1
|
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J. Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:977-997. [PMID: 37155340 DOI: 10.1002/mas.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
2
|
Bayindir S, Akar S. Synthesis of Phenol-Hydrazide-Appended Tetraphenylethenes as Novel On-Off-On Cascade Sensors of Copper and Glutathione. ACS OMEGA 2024; 9:26257-26266. [PMID: 38911777 PMCID: PMC11191134 DOI: 10.1021/acsomega.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
This study reports the synthesis of novel fluorescent probes, phenol-hydrazide-appended tetraphenylethenes (TPEs I and II), and explores their photochemical properties. The probes exhibit aggregation-induced emission (AIE) in increasing water content, as observed using fluorescence spectroscopy. Further investigation with UV-vis and fluorescence techniques revealed their potential as ion sensors. Both TPE I and TPE II act as "turn-off" sensors for Cu2+ ions, showing decreased fluorescence intensity in their presence. Their limit of detection (LOD) and association constant (K a) for Cu2+ were found to be comparable at 747 nM/597 nM, and 2.46 × 105 M-1/2/1.78 × 105 M-1/2, respectively. Moreover, the quantum yields of TPE I and TPE II were also calculated and found to be 0.651 and 0.325, respectively. Interestingly, these probes also function as "turn-on" sensors for glutathione (GSH) in the presence of copper. This means their fluorescence can be reversibly switched off and on by alternating CuCl2 and GSH additions. Moreover, the LOD values for GSH with TPE II-Cu2+ were calculated to be 544 nM. In addition, the investigation also employed visual analysis to assess the color alterations of TPEs on filter paper and in real water samples. Overall, this research introduces promising new probes with potential applications in copper ion detection and biomolecule glutathione sensing in real water samples.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department
of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Türkiye
| | - Sebiha Akar
- Department
of Chemistry, Graduate School of Natural and Applied Sciences, Bingol University, 12000 Bingol, Türkiye
| |
Collapse
|
3
|
Zee DZ, MacRenaris KW, O'Halloran TV. Quantitative imaging approaches to understanding biological processing of metal ions. Curr Opin Chem Biol 2022; 69:102152. [PMID: 35561425 PMCID: PMC9329216 DOI: 10.1016/j.cbpa.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Faster, more sensitive, and higher resolution quantitative instrumentation are aiding a deeper understanding of how inorganic chemistry regulates key biological processes. Researchers can now image and quantify metals with subcellular resolution, leading to a vast array of new discoveries in organismal development, pathology, and disease. Metals have recently been implicated in several diseases such as Parkinson's, Alzheimers, ischemic stroke, and colorectal cancer that would not be possible without these advancements. In this review, instead of focusing on instrumentation we focus on recent applications of label-free elemental imaging and quantification and how these tools can lead to a broader understanding of metals role in systems biology and human pathology.
Collapse
Affiliation(s)
- David Z Zee
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Keith W MacRenaris
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA; Department of Chemistry, Michigan State University, East Lansing, MI, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Department of Chemistry, Northwestern University, Evanston, IL, USA; Elemental Health Institute, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Mahata S, Dey S, Mandal BB, Manivannan V. 3-(2-Hydroxyphenyl)imidazo[5, 1-a]isoquinoline as Cu(II) sensor, its Cu(II) complex for selective detection of CN− ion and biological compatibility. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Xi D, Yuan P, Brady DC, Chang CJ. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 2022; 22:102-113. [PMID: 34764459 PMCID: PMC8810673 DOI: 10.1038/s41568-021-00417-2] [Citation(s) in RCA: 617] [Impact Index Per Article: 205.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen G Kaler
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael L Schilsky
- Section of Transplantation and Immunology, Division of Digestive Diseases, Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | | | - Linda T Vahdat
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dan Xi
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Grasso M, Bond GJ, Kim YJ, Boyd S, Matson Dzebo M, Valenzuela S, Tsang T, Schibrowsky NA, Alwan KB, Blackburn NJ, Burslem GM, Wittung-Stafshede P, Winkler DD, Marmorstein R, Brady DC. The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J Biol Chem 2021; 297:101314. [PMID: 34715128 DOI: 10.1016/j.jbc.2021.101314] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Normal physiology relies on the precise coordination of intracellular signal transduction pathways that respond to nutrient availability to balance cell growth and cell death. The canonical MAPK pathway consists of the RAF-MEK-ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in the majority of human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of MAPK signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules like glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate the efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 is likely to exist. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone CCS selectively bound to and facilitated Cu transfer to MEK1. Mutations in CCS that disrupt Cu(I) acquisition and exchange or a CCS small molecule inhibitor were employed and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and support the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS.
