1
|
Elfawal MA, Goetz E, Kim Y, Chen P, Savinov SN, Barasa L, Thompson PR, Aroian RV. High-Throughput Screening of More Than 30,000 Compounds for Anthelmintics against Gastrointestinal Nematode Parasites. ACS Infect Dis 2025; 11:104-120. [PMID: 39653369 PMCID: PMC11731298 DOI: 10.1021/acsinfecdis.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Gastrointestinal nematodes (GINs) are among the most common parasites of humans, livestock, and companion animals. GIN parasites infect 1-2 billion people worldwide, significantly impacting hundreds of millions of children, pregnant women, and adult workers, thereby perpetuating poverty. Two benzimidazoles with suboptimal efficacy are currently used to treat GINs in humans as part of mass drug administrations, with many instances of lower-than-expected or poor efficacy and possible resistance. Thus, new anthelmintics are urgently needed. However, screening methods for new anthelmintics using human GINs typically have low throughput. Here, using our novel screening pipeline that starts with human hookworms, we screened 30,238 unique small molecules from a wide range of compound libraries, including ones with generic diversity, repurposed drugs, natural derivatives, known mechanisms of action, as well as multiple target-focused libraries (e.g., targeting kinases, GPCRs, and neuronal proteins). We identified 55 compounds with broad-spectrum activity against adult stages of two evolutionary divergent GINs, hookworms (Ancylostoma ceylanicum) and whipworms (Trichuris muris). Based on known databases, the targets of these 55 compounds were predicted in nematode parasites. One novel scaffold from the diversity set library, F0317-0202, showed good activity (high motility inhibition) against both GINs. To better understand this novel scaffold's structure-activity relationships (SAR), we screened 28 analogs and created SAR models highlighting chemical and functional groups required for broad-spectrum activity. These studies validate our new and efficient screening pipeline at the level of tens of thousands of compounds and provide an important set of new GIN-active compounds for developing novel and broadly active anthelmintics.
Collapse
Affiliation(s)
- Mostafa A. Elfawal
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Emily Goetz
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Youmie Kim
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Paulina Chen
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Sergey N. Savinov
- Department
of Science, Rivier University, Nashua, New Hampshire 03060, United States
| | - Leonard Barasa
- Department
of Chemical Biology, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Paul R. Thompson
- Department
of Chemical Biology, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Raffi V. Aroian
- Program
in Molecular Medicine, University of Massachusetts
Chan Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
2
|
Elfawal MA, Goetz E, Kim YM, Chen P, Savinov SN, Barasa L, Thompson PR, Aroian RV. High-throughput screening of more than 30,000 compounds for anthelmintics against gastrointestinal nematode parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594481. [PMID: 39554023 PMCID: PMC11565780 DOI: 10.1101/2024.05.16.594481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Gastrointestinal nematodes (GINs) are amongst the most common parasites of humans, livestock, and companion animals. GIN parasites infect 1-2 billion people worldwide, significantly impacting hundreds of millions of children, pregnant women, and adult workers, thereby perpetuating poverty. Two benzimidazoles with suboptimal efficacy are currently used to treat GINs in humans as part of mass drug administrations, with many instances of lower-than-expected or poor efficacy and possible resistance. Thus, new anthelmintics are urgently needed. However, screening methods for new anthelmintics using human GINs typically have low throughput. Here, using our novel screening pipeline that starts with human hookworms, we screened 30,238 unique small molecules from a wide range of compound libraries, including ones with generic diversity, repurposed drugs, natural derivatives, known mechanisms of action, as well as multiple target-focused libraries (e.g., targeting kinases, GPCRs, and neuronal proteins). We identified 55 compounds with broad-spectrum activity against adult stages of two evolutionary divergent GINs, hookworms ( Ancylostoma ceylanicum ) and whipworms ( Trichuris muris ). Based on known databases, the targets of these 55 compounds were predicted in nematode parasites. One novel scaffold from the diversity set library, F0317-0202, showed good activity (high motility inhibition) against both GINs. To better understand this novel scaffold's structure-activity relationships (SAR), we screened 28 analogs and created SAR models highlighting chemical and functional groups required for broad-spectrum activity. These studies validate our new and efficient screening pipeline at the level of tens of thousands of compounds and provide an important set of new GIN-active compounds for developing novel and broadly-active anthelmintics.
Collapse
|
3
|
Zhang S, Ma D, Wang K, Li Y, Yang Z, Li X, Li J, He J, Mei L, Ye Y, Chen Z, Shen J, Hou P, Guo J, Zhang Q, Yang H. A small-molecule activation mechanism that directly opens the KCNQ2 channel. Nat Chem Biol 2024; 20:847-856. [PMID: 38167918 DOI: 10.1038/s41589-023-01515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.
Collapse
Affiliation(s)
- Shaoying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Demin Ma
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ya Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenni Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Li
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junnan Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiangnan He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, China
| | - Yangliang Ye
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, China
| | - Zongsheng Chen
- Department of Neurology, Wuhu Hospital Affiliated to East China Normal University, Wuhu, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Panpan Hou
- Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Wu X, Jeong CB, Huang W, Ip JCH, Guo J, Lai KP, Liu W, Mo J. Environmental occurrence, biological effects, and health implications of zinc pyrithione: A review. MARINE POLLUTION BULLETIN 2024; 203:116466. [PMID: 38713926 DOI: 10.1016/j.marpolbul.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
5
|
Alam KA, Svalastoga P, Martinez A, Glennon JC, Haavik J. Potassium channels in behavioral brain disorders. Molecular mechanisms and therapeutic potential: A narrative review. Neurosci Biobehav Rev 2023; 152:105301. [PMID: 37414376 DOI: 10.1016/j.neubiorev.2023.105301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Potassium channels (K+-channels) selectively control the passive flow of potassium ions across biological membranes and thereby also regulate membrane excitability. Genetic variants affecting many of the human K+-channels are well known causes of Mendelian disorders within cardiology, neurology, and endocrinology. K+-channels are also primary targets of many natural toxins from poisonous organisms and drugs used within cardiology and metabolism. As genetic tools are improving and larger clinical samples are being investigated, the spectrum of clinical phenotypes implicated in K+-channels dysfunction is rapidly expanding, notably within immunology, neurosciences, and metabolism. K+-channels that previously were considered to be expressed in only a few organs and to have discrete physiological functions, have recently been found in multiple tissues and with new, unexpected functions. The pleiotropic functions and patterns of expression of K+-channels may provide additional therapeutic opportunities, along with new emerging challenges from off-target effects. Here we review the functions and therapeutic potential of K+-channels, with an emphasis on the nervous system, roles in neuropsychiatric disorders and their involvement in other organ systems and diseases.
Collapse
Affiliation(s)
| | - Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Jeffrey Colm Glennon
- Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Norway.
| |
Collapse
|
6
|
Zhu Q, Qian D, Yuan M, Li Z, Xu Z, Liang S, Yu W, Yuan S, Yang J, Hou H, Hu J. Revealing the roles of chemical communication in restoring the formation and electroactivity of electrogenic biofilm under electrical signaling disruption. WATER RESEARCH 2023; 243:120421. [PMID: 37523919 DOI: 10.1016/j.watres.2023.120421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Electrogenic biofilms in microbial electrochemical systems have played significant roles in simultaneous wastewater treatment and energy recovery owing to their unique extracellular electron transfer. Their formation has been shown to be regulated by electrical and chemical communication, but the interaction between these signal communication pathways has not been studied. This research investigated the coordination between intracellular c-di-GMP signaling and reinforced quorum sensing with or without exogenous HSL (a common quorum sensing molecule), on the formation of mixed-cultured electrogenic biofilm under electrical signaling disruption by tetraethylammonium (TEA, a broad-range potassium channel blocker). Intracellular c-di-GMP was spontaneously reinforced in response to TEA stress, and metagenomic analysis revealed that the dominant DGC (the genes for producing c-di-GMP) induced the eventual biofilm formation by mediating exopolysaccharide synthesis. Meanwhile, reinforced quorum sensing by exogenous HSL could also benefit the biofilm restoration, however, it alleviated the TEA-induced communication stress, resulting in the weakening of c-di-GMP dominance. Interestingly, suppressing electrical communication with or without HSL addition both induced selective enrichment of Geobacter of 85.5% or 30.1% respectively. Functional contribution analysis revealed the significant roles of Geobacter and Thauera in c-di-GMP signaling, especially Thauera in resistance to TEA stress. This study proposed a potential strategy for electrogenic biofilm regulation from the perspectives of cell-to-cell communication.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Dingkang Qian
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Mengjiao Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Ziming Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
7
|
Yang GM, Tian FY, Shen YW, Yang CY, Yuan H, Li P, Gao ZB. Functional characterization and in vitro pharmacological rescue of KCNQ2 pore mutations associated with epileptic encephalopathy. Acta Pharmacol Sin 2023; 44:1589-1599. [PMID: 36932231 PMCID: PMC10374643 DOI: 10.1038/s41401-023-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/26/2023] [Indexed: 03/19/2023] Open
Abstract
Mutations in the KCNQ2 gene encoding KV7.2 subunit that mediates neuronal M-current cause a severe form of developmental and epileptic encephalopathy (DEE). Electrophysiological evaluation of KCNQ2 mutations has been proved clinically useful in improving outcome prediction and choosing rational anti-seizure medications (ASMs). In this study we described the clinical characteristics, electrophysiological phenotypes and the in vitro response to KCNQ openers of five KCNQ2 pore mutations (V250A, N258Y, H260P, A265T and G290S) from seven patients diagnosed with KCNQ2-DEE. The KCNQ2 variants were transfected into Chinese hamster ovary (CHO) cells alone, in combination with KCNQ3 (1:1) or with wild-type KCNQ2 (KCNQ2-WT) and KCNQ3 in a ratio of 1:1:2, respectively. Their expression and electrophysiological function were assessed. When transfected alone or in combination with KCNQ3, none of these mutations affected the membrane expression of KCNQ2, but most failed to induce a potassium current except A265T, in which trace currents were observed when co-transfected with KCNQ3. When co-expressed with KCNQ2-WT and KCNQ3 (1:1:2), the currents at 0 mV of these mutations were decreased by 30%-70% compared to the KCNQ2/3 channel, which could be significantly rescued by applying KCNQ openers including the approved antiepileptic drug retigabine (RTG, 10 μM), as well as two candidates subjected to clinical trials, pynegabine (HN37, 1 μM) and XEN1101 (1 μM). These newly identified pathologic variants enrich the KCNQ2-DEE mutation hotspots in the pore-forming domain. This electrophysiological study provides a rational basis for personalized therapy with KCNQ openers in DEE patients carrying loss-of-function (LOF) mutations in KCNQ2.
