpNPT (38-440) mutant suggested that CdpNPT could employ the two-step prenylation system to produce 2.
Collapse
|
17
|
Mupparapu N, Brewster L, Ostrom KF, Elshahawi SI. Late-Stage Chemoenzymatic Installation of Hydroxy-Bearing Allyl Moiety on the Indole Ring of Tryptophan-Containing Peptides. Chemistry 2022; 28:e202104614. [PMID: 35178791 PMCID: PMC9314954 DOI: 10.1002/chem.202104614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/08/2023]
Abstract
The late‐stage functionalization of indole‐ and tryptophan‐containing compounds with reactive moieties facilitates downstream diversification and leads to changes in their biological properties. Here, the synthesis of two hydroxy‐bearing allyl pyrophosphates is described. A chemoenzymatic method is demonstrated which uses a promiscuous indole prenyltransferase enzyme to install a dual reactive hydroxy‐bearing allyl moiety directly on the indole ring of tryptophan‐containing peptides. This is the first report of late‐stage indole modifications with this reactive group.
Collapse
Affiliation(s)
- Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Lauren Brewster
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Katrina F Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
18
|
Suemune H, Nishimura D, Mizutani K, Sato Y, Hino T, Takagi H, Shiozaki-Sato Y, Takahashi S, Nagano S. Crystal structures of a 6-dimethylallyltryptophan synthase, IptA: Insights into substrate tolerance and enhancement of prenyltransferase activity. Biochem Biophys Res Commun 2022; 593:144-150. [DOI: 10.1016/j.bbrc.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 01/15/2023]
|
19
|
Clinger JA, Zhang Y, Liu Y, Miller MD, Hall RE, Van Lanen SG, Phillips GN, Thorson JS, Elshahawi SI. Structure and Function of a Dual Reductase-Dehydratase Enzyme System Involved in p-Terphenyl Biosynthesis. ACS Chem Biol 2021; 16:2816-2824. [PMID: 34763417 PMCID: PMC8751757 DOI: 10.1021/acschembio.1c00701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the identification of the ter gene cluster responsible for the formation of the p-terphenyl derivatives terfestatins B and C and echoside B from the Appalachian Streptomyces strain RM-5-8. We characterize the function of TerB/C, catalysts that work together as a dual enzyme system in the biosynthesis of natural terphenyls. TerB acts as a reductase and TerC as a dehydratase to enable the conversion of polyporic acid to a terphenyl triol intermediate. X-ray crystallography of the apo and substrate-bound forms for both enzymes provides additional mechanistic insights. Validation of the TerC structural model via mutagenesis highlights a critical role of arginine 143 and aspartate 173 in catalysis. Cumulatively, this work highlights a set of enzymes acting in harmony to control and direct reactive intermediates and advances fundamental understanding of the previously unresolved early steps in terphenyl biosynthesis.
Collapse
Affiliation(s)
- Jonathan A Clinger
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Yinan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Mitchell D Miller
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Ronnie E Hall
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
20
|
Couillaud J, Duquesne K, Iacazio G. Extension of the Terpene Chemical Space: the Very First Biosynthetic Steps. Chembiochem 2021; 23:e202100642. [PMID: 34905641 DOI: 10.1002/cbic.202100642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Indexed: 11/06/2022]
Abstract
The structural diversity of terpenes is particularly notable and many studies are carried out to increase it further. In the terpene biosynthetic pathway this diversity is accessible from only two common precursors, i. e. isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Methods recently developed (e. g. the Terpene Mini Path) have allowed DMAPP and IPP to be obtained from a two-step enzymatic conversion of industrially available isopentenol (IOH) and dimethylallyl alcohol (DMAOH) into their corresponding diphosphates. Easily available IOH and DMAOH analogues then offer quick access to modified terpenoids thus avoiding the tedious chemical synthesis of unnatural diphosphates. The aim of this minireview is to cover the literature devoted to the use of these analogues for widening the accessible terpene chemical space.
