1
|
Scholtes MP, Akbarzadeh M, Galaras A, Nakauma-Gonzáles JA, Bazrafshan A, Solanki V, Torenvliet B, Beikmohammadi L, Lozovanu V, Romal S, Moulos P, Vavouraki N, Kan TW, Algoe M, van Royen ME, Sacchetti A, van den Bosch TPP, Eussen B, de Klein A, van Leenders GJLH, Boormans JL, Hatzis P, Palstra RJ, Zuiverloon TCM, Mahmoudi T. Integrative analysis of patient-derived tumoroids and ex vivo organoid modelling of ARID1A loss in bladder cancer reveals therapeutic molecular targets. Cancer Lett 2025; 614:217506. [PMID: 39892702 DOI: 10.1016/j.canlet.2025.217506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Somatic mutations in ARID1A (AT-rich interactive domain-containing protein 1A) are present in approximately 25 % of bladder cancers (BC) and are associated with poor prognosis. With a view to discover effective treatment options for ARID1A-deficient BC patients, we set out to identify targetable effectors dysregulated consequent to ARID1A deficiency. Integrative analyses of ARID1A depletion in normal organoids and data mining in publicly available datasets revealed upregulation of DNA repair and cell cycle-associated genes consequent to loss of ARID1A and identified CHEK1 (Checkpoint kinase 1) and chromosomal passenger complex member BIRC5 (Baculoviral IAP Repeat Containing 5) as therapeutically drug-able candidate molecular effectors. Ex vivo treatment of patient-derived BC tumoroids with clinically advanced small molecule inhibitors targeting CHEK1 or BIRC5 was associated with increased DNA damage signalling and apoptosis, and selectively induced cell death in tumoroids lacking ARID1A protein expression. Thus, integrating public datasets with patient-derived organoid modelling and ex-vivo drug testing can uncover key molecular effectors and mechanisms of oncogenic transformation, potentially leading to novel therapeutic strategies. Our data point to ARID1A protein expression as a suitable candidate biomarker for the selection of BC patients responsive to therapies targeting BIRC5 and CHEK1.
Collapse
Affiliation(s)
- Mathijs P Scholtes
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maryam Akbarzadeh
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandros Galaras
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - J Alberto Nakauma-Gonzáles
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ameneh Bazrafshan
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vandana Solanki
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bram Torenvliet
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leila Beikmohammadi
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Valeria Lozovanu
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shahla Romal
- Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikoleta Vavouraki
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands
| | - Tsung Wai Kan
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mahesh Algoe
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrea Sacchetti
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center "Alexander Fleming", the Netherlands
| | - Robert-Jan Palstra
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Wei J, Gao C, Lu C, Wang L, Dong D, Sun M. The E2F family: a ray of dawn in cardiomyopathy. Mol Cell Biochem 2025; 480:825-839. [PMID: 38985251 DOI: 10.1007/s11010-024-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cardiomyopathies are a group of heterogeneous diseases, characterized by abnormal structure and function of the myocardium. For many years, it has been a hot topic because of its high morbidity and mortality as well as its complicated pathogenesis. The E2Fs, a group of transcription factors found extensively in eukaryotes, play a crucial role in governing cell proliferation, differentiation, and apoptosis, meanwhile their deregulated activity can also cause a variety of diseases. Based on accumulating evidence, E2Fs play important roles in cardiomyopathies. In this review, we describe the structural and functional characteristics of the E2F family and its role in cardiomyocyte processes, with a focus on how E2Fs are associated with the onset and development of cardiomyopathies. Moreover, we discuss the great potential of E2Fs as biomarkers and therapeutic targets, aiming to provide a reference for future research.
Collapse
Affiliation(s)
- Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, Liaoning, People's Republic of China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Zhou L, Liu S, Li C, Zhou W, Dai F, Tong X. BmE2F1 regulates endoreplication of silk gland cells in silkworm, Bombyx mori. Int J Biol Macromol 2025; 291:138916. [PMID: 39706412 DOI: 10.1016/j.ijbiomac.2024.138916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Endoreplication is particularly important in the context of silk protein synthesis within the silk gland cells of silkworms. Our previous research indicated that the BmE2F1 enhances the silk yield of silkworm cocoons, but the underlying molecular mechanism remains elusive. In this study, we employed RNA-sequencing to dissect the transcriptional profiles of silk glands in the wild-type Dazao silkworm strain and the overexpression (OE) silkworm strain with specific overexpression of the BmE2F1 gene in silk glands. Among the 1126 differentially expressed genes (DEGs), many related to DNA replication (endoreplication in silk glands of silkworm larvae) were significantly enriched. Quantitative real-time PCR confirmed that overexpression of BmE2F1 led to a substantial increase in the expression of 13 genes involved in the DNA replication pathway. Additionally, BmE2F1 upregulated the expression of BmCyclin E, a pivotal gene in the G/S phase transition. Moreover, BmE2F1 overexpression in silk glands significantly boosted DNA replication and concurrently increased the DNA content within silk glands. In conclusion, BmE2F1 regulates endoreplication in silk gland cells of silkworms through dual mechanisms: firstly, by enhancing the formation of the DNA replication complex; and secondly, by facilitating the cells' entry into the S phase.
Collapse
Affiliation(s)
- Linli Zhou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Shuo Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Chunlin Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Wei Zhou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Vusich J, Garcia-Lerena J, Schulte A, Corfixsen R, Andrechek E. Transcriptional Regulation of Mammary Alveolar Proliferation and Differentiation during Early Pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625731. [PMID: 39651207 PMCID: PMC11623608 DOI: 10.1101/2024.11.27.625731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Proliferation and differentiation of the mammary gland during pregnancy is regulated by a wide variety of factors. Using gene expression data, we have predicted that the E2F5 transcription factor has a role in the mammary gland during pregnancy. Using CUT&RUN for E2F5 in combination with gene expression data revealed that there were a number of E2F5 target genes associated with gene expression in early pregnancy, suggesting a critical role. This prediction was then functionally tested through analysis of mice with an ablation of E2F5 in the mouse mammary epithelium using a Floxed E2F5 in combination with MMTV-Cre. This revealed a striking delay in alveolar proliferation and differentiation at the early stages of pregnancy. The significance of this effect was lost in both a second pregnancy and by the mid-point of pregnancy in single parous females. Analysis of E2F5 targets revealed overlap but a slight divergence from the consensus E2F sequence and that E2F5 was bound to the promoter of many genes involved in cellular proliferation, including known regulators of pregnancy associated alveolar expansion such as Stat6. However, progesterone stimulation of cells in a reporter assay revealed that it counteracts the repression of Stat6 by E2F5, leading to expression of Stat6. Together these data reveal the complexity of the transcriptional regulation of alveolar proliferation in early pregnancy.