Collapse
Affiliation(s)
- Gui-Mei Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Fu-Yun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yan-Wen Shen
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Beijing, 100853, China
- Department of Pediatric neurology, Children's Hospital of Fudan university at Xiamen, Xiamen, 361006, China
| | - Chuan-Yan Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ping Li
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhao-Bing Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Oh KS, Roh JW, Joo SY, Ryu K, Kim JA, Kim SJ, Jang SH, Koh YI, Kim DH, Kim HY, Choi M, Jung J, Namkung W, Nam JH, Choi JY, Gee HY. Overlooked KCNQ4 variants augment the risk of hearing loss. Exp Mol Med 2023; 55:844-859. [PMID: 37009795 PMCID: PMC10167218 DOI: 10.1038/s12276-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 04/04/2023] Open
Abstract
Pathogenic variants of KCNQ4 cause symmetrical, late-onset, progressive, high-frequency-affected hearing loss, which eventually involves all frequencies with age. To understand the contribution of KCNQ4 variants to hearing loss, we analyzed whole-exome and genome sequencing data from patients with hearing loss and individuals whose hearing phenotypes were unknown. In KCNQ4, we identified seven missense variants and one deletion variant in 9 hearing loss patients and 14 missense variants in the Korean population with an unknown hearing loss phenotype. The p.R420W and p.R447W variants were found in both cohorts. To investigate the effects of these variants on KCNQ4 function, we performed whole-cell patch clamping and examined their expression levels. Except for p.G435Afs*61, all KCNQ4 variants exhibited normal expression patterns similar to those of wild-type KCNQ4. The p.R331Q, p.R331W, p.G435Afs*61, and p.S691G variants, which were identified in patients with hearing loss, showed a potassium (K+) current density lower than or similar to that of p.L47P, a previously reported pathogenic variant. The p.S185W and p.R216H variants shifted the activation voltage to hyperpolarized voltages. The channel activity of the p.S185W, p.R216H, p.V672M, and p.S691G KCNQ4 proteins was rescued by the KCNQ activators retigabine or zinc pyrithione, whereas p.G435Afs*61 KCNQ4 proteins were partially rescued by sodium butyrate, a chemical chaperone. Additionally, the structure of the variants predicted using AlphaFold2 showed impaired pore configurations, as did the patch-clamp data. Our findings suggest that KCNQ4 variants may be overlooked in hearing loss that starts in adulthood. Some of these variants are medically treatable; hence, genetic screening for KCNQ4 is important.
Collapse
Affiliation(s)
- Kyung Seok Oh
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Jae Won Roh
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Kunhi Ryu
- Yonsei University College of Pharmacy, Incheon, 21983, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Se Jin Kim
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Young Ik Koh
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Da Hye Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Wan Namkung
- Yonsei University College of Pharmacy, Incheon, 21983, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Gyeonggi-do, 10326, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Yonsei University College of Medicine, Brain Korea 21 Project, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Yang X, Chen S, Zhang S, Shi S, Zong R, Gao Y, Guan B, Gamper N, Gao H. Intracellular zinc protects Kv7 K + channels from Ca 2+/calmodulin-mediated inhibition. J Biol Chem 2022; 299:102819. [PMID: 36549648 PMCID: PMC9852549 DOI: 10.1016/j.jbc.2022.102819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Zinc (Zn) is an essential trace element; it serves as a cofactor for a great number of enzymes, transcription factors, receptors, and other proteins. Zinc is also an important signaling molecule, which can be released from intracellular stores into the cytosol or extracellular space, for example, during synaptic transmission. Amongst cellular effects of zinc is activation of Kv7 (KCNQ, M-type) voltage-gated potassium channels. Here, we investigated relationships between Kv7 channel inhibition by Ca2+/calmodulin (CaM) and zinc-mediated potentiation. We show that Zn2+ ionophore, zinc pyrithione (ZnPy), can prevent or reverse Ca2+/CaM-mediated inhibition of Kv7.2. In the presence of both Ca2+ and Zn2+, the Kv7.2 channels lose most of their voltage dependence and lock in an open state. In addition, we demonstrate that mutations that interfere with CaM binding to Kv7.2 and Kv7.3 reduced channel membrane abundance and activity, but these mutants retained zinc sensitivity. Moreover, the relative efficacy of ZnPy to activate these mutants was generally greater, compared with the WT channels. Finally, we show that zinc sensitivity was retained in Kv7.2 channels assembled with mutant CaM with all four EF hands disabled, suggesting that it is unlikely to be mediated by CaM. Taken together, our findings indicate that zinc is a potent Kv7 stabilizer, which may protect these channels from physiological inhibitory effects of neurotransmitters and neuromodulators, protecting neurons from overactivity.
Collapse
Affiliation(s)
- Xinhe Yang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China,CSPC ZhongQi Pharmaceutical Technology (Shijiazhuang) Co, Ltd, Shijiazhuang, Hebei, China
| | - Shuai Chen
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuo Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bingcai Guan
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China; Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK.
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
10
|
Tian F, Cao B, Xu H, Zhan L, Nan F, Li N, Taglialatela M, Gao Z. Epilepsy phenotype and response to KCNQ openers in mice harboring the Kcnq2 R207W voltage-sensor mutation. Neurobiol Dis 2022; 174:105860. [PMID: 36113748 DOI: 10.1016/j.nbd.2022.105860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022] Open
Abstract
KCNQ2-encoded Kv7.2 subunits play a critical role in balancing neuronal excitability. Mutations in KCNQ2 are responsible for highly-heterogenous epileptic and neurodevelopmental phenotypes ranging from self-limited familial neonatal epilepsy (SeLFNE) to severe developmental and epileptic encephalopathy (DEE). Pathogenic KCNQ2 variants cluster at the voltage sensor domain (VSD), the pore domain, and the C-terminal tail. Although several knock-in mice harboring Kcnq2 pore variants have been developed, no mouse line carrying Kcnq2 voltage-sensor mutations has been described. KCNQ2-R207W is an epilepsy-causing mutation located in the VSD, mainly affecting voltage-dependent channel gating. To study the physiological consequence of Kcnq2 VSD dysfunction, we generated a Kcnq2-R207W mouse line and analyzed the pathological and pharmacological phenotypes of mutant mice. As a result, both homozygous (Kcnq2RW/RW) and heterozygous (Kcnq2RW/+) mice were viable. While Kcnq2RW/RW mice displayed a short lifespan, growth retardation, and spontaneous seizures, Kcnq2RW/+ mice survived and developed normally, although only a fraction (9/64; 14%) of them showed behavioral- and ECoG-confirmed spontaneous seizures. Kcnq2RW/+ mice displayed increased susceptibility to evoked seizures, which was dramatically ameliorated by treatment with the novel KCNQ opener pynegabine (HN37). Our results show that the Kcnq2-R207W mouse line, the first harboring a Kcnq2 voltage-sensor mutation, exhibits a unique epileptic phenotype with both spontaneous seizures and increased susceptibility to evoked seizures. In Kcnq2-R207W mice, the potent KCNQ opener HN37, currently in clinical phase I, shows strong anticonvulsant activity, suggesting it may represent a valuable option for the severe phenotypes of KCNQ2-related epilepsy.
Collapse
Affiliation(s)
- Fuyun Tian
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Birong Cao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fajun Nan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples "Federico II", 80131 Naples, Italy.
| | - Zhaobing Gao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Homma K. The Pathological Mechanisms of Hearing Loss Caused by KCNQ1 and KCNQ4 Variants. Biomedicines 2022; 10:biomedicines10092254. [PMID: 36140355 PMCID: PMC9496569 DOI: 10.3390/biomedicines10092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Deafness-associated genes KCNQ1 (also associated with heart diseases) and KCNQ4 (only associated with hearing loss) encode the homotetrameric voltage-gated potassium ion channels Kv7.1 and Kv7.4, respectively. To date, over 700 KCNQ1 and over 70 KCNQ4 variants have been identified in patients. The vast majority of these variants are inherited dominantly, and their pathogenicity is often explained by dominant-negative inhibition or haploinsufficiency. Our recent study unexpectedly identified cell-death-inducing cytotoxicity in several Kv7.1 and Kv7.4 variants. Elucidation of this cytotoxicity mechanism and identification of its modifiers (drugs) have great potential for aiding the development of a novel pharmacological strategy against many pathogenic KCNQ variants. The purpose of this review is to disseminate this emerging pathological role of Kv7 variants and to underscore the importance of experimentally characterizing disease-associated variants.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; ; Tel.: +1-312-503-5344
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
12
|
Chen L, Peng G, Comollo TW, Zou X, Sampson KJ, Larsson HP, Kass RS. Two small-molecule activators share similar effector sites in the KCNQ1 channel pore but have distinct effects on voltage sensor movements. Front Physiol 2022; 13:903050. [PMID: 35957984 PMCID: PMC9359618 DOI: 10.3389/fphys.2022.903050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
ML277 and R-L3 are two small-molecule activators of KCNQ1, the pore-forming subunit of the slowly activating potassium channel IKs. KCNQ1 loss-of-function mutations prolong cardiac action potential duration and are associated with long QT syndrome, which predispose patients to lethal ventricular arrhythmia. ML277 and R-L3 enhance KCNQ1 current amplitude and slow deactivation. However, the presence of KCNE1, an auxiliary subunit of IKs channels, renders the channel insensitive to both activators. We found that ML277 effects are dependent on several residues in the KCNQ1 pore domain. Some of these residues are also necessary for R-L3 effects. These residues form a putative hydrophobic pocket located between two adjacent KCNQ1 subunits, where KCNE1 subunits are thought to dwell, thus providing an explanation for how KCNE1 renders the IKs channel insensitive to these activators. Our experiments showed that the effect of R-L3 on voltage sensor movement during channel deactivation was much more prominent than that of ML277. Simulations using a KCNQ1 kinetic model showed that the effects of ML277 and R-L3 could be reproduced through two different effects on channel gating: ML277 enhances KCNQ1 channel function through a pore-dependent and voltage sensor-independent mechanism, while R-L3 affects both channel pore and voltage sensor.