Collapse
Affiliation(s)
- Julie Couillaud
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, CNRS UMR 7313, Av. Escadrille Normandie-Niemen, 13013, Marseille, France.,Actual address: Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Katia Duquesne
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, CNRS UMR 7313, Av. Escadrille Normandie-Niemen, 13013, Marseille, France
| | - Gilles Iacazio
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, CNRS UMR 7313, Av. Escadrille Normandie-Niemen, 13013, Marseille, France
| |
Collapse
|
21
|
Basuli S, Sahu S, Saha S, Maji MS. Cp*Co(III)‐Catalyzed Dehydrative C2‐Prenylation of Pyrrole and Indole with Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suchand Basuli
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Samrat Sahu
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Shuvendu Saha
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Modhu Sudan Maji
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| |
Collapse
|
22
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
23
|
Mupparapu N, Lin YHC, Kim TH, Elshahawi SI. Regiospecific Synthesis of Calcium-Independent Daptomycin Antibiotics using a Chemoenzymatic Method. Chemistry 2021; 27:4176-4182. [PMID: 33244806 DOI: 10.1002/chem.202005100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Daptomycin (DAP) is a calcium (Ca2+ )-dependent FDA-approved antibiotic drug for the treatment of Gram-positive infections. It possesses a complex pharmacophore hampering derivatization and/or synthesis of analogues. To mimic the Ca2+ -binding effect, we used a chemoenzymatic approach to modify the tryptophan (Trp) residue of DAP and synthesize kinetically characterized and structurally elucidated regiospecific Trp-modified DAP analogues. We demonstrated that the modified DAPs are several times more active than the parent molecule against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria. Strikingly, and in contrast to the parent molecule, the DAP derivatives do not rely on calcium or any additional elements for activity.
Collapse
Affiliation(s)
- Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Yu-Hsin Cindy Lin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| |
Collapse
|
24
|
Ostertag E, Zheng L, Broger K, Stehle T, Li SM, Zocher G. Reprogramming Substrate and Catalytic Promiscuity of Tryptophan Prenyltransferases. J Mol Biol 2020; 433:166726. [PMID: 33249189 DOI: 10.1016/j.jmb.2020.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022]
Abstract
Prenylation is a process widely prevalent in primary and secondary metabolism, contributing to functionality and chemical diversity in natural systems. Due to their high regio- and chemoselectivities, prenyltransferases are also valuable tools for creation of new compounds by chemoenzymatic synthesis and synthetic biology. Over the last ten years, biochemical and structural investigations shed light on the mechanism and key residues that control the catalytic process, but to date crucial information on how certain prenyltransferases control regioselectivity and chemoselectivity is still lacking. Here, we advance a general understanding of the enzyme family by contributing the first structure of a tryptophan C5-prenyltransferase 5-DMATS. Additinally, the structure of a bacterial tryptophan C6-prenyltransferase 6-DMATS was solved. Analysis and comparison of both substrate-bound complexes led to the identification of key residues for catalysis. Next, site-directed mutagenesis was successfully implemented to not only modify the prenyl donor specificity but also to redirect the prenylation, thereby switching the regioselectivity of 6-DMATS to that of 5-DMATS. The general strategy of structure-guided protein engineering should be applicable to other related prenyltransferases, thus enabling the production of novel prenylated compounds.
Collapse
Affiliation(s)
- Elena Ostertag
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Liujuan Zheng
- Institute of Pharmaceutical Biology and Biotechnology, Fachbereich Pharmacy, University of Marburg, 35037 Marburg, Germany
| | - Karina Broger
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Shu-Ming Li
- Institute of Pharmaceutical Biology and Biotechnology, Fachbereich Pharmacy, University of Marburg, 35037 Marburg, Germany.
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
25
|
Abstract
Tryprostatin A and B are prenylated, tryptophan-containing, diketopiperazine natural products, displaying cytotoxic activity through different mechanisms of action. The presence of the 6-methoxy substituent on the indole moiety of tryprostatin A was shown to be essential for the dual inhibition of topoisomerase II and tubulin polymerization. However, the inability to perform late-stage modification of the indole ring has limited the structure–activity relationship studies of this class of natural products. Herein, we describe an efficient chemoenzymatic approach for the late-stage modification of tryprostatin B using a cyclic dipeptide N-prenyltransferase (CdpNPT) from Aspergillus fumigatus, which generates novel analogs functionalized with allylic, benzylic, heterocyclic, and diene moieties. Notably, this biocatalytic functionalizational study revealed high selectivity for the indole C6 position. Seven of the 11 structurally characterized analogs were exclusively C6-alkylated, and the remaining four contained predominant C6-regioisomers. Of the 24 accepted substrates, 10 provided >50% conversion and eight provided 20–50% conversion, with the remaining six giving <20% conversion under standard conditions. This study demonstrates that prenyltransferase-based late-stage diversification enables direct access to previously inaccessible natural product analogs.