Collapse
Affiliation(s)
- Michael Grasso
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gavin J Bond
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Biochemistry Major Program, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ye-Jin Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stefanie Boyd
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Maria Matson Dzebo
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Sebastian Valenzuela
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Tiffany Tsang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie A Schibrowsky
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katherine B Alwan
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - George M Burslem
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Duane D Winkler
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ronen Marmorstein
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donita C Brady
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Wieland DCF, Schroer MA, Gruzinov AY, Blanchet CE, Jeffries CM, Svergun DI. ASAXS measurements on ferritin and apoferritin at the bioSAXS beamline P12 (PETRA III, DESY). J Appl Crystallogr 2021; 54:830-838. [PMID: 34188614 PMCID: PMC8202030 DOI: 10.1107/s1600576721003034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
Small-angle X-ray scattering is widely utilized to study biological macromol-ecules in solution. For samples containing specific (e.g. metal) atoms, additional information can be obtained using anomalous scattering. Here, measuring samples at different energies close to the absorption edges of relevant elements provides specific structural details. However, anomalous small-angle X-ray scattering (ASAXS) applications to dilute macromolecular solutions are challenging owing to the overall low anomalous scattering effect. Here, pilot ASAXS experiments from dilute solutions of ferritin and cobalt-loaded apoferritin are reported. These samples were investigated near the resonance X-ray K edges of Fe and Co, respectively, at the EMBL P12 bioSAXS beamline at PETRA III, DESY. Thanks to the high brilliance of the P12 beamline, ASAXS experiments are feasible on dilute protein solutions, allowing one to extract the Fe- or Co-specific anomalous dispersion terms from the ASAXS data. The data were subsequently used to determine the spatial distribution of either iron or cobalt atoms incorporated into the ferritin/apoferritin protein cages.
Collapse
Affiliation(s)
- D. C. F. Wieland
- Institute for Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck Strasse 1, Geesthacht, 21502, Germany
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, Hamburg, 22607, Germany
| | - M. A. Schroer
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, Hamburg, 22607, Germany
| | - A. Yu. Gruzinov
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, Hamburg, 22607, Germany
| | - C. E. Blanchet
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, Hamburg, 22607, Germany
| | - C. M. Jeffries
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, Hamburg, 22607, Germany
| | - D. I. Svergun
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, Hamburg, 22607, Germany
| |
Collapse
|
8
|
Supamas Danwittayakul, Phitchaya Muensri. Polyethyleneimine Coated Polyacrylonitrile Cellulose Membrane for Colorimetric Copper(II) Determination. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kim YJ, Bond GJ, Tsang T, Posimo JM, Busino L, Brady DC. Copper chaperone ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma. Metallomics 2019; 11:1430-1440. [PMID: 31317143 DOI: 10.1039/c9mt00042a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper (Cu) is a tightly regulated micronutrient that functions as a structural or catalytic cofactor for specific proteins essential for a diverse array of biological processes. While the study of the extremely rare genetic diseases, Menkes and Wilson, has highlighted the requirement for proper Cu acquisition and elimination in biological systems for cellular growth and proliferation, the importance of dedicated Cu transport systems, like the Cu chaperones ATOX1 and CCS, in the pathophysiology of cancer is not well defined. We found that ATOX1 was significantly overexpressed in human blood, breast, and skin cancer samples, while CCS was significantly altered in human brain, liver, ovarian, and prostate cancer when compared to normal tissue. Further analysis of genetic expression data in Cancer Cell Line Encyclopedia (CCLE) revealed that ATOX1 is highly expressed in melanoma cell lines over other cancer cell lines. We previously found that Cu is required for BRAFV600E-driven MAPK signaling and melanomagenesis. Here we show that genetic loss of ATOX1 decreased BRAFV600E-dependent growth and signaling in human melanoma cell lines. Pharmacological inhibition of ATOX1 with a small molecule, DCAC50, decreased the phosphorylation of ERK1/2 and reduced the growth of BRAF mutation-positive melanoma cell lines in a dose-dependent manner. Taken together, these results suggest that targeting the Cu chaperone ATOX1 as a novel therapeutic angle in BRAFV600E-driven melanomas.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gavin J Bond