Collapse
Affiliation(s)
- Lei Chen
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Gary Peng
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Thomas W. Comollo
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Xinle Zou
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - Kevin J. Sampson
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians & Surgeons of Columbia University Irving Medical Center, New York, NY, United States,*Correspondence: Robert S. Kass,
| |
Collapse
|
13
|
Liu S, Guo P, Wang K, Zhang S, Li Y, Shen J, Mei L, Ye Y, Zhang Q, Yang H. General Pharmacological Activation Mechanism of K + Channels Bypassing Channel Gates. J Med Chem 2022; 65:10285-10299. [PMID: 35878013 DOI: 10.1021/acs.jmedchem.1c02115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Under the known pharmacological activation mechanisms, activators allosterically or directly open potassium channel gates. However, herein, molecular dynamics simulations on TREK-1, a member of the channel class gated at the filter, suggested that negatively charged activators act with a gate-independent mechanism where compounds increase currents by promoting ions passing through the central cavity. Then, based on studies of KCNQ2, we uncovered that this noncanonical activation mechanism is shared by the other channel class gated at the helix-bundle crossing. Rational drug design found a novel KCNQ2 agonist, CLE030, which stably binds to the central cavity. Functional analysis, molecular dynamics simulations, and calculations of the potential of mean force revealed that the carbonyl oxygen of CLE030 influences permeant ions in the central cavity to contribute to its activation effects. Together, this study discovered a ligand-to-ion activation mechanism for channels that bypasses their gates and thus is conserved across subfamilies with different gates.
Collapse
Affiliation(s)
- Shijie Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kun Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shaoying Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ya Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Yangliang Ye
- Suzhou AlphaMa Biotechnology Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
14
|
Willegems K, Eldstrom J, Kyriakis E, Ataei F, Sahakyan H, Dou Y, Russo S, Van Petegem F, Fedida D. Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277. Nat Commun 2022; 13:3760. [PMID: 35768468 PMCID: PMC9243137 DOI: 10.1038/s41467-022-31526-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
The KCNQ1 ion channel plays critical physiological roles in electrical excitability and K+ recycling in organs including the heart, brain, and gut. Loss of function is relatively common and can cause sudden arrhythmic death, sudden infant death, epilepsy and deafness. Here, we report cryogenic electron microscopic (cryo-EM) structures of Xenopus KCNQ1 bound to Ca2+/Calmodulin, with and without the KCNQ1 channel activator, ML277. A single binding site for ML277 was identified, localized to a pocket lined by the S4-S5 linker, S5 and S6 helices of two separate subunits. Several pocket residues are not conserved in other KCNQ isoforms, explaining specificity. MD simulations and point mutations support this binding location for ML277 in open and closed channels and reveal that prevention of inactivation is an important component of the activator effect. Our work provides direction for therapeutic intervention targeting KCNQ1 loss of function pathologies including long QT interval syndrome and seizures. KCNQ1 channels are active in heart, brain and gut. Functional loss causes epilepsy and sudden arrhythmic death. Here, authors describe a key activator drug binding site, explaining isoform and drug selectivity, and point the way for new drug design.
Collapse
Affiliation(s)
- Katrien Willegems
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Efthimios Kyriakis
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Fariba Ataei
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes for Health, Bethesda, MD, USA
| | - Ying Dou
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Sophia Russo
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Singh SP, William M, Malavia M, Chu XP. Behavior of KCNQ Channels in Neural Plasticity and Motor Disorders. MEMBRANES 2022; 12:membranes12050499. [PMID: 35629827 PMCID: PMC9143857 DOI: 10.3390/membranes12050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
The broad distribution of voltage-gated potassium channels (VGKCs) in the human body makes them a critical component for the study of physiological and pathological function. Within the KCNQ family of VGKCs, these aqueous conduits serve an array of critical roles in homeostasis, especially in neural tissue. Moreover, the greater emphasis on genomic identification in the past century has led to a growth in literature on the role of the ion channels in pathological disease as well. Despite this, there is a need to consolidate the updated findings regarding both the pharmacotherapeutic and pathological roles of KCNQ channels, especially regarding neural plasticity and motor disorders which have the largest body of literature on this channel. Specifically, KCNQ channels serve a remarkable role in modulating the synaptic efficiency required to create appropriate plasticity in the brain. This role can serve as a foundation for clinical approaches to chronic pain. Additionally, KCNQ channels in motor disorders have been utilized as a direction for contemporary pharmacotherapeutic developments due to the muscarinic properties of this channel. The aim of this study is to provide a contemporary review of the behavior of these channels in neural plasticity and motor disorders. Upon review, the behavior of these channels is largely dependent on the physiological role that KCNQ modulatory factors (i.e., pharmacotherapeutic options) serve in pathological diseases.
Collapse
|
16
|
Progression of KCNQ4 related genetic hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Kojima T, Wasano K, Takahashi S, Homma K. Cell death-inducing cytotoxicity in truncated KCNQ4 variants associated with DFNA2 hearing loss. Dis Model Mech 2021; 14:272416. [PMID: 34622280 PMCID: PMC8628632 DOI: 10.1242/dmm.049015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/22/2021] [Indexed: 01/30/2023] Open
Abstract
KCNQ4 encodes the homotetrameric voltage-dependent potassium ion channel Kv7.4, and is the causative gene for autosomal dominant nonsyndromic sensorineural hearing loss, DFNA2. Dominant-negative inhibition accounts for the observed dominant inheritance of many DFNA2-associated KCNQ4 variants. In addition, haploinsufficiency has been presumed as the pathological mechanism for truncated Kv7.4 variants lacking the C-terminal tetramerization region, as they are unlikely to exert a dominant-negative inhibitory effect. Such truncated Kv7.4 variants should result in relatively mild hearing loss when heterozygous; however, this is not always the case. In this study, we characterized Kv7.4Q71fs (c.211delC), Kv7.4W242X (c.725G>A) and Kv7.4A349fs (c.1044_1051del8) in heterologous expression systems and found that expression of these truncated Kv7.4 variants induced cell death. We also found similar cell death-inducing cytotoxic effects in truncated Kv7.1 (KCNQ1) variants, suggesting that the generality of our findings could account for the dominant inheritance of many, if not most, truncated Kv7 variants. Moreover, we found that the application of autophagy inducers can ameliorate the cytotoxicity, providing a novel insight for the development of alternative therapeutic strategies for Kv7.4 variants. Summary: Expression of truncated KCNQ4 variants lacking the C-terminal tetramerization domain results in cell-death inducing cytotoxicity, providing novel insight into the development of alternative therapeutic strategies for DFNA2 hearing loss.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Koichiro Wasano
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902, Japan
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
18
|
Naffaa MM, Al-Ewaidat OA. Ligand modulation of KCNQ-encoded (K V7) potassium channels in the heart and nervous system. Eur J Pharmacol 2021; 906:174278. [PMID: 34174270 DOI: 10.1016/j.ejphar.2021.174278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
KCNQ-encoded (KV7) potassium channels are diversely distributed in the human tissues, associated with many physiological processes and pathophysiological conditions. These channels are increasingly used as drug targets for treating diseases. More selective and potent molecules on various types of the KV7 channels are desirable for appropriate therapies. The recent knowledge of the structure and function of human KCNQ-encoded channels makes it more feasible to achieve these goals. This review discusses the role and mechanism of action of many molecules in modulating the function of the KCNQ-encoded potassium channels in the heart and nervous system. The effects of these compounds on KV7 channels help to understand their involvement in many diseases, and to search for more selective and potent ligands to be used in the treatment of many disorders such as various types of cardiac arrhythmias, epilepsy, and pain.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Ola A Al-Ewaidat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
19
|
Betrie AH, Brock JA, Harraz OF, Bush AI, He GW, Nelson MT, Angus JA, Wright CE, Ayton S. Zinc drives vasorelaxation by acting in sensory nerves, endothelium and smooth muscle. Nat Commun 2021; 12:3296. [PMID: 34075043 PMCID: PMC8169932 DOI: 10.1038/s41467-021-23198-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Zinc, an abundant transition metal, serves as a signalling molecule in several biological systems. Zinc transporters are genetically associated with cardiovascular diseases but the function of zinc in vascular tone regulation is unknown. We found that elevating cytoplasmic zinc using ionophores relaxed rat and human isolated blood vessels and caused hyperpolarization of smooth muscle membrane. Furthermore, zinc ionophores lowered blood pressure in anaesthetized rats and increased blood flow without affecting heart rate. Conversely, intracellular zinc chelation induced contraction of selected vessels from rats and humans and depolarized vascular smooth muscle membrane potential. We demonstrate three mechanisms for zinc-induced vasorelaxation: (1) activation of transient receptor potential ankyrin 1 to increase calcitonin gene-related peptide signalling from perivascular sensory nerves; (2) enhancement of cyclooxygenase-sensitive vasodilatory prostanoid signalling in the endothelium; and (3) inhibition of voltage-gated calcium channels in the smooth muscle. These data introduce zinc as a new target for vascular therapeutics.