Collapse
|
5
|
Chatterjee O, Jana J, Panda S, Dutta A, Sharma A, Saurav S, Motiani RK, Weisz K, Chatterjee S. Remodeling Ca 2+ dynamics by targeting a promising E-box containing G-quadruplex at ORAI1 promoter in triple-negative breast cancer. Cell Calcium 2024; 123:102944. [PMID: 39191092 PMCID: PMC7616398 DOI: 10.1016/j.ceca.2024.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
ORAI1 is an intrinsic component of store-operated calcium entry (SOCE) that strictly regulates Ca2+ influx in most non-excitable cells. ORAI1 is overexpressed in a wide variety of cancers, and its signal transduction has been associated with chemotherapy resistance. There is extensive proteomic interaction of ORAI1 with other channels and effectors, resulting in various altered phenotypes. However, the transcription regulation of ORAI1 is not well understood. We have found a putative G-quadruplex (G4) motif, ORAI1-Pu, in the upstream promoter region of the gene, having regulatory functions. High-resolution 3-D NMR structure elucidation suggests that ORAI1-Pu is a stable parallel-stranded G4, having a long 8-nt loop imparting dynamics without affecting the structural stability. The protruded loop further houses an E-box motif that provides a docking site for transcription factors like Zeb1. The G4 structure was also endogenously observed using Chromatin Immunoprecipitation (ChIP) with anti-G4 antibody (BG4) in the MDA-MB-231 cell line overexpressing ORAI1. Ligand-mediated stabilization suggested that the stabilized G4 represses transcription in cancer cell line MDA-MB-231. Downregulation of transcription further led to decreased Ca2+ entry by the SOCE pathway, as observed by live-cell Fura-2 Ca2+ imaging.
Collapse
Affiliation(s)
- Oishika Chatterjee
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Jagannath Jana
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Suman Panda
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India
| | - Akshay Sharma
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad 121001, Delhi NCR, India
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Bose Institute, EN-80 Sector V, Salt Lake, Unified Campus, Kolkata 700091, India.
| |
Collapse
|
6
|
Sun M, Ji Y, Zhang G, Li Y, Dong F, Wu T. Posttranslational modifications of E2F family members in the physiological state and in cancer: Roles, mechanisms and therapeutic targets. Biomed Pharmacother 2024; 178:117147. [PMID: 39053422 DOI: 10.1016/j.biopha.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
The E2F transcription factor family, whose members are encoded by the E2F1-E2F8 genes, plays pivotal roles in the cell cycle, apoptosis, metabolism, stemness, metastasis, aging, angiogenesis, tumor promotion or suppression, and other biological processes. The activity of E2Fs is regulated at multiple levels, with posttranslational modifications being an important regulatory mechanism. There are numerous types of posttranslational modifications, among which phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, and poly(ADP-ribosyl)ation are the most commonly studied in the context of the E2F family. Posttranslational modifications of E2F family proteins regulate their biological activity, stability, localization, and interactions with other biomolecules, affecting cell proliferation, apoptosis, DNA damage, etc., and thereby playing roles in physiological and pathological processes. Notably, these modifications do not always act alone but rather form an interactive regulatory network. Currently, several drugs targeting posttranslational modifications are being studied or clinically applied, in which the proteolysis-targeting chimera and molecular glue can target E2Fs. This review aims to summarize the roles and regulatory mechanisms of different PTMs of E2F family members in the physiological state and in cancer and to briefly discuss their clinical significance and potential therapeutic use.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Yitong Ji
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Guojun Zhang
- Department of Physiology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China
| | - Yang Li
- Department of Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fengming Dong
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Tianyi Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Pascual-Pasto G, McIntyre B, Giudice AM, Alikarami F, Morrissey A, Matlaga S, Hofmann TJ, Burgueño V, Harvey K, Martinez D, Shah AC, Foster JB, Pogoriler J, Eagle RC, Carcaboso AM, Shields CL, Leahey AM, Bosse KR. Targeting GPC2 on Intraocular and CNS Metastatic Retinoblastomas with Local and Systemic Delivery of CAR T Cells. Clin Cancer Res 2024; 30:3578-3591. [PMID: 38864848 PMCID: PMC11326963 DOI: 10.1158/1078-0432.ccr-24-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Retinoblastoma is the most common intraocular malignancy in children. Although new chemotherapeutic approaches have improved ocular salvage rates, novel therapies are required for patients with refractory intraocular and metastatic disease. Chimeric antigen receptor (CAR) T cells targeting glypican-2 (GPC2) are a potential new therapeutic strategy. EXPERIMENTAL DESIGN GPC2 expression and its regulation by the E2F1 transcription factor were studied in retinoblastoma patient samples and cellular models. In vitro, we performed functional studies comparing GPC2 CAR T cells with different costimulatory domains (4-1BB and CD28). In vivo, the efficacy of local and systemic administration of GPC2 CAR T cells was evaluated in intraocular and leptomeningeal human retinoblastoma xenograft models. RESULTS Retinoblastoma tumors, but not healthy retinal tissues, expressed cell surface GPC2, and this tumor-specific expression was driven by E2F1. GPC2-directed CARs with 4-1BB costimulation (GPC2.BBz) were superior to CARs with CD28 stimulatory domains (GPC2.28z), efficiently inducing retinoblastoma cell cytotoxicity and enhancing T-cell proliferation and polyfunctionality. In vivo, GPC2.BBz CARs had enhanced persistence, which led to significant tumor regression compared with either control CD19 or GPC2.28z CARs. In intraocular models, GPC2.BBz CAR T cells efficiently trafficked to tumor-bearing eyes after intravitreal or systemic infusions, significantly prolonging ocular survival. In central nervous system (CNS) retinoblastoma models, intraventricular or systemically administered GPC2.BBz CAR T cells were activated in retinoblastoma-involved CNS tissues, resulting in robust tumor regression with substantially extended overall mouse survival. CONCLUSIONS GPC2-directed CAR T cells are effective against intraocular and CNS metastatic retinoblastomas.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Anna M. Giudice
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Fatemeh Alikarami
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Amanda Morrissey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Stephanie Matlaga
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Ted J. Hofmann
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Victor Burgueño
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Kyra Harvey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Daniel Martinez
- Department of Pathology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Amish C. Shah
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Jessica B. Foster
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Jennifer Pogoriler
- Department of Pathology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Ralph C. Eagle
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Carol L. Shields
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
- Ocular Oncology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Ann-Marie Leahey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
8
|
Karan D, Dubey S, Gunewardena S, Iczkowski KA, Singh M, Liu P, Poletti A, Choo Y, Chen H, Hamann MT. Manzamine A reduces androgen receptor transcription and synthesis by blocking E2F8-DNA interactions and effectively inhibits prostate tumor growth in mice. Mol Oncol 2024; 18:1966-1979. [PMID: 38605607 PMCID: PMC11306517 DOI: 10.1002/1878-0261.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
The androgen receptor (AR) is the main driver in the development of castration-resistant prostate cancer, where the emergence of AR splice variants leads to treatment-resistant disease. Through detailed molecular studies of the marine alkaloid manzamine A (MA), we identified transcription factor E2F8 as a previously unknown regulator of AR transcription that prevents AR synthesis in prostate cancer cells. MA significantly inhibited the growth of various prostate cancer cell lines and was highly effective in inhibiting xenograft tumor growth in mice without any pathophysiological perturbations in major organs. MA suppressed the full-length AR (AR-FL), its spliced variant AR-V7, and the AR-regulated prostate-specific antigen (PSA; also known as KLK3) and human kallikrein 2 (hK2; also known as KLK2) genes. RNA sequencing (RNA-seq) analysis and protein modeling studies revealed E2F8 interactions with DNA as a potential novel target of MA, suppressing AR transcription and its synthesis. This novel mechanism of blocking AR biogenesis via E2F8 may provide an opportunity to control therapy-resistant prostate cancer over the currently used AR antagonists designed to target different parts of the AR gene.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, and MCW Cancer CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Seema Dubey
- Department of Pathology, and MCW Cancer CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Sumedha Gunewardena
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKSUSA
| | - Kenneth A. Iczkowski
- Department of Pathology, and MCW Cancer CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Manohar Singh
- Department of Pathology, and MCW Cancer CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Pengyuan Liu
- Department of Physiology and Center of Systems Molecular MedicineMedical College of WisconsinMilwaukeeWIUSA
| | - Angelo Poletti
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanItaly
| | - Yeun‐Mun Choo
- Department of ChemistryUniversity of MalayaKuala LumpurMalaysia
| | - Hui‐Zi Chen
- Department of MedicineMedical College of WisconsinMilwaukeeWIUSA
| | - Mark T. Hamann
- Department of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Hollings Cancer CenterMedical University of South CarolinaCharlestonSCUSA
| |
Collapse
|
9
|
El-mayet FS, Jones C. A cell cycle regulator, E2F2, and glucocorticoid receptor cooperatively transactivate the bovine alphaherpesvirus 1 immediate early transcription unit 1 promoter. J Virol 2024; 98:e0042324. [PMID: 38771044 PMCID: PMC11237710 DOI: 10.1128/jvi.00423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.