- Biochemistry Major Program, Department of Chemistry, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Tsang
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M Posimo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Lv Y, Ezemaduka AN, Wang Y, Xu J, Li X. AgsA response to cadmium and copper effects at different temperatures in Escherichia coli. J Biochem Mol Toxicol 2019; 33:e22344. [PMID: 31211484 DOI: 10.1002/jbt.22344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 11/06/2022]
Abstract
Small heat shock proteins (sHsps), present from prokaryotes to eukaryotes, are a highly conserved molecular chaperone family. They play a crucial role in protecting organisms against cellular insults from single or multiple environmental stressors including heavy metal exposure, heat or cold shock, oxidative stress, desiccation, etc. Here, the toxicity of cadmium and copper, and their ability to modify the cellular growth rate at different temperatures in Escherichia coli cells were tested. Also, the response mechanism of the sHSP aggregation-suppressing protein (AgsA) in such multiple stress conditions was investigated. The results showed that the half effect concentration (EC50 ) of cadmium in AgsA-transformed E. coli cells at 37°C, 42°C, and 50°C were 11.106, 29.50, and 4.35 mg/L, respectively, and that of the control cells lacking AgsA were 5.05, 0.93, and 0.18 mg/L, respectively, while the half effect concentration (EC50 ) of copper in AgsA-transformed E. coli cells at 37°C, 42°C, and 50°C were 27.3, 3.40, and 1.28 mg/L, respectively, and that of the control cells lacking AgsA were 27.7, 5.93, and 0.134 mg/L, respectively. The toxicities of cadmium and copper at different temperatures as observed by their modification of the cellular growth rate and inhibitory effects were in a dose-dependent manner. Additionally, biochemical characterization of AgsA protein in cells subjected to cadmium and copper stresses at different temperatures implicated suppressed aggregation of cellular proteins in AgsA-transformed E. coli cells. Altogether, our data implicate the AgsA protein as a sensitive protein-based biomarker for metal-induced toxicity monitoring.
Collapse
Affiliation(s)
- Yanchun Lv
- Environmental Sciences, School of Environment, Northeast Normal University, Changchun, China
| | - Anastasia N Ezemaduka
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yunbiao Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingbo Xu
- Environmental Sciences, School of Environment, Northeast Normal University, Changchun, China
| | - Xiujun Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
11
|
Liu JK, Lloyd C, Al-Bassam MM, Ebrahim A, Kim JN, Olson C, Aksenov A, Dorrestein P, Zengler K. Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen. PLoS Comput Biol 2019; 15:e1006848. [PMID: 30845144 PMCID: PMC6430413 DOI: 10.1371/journal.pcbi.1006848] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/22/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
The unique capability of acetogens to ferment a broad range of substrates renders them ideal candidates for the biotechnological production of commodity chemicals. In particular the ability to grow with H2:CO2 or syngas (a mixture of H2/CO/CO2) makes these microorganisms ideal chassis for sustainable bioproduction. However, advanced design strategies for acetogens are currently hampered by incomplete knowledge about their physiology and our inability to accurately predict phenotypes. Here we describe the reconstruction of a novel genome-scale model of metabolism and macromolecular synthesis (ME-model) to gain new insights into the biology of the model acetogen Clostridium ljungdahlii. The model represents the first ME-model of a Gram-positive bacterium and captures all major central metabolic, amino acid, nucleotide, lipid, major cofactors, and vitamin synthesis pathways as well as pathways to synthesis RNA and protein molecules necessary to catalyze these reactions, thus significantly broadens the scope and predictability. Use of the model revealed how protein allocation and media composition influence metabolic pathways and energy conservation in acetogens and accurately predicted secretion of multiple fermentation products. Predicting overflow metabolism is of particular interest since it enables new design strategies, e.g. the formation of glycerol, a novel product for C. ljungdahlii, thus broadening the metabolic capability for this model microbe. Furthermore, prediction and experimental validation of changing secretion rates based on different metal availability opens the window into fermentation optimization and provides new knowledge about the proteome utilization and carbon flux in acetogens.