Collapse
Affiliation(s)
- Ashenafi H. Betrie
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia ,grid.1008.90000 0001 2179 088XCardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia ,grid.443626.10000 0004 1798 4069Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui China
| | - James A. Brock
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Osama F. Harraz
- grid.59062.380000 0004 1936 7689Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont USA ,grid.59062.380000 0004 1936 7689Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT USA
| | - Ashley I. Bush
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Guo-Wei He
- grid.443626.10000 0004 1798 4069Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences; The Institute of Cardiovascular Diseases, Tianjin University, Tianjin; Center for Drug Development, Wannan Medical College, Wuhu, Anhui China
| | - Mark T. Nelson
- grid.59062.380000 0004 1936 7689Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont USA ,grid.59062.380000 0004 1936 7689Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT USA ,grid.5379.80000000121662407Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - James A. Angus
- grid.1008.90000 0001 2179 088XCardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Christine E. Wright
- grid.1008.90000 0001 2179 088XCardiovascular Therapeutics Unit, Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Scott Ayton
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Figueroa EE, Denton JS. Zinc pyrithione activates the volume-regulated anion channel through an antioxidant-sensitive mechanism. Am J Physiol Cell Physiol 2021; 320:C1088-C1098. [PMID: 33826406 PMCID: PMC8285639 DOI: 10.1152/ajpcell.00070.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Leucine-rich repeat-containing 8 (LRRC8) volume-regulated anion channels (VRACs) play important physiological roles in diverse cell types and may represent therapeutic targets for various diseases. To date, however, the pharmacological tools for evaluating the druggability of VRACs have been limited to inhibitors, as no activators of the channel have been reported. We therefore performed a fluorescence-based high-throughput screening (HTS) of 1,184 Food and Drug Administration-approved drugs for compounds that increase VRAC activity. The most potent VRAC potentiator identified was zinc pyrithione (ZPT), which is used commercially as an antifouling agent and for treating dandruff and other skin disorders. In intracellular Yellow Fluorescent Protein YFP(F46L/H148Q/I152L)-quenching assays, ZPT potentiates the rate and extent of swelling-induced iodide influx dose dependently with a half-maximal effective concentration (EC50) of 5.7 µM. Whole cell voltage-clamp experiments revealed that coapplication of hypotonic solution and 30 µM ZPT to human embryonic kidney 293 or human colorectal carcinoma 116 cells increases the rate of swelling-induced VRAC activation by approximately 10-fold. ZPT potentiates swelling-induced VRAC currents after currents have reached a steady state and activates currents in the absence of cell swelling. Neither ZnCl2 nor free pyrithione activated VRAC; however, treating cells with a mixture of ZnCl2 and pyrithione led to robust channel activation. Finally, the effects of ZPT on VRAC were inhibited by reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and NAD(P)H oxidase inhibitor diphenyleneiodonium chloride, suggesting the mechanism of action involves ROS generation. The discovery of ZPT as a potentiator/activator of VRAC demonstrates the utility of HTS for identifying small-molecule modulators of VRAC and adds to a growing repertoire of pharmacological tool compounds for probing the molecular physiology and regulation of this important channel.
Collapse
Affiliation(s)
- Eric E. Figueroa
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S. Denton
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee,2Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee,3Vanderbilt Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee
| |
Collapse
|
21
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
22
|
Activation of KCNQ4 as a Therapeutic Strategy to Treat Hearing Loss. Int J Mol Sci 2021; 22:ijms22052510. [PMID: 33801540 PMCID: PMC7958948 DOI: 10.3390/ijms22052510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Potassium voltage-gated channel subfamily q member 4 (KCNQ4) is a voltage-gated potassium channel that plays essential roles in maintaining ion homeostasis and regulating hair cell membrane potential. Reduction of the activity of the KCNQ4 channel owing to genetic mutations is responsible for nonsyndromic hearing loss, a typically late-onset, initially high-frequency loss progressing over time. In addition, variants of KCNQ4 have also been associated with noise-induced hearing loss and age-related hearing loss. Therefore, the discovery of small compounds activating or potentiating KCNQ4 is an important strategy for the curative treatment of hearing loss. In this review, we updated the current concept of the physiological role of KCNQ4 in the inner ear and the pathologic mechanism underlying the role of KCNQ4 variants with regard to hearing loss. Finally, we focused on currently developed KCNQ4 activators and their pros and cons, paving the way for the future development of specific KCNQ4 activators as a remedy for hearing loss.
Collapse
|
23
|
Liu Y, Bian X, Wang K. Pharmacological Activation of Neuronal Voltage-Gated Kv7/KCNQ/M-Channels for Potential Therapy of Epilepsy and Pain. Handb Exp Pharmacol 2021; 267:231-251. [PMID: 33837465 DOI: 10.1007/164_2021_458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Native M-current is a low-threshold, slowly activating potassium current that exerts an inhibitory control over neuronal excitability. The M-channel is primarily co-assembled by heterotetrameric Kv7.2/KCNQ2 and Kv7.3/KCNQ3 subunits that are specifically expressed in the brain and peripheral nociceptive and visceral sensory neurons in the spinal cord. Reduction of M-channel function leads to neuronal hyperexcitability that defines the fundamental mechanism of neurological disorders such as epilepsy and pain, indicating that pharmacological activation of Kv7/KCNQ/M-channels may serve the basis for the therapy. The well-known KCNQ opener retigabine (ezogabine or Potiga) was approved by FDA in 2011 as an anticonvulsant used for an adjunctive treatment of partial epilepsies. Unfortunately, retigabine was discontinued in 2017 due to its side effects of blue-colored appearance of the skin and eyes after prolonged intake. In addition, flupirtine, a structural derivative of retigabine and a centrally acting non-opioid analgesic, was also withdrawn in 2018 for liver toxicity. Fortunately, these side effects are compound-structures related and can be avoided. Thus, further identification and development of novel potent and selective Kv7 channel openers may lead to an effective therapy with improved safety window for anti-epilepsy and anti-nociception.
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Xiling Bian
- Department of Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China. .,Institute of Innovative Drugs Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Wu X, Larsson HP. Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation. Int J Mol Sci 2020; 21:ijms21249440. [PMID: 33322401 PMCID: PMC7763278 DOI: 10.3390/ijms21249440] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The delayed rectifier potassium IKs channel is an important regulator of the duration of the ventricular action potential. Hundreds of mutations in the genes (KCNQ1 and KCNE1) encoding the IKs channel cause long QT syndrome (LQTS). LQTS is a heart disorder that can lead to severe cardiac arrhythmias and sudden cardiac death. A better understanding of the IKs channel (here called the KCNQ1/KCNE1 channel) properties and activities is of great importance to find the causes of LQTS and thus potentially treat LQTS. The KCNQ1/KCNE1 channel belongs to the superfamily of voltage-gated potassium channels. The KCNQ1/KCNE1 channel consists of both the pore-forming subunit KCNQ1 and the modulatory subunit KCNE1. KCNE1 regulates the function of the KCNQ1 channel in several ways. This review aims to describe the current structural and functional knowledge about the cardiac KCNQ1/KCNE1 channel. In addition, we focus on the modulation of the KCNQ1/KCNE1 channel and its potential as a target therapeutic of LQTS.
Collapse
|
25
|
Tsai YM, Jones F, Mullen P, Porter KE, Steele D, Peers C, Gamper N. Vascular Kv7 channels control intracellular Ca 2+ dynamics in smooth muscle. Cell Calcium 2020; 92:102283. [PMID: 32950876 PMCID: PMC7695684 DOI: 10.1016/j.ceca.2020.102283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/23/2023]
Abstract
Voltage-gated Kv7 (or KCNQ) channels control activity of excitable cells, including vascular smooth muscle cells (VSMCs), by setting their resting membrane potential and controlling other excitability parameters. Excitation-contraction coupling in muscle cells is mediated by Ca2+ but until now, the exact role of Kv7 channels in cytosolic Ca2+ dynamics in VSMCs has not been fully elucidated. We utilised microfluorimetry to investigate the impact of Kv7 channel activity on intracellular Ca2+ levels and electrical activity of rat A7r5 VSMCs and primary human internal mammary artery (IMA) SMCs. Both, direct (XE991) and G protein coupled receptor mediated (vasopressin, AVP) Kv7 channel inhibition induced robust Ca2+ oscillations, which were significantly reduced in the presence of Kv7 channel activator, retigabine, L-type Ca2+ channel inhibitor, nifedipine, or T-type Ca2+ channel inhibitor, NNC 55-0396, in A7r5 cells. Membrane potential measured using FluoVolt exhibited a slow depolarisation followed by a burst of sharp spikes in response to XE991; spikes were temporally correlated with Ca2+ oscillations. Phospholipase C inhibitor (edelfosine) reduced AVP-induced, but not XE991-induced Ca2+ oscillations. AVP and XE991 induced a large increase of [Ca2+]i in human IMA, which was also attenuated with retigabine, nifedipine and NNC 55-0396. RT-PCR, immunohistochemistry and electrophysiology suggested that Kv7.5 was the predominant Kv7 subunit in both rat and human arterial SMCs; CACNA1C (Cav1.2; L-type) and CACNA1 G (Cav3.1; T-type) were the most abundant voltage-gated Ca2+ channel gene transcripts in both types of VSMCs. This study establishes Kv7 channels as key regulators of Ca2+ signalling in VSMCs with Kv7.5 playing a dominant role.