Collapse
|
26
|
Chemoenzymatic synthesis of daptomycin analogs active against daptomycin-resistant strains. Appl Microbiol Biotechnol 2020; 104:7853-7865. [PMID: 32725322 PMCID: PMC7447621 DOI: 10.1007/s00253-020-10790-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022]
Abstract
Abstract Daptomycin is a last resort antibiotic for the treatment of infections caused by many Gram-positive bacterial strains, including vancomycin-resistant Enterococcus (VRE) and methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). However, the emergence of daptomycin-resistant strains of S. aureus and Enterococcus in recent years has renewed interest in synthesizing daptomycin analogs to overcome resistance mechanisms. Within this context, three aromatic prenyltransferases have been shown to accept daptomycin as a substrate, and the resulting prenylated analog was shown to be more potent against Gram-positive strains than the parent compound. Consequently, utilizing prenyltransferases to derivatize daptomycin offered an attractive alternative to traditional synthetic approaches, especially given the molecule’s structural complexity. Herein, we report exploiting the ability of prenyltransferase CdpNPT to synthesize alkyl-diversified daptomycin analogs in combination with a library of synthetic non-native alkyl-pyrophosphates. The results revealed that CdpNPT can transfer a variety of alkyl groups onto daptomycin’s tryptophan residue using the corresponding alkyl-pyrophosphates, while subsequent scaled-up reactions suggested that the enzyme can alkylate the N1, C2, C5, and C6 positions of the indole ring. In vitro antibacterial activity assays using 16 daptomycin analogs revealed that some of the analogs displayed 2–80-fold improvements in potency against MRSA, VRE, and daptomycin-resistant strains of S. aureus and Enterococcus faecalis. Thus, along with the new potent analogs, these findings have established that the regio-chemistry of alkyl substitution on the tryptophan residue can modulate daptomycin’s potency. With additional protein engineering to improve the regio-selectivity, the described method has the potential to become a powerful tool for diversifying complex indole-containing molecules. Key points • CdpNPT displays impressive donor promiscuity with daptomycin as the acceptor. • CdpNPT catalyzes N1-, C2-, C5-, and C6-alkylation on daptomycin’s tryptophan residue. • Differential alkylation of daptomycin’s tryptophan residue modulates its activity. Electronic supplementary material The online version of this article (10.1007/s00253-020-10790-x) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Zetzsche LE, Narayan ARH. Broadening the scope of biocatalytic C-C bond formation. Nat Rev Chem 2020; 4:334-346. [PMID: 34430708 PMCID: PMC8382263 DOI: 10.1038/s41570-020-0191-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The impeccable control over chemo-, site-, and stereoselectivity possible in enzymatic reactions has led to a surge in the development of new biocatalytic methods. Despite carbon-carbon (C-C) bonds providing the central framework for organic molecules, development of biocatalytic methods for their formation has been largely confined to the use of a select few lyases over the last several decades, limiting the types of C-C bond-forming transformations possible through biocatalytic methods. This Review provides an update on the suite of enzymes available for highly selective biocatalytic C-C bond formation. Examples will be discussed in reference to the (1) native activity of enzymes, (2) alteration of activity through protein or substrate engineering for broader applicability, and (3) utility of the biocatalyst for abiotic synthesis.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alison R. H. Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Johnson BP, Scull EM, Dimas DA, Bavineni T, Bandari C, Batchev AL, Gardner ED, Nimmo SL, Singh S. Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB. Appl Microbiol Biotechnol 2020; 104:4383-4395. [PMID: 32189045 PMCID: PMC7190591 DOI: 10.1007/s00253-020-10529-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Abstract Aromatic prenyltransferases are known for their extensive promiscuity toward aromatic acceptor substrates and their ability to form various carbon-carbon and carbon-heteroatom bonds. Of particular interest among the prenyltransferases is NphB, whose ability to geranylate cannabinoid precursors has been utilized in several in vivo and in vitro systems. It has therefore been established that prenyltransferases can be utilized as biocatalysts for the generation of useful compounds. However, recent observations of non-native alkyl-donor promiscuity among prenyltransferases indicate the role of NphB in biocatalysis could be expanded beyond geranylation reactions. Therefore, the goal of this study was to elucidate the donor promiscuity of NphB using different acceptor substrates. Herein, we report distinct donor profiles between NphB-catalyzed reactions involving the known substrate 1,6-dihydroxynaphthalene and an FDA-approved drug molecule sulfabenzamide. Furthermore, we report the first instance of regiospecific, NphB-catalyzed N-alkylation of sulfabenzamide using a library of non-native alkyl-donors, indicating the biocatalytic potential of NphB as a late-stage diversification tool. Key Points • NphB can utilize the antibacterial drug sulfabenzamide as an acceptor. • The donor profile of NphB changes dramatically with the choice of acceptor. • NphB performs a previously unknown regiospecific N-alkylation on sulfabenzamide. • Prenyltransferases like NphB can be utilized as drug-alkylating biocatalysts. Electronic supplementary material The online version of this article (10.1007/s00253-020-10529-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bryce P Johnson
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Erin M Scull
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Dustin A Dimas
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Tejaswi Bavineni
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Chandrasekhar Bandari
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Andrea L Batchev
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Eric D Gardner
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Susan L Nimmo
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| |
Collapse
|
29
|
Abstract
Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.