Collapse
Affiliation(s)
- Joanne K. Liu
- Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Colton Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Mahmoud M. Al-Bassam
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Ali Ebrahim
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Ji-Nu Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Connor Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Alexander Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, United States of America
| | - Pieter Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, United States of America
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
12
|
Dutta A, Alam R, Islam ASM, Dutta A, Ali M. A dual response fluorescent sensor for HNO and S2−ions using a Cu(ii) complex based probe assisted by detailed DFT studies. Dalton Trans 2018; 47:11563-11571. [DOI: 10.1039/c8dt02784f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu(ii) based sensor for selective detection of HNO and S2−with detailed DFT studies is reported here.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Rabiul Alam
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | | | - Arpan Dutta
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Mahammad Ali
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
- Vice-Chancellor
- Aliah University
| |
Collapse
|
13
|
Hao Z, Zhu R, Chen PR. Genetically encoded fluorescent sensors for measuring transition and heavy metals in biological systems. Curr Opin Chem Biol 2017; 43:87-96. [PMID: 29275290 DOI: 10.1016/j.cbpa.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Great progress has been made in expanding the repertoire of genetically encoded fluorescent sensors for monitoring intracellular transition metals (TMs). This powerful toolkit permits dynamic and non-invasive detection of TMs with high spatial-temporal resolution, which enables us to better understand the roles of TM homeostasis in both physiological and pathological settings. Here we summarize the recent development of genetically encoded fluorescent sensors for intracellular detection of TMs such as zinc and copper, as well as heavy metals including lead, cadmium, mercury, and arsenic.
Collapse
Affiliation(s)
- Ziyang Hao
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Chemistry, The University of Chicago, Chicago 60637, USA
| | - Rongfeng Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
14
|
A Highly Selective and Sensitive Fluorescent Turn-Off Probe for Cu 2+ Based on a Guanidine Derivative. Molecules 2017; 22:molecules22101741. [PMID: 29035343 PMCID: PMC6151758 DOI: 10.3390/molecules22101741] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
A new highly selective and sensitive fluorescent probe for Cu2+, N-n-butyl-4-(1′-cyclooctene-1′,3′,6′-triazole)-1,8-naphthalimide (L), was synthesized and evaluated. The structure of compound L was characterized via IR, 1H-NMR, 13C-NMR and HRMS. The fluorescent probe was quenched by Cu2+ with a 1:1 binding ratio and behaved as a “turn-off” sensor. An efficient and sensitive spectrofluorometric method was developed for detecting and estimating trace levels of Cu2+ in EtOH/H2O. The ligand exhibited excitation and emission maxima at 447 and 518 nm, respectively. The equilibrium binding constant of the ligand with Cu2+ was 1.57 × 104 M−1, as calculated using the Stern-Volmer equation. Ligand L is stable and can be used to detect Cu2+ in the range of pH from 7 to 12. The sensor responded to Cu2+ rapidly and a large number of coexisting ions showed almost no obvious interference with the detection.
Collapse
|
15
|
Zhang H, Feng L, Jiang Y, Wong YT, He Y, Zheng G, He J, Tan Y, Sun H, Ho D. A reaction-based near-infrared fluorescent sensor for Cu2+ detection in aqueous buffer and its application in living cells and tissues imaging. Biosens Bioelectron 2017; 94:24-29. [DOI: 10.1016/j.bios.2017.02.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/16/2017] [Accepted: 02/23/2017] [Indexed: 01/02/2023]
|
16
|
Yang X, Zhang W, Yi Z, Xu H, Wei J, Hao L. Highly sensitive and selective fluorescent sensor for copper(ii) based on salicylaldehyde Schiff-base derivatives with aggregation induced emission and mechanoluminescence. NEW J CHEM 2017. [DOI: 10.1039/c7nj01186e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study provides valuable information for designing materials with AIE, Cu2+ sensor and MFC properties based on Schiff-bases.
Collapse
Affiliation(s)
- Xiaoli Yang
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Wenyan Zhang
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Zihan Yi
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Hao Xu
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Jun Wei
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| | - Lingyun Hao
- College of Material Engineering
- Jinling Institute of Technology
- Nanjing 211169
- P. R. China
| |
Collapse
|
17
|
Aschner M, Palinski C, Sperling M, Karst U, Schwerdtle T, Bornhorst J. Imaging metals in Caenorhabditis elegans. Metallomics 2017; 9:357-364. [DOI: 10.1039/c6mt00265j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Fan Z, Ye JH, Bai Y, Bian S, Wang X, Zhang W, He W. A new dual-channel ratiometric fluorescent chemodosimeter for Cu2+ and its imaging in living cells. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Sammons S, Brady D, Vahdat L, Salama AK. Copper suppression as cancer therapy: the rationale for copper chelating agents in BRAFV600 mutated melanoma. Melanoma Manag 2016; 3:207-216. [PMID: 30190890 DOI: 10.2217/mmt-2015-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/13/2016] [Indexed: 01/21/2023] Open
Abstract
The successful targeting of oncogenic BRAFV600 represents one of the landmark breakthroughs in therapy for advanced melanoma. While the initial clinical benefit can be dramatic, resistance is common due to a number of mechanisms, including MAPK pathway reactivation. Recent data have revealed a novel role for copper (Cu) in BRAF signaling with potential clinical implications. The history, preclinical data and efficacy of Cu chelating agents in cancer, specifically tetrathiomolybdate, will be reviewed with a focus on the rationale for targeting the MAPK cascade in melanoma through novel combination strategies.