Collapse
Affiliation(s)
- Yuan-Ming Tsai
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom; Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defence Medical Centre, Taipei 11490, Taiwan.
| | - Frederick Jones
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Pierce Mullen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Karen E Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Derek Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Chris Peers
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
26
|
Abstract
The opening and closing of voltage-gated ion channels are regulated by voltage sensors coupled to a gate that controls the ion flux across the cellular membrane. Modulation of any part of gating constitutes an entry point for pharmacologically regulating channel function. Here, we report on the discovery of a large family of warfarin-like compounds that open the two voltage-gated type 1 potassium (KV1) channels KV1.5 and Shaker, but not the related KV2-, KV4-, or KV7-type channels. These negatively charged compounds bind in the open state to positively charged arginines and lysines between the intracellular ends of the voltage-sensor domains and the pore domain. This mechanism of action resembles that of endogenous channel-opening lipids and opens up an avenue for the development of ion-channel modulators.
Collapse
|
27
|
Kurata HT. Chemical regulation of Kv7 channels: Diverse scaffolds, sites, and mechanisms of action. J Gen Physiol 2020; 152:151830. [PMID: 32484852 PMCID: PMC7398145 DOI: 10.1085/jgp.202012598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kv7 channels are powerfully regulated by a wide variety of physiological and pharmacological signals. Larsson et al. describe the direct modulation of Kv7 channels by endocannabinoids and explore how combinations of Kv7 activators with distinct subtype specificities might lead to effective and selective drug cocktails.
Collapse
Affiliation(s)
- Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Abd-Elsayed A, Jackson M, Gu SL, Fiala K, Gu J. Neuropathic pain and Kv7 voltage-gated potassium channels: The potential role of Kv7 activators in the treatment of neuropathic pain. Mol Pain 2020; 15:1744806919864256. [PMID: 31342847 PMCID: PMC6659175 DOI: 10.1177/1744806919864256] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain conditions severely and chronically affect the quality of life
in a large human population, but the pain conditions are not adequately managed
due to poor understanding of their underlying mechanisms. There is a pressing
need for further research into this field to help develop effective and
nonaddictive medications to treat neuropathic pain. This article first describes
general clinical classification of pain, types and symptoms of neuropathic pain,
and current practices of clinical management for neuropathic pain. This is
followed by a discussion of various cellular and molecular mechanisms
responsible for the development and maintenance of neuropathic pain. In this
review, we highlight the loss of function of Kv7 voltage-gated potassium as a
mechanism of neuropathic pain and the potential use of Kv7 channel activator as
subsequent treatment.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- 1 Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.,2 Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Markus Jackson
- 1 Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Steven L Gu
- 3 Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Fiala
- 2 Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jianguo Gu
- 1 Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA.,3 Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
29
|
Van Theemsche KM, Van de Sande DV, Snyders DJ, Labro AJ. Hydrophobic Drug/Toxin Binding Sites in Voltage-Dependent K + and Na + Channels. Front Pharmacol 2020; 11:735. [PMID: 32499709 PMCID: PMC7243439 DOI: 10.3389/fphar.2020.00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of fenestrations in the channel pore wall are well defined and categorized. No such classification exists in the much larger Kv channel family, although certain lipophilic compounds seem to deviate from binding to well-known hydrophilic binding sites. By mapping different compound binding sites onto 3D structures of Kv channels, there appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This review describes the different lipophilic binding sites and location of pore wall fenestrations within the Kv channel family and compares it to the knowledge of Nav channels.
Collapse
Affiliation(s)
- Kenny M Van Theemsche
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
30
|
Jung J, Lin H, Koh YI, Ryu K, Lee JS, Rim JH, Choi HJ, Lee HJ, Kim HY, Yu S, Jin H, Lee JH, Lee MG, Namkung W, Choi JY, Gee HY. Rare KCNQ4 variants found in public databases underlie impaired channel activity that may contribute to hearing impairment. Exp Mol Med 2019; 51:1-12. [PMID: 31434872 PMCID: PMC6802650 DOI: 10.1038/s12276-019-0300-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/01/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023] Open
Abstract
KCNQ4 is frequently mutated in autosomal dominant non-syndromic hearing loss (NSHL), a typically late-onset, initially high-frequency loss that progresses over time (DFNA2). Most KCNQ4 mutations linked to hearing loss are clustered around the pore region of the protein and lead to loss of KCNQ4-mediated potassium currents. To understand the contribution of KCNQ4 variants to NSHL, we surveyed public databases and found 17 loss-of-function and six missense KCNQ4 variants affecting amino acids around the pore region. The missense variants have not been reported as pathogenic and are present at a low frequency (minor allele frequency < 0.0005) in the population. We examined the functional impact of these variants, which, interestingly, induced a reduction in potassium channel activity without altering expression or trafficking of the channel protein, being functionally similar to DFNA2-associated KCNQ4 mutations. Therefore, these variants may be risk factors for late-onset hearing loss, and individuals harboring any one of these variants may develop hearing loss during adulthood. Reduced channel activity could be rescued by KCNQ activators, suggesting the possibility of medical intervention. These findings indicate that KCNQ4 variants may contribute more to late-onset NSHL than expected, and therefore, genetic screening for this gene is important for the prevention and treatment of NSHL.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Haiyue Lin
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Young Ik Koh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kunhi Ryu
- Yonsei University College of Pharmacy, Incheon, 21983, Korea
| | - Joon Suk Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - John Hoon Rim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hak Joon Lee
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Seyoung Yu
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyunsoo Jin
- Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Wan Namkung
- Yonsei University College of Pharmacy, Incheon, 21983, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
31
|
Kim EC, Patel J, Zhang J, Soh H, Rhodes JS, Tzingounis AV, Chung HJ. Heterozygous loss of epilepsy gene KCNQ2 alters social, repetitive and exploratory behaviors. GENES BRAIN AND BEHAVIOR 2019; 19:e12599. [PMID: 31283873 PMCID: PMC7050516 DOI: 10.1111/gbb.12599] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 12/28/2022]
Abstract
KCNQ/Kv7 channels conduct voltage‐dependent outward potassium currents that potently decrease neuronal excitability. Heterozygous inherited mutations in their principle subunits Kv7.2/KCNQ2 and Kv7.3/KCNQ3 cause benign familial neonatal epilepsy whereas patients with de novo heterozygous Kv7.2 mutations are associated with early‐onset epileptic encephalopathy and neurodevelopmental disorders characterized by intellectual disability, developmental delay and autism. However, the role of Kv7.2‐containing Kv7 channels in behaviors especially autism‐associated behaviors has not been described. Because pathogenic Kv7.2 mutations in patients are typically heterozygous loss‐of‐function mutations, we investigated the contributions of Kv7.2 to exploratory, social, repetitive and compulsive‐like behaviors by behavioral phenotyping of both male and female KCNQ2+/− mice that were heterozygous null for the KCNQ2 gene. Compared with their wild‐type littermates, male and female KCNQ2+/− mice displayed increased locomotor activity in their home cage during the light phase but not the dark phase and showed no difference in motor coordination, suggesting hyperactivity during the inactive light phase. In the dark phase, KCNQ2+/− group showed enhanced exploratory behaviors, and repetitive grooming but decreased sociability with sex differences in the degree of these behaviors. While male KCNQ2+/− mice displayed enhanced compulsive‐like behavior and social dominance, female KCNQ2+/− mice did not. In addition to elevated seizure susceptibility, our findings together indicate that heterozygous loss of Kv7.2 induces behavioral abnormalities including autism‐associated behaviors such as reduced sociability and enhanced repetitive behaviors. Therefore, our study is the first to provide a tangible link between loss‐of‐function Kv7.2 mutations and the behavioral comorbidities of Kv7.2‐associated epilepsy.
Collapse
Affiliation(s)
- Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jaimin Patel
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
32
|
Hou P, Shi J, White KM, Gao Y, Cui J. ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling. eLife 2019; 8:e48576. [PMID: 31329101 PMCID: PMC6684268 DOI: 10.7554/elife.48576] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Upon membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states of the stepwise voltage-sensing domain (VSD) activation. In the heart, KCNQ1 associates with KCNE1 subunits to form IKs channels that regulate heart rhythm. KCNE1 suppresses the IO state so that the IKs channel opens only to the AO state. Here, we tested modulations of human KCNQ1 channels by an activator ML277 in Xenopus oocytes. It exclusively changes the pore opening properties of the AO state without altering the IO state, but does not affect VSD activation. These observations support a distinctive mechanism responsible for the VSD-pore coupling at the AO state that is sensitive to ML277 modulation. ML277 provides insights and a tool to investigate the gating mechanism of KCNQ1 channels, and our study reveals a new strategy for treating long QT syndrome by specifically enhancing the AO state of native IKs currents.
Collapse
Affiliation(s)
- Panpan Hou
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | - Jingyi Shi
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | - Kelli McFarland White
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | | | - Jianmin Cui
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| |
Collapse
|
33
|
Zhang F, Liu Y, Tang F, Liang B, Chen H, Zhang H, Wang K. Electrophysiological and pharmacological characterization of a novel and potent neuronal Kv7 channel opener SCR2682 for antiepilepsy. FASEB J 2019; 33:9154-9166. [DOI: 10.1096/fj.201802848rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fan Zhang
- The Key Laboratory of Neural and Vascular Biology Ministry of Education The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province Department of Pharmacology Hebei Medical University Shijiazhuang China
| | - Yani Liu
- Department of Pharmacology Qingdao University Qingdao China
| | - Feng Tang
- Medicinal Chemistry, Simcere Pharmaceutical Nanjing China
| | - Bo Liang
- Medicinal Chemistry Shanghai Zhimeng BioPharma Shanghai China
| | - Huanming Chen
- Medicinal Chemistry Shanghai Zhimeng BioPharma Shanghai China
| | - Hailin Zhang
- The Key Laboratory of Neural and Vascular Biology Ministry of Education The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province Department of Pharmacology Hebei Medical University Shijiazhuang China
| | - Kewei Wang
- Department of Pharmacology Qingdao University Qingdao China
- Institute of Innovative Drugs School of Pharmacy Qingdao University Qingdao China
- Center for Brain Science and Brain‐Inspired Intelligence Guangzhou China
| |
Collapse
|
34
|
Abstract
The highly structurally similar drugs flupirtine and retigabine have been regarded as safe and effective for many years but lately they turned out to exert intolerable side effects. While the twin molecules share the mode of action, both stabilize the open state of voltage-gated potassium channels, the form and severity of adverse effects is different. The analgesic flupirtine caused drug-induced liver injury in rare but fatal cases, whereas prolonged use of the antiepileptic retigabine led to blue tissue discoloration. Because the adverse effects seem unrelated to the mode of action, it is likely, that both drugs that occupied important therapeutic niches, could be replaced. Reasons for the clinically relevant toxicity will be clarified and future substitutes for these drugs presented in this review.