Collapse
Affiliation(s)
- Fouad S. El-mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kaliobyia, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
10
|
Bertonnier‐Brouty L, Andersson J, Kaprio T, Hagström J, Bsharat S, Asplund O, Hatem G, Haglund C, Seppänen H, Prasad RB, Artner I. E2F transcription factors promote tumorigenicity in pancreatic ductal adenocarcinoma. Cancer Med 2024; 13:e7187. [PMID: 38686617 PMCID: PMC11058697 DOI: 10.1002/cam4.7187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with limited treatment options, illustrating an urgent need to identify new drugable targets in PDACs. OBJECTIVE Using the similarities between tumor development and normal embryonic development, which is accompanied by rapid cell expansion, we aimed to identify and characterize embryonic signaling pathways that were reinitiated during tumor formation and expansion. METHODS AND RESULTS Here, we report that the transcription factors E2F1 and E2F8 are potential key regulators in PDAC. E2F1 and E2F8 RNA expression is mainly localized in proliferating cells in the developing pancreas and in malignant ductal cells in PDAC. Silencing of E2F1 and E2F8 in PANC-1 pancreatic tumor cells inhibited cell proliferation and impaired cell spreading and migration. Moreover, loss of E2F1 also affected cell viability and apoptosis with E2F expression in PDAC tissues correlating with expression of apoptosis and mitosis pathway genes, suggesting that E2F factors promote cell cycle regulation and tumorigenesis in PDAC cells. CONCLUSION Our findings illustrate that E2F1 and E2F8 transcription factors are expressed in pancreatic progenitor and PDAC cells, where they contribute to tumor cell expansion by regulation of cell proliferation, viability, and cell migration making these genes attractive therapeutic targets and potential prognostic markers for pancreatic cancer.
Collapse
Affiliation(s)
- Ludivine Bertonnier‐Brouty
- Lund Stem Cell CenterLund UniversityLundSweden
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| | | | - Tuomas Kaprio
- Department of SurgeryHelsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- iCAN, Digital Cancer Precision MedicineUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
| | - Jaana Hagström
- Department of SurgeryHelsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- iCAN, Digital Cancer Precision MedicineUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
- Department of Oral Pathology and RadiologyUniversity of TurkuTurkuFinland
| | - Sara Bsharat
- Lund Stem Cell CenterLund UniversityLundSweden
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| | - Olof Asplund
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| | - Gad Hatem
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| | - Caj Haglund
- Department of SurgeryHelsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- iCAN, Digital Cancer Precision MedicineUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
| | - Hanna Seppänen
- Department of SurgeryHelsinki University HospitalHelsinkiFinland
- Translational Cancer Medicine Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- iCAN, Digital Cancer Precision MedicineUniversity of Helsinki and HUS Helsinki University HospitalHelsinkiFinland
| | | | - Isabella Artner
- Lund Stem Cell CenterLund UniversityLundSweden
- Lund University Diabetes Center, Lund UniversityMalmöSweden
| |
Collapse
|
11
|
Kim S, Morgunova E, Naqvi S, Goovaerts S, Bader M, Koska M, Popov A, Luong C, Pogson A, Swigut T, Claes P, Taipale J, Wysocka J. DNA-guided transcription factor cooperativity shapes face and limb mesenchyme. Cell 2024; 187:692-711.e26. [PMID: 38262408 PMCID: PMC10872279 DOI: 10.1016/j.cell.2023.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Seppe Goovaerts
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Maram Bader
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mervenaz Koska
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christy Luong
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Pogson
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Peter Claes
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden; Department of Biochemistry, University of Cambridge, Cambridge, UK; Applied Tumor Genomics Program, University of Helsinki, Helsinki, Finland
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Kim S, Morgunova E, Naqvi S, Bader M, Koska M, Popov A, Luong C, Pogson A, Claes P, Taipale J, Wysocka J. DNA-guided transcription factor cooperativity shapes face and limb mesenchyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541540. [PMID: 37398193 PMCID: PMC10312427 DOI: 10.1101/2023.05.29.541540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how 'Coordinator', a long DNA motif comprised of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, while HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in shared regulation of genes involved in cell-type and positional identities, and ultimately shapes facial morphology and evolution.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Maram Bader
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
| | - Mervenaz Koska
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | | | - Christy Luong
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
| | - Angela Pogson
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Applied Tumor Genomics Program, University of Helsinki, Helsinki, Finland
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
13
|
Chen Z, Song Y, Li P, Gao W. GRIN2D knockdown suppresses the progression of lung adenocarcinoma by regulating the E2F signalling pathway. Cell Signal 2023; 107:110685. [PMID: 37084840 DOI: 10.1016/j.cellsig.2023.110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE Glutamate ionotropic receptor N-methyl-d-aspartate (NMDA) type subunit 2D (GRIN2D) is a member of the GRIN gene family and contributes to the development and function of the brain. GRIN2D was found to be upregulated in several types of cancers; however, its mechanism in lung adenocarcinoma (LUAD) remains unclear. METHODS We determined the role of GRIN2D in LUAD. In addition, we investigated the potential mechanism of GRIN2D in LUAD using bioinformatics analysis and confirmed this mechanism using biological approaches. RESULTS GRIN2D was found to be upregulated in LUAD tissues and cells. GRIN2D knockdown reduced the proliferation and accelerated the apoptosis of LUAD cells. GRIN2D also activated glycolysis, gluconeogenesis, and the E2F signalling pathway in LUAD. GRIN2D knockdown significantly inhibited glucose uptake, lactate production, the ATP/ADP ratio, ECAR, and OCR in LUAD cells. E2F1 overexpression eliminated the inhibitory effect of GRIN2D knockdown in LUAD cells. CONCLUSIONS GRIN2D knockdown suppresses cell growth, migration, glycolysis, and gluconeogenesis of LUAD by inhibiting the E2F signalling pathway.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Yanhui Song
- Department of Internal Medicine, Rongfu Military Hospital of Jining City, Jinan 272101, Shandong, China
| | - Peipei Li
- Department of General Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
14
|
Fischer M, Schade AE, Branigan TB, Müller GA, DeCaprio JA. Coordinating gene expression during the cell cycle. Trends Biochem Sci 2022; 47:1009-1022. [PMID: 35835684 DOI: 10.1016/j.tibs.2022.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