Collapse
Affiliation(s)
- Sarah Sammons
- Hematology/Oncology, Department of Internal Medicine, Duke University Medical Center, 203 Research Drive, MSRB1, Room 397, Box 2639, Durham, NC 27710, USA.,Hematology/Oncology, Department of Internal Medicine, Duke University Medical Center, 203 Research Drive, MSRB1, Room 397, Box 2639, Durham, NC 27710, USA
| | - Donita Brady
- Department of Cancer Biology & Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, 612 BRBII/III, Philadelphia, PA 19104, USA.,Department of Cancer Biology & Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, 612 BRBII/III, Philadelphia, PA 19104, USA
| | - Linda Vahdat
- Division of Hematology & Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.,Division of Hematology & Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - April Ks Salama
- Melanoma Program, Division of Medical Oncology, Department of Internal Medicine, Duke University Medical Center, 25176 Morris Bldg, DUMC 3198, Durham, NC 27710, USA.,Melanoma Program, Division of Medical Oncology, Department of Internal Medicine, Duke University Medical Center, 25176 Morris Bldg, DUMC 3198, Durham, NC 27710, USA
| |
Collapse
|
20
|
Gupta AS, Paul K, Luxami V. Benzimidazole based ratiometric chemosensor for detection of CN− and Cu2+ ions in protic/aqueous system: Elaboration as XOR logic operation. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Misra SK, Kim B, Kolmodin NJ, Pan D. A dual strategy for sensing metals with a nano ‘pincer’ scavenger for in vitro diagnostics and detection of liver diseases from blood samples. Colloids Surf B Biointerfaces 2015; 126:444-51. [DOI: 10.1016/j.colsurfb.2014.12.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/23/2014] [Accepted: 12/27/2014] [Indexed: 12/17/2022]
|
23
|
Muthuraj B, Chowdhury SR, Mukherjee S, Patra CR, Iyer PK. Aggregation deaggregation influenced selective and sensitive detection of Cu2+ and ATP by histidine functionalized water-soluble fluorescent perylene diimide under physiological conditions and in living cells. RSC Adv 2015. [DOI: 10.1039/c5ra00408j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel PDI-HIS probe detects Cu2+ to form aggregated nonfluorescent complex. Addition of 0.58 ppm ATP to this complex causes its rapid disaggregation thereby recovering the fluorescence by ∼99% in vitro and in A549 living cells.
Collapse
Affiliation(s)
| | - Sayan Roy Chowdhury
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Sudip Mukherjee
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Chitta Ranjan Patra
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Parameswar Krishnan Iyer
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Center for Nanotechnology
| |
Collapse
|
24
|
Kumar A, Kumar A, Dubey M, Biswas A, Pandey DS. Detection of copper(ii) and aluminium(iii) by a new bis-benzimidazole Schiff base in aqueous media via distinct routes. RSC Adv 2015. [DOI: 10.1039/c5ra18566a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Synthesis and characterization of a bis-benzimidazole appended Schiff base ligand, 2-(3,5-bis(1H-benzimidazole-2-yl)-phenyliminomethyl)phenol (H3L) displaying excellent selectivity towards Cu2+and Al3+in mixed aqueous media.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| | - Amit Kumar
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| | - Mrigendra Dubey
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| | - Arnab Biswas
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| | - Daya Shankar Pandey
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi-221 005
- India
| |
Collapse
|
25
|
Wang JH, Guo XL, Hou XF, Zhao HJ, Luo ZY, Zhao J. A Coumarin-based Fluorescent Sensor for Selective Detection of Copper (II). B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.8.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
New colorimetric chemosensor based on rhodamine hydrazide to detect Cu2+ ions by naked eye. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1588-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Fu Y, Feng QC, Jiang XJ, Xu H, Li M, Zang SQ. New fluorescent sensor for Cu2+ and S2− in 100% aqueous solution based on displacement approach. Dalton Trans 2014; 43:5815-22. [DOI: 10.1039/c3dt53281j] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
28
|
Maity D, Sarkar B, Maiti S, Govindaraju T. A Highly Selective Reaction-Based Two-Photon Probe for Copper(I) in Aqueous Media. Chempluschem 2013; 78:785-788. [DOI: 10.1002/cplu.201300089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/16/2013] [Indexed: 11/11/2022]