Collapse
|
35
|
Whole-exome sequencing identifies two novel mutations in KCNQ4 in individuals with nonsyndromic hearing loss. Sci Rep 2018; 8:16659. [PMID: 30413759 PMCID: PMC6226507 DOI: 10.1038/s41598-018-34876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/27/2018] [Indexed: 11/09/2022] Open
Abstract
Mutations in potassium voltage-gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to a type of nonsyndromic hearing loss, deafness nonsyndromic autosomal dominant 2 (DFNA2). We performed whole-exome sequencing for 98 families with hearing loss and found mutations in KCNQ4 in five families. In this study, we characterized two novel mutations in KCNQ4: a missense mutation (c.796G>T; p.Asp266Tyr) and an in-frame deletion mutation (c.259_267del; p.Val87_Asn89del). p.Asp266Tyr located in the channel pore region resulted in early onset and moderate hearing loss, whereas p.Val87_Asn89del located in the N-terminal cytoplasmic region resulted in late onset and high frequency-specific hearing loss. When heterologously expressed in HEK 293 T cells, both mutant proteins did not show defects in protein trafficking to the plasma membrane or in interactions with wild-type (WT) KCNQ4 channels. Patch-clamp analysis demonstrated that both p.Asp266Tyr and p.Val87_Asn89del mutant channels lost conductance and were completely unresponsive to KCNQ activators, such as retigabine, zinc pyrithione, and ML213. Channels assembled from WT-p.Asp266Tyr concatemers, like those from WT-WT concatemers, exhibited conductance and responsiveness to KCNQ activators. However, channels assembled from WT-p.Val87_Asn89del concatemers showed impaired conductance, suggesting that p.Val87_Asn89del caused complete loss-of-function with a strong dominant-negative effect on functional WT channels. Therefore, the main pathological mechanism may be related to loss of K+ channel activity, not defects in trafficking.
Collapse
|
36
|
Wang CK, Lamothe SM, Wang AW, Yang RY, Kurata HT. Pore- and voltage sensor-targeted KCNQ openers have distinct state-dependent actions. J Gen Physiol 2018; 150:1722-1734. [PMID: 30373787 PMCID: PMC6279353 DOI: 10.1085/jgp.201812070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/24/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023] Open
Abstract
Ion channels encoded by KCNQ2-5 generate a prominent K+ conductance in the central nervous system, referred to as the M current, which is controlled by membrane voltage and PIP2. The KCNQ2-5 voltage-gated potassium channels are targeted by a variety of activating compounds that cause negative shifts in the voltage dependence of activation. The underlying pharmacology of these effects is of growing interest because of possible clinical applications. Recent studies have revealed multiple binding sites and mechanisms of action of KCNQ activators. For example, retigabine targets the pore domain, but several compounds have been shown to influence the voltage-sensing domain. An important unexplored feature of these compounds is the influence of channel gating on drug binding or effects. In the present study, we compare the state-dependent actions of retigabine and ICA-069673 (ICA73, a voltage sensor-targeted activator). We assess drug binding to preopen states by applying drugs to homomeric KCNQ2 channels at different holding voltages, demonstrating little or no association of ICA73 with resting states. Using rapid solution switching, we also demonstrate that the rate of onset of ICA73 correlates with the voltage dependence of channel activation. Retigabine actions differ significantly, with prominent drug effects seen at very negative holding voltages and distinct voltage dependences of drug binding versus channel activation. Using similar approaches, we investigate the mechanistic basis for attenuation of ICA73 actions by the voltage-sensing domain mutation KCNQ2[A181P]. Our findings demonstrate different state-dependent actions of pore- versus voltage sensor-targeted KCNQ channel activators, which highlight that subtypes of this drug class operate with distinct mechanisms.
Collapse
Affiliation(s)
- Caroline K Wang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Shawn M Lamothe
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Alice W Wang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Runying Y Yang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Wang AW, Yau MC, Wang CK, Sharmin N, Yang RY, Pless SA, Kurata HT. Four drug-sensitive subunits are required for maximal effect of a voltage sensor-targeted KCNQ opener. J Gen Physiol 2018; 150:1432-1443. [PMID: 30166313 PMCID: PMC6168237 DOI: 10.1085/jgp.201812014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022] Open
Abstract
KCNQ2-5 (Kv7.2-Kv7.5) channels are strongly influenced by an emerging class of small-molecule channel activators. Retigabine is the prototypical KCNQ activator that is thought to bind within the pore. It requires the presence of a Trp side chain that is conserved among retigabine-sensitive channels but absent in the retigabine-insensitive KCNQ1 subtype. Recent work has demonstrated that certain KCNQ openers are insensitive to mutations of this conserved Trp, and that their effects are instead abolished or attenuated by mutations in the voltage-sensing domain (VSD). In this study, we investigate the stoichiometry of a VSD-targeted KCNQ2 channel activator, ICA-069673, by forming concatenated channel constructs with varying numbers of drug-insensitive subunits. In homomeric WT KCNQ2 channels, ICA-069673 strongly stabilizes an activated channel conformation, which is reflected in the pronounced deceleration of deactivation and leftward shift of the conductance-voltage relationship. A full complement of four drug-sensitive subunits is required for maximal sensitivity to ICA-069673-even a single drug-insensitive subunit leads to significantly weakened effects. In a companion article (see Yau et al. in this issue), we demonstrate very different stoichiometry for the action of retigabine on KCNQ3, for which a single retigabine-sensitive subunit enables near-maximal effect. Together, these studies highlight fundamental differences in the site and mechanism of activation between retigabine and voltage sensor-targeted KCNQ openers.
Collapse
Affiliation(s)
- Alice W Wang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Michael C Yau
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Drug Design and Pharmacology (Center for Biopharmaceuticals), University of Copenhagen, Copenhagen, Denmark
| | - Caroline K Wang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Nazlee Sharmin
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Runying Y Yang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Stephan A Pless
- Drug Design and Pharmacology (Center for Biopharmaceuticals), University of Copenhagen, Copenhagen, Denmark
| | - Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
Yau MC, Kim RY, Wang CK, Li J, Ammar T, Yang RY, Pless SA, Kurata HT. One drug-sensitive subunit is sufficient for a near-maximal retigabine effect in KCNQ channels. J Gen Physiol 2018; 150:1421-1431. [PMID: 30166314 PMCID: PMC6168243 DOI: 10.1085/jgp.201812013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Retigabine is a widely studied potassium channel activator that is thought to interact with a conserved Trp side chain in the pore domain of Kv7 subunits. Yau et al. demonstrate that drug sensitivity in just one of the four subunits is sufficient for a near-maximal response to retigabine. Retigabine is an antiepileptic drug and the first voltage-gated potassium (Kv) channel opener to be approved for human therapeutic use. Retigabine is thought to interact with a conserved Trp side chain in the pore of KCNQ2–5 (Kv7.2–7.5) channels, causing a pronounced hyperpolarizing shift in the voltage dependence of activation. In this study, we investigate the functional stoichiometry of retigabine actions by manipulating the number of retigabine-sensitive subunits in concatenated KCNQ3 channel tetramers. We demonstrate that intermediate retigabine concentrations cause channels to exhibit biphasic conductance–voltage relationships rather than progressive concentration-dependent shifts. This suggests that retigabine can exert its effects in a nearly “all-or-none” manner, such that channels exhibit either fully shifted or unshifted behavior. Supporting this notion, concatenated channels containing only a single retigabine-sensitive subunit exhibit a nearly maximal retigabine effect. Also, rapid solution exchange experiments reveal delayed kinetics during channel closure, as retigabine dissociates from channels with multiple drug-sensitive subunits. Collectively, these data suggest that a single retigabine-sensitive subunit can generate a large shift of the KCNQ3 conductance–voltage relationship. In a companion study (Wang et al. 2018. J. Gen. Physiol.https://doi.org/10.1085/jgp.201812014), we contrast these findings with the stoichiometry of a voltage sensor-targeted KCNQ channel opener (ICA-069673), which requires four drug-sensitive subunits for maximal effect.