Cell cycle-dependent gene transcription is tightly controlled by the retinoblastoma (RB):E2F and DREAM complexes, which repress all cell cycle genes during quiescence. Cyclin-dependent kinase (CDK) phosphorylation of RB and DREAM allows for the expression of two gene sets. The first set of genes, with peak expression in G1/S, is activated by E2F transcription factors (TFs) and is required for DNA synthesis. The second set, with maximum expression during G2/M, is required for mitosis and is coordinated by the MuvB complex, together with B-MYB and Forkhead box M1 (FOXM1). In this review, we summarize the key findings that established the distinct control mechanisms regulating G1/S and G2/M gene expression in mammals and discuss recent advances in the understanding of the temporal control of these genes.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Amy E Schade
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Park SA, Lim YJ, Ku WL, Zhang D, Cui K, Tang LY, Chia C, Zanvit P, Chen Z, Jin W, Wang D, Xu J, Liu O, Wang F, Cain A, Guo N, Nakatsukasa H, Wu C, Zhang YE, Zhao K, Chen W. Opposing functions of circadian protein DBP and atypical E2F family E2F8 in anti-tumor Th9 cell differentiation. Nat Commun 2022; 13:6069. [PMID: 36241625 PMCID: PMC9568563 DOI: 10.1038/s41467-022-33733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Interleukin-9 (IL-9)-producing CD4+ T helper cells (Th9) have been implicated in allergy/asthma and anti-tumor immunity, yet molecular insights on their differentiation from activated T cells, driven by IL-4 and transforming growth factor-beta (TGF-β), is still lacking. Here we show opposing functions of two transcription factors, D-binding protein (DBP) and E2F8, in controlling Th9 differentiation. Specifically, TGF-β and IL-4 signaling induces phosphorylation of the serine 213 site in the linker region of the Smad3 (pSmad3L-Ser213) via phosphorylated p38, which is necessary and sufficient for Il9 gene transcription. We identify DBP and E2F8 as an activator and repressor, respectively, for Il9 transcription by pSmad3L-Ser213. Notably, Th9 cells with siRNA-mediated knockdown for Dbp or E2f8 promote and suppress tumor growth, respectively, in mouse tumor models. Importantly, DBP and E2F8 also exhibit opposing functions in regulating human TH9 differentiation in vitro. Thus, our data uncover a molecular mechanism of Smad3 linker region-mediated, opposing functions of DBP and E2F8 in Th9 differentiation.
Collapse
Affiliation(s)
- Sang-A Park
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Yun-Ji Lim
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Wai Lim Ku
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - Dunfang Zhang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - Liu-Ya Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Cheryl Chia
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Peter Zanvit
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Zuojia Chen
- grid.94365.3d0000 0001 2297 5165Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Wenwen Jin
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Dandan Wang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Junji Xu
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Ousheng Liu
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Fu Wang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Alexander Cain
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Nancy Guo
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Hiroko Nakatsukasa
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Chuan Wu
- grid.94365.3d0000 0001 2297 5165Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Ying E. Zhang
- grid.94365.3d0000 0001 2297 5165Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - WanJun Chen
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| |
Collapse
|
16
|
Wang H, Wang X, Xu L, Zhang J. Prognostic analysis of E2F transcription factors E2F1 and E2F3 in four independent pediatric neuroblastoma cohorts. BMC Pediatr 2022; 22:376. [PMID: 35764946 PMCID: PMC9241263 DOI: 10.1186/s12887-022-03424-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background Previously, we had analyzed the prognosis of E2F transcription factors across adult tumor types. However, the expressions and prognosis of E2F transcription factors in pediatric neuroblastoma have not yet been fully studied. Methods The prognosis of E2F transcription factors was determined in four independent pediatric neuroblastoma cohorts from Therapeutically Applicable Research to Generate Effective Treatments (TARGET), Gene Expression Omnibus (GEO) and European ArrayExpres datasets using Kaplan–Meier and cox regression analysis. Results E2F regulated gene set was associated with the event free survival and the overall survival of neuroblastoma. E2F1 and E2F3 were prognostic factors in all four independent pediatric neuroblastoma cohorts. Over-expressions of E2F1 or E2F3 were correlated with the shorted event free survival and overall survival of neuroblastoma. Expression levels of E2F1 and E2F3 were higher in neuroblastoma patients with MYCN amplification or age at diagnosis ≥ 18 months. Moreover, the prognostic significance of E2F1 or E2F3 in neuroblastoma was independent of MYCN amplification and age of diagnosis. Combinations of E2F1, E2F3 with MYCN amplification or age of diagnosis achieved better prognosis of neuroblastoma. Identification of 234 genes were associated with E2F1 and E2F3 expressions in neuroblastoma and those genes were significantly enriched in cell cycle signaling pathway. Also, higher scores of cell cycle signaling pathway were correlated with the adverse prognosis of neuroblastoma. Conclusions E2F transcription factors E2F1 and E2F3 were prognostic makers of neuroblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03424-w.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China.
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Ji Zhang
- Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
17
|
E2F and STAT3 provide transcriptional synergy for histone variant H2AZ activation to sustain glioblastoma chromatin accessibility and tumorigenicity. Cell Death Differ 2022; 29:1379-1394. [PMID: 35058574 PMCID: PMC9287453 DOI: 10.1038/s41418-021-00926-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
The histone variant H2AZ is overexpressed in diverse cancer types where it facilitates the accessibility of transcriptional regulators to the promoters of cell cycle genes. However, the molecular basis for its dysregulation in cancer remains unknown. Here, we report that glioblastomas (GBM) and glioma stem cells (GSCs) preferentially overexpress H2AZ for their proliferation, stemness and tumorigenicity. Chromatin accessibility analysis of H2AZ2 depleted GSC revealed that E2F1 occupies the enhancer region within H2AZ2 gene promoter, thereby activating H2AZ2 transcription. Exploration of other H2AZ2 transcriptional activators using a customized "anti-H2AZ2" query signature for connectivity map analysis identified STAT3. Co-targeting E2F and STAT3 synergistically reduced the levels of H2AZ, histone 3 lysine 27 acetylation (H3K27ac) and cell cycle gene transcription, indicating that E2F1 and STAT3 synergize to activate H2AZ gene transcription in GSCs. Remarkably, an E2F/STAT3 inhibitor combination durably suppresses GSC tumorigenicity in an orthotopic GBM xenograft model. In glioma patients, high STAT3 signaling is associated with high E2F1 and H2AZ2 expression. Thus, GBM has uniquely opted the use of E2F1- and STAT3-containing "enhanceosomes" that integrate multiple signaling pathways to achieve H2AZ gene activation, supporting a translational path for the E2F/STAT3 inhibitor combination to be applied in GBM treatment.