|
29
|
James SA, de Jonge MD, Howard DL, Bush AI, Paterson D, McColl G. Direct in vivo imaging of essential bioinorganics in Caenorhabditis elegans. Metallomics 2013; 5:627-35. [DOI: 10.1039/c3mt00010a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Chen Y, Zhu C, Cen J, Li J, He W, Jiao Y, Guo Z. A reversible ratiometric sensor for intracellular Cu2+ imaging: metal coordination-altered FRET in a dual fluorophore hybrid. Chem Commun (Camb) 2013; 49:7632-4. [DOI: 10.1039/c3cc42959h] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Wang Y, Zhu S, Hodgkinson V, Prohaska JR, Weisman GA, Gitlin JD, Petris MJ. Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1236-44. [PMID: 23064757 PMCID: PMC3532455 DOI: 10.1152/ajpgi.00339.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/10/2012] [Indexed: 01/31/2023]
Abstract
The essential requirement for copper in early development is dramatically illustrated by Menkes disease, a fatal neurodegenerative disorder of early childhood caused by loss-of-function mutations in the gene encoding the copper transporting ATPase ATP7A. In this study, we generated mice with enterocyte-specific knockout of the murine ATP7A gene (Atp7a) to test its importance in dietary copper acquisition. Although mice lacking Atp7a protein within intestinal enterocytes appeared normal at birth, they exhibited profound growth impairment and neurological deterioration as a consequence of copper deficiency, resulting in excessive mortality prior to weaning. Copper supplementation of lactating females or parenteral copper injection of the affected offspring markedly attenuated this rapid demise. Enterocyte-specific deletion of Atp7a in rescued pregnant females did not restrict embryogenesis; however, copper accumulation in the late-term fetus was severely reduced, resulting in early postnatal mortality. Taken together, these data demonstrate unique and specific requirements for enterocyte Atp7a in neonatal and maternofetal copper acquisition that are dependent on dietary copper availability, thus providing new insights into the mechanisms of gene-nutrient interaction essential for early human development.
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu Z, Zhang C, Wang X, He W, Guo Z. Design and synthesis of a ratiometric fluorescent chemosensor for Cu(II) with a fluorophore hybridization approach. Org Lett 2012; 14:4378-81. [PMID: 22880687 DOI: 10.1021/ol301849z] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new ratiometric fluorescent sensor for Cu(2+), WLN, has been developed via integrating a 1,8-naphthalimide fluorophore with 8-aminoquinoline. WLN exhibits a highly selective ratiometric response to Cu(2+) over other transition metal ions in aqueous media. Moreover, its practical ratiometric imaging ability for intracellular Cu(2+) has been confirmed in human breast adenocarcinoma cells (MCF-7 cells) using a confocal microscope.
Collapse
Affiliation(s)
- Zhipeng Liu
- School of Chemistry and Chemical Engineering and School of Material Science and Engineering, Liaocheng University, Liaocheng, PR China.
| | | | | | | | | |
Collapse
|
33
|
Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 2012; 8:731-6. [PMID: 22772152 PMCID: PMC3600419 DOI: 10.1038/nchembio.1020] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/05/2012] [Indexed: 12/13/2022]
Abstract
Bacterial pathogens secrete chemically diverse iron chelators called siderophores, which may exert additional distinctive functions in vivo. Among these, uropathogenic Escherichia coli often coexpress the virulence-associated siderophore yersiniabactin (Ybt) with catecholate siderophores. Here we used a new MS screening approach to reveal that Ybt is also a physiologically favorable Cu(II) ligand. Direct MS detection of the resulting Cu(II)-Ybt complex in mice and humans with E. coli urinary tract infections demonstrates copper binding to be a physiologically relevant in vivo interaction during infection. Ybt expression corresponded to higher copper resistance among human urinary tract isolates, suggesting a protective role for this interaction. Chemical and genetic characterization showed that Ybt helps bacteria resist copper toxicity by sequestering host-derived Cu(II) and preventing its catechol-mediated reduction to Cu(I). Together, these studies reveal a new virulence-associated function for Ybt that is distinct from iron binding.