Collapse
|
30
|
Wang X, Elshahawi SI, Ponomareva LV, Ye Q, Liu Y, Copley GC, Hower JC, Hatcher BE, Kharel MK, Van Lanen SG, She QB, Voss SR, Thorson JS, Shaaban KA. Structure Determination, Functional Characterization, and Biosynthetic Implications of Nybomycin Metabolites from a Mining Reclamation Site-Associated Streptomyces. JOURNAL OF NATURAL PRODUCTS 2019; 82:3469-3476. [PMID: 31833370 PMCID: PMC7084111 DOI: 10.1021/acs.jnatprod.9b01015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report the isolation and characterization of three new nybomycins (nybomycins B-D, 1-3) and six known compounds (nybomycin, 4; deoxynyboquinone, 5; α-rubromycin, 6; β-rubromycin, 7; γ-rubromycin, 8; and [2α(1E,3E),4β]-2-(1,3-pentadienyl)-4-piperidinol, 9) from the Rock Creek (McCreary County, KY) underground coal mine acid reclamation site isolate Streptomyces sp. AD-3-6. Nybomycin D (3) and deoxynyboquinone (5) displayed moderate (3) to potent (5) cancer cell line cytotoxicity and displayed weak to moderate anti-Gram-(+) bacterial activity, whereas rubromycins 6-8 displayed little to no cancer cell line cytotoxicity but moderate to potent anti-Gram-(+) bacterial and antifungal activity. Assessment of the impact of 3 or 5 cancer cell line treatment on 4E-BP1 phosphorylation, a predictive marker of ROS-mediated control of cap-dependent translation, also revealed deoxynyboquinone (5)-mediated downstream inhibition of 4E-BP1p. Evaluation of 1-9 in a recently established axolotl embryo tail regeneration assay also highlighted the prototypical telomerase inhibitor γ-rubromycin (8) as a new inhibitor of tail regeneration. Cumulatively, this work highlights an alternative nybomycin production strain, a small set of new nybomycin metabolites, and previously unknown functions of rubromycins (antifungal activity and inhibition of tail regeneration) and also provides a basis for revision of the previously proposed nybomycin biosynthetic pathway.
Collapse
Affiliation(s)
- Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Qing Ye
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yang Liu
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Gregory C. Copley
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - James C. Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - Bruce E. Hatcher
- Division of Water, Kentucky Energy and Environment Cabinet, 2642 Russellville Road, Bowling Green, Kentucky 42101, United States
| | - Madan K. Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Qing-Bai She
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - S. Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40536, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
31
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
32
|
Lund S, Courtney T, Williams GJ. Probing the Substrate Promiscuity of Isopentenyl Phosphate Kinase as a Platform for Hemiterpene Analogue Production. Chembiochem 2019; 20:2217-2221. [PMID: 30998839 DOI: 10.1002/cbic.201900135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Isoprenoids are a large class of natural products with wide-ranging applications. Synthetic biology approaches to the manufacture of isoprenoids and their new-to-nature derivatives are limited due to the provision in nature of just two hemiterpene building blocks for isoprenoid biosynthesis. To address this limitation, artificial chemo-enzymatic pathways such as the alcohol-dependent hemiterpene (ADH) pathway serve to leverage consecutive kinases to convert exogenous alcohols into pyrophosphates that could be coupled to downstream isoprenoid biosynthesis. To be successful, each kinase in this pathway should be permissive of a broad range of substrates. For the first time, we have probed the promiscuity of the second enzyme in the ADH pathway-isopentenyl phosphate kinase from Thermoplasma acidophilum-towards a broad range of acceptor monophosphates. Subsequently, we evaluate the suitability of this enzyme to provide unnatural pyrophosphates and provide a critical first step in characterizing the rate-limiting steps in the artificial ADH pathway.