Collapse
|
18
|
Stabilizing DNA–Protein Co-Crystals via Intra-Crystal Chemical Ligation of the DNA. CRYSTALS 2021. [DOI: 10.3390/cryst12010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein and DNA co-crystals are most commonly prepared to reveal structural and functional details of DNA-binding proteins when subjected to X-ray diffraction. However, biomolecular crystals are notoriously unstable in solution conditions other than their native growth solution. To achieve greater application utility beyond structural biology, biomolecular crystals should be made robust against harsh conditions. To overcome this challenge, we optimized chemical DNA ligation within a co-crystal. Co-crystals from two distinct DNA-binding proteins underwent DNA ligation with the carbodiimide crosslinking agent 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) under various optimization conditions: 5′ vs. 3′ terminal phosphate, EDC concentration, EDC incubation time, and repeated EDC dose. This crosslinking and DNA ligation route did not destroy crystal diffraction. In fact, the ligation of DNA across the DNA–DNA junctions was clearly revealed via X-ray diffraction structure determination. Furthermore, crystal macrostructure was fortified. Neither the loss of counterions in pure water, nor incubation in blood serum, nor incubation at low pH (2.0 or 4.5) led to apparent crystal degradation. These findings motivate the use of crosslinked biomolecular co-crystals for purposes beyond structural biology, including biomedical applications.
Collapse
|
19
|
Diori Karidio I, Sanlier SH. Reviewing cancer's biology: an eclectic approach. J Egypt Natl Canc Inst 2021; 33:32. [PMID: 34719756 DOI: 10.1186/s43046-021-00088-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer refers to a group of some of the worldwide most diagnosed and deadliest pathophysiological conditions that conquered researchers' attention for decades and yet begs for more questions for a full comprehension of its complex cellular and molecular pathology. MAIN BODY The disease conditions are commonly characterized by unrestricted cell proliferation and dysfunctional replicative senescence pathways. In fact, the cell cycle operates under the rigorous control of complex signaling pathways involving cyclins and cyclin-dependent kinases assumed to be specific to each phase of the cycle. At each of these checkpoints, the cell is checked essentially for its DNA integrity. Genetic defects observed in these molecules (i.e., cyclins, cyclin-dependent kinases) are common features of cancer cells. Nevertheless, each cancer is different concerning its molecular and cellular etiology. These could range from the genetic defects mechanisms and/or the environmental conditions favoring epigenetically harbored homeostasis driving tumorigenesis alongside with the intratumoral heterogeneity with respect to the model that the tumor follows. CONCLUSIONS This review is not meant to be an exhaustive interpretation of carcinogenesis but to summarize some basic features of the molecular etiology of cancer and the intratumoral heterogeneity models that eventually bolster anticancer drug resistance for a more efficient design of drug targeting the pitfalls of the models.
Collapse
Affiliation(s)
- Ibrahim Diori Karidio
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.
| | - Senay Hamarat Sanlier
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.,ARGEFAR, Faculty of Medicine, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
20
|
Hu D, Meng N, Lou X, Li Z, Teng Y, Tu B, Zou Y, Wang F. Prognostic Values of E2F1/2 Transcriptional Expressions in Chromophobe Renal Cell Carcinoma Patients: Evidence from Bioinformatics Analysis. Int J Gen Med 2021; 14:3593-3609. [PMID: 34295182 PMCID: PMC8291967 DOI: 10.2147/ijgm.s321585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Numerous studies on the E2F transcription factors have led to increasing insights that E2Fs could be an important driver of the formation and progression of many human cancers. Little is known about the function of distinct E2Fs in chromophobe renal cell carcinoma (chRCC). Methods We utilized the UALCAN, GEPIA, Cancer Genome Atlas (TCGA) database, cBioPortal, Metascape, STRING, Cytoscape, GeneMANIA, TIMER, TISIDB, GSCALite, and MEXPRESS databases to investigate the transcription level, genetic alteration, methylation, and biological function of E2Fs in chRCC patients, and its association with the occurrence, progress, prognosis, and immune cell infiltration in patients with chRCC. Results We found that E2F1/2/4/7/8 were more expressed in chRCC tissues than in normal tissues, while the expression of E2F5/6 was lower in the former than in the latter, and the expression levels of E2F1/2/4/5/6//7/8 were also associated with the histological parameters of chRCC, including T-stage and N-stage. Higher expression of E2F1/2/7/8 was found to be significantly correlated with worse overall survival (OS) in chRCC patients. Cox regression and time-dependent ROC analysis further suggested that E2F1/2 could be the potential independent biomarkers for chRCC prognosis. Besides, a moderate mutation rate of E2Fs (34%) was noticed in chRCC, and the genetic mutations in E2Fs were associated with poor survival of chRCC patients. We noticed that the expression of E2Fs was statistically correlated with the immune cell infiltration in chRCC. Moreover, we also found that the expression of E2F1 was significantly correlated with tumor-infiltrating lymphocytes and immunomodulators, E2F7 expression was associated with MHC molecules, and the expression of E2F1/8 was correlated to their methylation levels. Conclusion Our results provide novel insights for selecting the prognostic biomarkers for chRCC and suggest that E2F1/2 could act as potential prognostic biomarkers for the survival of chRCC patients. However, more in-depth experiments are required to identify the underlying mechanisms and verify the clinical value of E2F1/2 in the prognosis of chRCC.
Collapse
Affiliation(s)
- Dingtao Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Nana Meng
- Department of Quality Management Office, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaoqi Lou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Bizhi Tu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
21
|
Hashmi HF, Waseem M, Ali SS, Hussain Z, Chen K. Structural and Biophysical Investigation of the Key Hotspots on the Surface of Epstein-Barr Nuclear Antigen 1 Essential for DNA Recognition and Pathogenesis. Front Mol Biosci 2021; 8:664436. [PMID: 34268333 PMCID: PMC8275655 DOI: 10.3389/fmolb.2021.664436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Epstein-Barr Virus (EBV) is considered the most important human pathogen due to its role in infections and cellular malignancies. It has been reported that this Oncolytic virus infects 90% world’s population. EBNA1 is required for DNA binding and survival of the virus and is considered an essential drug target. The biochemical and structural properties of this protein are known, but it is still unclear which residues impart a critical role in the recognition of dsDNA. Intending to disclose only the essential residues in recognition of dsDNA, this study used a computational pipeline to generate an alanine mutant of each interacting residue and determine the impact on the binding. Our analysis revealed that R469A, K514A, Y518A, R521A and R522A are the key hotspots for the recognition of dsDNA by the EBNA1. The dynamics properties, i.e. stability, flexibility, structural compactness, hydrogen bonding frequency, binding affinity, are altered by disrupting the protein-DNA contacts, thereby decreases the binding affinity. In particular, the two arginine substitution, R521A and R522A, significantly affected the total binding energy. Thus, we hypothesize that these residues impart a critical role in the dsDNA recognition and pathogenesis. This study would help to design structure-based drugs against the EBV infections.