Collapse
Affiliation(s)
- Kaveri S. Chaturvedi
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chia S. Hung
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jan R. Crowley
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ann E. Stapleton
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
34
|
Biological responses related to agonistic, antagonistic and synergistic interactions of chemical species. Anal Bioanal Chem 2012; 403:2237-53. [DOI: 10.1007/s00216-012-5776-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 01/26/2023]
|
35
|
Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc Natl Acad Sci U S A 2012; 109:2228-33. [PMID: 22308360 DOI: 10.1073/pnas.1113729109] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper is an essential metal nutrient that is tightly regulated in the body because loss of its homeostasis is connected to severe diseases such as Menkes and Wilson diseases, Alzheimer's disease, prion disorders, and amyotrophic lateral sclerosis. The complex relationships between copper status and various stages of health and disease remain challenging to elucidate, in part due to a lack of methods for monitoring dynamic changes in copper pools in whole living organisms. Here we present the synthesis, spectroscopy, and in vivo imaging applications of Coppersensor 790, a first-generation fluorescent sensor for visualizing labile copper pools in living animals. Coppersensor 790 combines a near-infrared emitting cyanine dye with a sulfur-rich receptor to provide a selective and sensitive turn-on response to copper. This probe is capable of monitoring fluctuations in exchangeable copper stores in living cells and mice under basal conditions, as well as in situations of copper overload or deficiency. Moreover, we demonstrate the utility of this unique chemical tool to detect aberrant increases in labile copper levels in a murine model of Wilson disease, a genetic disorder that is characterized by accumulation of excess copper. The ability to monitor real-time copper fluxes in living animals offers potentially rich opportunities to examine copper physiology in health and disease.
Collapse
|
36
|
Roberts EA. Using metalloproteomics to investigate the cellular physiology of copper in hepatocytes. Metallomics 2012; 4:633-40. [DOI: 10.1039/c2mt20019h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Gómez-Ariza JL, Jahromi EZ, González-Fernández M, García-Barrera T, Gailer J. Liquid chromatography-inductively coupled plasma-based metallomic approaches to probe health-relevant interactions between xenobiotics and mammalian organisms. Metallomics 2011; 3:566-77. [PMID: 21614343 DOI: 10.1039/c1mt00037c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In mammals, the transport of essential elements from the gastrointestinal tract to organs is orchestrated by biochemical mechanisms which have evolved over millions of years. The subsequent organ-based assembly of sufficient amounts of metalloproteins is a prerequisite to maintain mammalian health and well-being. The chronic exposure of various human populations to environmentally abundant toxic metals/metalloid compounds and/or the deliberate administration of medicinal drugs, however, can adversely affect these processes which may eventually result in disease. A better understanding of the perturbation of these processes has the potential to advance human health, but their visualization poses a major problem. Nonetheless, liquid chromatography-inductively coupled plasma-based 'metallomics' methods, however, can provide much needed insight. Size-exclusion chromatography-inductively coupled plasma atomic emission spectrometry, for example, can be used to visualize changes that toxic metals/medicinal drugs exert at the metalloprotein level when they are added to plasma in vitro. In addition, size-exclusion chromatography-inductively coupled plasma mass spectrometry can be employed to analyze organs from toxic metal/medicinal drug-exposed organisms for metalloproteins to gain insight into the biochemical changes that are associated with their acute or chronic toxicity. The execution of such studies-from the selection of an appropriate model organism to the generation of accurate analytical data-is littered with potential pitfalls that may result in artifacts. Drawing on recent lessons that were learned by two research groups, this tutorial review is intended to provide relevant information with regard to the experimental design and the practical application of these aforementioned metallomics tools in applied health research.
Collapse
Affiliation(s)
- José Luis Gómez-Ariza
- Department of Chemistry and Material Sciences, Faculty of Experimental Science, University of Huelva, Campus de El Carmen, 21007 Huelva, Spain
| | | | | | | | | |
Collapse
|
38
|
Averseng O, Hagège A, Taran F, Vidaud C. Surface plasmon resonance for rapid screening of uranyl affine proteins. Anal Chem 2010; 82:9797-802. [PMID: 21069968 DOI: 10.1021/ac102578y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A sensitive immunoassay based on SPR analysis was developed to measure uranyl cation (UO(2)(2+)) affinity for any protein in a free state under physiological conditions. The technique involves immobilization of a specific monoclonal antibody (mAb) raised against UO(2)(2+) and 1,10-phenanthroline-2,9-dicarboxylic acid (DCP) used as a probe of UO(2)(2+) captured by the mAb. Calibration curves were established for accurate determination of UO(2)(2+) concentrations with a detection limit of 7 nM. The remaining free UO(2)(2+) could be accurately quantified from the different protein-metal equilibrium and a dose-response curve established for K(D) determination. This generic method was applied not only to proteins such as transferrin and albumin but also to small phosphonated ligands. Its robustness allows the fast UO(2)(2+) K(D) determination of any kind of macromolecules and small ligands using very few amount of compounds, thus opening new prospects in the field of uranium toxicity.