Collapse
Affiliation(s)
- Sean Lund
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Present address: Amyris, 5885 Hollis Street, Suite 100, Emeryville, CA, 94608, USA
| | - Taylor Courtney
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Present address: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA
| |
Collapse
|
33
|
Roose BW, Christianson DW. Structural Basis of Tryptophan Reverse N-Prenylation Catalyzed by CymD. Biochemistry 2019; 58:3232-3242. [PMID: 31251043 DOI: 10.1021/acs.biochem.9b00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indole prenyltransferases catalyze the prenylation of l-tryptophan (l-Trp) and other indoles to produce a diverse set of natural products in bacteria, fungi, and plants, many of which possess useful biological properties. Among this family of enzymes, CymD from Salinispora arenicola catalyzes the reverse N1 prenylation of l-Trp, an unusual reaction given the poor nucleophilicity of the indole nitrogen. CymD utilizes dimethylallyl diphosphate (DMAPP) as the prenyl donor, catalyzing the dissociation of the diphosphate leaving group followed by nucleophilic attack of the indole nitrogen at the tertiary carbon of the dimethylallyl cation. To better understand the structural basis of selective indole N-alkylation reactions in biology, we have determined the X-ray crystal structures of CymD, the CymD-l-Trp complex, and the CymD-l-Trp-DMSPP complex (DMSPP is dimethylallyl S-thiolodiphosphate, an unreactive analogue of DMAPP). The orientation of l-Trp with respect to DMSPP reveals how the active site contour of CymD serves as a template to direct the reverse prenylation of the indole nitrogen. Comparison to PriB, a C6 bacterial indole prenyltransferase, offers further insight regarding the structural basis of regioselective indole prenylation. Isothermal titration calorimetry measurements indicate a synergistic relationship between l-Trp and DMSPP binding. Finally, activity assays demonstrate the selectivity of CymD for l-Trp and indole as prenyl acceptors. Collectively, these data establish a foundation for understanding and engineering the regioselectivity of indole prenylation by members of the prenyltransferase protein family.
Collapse
Affiliation(s)
- Benjamin W Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
34
|
Wang X, Abbas M, Zhang Y, Elshahawi SI, Ponomareva LV, Cui Z, Van Lanen SG, Sajid I, Voss SR, Shaaban KA, Thorson JS. Baraphenazines A-G, Divergent Fused Phenazine-Based Metabolites from a Himalayan Streptomyces. JOURNAL OF NATURAL PRODUCTS 2019; 82:1686-1693. [PMID: 31117525 PMCID: PMC6630045 DOI: 10.1021/acs.jnatprod.9b00289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The structures and bioactivities of three unprecedented fused 5-hydroxyquinoxaline/alpha-keto acid amino acid metabolites (baraphenazines A-C, 1-3), two unique diastaphenazine-type metabolites (baraphenazines D and E, 4 and 5) and two new phenazinolin-type (baraphenazines F and G, 6 and 7) metabolites from the Himalayan isolate Streptomyces sp. PU-10A are reported. This study highlights the first reported bacterial strain capable of producing diastaphenazine-type, phenazinolin-type, and izumiphenazine A-type metabolites and presents a unique opportunity for the future biosynthetic interrogation of late-stage phenazine-based metabolite maturation.
Collapse
Affiliation(s)
- Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam campus, Lahore 54590, Pakistan
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam campus, Lahore 54590, Pakistan
| | - S. Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40506, United States
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40506, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| |
Collapse
|
35
|
Bandari C, Scull EM, Bavineni T, Nimmo SL, Gardner ED, Bensen RC, Burgett AW, Singh S. FgaPT2, a biocatalytic tool for alkyl-diversification of indole natural products. MEDCHEMCOMM 2019; 10:1465-1475. [PMID: 31534661 PMCID: PMC6748273 DOI: 10.1039/c9md00177h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023]
Abstract
Demonstration of FgaPT2 catalyzed alkyl-diversification of indole containing natural products.