Collapse
Affiliation(s)
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Kaoshan Chen
- College of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
22
|
Saad D, Paissoni C, Chaves-Sanjuan A, Nardini M, Mantovani R, Gnesutta N, Camilloni C. High Conformational Flexibility of the E2F1/DP1/DNA Complex. J Mol Biol 2021; 433:167119. [PMID: 34181981 DOI: 10.1016/j.jmb.2021.167119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The E2F1 transcription factor is a master regulator of cell-cycle progression whose uncontrolled activation contributes to tumor cells growth. E2F1 binds DNA as a heterodimer with DP partners, resulting in a multi-domain quaternary-structure complex composed of DNA binding domains, a coiled coil domain and a marked box domain separated by short linkers. Building on the 3D knowledge of the single domains of E2F and DPs, we characterized the structure and dynamics of the complete E2F1/DP1/DNA complex by a combination of small-angle X-ray scattering and molecular dynamics simulations. It shows an asymmetric contribution of the dynamics of the two proteins. Namely, the coiled-coil domain leans toward the DP1 side of the complex; the DP1 loop between α2 and α3 of the DBD partially populates a helical structure leaning far from the DNA and in the same direction of the coiled-coil domain; and the N-terminal disordered region of DP1, rich in basic residues, contributes to DNA binding stabilization. Intriguingly, tumor mutations in the flexible regions of the complex suggest that perturbation of protein dynamics could affect protein function in a context-dependent way. Our data suggest fundamental contributions of DP proteins in distinct aspects of E2F biology.
Collapse
Affiliation(s)
- Dana Saad
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Antonio Chaves-Sanjuan
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
23
|
Koliopoulos MG, Alfieri C. Cell cycle regulation by complex nanomachines. FEBS J 2021; 289:5100-5120. [PMID: 34143558 DOI: 10.1111/febs.16082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The cell cycle is the essential biological process where one cell replicates its genome and segregates the resulting two copies into the daughter cells during mitosis. Several aspects of this process have fascinated humans since the nineteenth century. Today, the cell cycle is exhaustively investigated because of its profound connections with human diseases and cancer. At the heart of the molecular network controlling the cell cycle, we find the cyclin-dependent kinases (CDKs) acting as an oscillator to impose an orderly and highly regulated progression through the different cell cycle phases. This oscillator integrates both internal and external signals via a multitude of signalling pathways involving posttranslational modifications including phosphorylation, protein ubiquitination and mechanisms of transcriptional regulation. These tasks are specifically performed by multi-subunit complexes, which are intensively studied both biochemically and structurally with the aim to unveil mechanistic insights into their molecular function. The scope of this review is to summarise the structural biology of the cell cycle machinery, with specific focus on the core cell cycle machinery involving the CDK-cyclin oscillator. We highlight the contribution of cryo-electron microscopy, which has started to revolutionise our understanding of the molecular function and dynamics of the key players of the cell cycle.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| |
Collapse
|
24
|
Zheng Q, Fu Q, Xu J, Gu X, Zhou H, Zhi C. Transcription factor E2F4 is an indicator of poor prognosis and is related to immune infiltration in hepatocellular carcinoma. J Cancer 2021; 12:1792-1803. [PMID: 33613768 PMCID: PMC7890309 DOI: 10.7150/jca.51616] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Recent studies have shown that the transcription factor E2F4 is involved in the progression of various tumors, but its expression and influence on immune cell infiltration and biological functions are largely unknown in hepatocellular carcinoma (HCC). Methods: The Cancer Genome Atlas (TCGA) database, the Tumor Immune Estimation Resource (TIMER) and related online tools as well as a tissue microarray (TMA) were used for analyses in our study. Results: E2F4 expression was elevated in HCC tumor tissue compared with adjacent normal tissue at both the mRNA and protein levels. Overexpression of E2F4 was markedly related to a poor prognosis in HCC patients. In addition, positively and negatively correlated significant genes of E2F4 were identified in HCC. Pathway enrichment analyses revealed that the top 100 positively correlated significant genes of E2F4 were closely related to nuclear splicing and degradation-related pathways. Furthermore, nine hub genes correlated with E2F4 expression were validated based on a protein-protein interaction (PPI) network. It was also demonstrated that E2F4 expression was negatively correlated to immune purity and positively correlated to immune cell infiltration. Conclusion: E2F4 could serve as a novel biomarker for HCC diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qiang Fu
- School of Continuing Education, Zhejiang University, Hangzhou 310003, China
| | - Jia Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haibo Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chen Zhi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
25
|
The ABL2 kinase regulates an HSF1-dependent transcriptional program required for lung adenocarcinoma brain metastasis. Proc Natl Acad Sci U S A 2020; 117:33486-33495. [PMID: 33318173 PMCID: PMC7777191 DOI: 10.1073/pnas.2007991117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Among all cancer types, lung cancer patients exhibit the highest prevalence of brain metastasis, often associated with cognitive impairment, seizures, decline in quality of life, and decreased survival. Limited therapeutic options are currently available to treat brain metastasis. A comprehensive understanding of the signaling pathways and transcriptional networks required for survival and growth of brain-metastatic cancer cells is needed to develop effective strategies to treat this disease. Here, we report that the Heat Shock Transcription Factor 1 (HSF1) is upregulated in brain-metastatic lung cancer cells and is required for brain metastasis in mice. Importantly, we show that the HSF1-dependent expression of E2F target genes implicated in cell cycle progression and survival is decreased by blood–brain barrier-penetrant ABL allosteric inhibitors. Brain metastases are the most common intracranial tumors in adults and are associated with increased patient morbidity and mortality. Limited therapeutic options are currently available for the treatment of brain metastasis. Here, we report on the discovery of an actionable signaling pathway utilized by metastatic tumor cells whereby the transcriptional regulator Heat Shock Factor 1 (HSF1) drives a transcriptional program, divergent from its canonical role as the master regulator of the heat shock response, leading to enhanced expression of a subset of E2F transcription factor family gene targets. We find that HSF1 is required for survival and outgrowth by metastatic lung cancer cells in the brain parenchyma. Further, we identify the ABL2 tyrosine kinase as an upstream regulator of HSF1 protein expression and show that the Src-homology 3 (SH3) domain of ABL2 directly interacts with HSF1 protein at a noncanonical, proline-independent SH3 interaction motif. Pharmacologic inhibition of the ABL2 kinase using small molecule allosteric inhibitors, but not ATP-competitive inhibitors, disrupts this interaction. Importantly, knockdown as well as pharmacologic inhibition of ABL2 using allosteric inhibitors impairs expression of HSF1 protein and HSF1-E2F transcriptional gene targets. Collectively, these findings reveal a targetable ABL2-HSF1-E2F signaling pathway required for survival by brain-metastatic tumor cells.