Collapse
Affiliation(s)
- Olivier Averseng
- Service de Biochimie et de Toxicologie Nucléaire/LEPC, DSV/iBEB, CEA Marcoule, BP 17 171, F-30207 Bagnols sur Cèze, France
| | | | | | | |
Collapse
|
39
|
Ishizaki H, Spitzer M, Wildenhain J, Anastasaki C, Zeng Z, Dolma S, Shaw M, Madsen E, Gitlin J, Marais R, Tyers M, Patton EE. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation. Dis Model Mech 2010; 3:639-51. [PMID: 20713646 DOI: 10.1242/dmm.005769] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.
Collapse
Affiliation(s)
- Hironori Ishizaki
- Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lobinski R, Becker JS, Haraguchi H, Sarkar B. Metallomics: Guidelines for terminology and critical evaluation of analytical chemistry approaches (IUPAC Technical Report). PURE APPL CHEM 2010; 82:493-504. [DOI: 10.1351/pac-rep-09-03-04] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Definitions for the terms "metallome" and "metallomics" are proposed. The state of the art of analytical techniques and methods for systematic studies of metal content, speciation, localization, and use in biological systems is briefly summarized and critically evaluated.
Collapse
Affiliation(s)
- Ryszard Lobinski
- CNRS/UPPA, UMR5254, Laboratory of Analytical, Bio-Inorganic, and Environmental Chemistry, Hélioparc, 2, av. Pr. Angot, 64053 Pau, France
| | - J. Sabine Becker
- Central Division of Analytical Chemistry, Research Centre Jülich, D-52425 Jülich, Germany
| | - Hiroki Haraguchi
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Bibundhendra Sarkar
- The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
41
|
Abstract
Based on explicit definitions of biomolecular EPR spectroscopy and of the metallome, this tutorial review positions EPR in the field of metallomics as a unique method to study native, integrated systems of metallobiomolecular coordination complexes subject to external stimuli. The specific techniques of whole-system bioEPR spectroscopy are described and their historic, recent, and anticipated applications are discussed.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands.
| |
Collapse
|
42
|
Abstract
The emerging field of metallomics refers to the entirety of research activities aimed at the understanding of the molecular mechanisms of metal-dependent life processes. This critical review discusses the concept of metallomics with a focus on analytical techniques and methods for the probing of interactions between metal ions and the organism's genome and the derived -omes: proteome and metabolome. Particular attention is paid to the in vivo screening for the native metal-protein and metal-metabolite complexes by hyphenated techniques that combine a high-resolution separation technique (gel electrophoresis, chromatography or capillary electrophoresis) with sensitive elemental (inductively coupled plasma, ICP) or molecular (electrospray or MALDI) mass spectrometric detection. The contribution of bioinformatics to the prediction of metal-binding sequences in proteins and the role of molecular biology approaches for the detection of metal-dependent genes, proteins and metabolites are highlighted (115 references).
Collapse
Affiliation(s)
- Sandra Mounicou
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement, CNRS UMR 5254, Hélioparc, 2, av. Pr. Angot, F-64053, France
| | | | | |
Collapse
|
43
|
Rogers DA, Ray SJ, Hieftje GM. An electrospray/inductively coupled plasma dual-source time-of-flight mass spectrometer for rapid metallomic and speciation analysis: instrument design. Metallomics 2009. [DOI: 10.1039/b816732j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Zhao J, Bertoglio BA, Devinney MJ, Dineley KE, Kay AR. The interaction of biological and noxious transition metals with the zinc probes FluoZin-3 and Newport Green. Anal Biochem 2008; 384:34-41. [PMID: 18848515 DOI: 10.1016/j.ab.2008.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 12/23/2022]
Abstract
Zinc-sensitive fluorescent probes have become increasingly important in the investigation of the cellular roles of zinc. There is, however, little information on how the other transition metals in cells may influence the measurement of zinc. We have characterized in vitro the interaction of the nominal zinc indicators FluoZin-3 and Newport Green with all the cationic transition metals found within cells, Cr, Mn, Fe, Co, and Cu, as well as Ni and Cd, by measuring their dissociation constants. In addition, we have shown how FluoZin-3 can be used to quantify the concentration of copper in a cell-free assay and report that the fluorescence of Newport Green is boosted by both Cu(I) and Fe(II). Furthermore, we have introduced diagnostics for detecting the interference of metals other than zinc with its measurement within cells.
Collapse
Affiliation(s)
- Jinfu Zhao
- Department of Biology, 336 BB, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|