Aromatic prenyltransferases from natural product biosynthetic pathways display relaxed specificity for their aromatic substrates. While a growing body of evidence suggests aromatic prenyltransferases to be more tolerant towards their alkyl-donor substrates, most studies aimed at probing their donor-substrate specificity are limited to only a small set of alkyl pyrophosphate donors, restricting their broader utility as biocatalysts for synthetic applications. Here, we assess the donor substrate specificity of an l-tryptophan C4-prenyltransferase, also known as C4-dimethylallyltryptophan synthase, FgaPT2 from Aspergillus fumigatus, using an array of 34 synthetic unnatural alkyl-pyrophosphate analogues, and demonstrate FgaPT2 can catalyze the transfer of 25 of the 34 non-native alkyl groups from their corresponding synthetic alkyl-pyrophosphate analogues at N1, C3, C4 and C5 position of tryptophan in a normal and reverse manner. The kinetic studies and regio-chemical analysis of the alkyl-l-tryptophan products suggest that the alkyl-donor transfer by FgaPT2 is a function of the stability of the carbocation and the steric factors in the active site of the enzyme. Further, to demonstrate the biocatalytic utility of FgaPT2, this study also highlights the FgaPT2-catalyzed synthesis of a small set of alkyl-diversified indolocarbazole analogues. These results reveal FgaPT2 to be more tolerant to diverse non-native alkyl-donor substrates beyond their known acceptor substrate promiscuity and set the stage for its development as a novel biocatalytic tool for the differential alkylation of natural products for drug discovery and other synthetic applications.
Collapse
Affiliation(s)
- Chandrasekhar Bandari
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Erin M Scull
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Tejaswi Bavineni
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Susan L Nimmo
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Eric D Gardner
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Ryan C Bensen
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Anthony W Burgett
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Shanteri Singh
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| |
Collapse
|
36
|
Farhat W, Stamm A, Robert-Monpate M, Biundo A, Syrén PO. Biocatalysis for terpene-based polymers. ACTA ACUST UNITED AC 2019; 74:91-100. [PMID: 30789828 DOI: 10.1515/znc-2018-0199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Accelerated generation of bio-based materials is vital to replace current synthetic polymers obtained from petroleum with more sustainable options. However, many building blocks available from renewable resources mainly contain unreactive carbon-carbon bonds, which obstructs their efficient polymerization. Herein, we highlight the potential of applying biocatalysis to afford tailored functionalization of the inert carbocyclic core of multicyclic terpenes toward advanced materials. As a showcase, we unlock the inherent monomer reactivity of norcamphor, a bicyclic ketone used as a monoterpene model system in this study, to afford polyesters with unprecedented backbones. The efficiencies of the chemical and enzymatic Baeyer-Villiger transformation in generating key lactone intermediates are compared. The concepts discussed herein are widely applicable for the valorization of terpenes and other cyclic building blocks using chemoenzymatic strategies.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Arne Stamm
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Maxime Robert-Monpate
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Antonino Biundo
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Per-Olof Syrén
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.,Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Tomtebodavägen 23, Box 1031, 171 21 Solna, Stockholm, Sweden.,Wallenberg Wood Science Center, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
37
|
Lund S, Hall R, Williams GJ. An Artificial Pathway for Isoprenoid Biosynthesis Decoupled from Native Hemiterpene Metabolism. ACS Synth Biol 2019; 8:232-238. [PMID: 30648856 PMCID: PMC6556385 DOI: 10.1021/acssynbio.8b00383] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isoprenoids are constructed in nature using hemiterpene building blocks that are biosynthesized from lengthy enzymatic pathways with little opportunity to deploy precursor-directed biosynthesis. Here, an artificial alcohol-dependent hemiterpene biosynthetic pathway was designed and coupled to several isoprenoid biosynthetic systems, affording lycopene and a prenylated tryptophan in robust yields. This approach affords a potential route to diverse non-natural hemiterpenes and by extension isoprenoids modified with non-natural chemical functionality. Accordingly, the prototype chemo-enzymatic pathway is a critical first step toward the construction of engineered microbial strains for bioconversion of simple scalable building blocks into complex isoprenoid scaffolds.