Collapse
Affiliation(s)
- Michael C Yau
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Drug Design and Pharmacology (Center for Biopharmaceuticals), University of Copenhagen, Copenhagen, Denmark
| | - Robin Y Kim
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline K Wang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jingru Li
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek Ammar
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Runying Y Yang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stephan A Pless
- Department of Drug Design and Pharmacology (Center for Biopharmaceuticals), University of Copenhagen, Copenhagen, Denmark
| | - Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Abstract
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
40
|
Du X, Gao H, Jaffe D, Zhang H, Gamper N. M-type K + channels in peripheral nociceptive pathways. Br J Pharmacol 2018; 175:2158-2172. [PMID: 28800673 PMCID: PMC5980636 DOI: 10.1111/bph.13978] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Pathological pain is a hyperexcitability disorder. Since the excitability of a neuron is set and controlled by a complement of ion channels it expresses, in order to understand and treat pain, we need to develop a mechanistic insight into the key ion channels controlling excitability within the mammalian pain pathways and how these ion channels are regulated and modulated in various physiological and pathophysiological settings. In this review, we will discuss the emerging data on the expression in pain pathways, functional role and modulation of a family of voltage-gated K+ channels called 'M channels' (KCNQ, Kv 7). M channels are increasingly recognized as important players in controlling pain signalling, especially within the peripheral somatosensory system. We will also discuss the therapeutic potential of M channels as analgesic drug targets. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc/.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
| | - Haixia Gao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - David Jaffe
- Department of Biology, UTSA Neurosciences InstituteUniversity of Texas at San AntonioSan AntonioTXUSA
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
| | - Nikita Gamper
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
41
|
Eid BG, Gurney AM. Zinc pyrithione activates K+ channels and hyperpolarizes the membrane of rat pulmonary artery smooth muscle cells. PLoS One 2018; 13:e0192699. [PMID: 29474372 PMCID: PMC5824988 DOI: 10.1371/journal.pone.0192699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
The membrane potential helps determine pulmonary artery smooth muscle cell (PASMC) contraction. The Kv7 channel activators, retigabine and flupirtine, are thought to dilate pulmonary arteries by hyperpolarising PASMC. Zinc pyrithione activates Kv7 channels by a mechanism distinct from retigabine and with different Kv7 subunit selectivity. This study aimed to determine if zinc pyrithione selectively activates Kv7 channels in rat PASMC to evoke pulmonary artery dilation. Zinc pyrithione relaxed pulmonary arteries with half-maximal effect at 4.3μM. At 10μM it activated pronounced voltage-dependent K+ current and hyperpolarized PASMCs by around 10mV. Tetraethylammonium ions (TEA, 10mM) and paxilline (1μM) abolished both the current and hyperpolarisation. XE991 (10μM) blocked the hyperpolarization and reduced the current by 30%. Iberiotoxin (50nM) had no effect on the hyperpolarisation, but reduced the current by 40%. The XE991-sensitive current activated with an exponential time course (time constant 17ms), whereas the iberiotoxin-sensitive current followed a bi-exponential time course (time constants 6 and 57ms), suggesting that the drugs blocked different components of the zinc pyrithione-induced current. Zinc pyrithione therefore appears to activate at least two types of K+ channel in PASMC; an XE991, TEA and paxilline-sensitive Kv7 channel and a TEA, paxilline and iberiotoxin-sensitive BKCa channel. Both could contribute to the relaxing effect of zinc pyrithione on pulmonary artery.
Collapse
Affiliation(s)
- Basma G. Eid
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alison M. Gurney
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 2017; 114:E6410-E6419. [PMID: 28716904 DOI: 10.1073/pnas.1620598114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.
Collapse
|
43
|
Fluorescence High-Throughput Screening for Inhibitors of TonB Action. J Bacteriol 2017; 199:JB.00889-16. [PMID: 28242720 DOI: 10.1128/jb.00889-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria acquire ferric siderophores through TonB-dependent outer membrane transporters (TBDT). By fluorescence spectroscopic hgh-throughput screening (FLHTS), we identified inhibitors of TonB-dependent ferric enterobactin (FeEnt) uptake through Escherichia coli FepA (EcoFepA). Among 165 inhibitors found in a primary screen of 17,441 compounds, we evaluated 20 in secondary tests: TonB-dependent ferric siderophore uptake and colicin killing and proton motive force-dependent lactose transport. Six of 20 primary hits inhibited TonB-dependent activity in all tests. Comparison of their effects on [59Fe]Ent and [14C]lactose accumulation suggested several as proton ionophores, but two chemicals, ebselen and ST0082990, are likely not proton ionophores and may inhibit TonB-ExbBD. The facility of FLHTS against E. coli led us to adapt it to Acinetobacter baumannii We identified its FepA ortholog (AbaFepA), deleted and cloned its structural gene, genetically engineered 8 Cys substitutions in its surface loops, labeled them with fluorescein, and made fluorescence spectroscopic observations of FeEnt uptake in A. baumannii Several Cys substitutions in AbaFepA (S279C, T562C, and S665C) were readily fluoresceinated and then suitable as sensors of FeEnt transport. As in E. coli, the test monitored TonB-dependent FeEnt uptake by AbaFepA. In microtiter format with A. baumannii, FLHTS produced Z' factors 0.6 to 0.8. These data validated the FLHTS strategy against even distantly related Gram-negative bacterial pathogens. Overall, it discovered agents that block TonB-dependent transport and showed the potential to find compounds that act against Gram-negative CRE (carbapenem-resistant Enterobacteriaceae)/ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Our results suggest that hundreds of such chemicals may exist in larger compound libraries.IMPORTANCE Antibiotic resistance in Gram-negative bacteria has spurred efforts to find novel compounds against new targets. The CRE/ESKAPE pathogens are resistant bacteria that include Acinetobacter baumannii, a common cause of ventilator-associated pneumonia and sepsis. We performed fluorescence high-throughput screening (FLHTS) against Escherichia coli to find inhibitors of TonB-dependent iron transport, tested them against A. baumannii, and then adapted the FLHTS technology to allow direct screening against A. baumannii This methodology is expandable to other drug-resistant Gram-negative pathogens. Compounds that block TonB action may interfere with iron acquisition from eukaryotic hosts and thereby constitute bacteriostatic antibiotics that prevent microbial colonization of human and animals. The FLHTS method may identify both species-specific and broad-spectrum agents against Gram-negative bacteria.
Collapse
|
44
|
Bregante M, Carpaneto A, Piazza V, Sbrana F, Vassalli M, Faimali M, Gambale F. Osmoregulated Chloride Currents in Hemocytes from Mytilus galloprovincialis. PLoS One 2016; 11:e0167972. [PMID: 27936151 PMCID: PMC5148081 DOI: 10.1371/journal.pone.0167972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
We investigated the biophysical properties of the transport mediated by ion channels in hemocytes from the hemolymph of the bivalve Mytilus galloprovincialis. Besides other transporters, mytilus hemocytes possess a specialized channel sensitive to the osmotic pressure with functional properties similar to those of other transport proteins present in vertebrates. As chloride fluxes may play an important role in the regulation of cell volume in case of modifications of the ionic composition of the external medium, we focused our attention on an inwardly-rectifying voltage-dependent, chloride-selective channel activated by negative membrane potentials and potentiated by the low osmolality of the external solution. The chloride channel was slightly inhibited by micromolar concentrations of zinc chloride in the bath solution, while the antifouling agent zinc pyrithione did not affect the channel conductance at all. This is the first direct electrophysiological characterization of a functional ion channel in ancestral immunocytes of mytilus, which may bring a contribution to the understanding of the response of bivalves to salt and contaminant stresses.
Collapse
Affiliation(s)
- Monica Bregante
- Institute of Biophysics, National Research Council of Italy (IBF), Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council of Italy (IBF), Genova, Italy
| | - Veronica Piazza
- Institute of Marine Sciences, National Research Council of Italy (ISMAR), Genova, Italy
| | - Francesca Sbrana
- Institute of Biophysics, National Research Council of Italy (IBF), Genova, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council of Italy (IBF), Genova, Italy
| | - Marco Faimali
- Institute of Marine Sciences, National Research Council of Italy (ISMAR), Genova, Italy
| | - Franco Gambale
- Institute of Biophysics, National Research Council of Italy (IBF), Genova, Italy
- * E-mail:
| |
Collapse
|
45
|
Zhang X, An H, Li J, Zhang Y, Liu Y, Jia Z, Zhang W, Chu L, Zhang H. Selective activation of vascular K v 7.4/K v 7.5 K + channels by fasudil contributes to its vasorelaxant effect. Br J Pharmacol 2016; 173:3480-3491. [PMID: 27677924 DOI: 10.1111/bph.13639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Kv 7 (Kv 7.1-7.5) channels play an important role in the regulation of neuronal excitability and the cardiac action potential. Growing evidence suggests Kv 7.4/Kv 7.5 channels play a crucial role in regulating vascular smooth muscle contractility. Most of the reported Kv 7 openers have shown poor selectivity across these five subtypes. In this study, fasudil - a drug used for cerebral vasospasm - has been found to be a selective opener of Kv 7.4/Kv 7.5 channels. EXPERIMENTAL APPROACH A perforated whole-cell patch technique was used to record the currents and membrane potential. Homology modelling and a docking technique were used to investigate the interaction between fasudil and the Kv 7.4 channel. An isometric tension recording technique was used to assess the vascular tension. KEY RESULTS Fasudil selectively and potently enhanced Kv 7.4 and Kv 7.4/Kv 7.5 currents expressed in HEK293 cells, and shifted the voltage-dependent activation curve in a more negative direction. Fasudil did not affect either Kv 7.2 and Kv 7.2/Kv 7.3 currents expressed in HEK293 cells, the native neuronal M-type K+ currents, or the resting membrane potential in small rat dorsal root ganglia neurons. The Val248 in S5 and Ile308 in S6 segment of Kv 7.4 were critical for this activating effect of fasudil. Fasudil relaxed precontracted rat small arteries in a concentration-dependent fashion; this effect was antagonized by the Kv 7 channel blocker XE991. CONCLUSIONS AND IMPLICATIONS These results suggest that fasudil is a selective Kv 7.4/Kv 7.5 channel opener and provide a new dimension for developing selective Kv 7 modulators and a new prospective for the use, action and mechanism of fasudil.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China.,Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Junwei Li