Collapse
|
26
|
Ainsworth HC, Howard TD, Langefeld CD. Intrinsic DNA topology as a prioritization metric in genomic fine-mapping studies. Nucleic Acids Res 2020; 48:11304-11321. [PMID: 33084892 PMCID: PMC7672465 DOI: 10.1093/nar/gkaa877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
In genomic fine-mapping studies, some approaches leverage annotation data to prioritize likely functional polymorphisms. However, existing annotation resources can present challenges as many lack information for novel variants and/or may be uninformative for non-coding regions. We propose a novel annotation source, sequence-dependent DNA topology, as a prioritization metric for fine-mapping. DNA topology and function are well-intertwined, and as an intrinsic DNA property, it is readily applicable to any genomic region. Here, we constructed and applied Minor Groove Width (MGW) as a prioritization metric. Using an established MGW-prediction method, we generated a MGW census for 199 038 197 SNPs across the human genome. Summarizing a SNP's change in MGW (ΔMGW) as a Euclidean distance, ΔMGW exhibited a strongly right-skewed distribution, highlighting the infrequency of SNPs that generate dissimilar shape profiles. We hypothesized that phenotypically-associated SNPs can be prioritized by ΔMGW. We tested this hypothesis in 116 regions analyzed by a Massively Parallel Reporter Assay and observed enrichment of large ΔMGW for functional polymorphisms (P = 0.0007). To illustrate application in fine-mapping studies, we applied our MGW-prioritization approach to three non-coding regions associated with systemic lupus erythematosus. Together, this study presents the first usage of sequence-dependent DNA topology as a prioritization metric in genomic association studies.
Collapse
Affiliation(s)
- Hannah C Ainsworth
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy D Howard
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
27
|
Toivonen J, Das PK, Taipale J, Ukkonen E. MODER2: first-order Markov modeling and discovery of monomeric and dimeric binding motifs. Bioinformatics 2020; 36:2690-2696. [PMID: 31999322 PMCID: PMC7203737 DOI: 10.1093/bioinformatics/btaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/23/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION Position-specific probability matrices (PPMs, also called position-specific weight matrices) have been the dominating model for transcription factor (TF)-binding motifs in DNA. There is, however, increasing recent evidence of better performance of higher order models such as Markov models of order one, also called adjacent dinucleotide matrices (ADMs). ADMs can model dependencies between adjacent nucleotides, unlike PPMs. A modeling technique and software tool that would estimate such models simultaneously both for monomers and their dimers have been missing. RESULTS We present an ADM-based mixture model for monomeric and dimeric TF-binding motifs and an expectation maximization algorithm MODER2 for learning such models from training data and seeds. The model is a mixture that includes monomers and dimers, built from the monomers, with a description of the dimeric structure (spacing, orientation). The technique is modular, meaning that the co-operative effect of dimerization is made explicit by evaluating the difference between expected and observed models. The model is validated using HT-SELEX and generated datasets, and by comparing to some earlier PPM and ADM techniques. The ADM models explain data slightly better than PPM models for 314 tested TFs (or their DNA-binding domains) from four families (bHLH, bZIP, ETS and Homeodomain), the ADM mixture models by MODER2 being the best on average. AVAILABILITY AND IMPLEMENTATION Software implementation is available from https://github.com/jttoivon/moder2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jarkko Toivonen
- Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Pratyush K Das
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, UK
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, SE 141 83 Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83 Stockholm, Sweden
- Genome-Scale Biology Program, University of Helsinki, Helsinki FI-00014, Finland
| | - Esko Ukkonen
- Department of Computer Science, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
28
|
Wang H, Wang X, Xu L, Zhang J, Cao H. Integrated analysis of the E2F transcription factors across cancer types. Oncol Rep 2020; 43:1133-1146. [PMID: 32323836 PMCID: PMC7058048 DOI: 10.3892/or.2020.7504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
E2F transcription factors are associated with the development of cancer. However, the E2F family genes have not yet been studied in a comprehensive manner. Using The Cancer Genome Atlas, the present study analyzed the functions of the E2F family genes across different types of tumor. It was revealed that compared with normal tissues, the E2F family genes are highly expressed in several types of tumor tissue. Furthermore, E2F transcription factors were significantly enriched in tumor samples across different types of tumor. The high expression levels of E2F family genes were associated with an unfavorable prognosis in liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD). Furthermore, patients with pathological T1 stage and iCluster2 molecular subtype of LIHC expressed particularly low levels of E2F family genes. The present study demonstrated that hypo-DNA methylation, DNA amplification and TP53 mutation contributed to the high expression levels of E2F family genes in cancer cells. Finally, the present study revealed that, compared with other types of tumor, the E2F family genes were specifically downregulated in patients with LIHC. The expression levels and prognostic effects of the E2F family genes were validated using the Gene Expression Omnibus database. The results of the present study revealed the biological functions of E2F family genes in the development of cancer and provided potential biomarkers for further therapeutic studies, particularly for patients with LIHC and LUAD.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Provincial Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xinrui Wang
- Fujian Provincial Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Liangpu Xu
- Fujian Provincial Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui‑Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Hua Cao
- Fujian Provincial Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
29
|
Zhou Y, Yang Y, Liang T, Hu Y, Tang H, Song D, Fang H. The regulatory effect of microRNA-21a-3p on the promotion of telocyte angiogenesis mediated by PI3K (p110α)/AKT/mTOR in LPS induced mice ARDS. J Transl Med 2019; 17:427. [PMID: 31878977 PMCID: PMC6933909 DOI: 10.1186/s12967-019-02168-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Telocytes (TCs) are newly identified interstitial cells that participate in tissue protection and repair. The present study investigated the mechanisms underlying the protective effect of TCs in a mouse model of respiratory distress. Methods The mouse model of acute respiratory distress syndrome (ARDS) was established by intratracheal instillation of lipopolysaccharide (LPS). After instillation of TCs culture medium, lung injury was assessed, and angiogenesis markers, including CD31 and endothelial nitric oxide synthase (eNOS), were detected by immunofluorescence. Bioinformatics analysis was used to screen significantly differentially expressed microRNAs (miRNAs) in cultured TCs stimulated with LPS, and the regulation of downstream angiogenesis genes by these miRNAs was analysed and verified. PI3K subunits and pathways were evaluated by using a PI3K p110α inhibitor to study the involved mechanisms. Results In ARDS mice, instillation of TCs culture medium ameliorated LPS-induced inflammation and lung injury and increased the protein levels of CD31 and eNOS in the injured lungs. A total of 7 miRNAs and 1899 mRNAs were differentially regulated in TCs stimulated with LPS. Functional prediction analysis showed that the differentially expressed mRNAs were enriched in angiogenesis-related processes, which were highly correlated with miR-21a-3p. Culture medium from TCs with miR-21a-3p inhibition failed to promote angiogenesis in mouse models of LPS-induced ARDS. In cultured TCs, LPS stimulation upregulated the expression of miR-21a-3p, which further targeted the transcription factor E2F8 and decreased Notch2 protein expression. TCs culture medium enhanced hemangioendothelioma endothelial cells (EOMA cells) proliferation, which was blocked by the miR-21a-3p inhibitor. The PI3K p110α inhibitor decreased vascular endothelial growth factor levels in LPS-stimulated TCs and reversed the enhancing effect of TCs culture medium on EOMA cells proliferation. Conclusions TCs exerted protective effects under inflammatory conditions by promoting angiogenesis via miR-21a-3p. The PI3K p110α subunit and transcriptional factor E2F8 could be involved in this process.