Collapse
Affiliation(s)
- Sean Lund
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Present address: Amyris, 5885 Hollis St Ste. 100, Emeryville, California 94608, United States
| | - Rachael Hall
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
38
|
Abbas M, Elshahawi SI, Wang X, Ponomareva LV, Sajid I, Shaaban KA, Thorson JS. Puromycins B-E, Naturally Occurring Amino-Nucleosides Produced by the Himalayan Isolate Streptomyces sp. PU-14G. JOURNAL OF NATURAL PRODUCTS 2018; 81:2560-2566. [PMID: 30418763 PMCID: PMC6393767 DOI: 10.1021/acs.jnatprod.8b00720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The isolation and structure elucidation of four new naturally occurring amino-nucleoside [puromycins B-E (1-4)] metabolites from a Himalayan isolate ( Streptomyces sp. PU-14-G, isolated from the Bara Gali region of northern Pakistan) is reported. Consistent with prior reports, comparative antimicrobial assays revealed the need for the free 2″-amine for anti-Gram-positive bacteria and antimycobacterial activity. Similarly, comparative cancer cell line cytotoxicity assays highlighted the importance of the puromycin-free 2″-amine and the impact of 3'-nucleoside substitution. These studies extend the repertoire of known naturally occurring puromycins and their corresponding SAR. Notably, 1 represents the first reported naturally occurring bacterial puromycin-related metabolite with a 3'- N-amino acid substitution that differs from the 3'- N-tyrosinyl of classical puromycin-type natural products. This discovery suggests the biosynthesis of 1 in Streptomyces sp. PU-14G may invoke a uniquely permissive amino-nucleoside synthetase and/or multiple synthetases and sets the stage for further studies to elucidate, and potentially exploit, new biocatalysts for puromycin chemoenzymatic diversification.
Collapse
Affiliation(s)
- Muhammad Abbas
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam Campus, Lahore 54590, Pakistan
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| |
Collapse
|
39
|
Awakawa T, Mori T, Nakashima Y, Zhai R, Wong CP, Hillwig ML, Liu X, Abe I. Molecular Insight into the Mg 2+
-Dependent Allosteric Control of Indole Prenylation by Aromatic Prenyltransferase AmbP1. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Chin Piow Wong
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Matthew L. Hillwig
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Xinyu Liu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
40
|
Awakawa T, Mori T, Nakashima Y, Zhai R, Wong CP, Hillwig ML, Liu X, Abe I. Molecular Insight into the Mg2+
-Dependent Allosteric Control of Indole Prenylation by Aromatic Prenyltransferase AmbP1. Angew Chem Int Ed Engl 2018; 57:6810-6813. [DOI: 10.1002/anie.201800855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Chin Piow Wong
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Matthew L. Hillwig
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Xinyu Liu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
41
|
Eurotiumins A⁻E, Five New Alkaloids from the Marine-Derived Fungus Eurotium sp. SCSIO F452. Mar Drugs 2018; 16:md16040136. [PMID: 29690501 PMCID: PMC5923423 DOI: 10.3390/md16040136] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
Three new prenylated indole 2,5-diketopiperazine alkaloids (1–3) with nine known ones (5–13), one new indole alkaloid (4), and one new bis-benzyl pyrimidine derivative (14) were isolated and characterized from the marine-derived fungus Eurotium sp. SCSIO F452. 1 and 2, occurring as a pair of diastereomers, both presented a hexahydropyrrolo[2,3-b]indole skeleton. Their chemical structures, including absolute configurations, were elucidated by 1D and 2D NMR, HRESIMS, quantum chemical calculations of electronic circular dichroism, and single crystal X-ray diffraction experiments. Most isolated compounds were screened for antioxidative potency. Compounds 3, 5, 6, 7, 9, 10, and 12 showed significant radical scavenging activities against DPPH with IC50 values of 13, 19, 4, 3, 24, 13, and 18 µM, respectively. Five new compounds were evaluated for cytotoxic activities.