- Key Laboratory of Molecular Biophysics, Hebei Province; Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yang Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li Chu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
46
|
Liin SI, Larsson JE, Barro-Soria R, Bentzen BH, Larsson HP. Fatty acid analogue N-arachidonoyl taurine restores function of I Ks channels with diverse long QT mutations. eLife 2016; 5. [PMID: 27690226 PMCID: PMC5081249 DOI: 10.7554/elife.20272] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023] Open
Abstract
About 300 loss-of-function mutations in the IKs channel have been identified in patients with Long QT syndrome and cardiac arrhythmia. How specific mutations cause arrhythmia is largely unknown and there are no approved IKs channel activators for treatment of these arrhythmias. We find that several Long QT syndrome-associated IKs channel mutations shift channel voltage dependence and accelerate channel closing. Voltage-clamp fluorometry experiments and kinetic modeling suggest that similar mutation-induced alterations in IKs channel currents may be caused by different molecular mechanisms. Finally, we find that the fatty acid analogue N-arachidonoyl taurine restores channel gating of many different mutant channels, even though the mutations are in different domains of the IKs channel and affect the channel by different molecular mechanisms. N-arachidonoyl taurine is therefore an interesting prototype compound that may inspire development of future IKs channel activators to treat Long QT syndrome caused by diverse IKs channel mutations. DOI:http://dx.doi.org/10.7554/eLife.20272.001 Every heartbeat relies on an electric wave that travels through the heart. This wave must reach different parts of the heart in a specific sequence to ensure that the heart muscle cells contract in a coordinated manner. Such coordinated contractions enable the heart to pump enough blood around the body. By allowing specific ions to flow into or out of the heart muscle cell, proteins called ion channels in the cell membrane generate the electric wave, keep it going and stop it. One such protein called the IKs channel controls the flow of potassium ions, and in doing so stops the electric wave in heart muscle cells. About 300 different mutations in the IKs channel have been shown to cause abnormal heart rhythms in individuals with a disorder called long QT syndrome. People with this condition may suddenly black out because their heart develops prolonged electric waves that prevent blood from being pumped properly. To investigate how mutations in the IKs channel produce heart rhythm abnormalities, Liin et al. genetically engineered the egg cells of African clawed frogs to have one of eight mutant forms of the human IKs channel. Studying these channels revealed that the mutations reduce how well the channels work in a wide variety of ways. However, treating the cells with a particular fatty acid helped to normalize how each of the mutant channels worked. Therefore, variants of the fatty acid could potentially form a useful treatment for people with heart rhythm problems caused by mutations in the IKs channel. More studies are needed to confirm whether the fatty acid is as effective at combating the effects of the mutations in whole hearts and animals. As ion channels related to the IKs channel are found in many types of cells, it is also important to investigate whether treatment with the fatty acid could cause any side effects that affect other organs. DOI:http://dx.doi.org/10.7554/eLife.20272.002
Collapse
Affiliation(s)
- Sara I Liin
- Department of Physiology and Biophysics, University of Miami, Miami, United States.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Johan E Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rene Barro-Soria
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| | - Bo Hjorth Bentzen
- The Danish Arrhythmia Research Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Peter Larsson
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| |
Collapse
|
47
|
Wang AW, Yang R, Kurata HT. Sequence determinants of subtype-specific actions of KCNQ channel openers. J Physiol 2016; 595:663-676. [PMID: 27506413 DOI: 10.1113/jp272762] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Retigabine is a KCNQ voltage-gated potassium channel opener that was recently approved as an add-on therapeutic for patients with drug-resistant epilepsy. Retigabine exhibits very little specificity between most KCNQ channel subtypes, and there is interest in generating more potent and specific KCNQ channel openers. The present study describes the marked specificity of ICA069673 for KCNQ2 vs. KCNQ3, and exploits this property to investigate determinants of KCNQ subtype specificity. ICA069673 acts on a binding site in the voltage-sensing domain that is distinct from the putative retigabine site in the channel pore. ICA069673 has two separable effects on KCNQ channel activity. We identify two channel residues required for subtype specificity of KCNQ channel openers and show that these are sufficient to generate ICA069673 sensitivity in KCNQ3. ABSTRACT Retigabine (RTG) is the first approved anti-epileptic drug that acts via activation of voltage-gated potassium channels, targeting KCNQ channels that underlie the neuronal M-current. RTG exhibits little specificity between KCNQ2-5 as a result of conservation of a Trp residue in the pore domain that binds to the drug. The RTG analogue ICA-069673 ('ICA73') exhibits much stronger effects on KCNQ2 channels, including a large hyperpolarizing shift of the voltage-dependence of activation, an ∼2-fold enhancement of peak current and pronounced subtype specificity for KCNQ2 over KCNQ3. Based on ICA73 sensitivity of chimeric constructs of the transmembrane segments of KCNQ2 and KCNQ3, this drug appears to interact with the KCNQ2 voltage sensor (S1-S4) rather than the pore region targeted by RTG. KCNQ2 point mutants in the voltage sensor were generated based on KCNQ2/KCNQ3 sequence differences, and screened for ICA73 sensitivity. These experiments reveal that KCNQ2 residues F168 and A181 in the S3 segment are essential determinants of ICA73 subtype specificity. Mutations at either position in KCNQ2 abolish the ICA73-mediated gating shift, but preserve RTG sensitivity. Interestingly, A181P mutant channels show little ICA73-mediated gating shift but retain current potentiation by the drug. Mutations (L198F and P211A), which introduce these critical KCNQ2 residues at corresponding positions in KCNQ3, transplant partial ICA73 sensitivity. These findings demonstrate that RTG and ICA73 act via distinct mechanisms, and also reveal specific residues that underlie subtype specificity of KCNQ channel openers.
Collapse
Affiliation(s)
- Alice W Wang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Runying Yang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
48
|
Teng BC, Song Y, Zhang F, Ma TY, Qi JL, Zhang HL, Li G, Wang K. Activation of neuronal Kv7/KCNQ/M-channels by the opener QO58-lysine and its anti-nociceptive effects on inflammatory pain in rodents. Acta Pharmacol Sin 2016; 37:1054-62. [PMID: 27264315 DOI: 10.1038/aps.2016.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/03/2016] [Indexed: 12/16/2022] Open
Abstract
AIM The aim of this study was to examine the activation of neuronal Kv7/KCNQ channels by a novel modified Kv7 opener QO58-lysine and to test the anti-nociceptive effects of QO58-lysine on inflammatory pain in rodent models. METHODS Assays including whole-cell patch clamp recordings, HPLC, and in vivo pain behavioral evaluations were employed. RESULTS QO58-lysine caused instant activation of Kv7.2/7.3 currents, and increasing the dose of QO58-lysine resulted in a dose-dependent activation of Kv7.2/Kv7.3 currents with an EC50 of 1.2±0.2 μmol/L. QO58-lysine caused a leftward shift of the voltage-dependent activation of Kv7.2/Kv7.3 to a hyperpolarized potential at V1/2=-54.4±2.5 mV from V1/2=-26.0±0.6 mV. The half-life in plasma (t1/2) was derived as 2.9, 2.7, and 3.0 h for doses of 12.5, 25, and 50 mg/kg, respectively. The absolute bioavailabilities for the three doses (12.5, 25, and 50 mg/kg) of QO58-lysine (po) were determined as 13.7%, 24.3%, and 39.3%, respectively. QO58-lysine caused a concentration-dependent reduction in the licking times during phase II pain induced by the injection of formalin into the mouse hindpaw. In the Complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats, oral or intraperitoneal administration of QO58-lysine resulted in a dose-dependent increase in the paw withdrawal threshold, and the anti-nociceptive effect on mechanical allodynia could be reversed by the channel-specific blocker XE991 (3 mg/kg). CONCLUSION Taken together, our findings show that a modified QO58 compound (QO58-lysine) can specifically activate Kv7.2/7.3/M-channels. Oral or intraperitoneal administration of QO58-lysine, which has improved bioavailability and a half-life of approximately 3 h in plasma, can reverse inflammatory pain in rodent animal models.
Collapse
|
49
|
Wu W, Sanguinetti MC. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology. Card Electrophysiol Clin 2016; 8:275-84. [PMID: 27261821 DOI: 10.1016/j.ccep.2016.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA
| | - Michael C Sanguinetti
- Department of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
50
|
Zhang Y, Chu X, Liu L, Zhang N, Guo H, Yang F, Liu Z, Dong Y, Bao Y, Zhang X, Zhang J. Tannic acid activates the Kv7.4 and Kv7.3/7.5 K+ channels expressed in HEK293 cells and reduces tension in the rat mesenteric arteries. J Pharm Pharmacol 2016; 68:494-502. [PMID: 26969140 DOI: 10.1111/jphp.12527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
This study investigated the effect of tannic acid (TA), a plant-derived hydrolyzable polyphenol, on Kv7.4 and Kv7.5 K+ channels and rat mesenteric artery.
Methods
Whole-cell patch clamp experiments were used to record the Kv7.4 and Kv7.3/7.5 K+ currents expressed in HEK293 cells; and the tension changes of mesenteric arteries isolated from rats were recorded using small vessel myography apparatus.
Key findings
Tannic acid increases the Kv7.4 and Kv7.3/7.5 K+ currents in a concentration-dependent manner (median effective concentration (EC50) = 27.3 ± 3.6 μm and EC50 = 23.1 ± 3.9 μm, respectively). In addition, 30 μm TA shifts the G–V curve of Kv7.4 and Kv7.3/7.5 K+ currents to the left by 14.18 and 25.24 mV, respectively, and prolongs the deactivation time constants by 184.44 and 154.77 ms, respectively. Moreover, TA relaxes the vascular tension of rat mesenteric arteries in a concentration-dependent manner (half inhibitory concentration (IC50) = 148.7 ± 13.4 μm).
Conclusion
These results confirms the vasodilatory effects of TA on rat mesenteric artery and the activating effects on the Kv7.4 and Kv7.3/7.5 K+ channels, which may be a mechanism to explain the vasodilatory effect and this mechanism can be used in the research of antihypertension.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ling Liu
- Department of Pharmacy, Maternal and Child Health Hospital, Tangshan, Hebei, China
| | - Nan Zhang
- Vascular Surgery, The East Branch of Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Guo
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Fan Yang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhenyi Liu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yongsheng Dong
- Intensive Care Unit, Air Force General Hospital, Beijing, Jiangsu, China
| | - Yifan Bao
- Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xuan Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianping Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|