Collapse
|
42
|
Robertson AW, MacLeod JM, MacIntyre LW, Forget SM, Hall SR, Bennett LG, Correa H, Kerr RG, Goralski KB, Jakeman DL. Post Polyketide Synthase Carbon–Carbon Bond Formation in Type-II PKS-Derived Natural Products from Streptomyces venezuelae. J Org Chem 2018; 83:1876-1890. [DOI: 10.1021/acs.joc.7b02823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Hebelin Correa
- Department
of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Russell G. Kerr
- Department
of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | | | | |
Collapse
|
43
|
Two Distinct Substrate Binding Modes for the Normal and Reverse Prenylation of Hapalindoles by the Prenyltransferase AmbP3. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Wong CP, Awakawa T, Nakashima Y, Mori T, Zhu Q, Liu X, Abe I. Two Distinct Substrate Binding Modes for the Normal and Reverse Prenylation of Hapalindoles by the Prenyltransferase AmbP3. Angew Chem Int Ed Engl 2017; 57:560-563. [DOI: 10.1002/anie.201710682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Chin Piow Wong
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Qin Zhu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Xinyu Liu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
45
|
Bandari C, Scull EM, Masterson JM, Tran RHQ, Foster SB, Nicholas KM, Singh S. Determination of Alkyl-Donor Promiscuity of Tyrosine-O
-Prenyltransferase SirD from Leptosphaeria maculans. Chembiochem 2017; 18:2323-2327. [DOI: 10.1002/cbic.201700469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Chandrasekhar Bandari
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Erin M. Scull
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Johanna M. Masterson
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Rachel H. Q. Tran
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Steven B. Foster
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Kenneth M. Nicholas
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Shanteri Singh
- Institute for Natural Products Applications and Research Technologies; Department of Chemistry and Biochemistry; University of Oklahoma; 101 Stephenson Parkway Norman Oklahoma 73019 USA
| |
Collapse
|
46
|
Self-association of a highly charged arginine-rich cell-penetrating peptide. Proc Natl Acad Sci U S A 2017; 114:11428-11433. [PMID: 29073067 DOI: 10.1073/pnas.1712078114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) measurements reveal a striking difference in intermolecular interactions between two short highly charged peptides-deca-arginine (R10) and deca-lysine (K10). Comparison of SAXS curves at high and low salt concentration shows that R10 self-associates, while interactions between K10 chains are purely repulsive. The self-association of R10 is stronger at lower ionic strengths, indicating that the attraction between R10 molecules has an important electrostatic component. SAXS data are complemented by NMR measurements and potentials of mean force between the peptides, calculated by means of umbrella-sampling molecular dynamics (MD) simulations. All-atom MD simulations elucidate the origin of the R10-R10 attraction by providing structural information on the dimeric state. The last two C-terminal residues of R10 constitute an adhesive patch formed by stacking of the side chains of two arginine residues and by salt bridges formed between the like-charge ion pair and the C-terminal carboxyl groups. A statistical analysis of the Protein Data Bank reveals that this mode of interaction is a common feature in proteins.
Collapse
|
47
|
Tanaka S, Shiomi S, Ishikawa H. Bioinspired Indole Prenylation Reactions in Water. JOURNAL OF NATURAL PRODUCTS 2017; 80:2371-2378. [PMID: 28803474 DOI: 10.1021/acs.jnatprod.7b00464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Isoprene units derived from dimethylallyl diphosphate (DMAPP) are an important motif in many natural products including terpenoids, carotenoids, steroids, and natural rubber. Understanding the chemical characteristics of DMAPP is an important topic in natural products chemistry, organic chemistry, and biochemistry. We have developed a direct bioinspired indole prenylation reaction using DMAPP or its equivalents as the electrophile in homogeneous aqueous acidic media in the absence of enzyme to provide prenylated indole products. After establishing the bioinspired indole prenylation reaction, this was then used to achieve the synthesis of a series of natural products, namely, N-prenylcyclo-l-tryptophyl-l-proline, tryprostatins, rhinocladins, and terezine D.
Collapse
Affiliation(s)
- Satomi Tanaka
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University , 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Shiomi
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University , 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hayato Ishikawa
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University , 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
48
|
Wang X, Elshahawi SI, Cai W, Zhang Y, Ponomareva LV, Chen X, Copley GC, Hower JC, Zhan CG, Parkin S, Rohr J, Van Lanen SG, Shaaban KA, Thorson JS. Bi- and Tetracyclic Spirotetronates from the Coal Mine Fire Isolate Streptomyces sp. LC-6-2. JOURNAL OF NATURAL PRODUCTS 2017; 80:1141-1149. [PMID: 28358212 PMCID: PMC5558431 DOI: 10.1021/acs.jnatprod.7b00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The structures of 12 new "enantiomeric"-like abyssomicin metabolites (abyssomicins M-X) from Streptomyces sp. LC-6-2 are reported. Of this set, the abyssomicin W (11) contains an unprecedented 8/6/6/6 tetracyclic core, while the bicyclic abyssomicin X (12) represents the first reported naturally occurring linear spirotetronate. Metabolite structures were determined based on spectroscopic data and X-ray crystallography, and Streptomyces sp. LC-6-2 genome sequencing also revealed the corresponding putative biosynthetic gene cluster.
Collapse
Affiliation(s)
- Xiachang Wang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Wenlong Cai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yinan Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiabin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Gregory C. Copley
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - James C. Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|