Collapse
Affiliation(s)
- Yile Zhou
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yajie Yang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Tao Liang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yan Hu
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.,Department of Anaesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Haihong Tang
- Department of Anaesthesiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Dongli Song
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hao Fang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China. .,Department of Anaesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, People's Republic of China.
| |
Collapse
|
30
|
Palmer N, Talib SZA, Kaldis P. Diverse roles for CDK-associated activity during spermatogenesis. FEBS Lett 2019; 593:2925-2949. [PMID: 31566717 PMCID: PMC6900092 DOI: 10.1002/1873-3468.13627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022]
Abstract
The primary function of cyclin-dependent kinases (CDKs) in complex with their activating cyclin partners is to promote mitotic division in somatic cells. This canonical cell cycle-associated activity is also crucial for fertility as it allows the proliferation and differentiation of stem cells within the reproductive organs to generate meiotically competent cells. Intriguingly, several CDKs exhibit meiosis-specific functions and are essential for the completion of the two reductional meiotic divisions required to generate haploid gametes. These meiosis-specific functions are mediated by both known CDK/cyclin complexes and meiosis-specific CDK-regulators and are important for a variety of processes during meiotic prophase. The majority of meiotic defects observed upon deletion of these proteins occur during the extended prophase I of the first meiotic division. Importantly a lack of redundancy is seen within the meiotic arrest phenotypes described for many of these proteins, suggesting intricate layers of cell cycle control are required for normal meiotic progression. Using the process of male germ cell development (spermatogenesis) as a reference, this review seeks to highlight the diverse roles of selected CDKs their activators, and their regulators during gametogenesis.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
| |
Collapse
|
31
|
Hsu J, Arand J, Chaikovsky A, Mooney NA, Demeter J, Brison CM, Oliverio R, Vogel H, Rubin SM, Jackson PK, Sage J. E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat Commun 2019; 10:2939. [PMID: 31270324 PMCID: PMC6610666 DOI: 10.1038/s41467-019-10901-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/06/2019] [Indexed: 01/22/2023] Open
Abstract
E2F transcription factors are central regulators of cell division and cell fate decisions. E2F4 often represents the predominant E2F activity in cells. E2F4 is a transcriptional repressor implicated in cell cycle arrest and whose repressive activity depends on its interaction with members of the RB family. Here we show that E2F4 is important for the proliferation and the survival of mouse embryonic stem cells. In these cells, E2F4 acts in part as a transcriptional activator that promotes the expression of cell cycle genes. This role for E2F4 is independent of the RB family. Furthermore, E2F4 functionally interacts with chromatin regulators associated with gene activation and we observed decreased histone acetylation at the promoters of cell cycle genes and E2F targets upon loss of E2F4 in RB family-mutant cells. Taken together, our findings uncover a non-canonical role for E2F4 that provide insights into the biology of rapidly dividing cells. E2F transcription factors are regulators of cell division and cell fate decisions. Here the authors show that E2F4 is important for proliferation and survival of mouse ESCs, independent of the RB family, and that E2F4 interacts with chromatin regulators associated with gene activation.
Collapse
Affiliation(s)
- Jenny Hsu
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Julia Arand
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Andrea Chaikovsky
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Caileen M Brison
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Romane Oliverio
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Hannes Vogel
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.,Department of Pathology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Julien Sage
- Department of Pediatrics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA. .,Department of Genetics, 300 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Lambert SA, Yang AWH, Sasse A, Cowley G, Albu M, Caddick MX, Morris QD, Weirauch MT, Hughes TR. Similarity regression predicts evolution of transcription factor sequence specificity. Nat Genet 2019; 51:981-989. [PMID: 31133749 DOI: 10.1038/s41588-019-0411-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Transcription factor (TF) binding specificities (motifs) are essential for the analysis of gene regulation. Accurate prediction of TF motifs is critical, because it is infeasible to assay all TFs in all sequenced eukaryotic genomes. There is ongoing controversy regarding the degree of motif diversification among related species that is, in part, because of uncertainty in motif prediction methods. Here we describe similarity regression, a significantly improved method for predicting motifs, which we use to update and expand the Cis-BP database. Similarity regression inherently quantifies TF motif evolution, and shows that previous claims of near-complete conservation of motifs between human and Drosophila are inflated, with nearly half of the motifs in each species absent from the other, largely due to extensive divergence in C2H2 zinc finger proteins. We conclude that diversification in DNA-binding motifs is pervasive, and present a new tool and updated resource to study TF diversity and gene regulation across eukaryotes.
Collapse
Affiliation(s)
- Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Sasse
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gwendolyn Cowley
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Mark X Caddick
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Quaid D Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Canadian Institutes For Advanced Research (CIFAR) Artificial Intelligence Chair, Vector Institute, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Matthew T Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada. .,CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Li H, Quang D, Guan Y. Anchor: trans-cell type prediction of transcription factor binding sites. Genome Res 2019; 29:281-292. [PMID: 30567711 PMCID: PMC6360811 DOI: 10.1101/gr.237156.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022]
Abstract
The ENCyclopedia of DNA Elements (ENCODE) consortium has generated transcription factor (TF) binding ChIP-seq data covering hundreds of TF proteins and cell types; however, due to limits on time and resources, only a small fraction of all possible TF-cell type pairs have been profiled. One solution is to build machine learning models trained on currently available epigenomic data sets that can be applied to the remaining missing pairs. A major challenge is that TF binding sites are cell-type-specific, which can be attributed to cellular contexts such as chromatin accessibility. Meanwhile, indirect TF-DNA binding and interactions between TFs complicate this regulatory process. Technical issues such as sequencing biases and batch effects render the prediction task even more challenging. Many pioneering efforts have been made to predict TF binding profiles based on DNA sequence and DNase-seq footprints, but to what extent a model can be generalized to completely untested cell conditions remains unknown. In this study, we describe our first place solution to the 2017 ENCODE-DREAM in vivo TF binding site prediction challenge. By carefully addressing multisource biases and information imbalance across cell types, we created a pipeline that significantly outperforms the current state-of-the-art methods. The proposed method is sufficiently complex enough to model nonlinear interactions between TF binding motifs and chromatin accessibility information up to 1500 bp from the genomic region of interest.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel Quang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
34
|
Mizuno M, Miki R, Moriyama Y, Ushida T, Imai K, Niimi K, Nakano T, Tsuda H, Sumigama S, Yamamoto E, Senga T, Iwase A, Kikkawa F, Kotani T. The role of E2F8 in the human placenta. Mol Med Rep 2018; 19:293-301. [PMID: 30387815 PMCID: PMC6297733 DOI: 10.3892/mmr.2018.9617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies have reported that E2F transcription factor (E2F) 8, an atypical E2F transcription factor, serves a critical role in promoting the growth and development of the murine placenta. However, the function of E2F8 in the human placenta remains unknown. Invasion of extravillous trophoblasts (EVTs) into the maternal decidua is known to be important for the development of the human placenta. To investigate the role of E2F8 in human placental development, E2F8 localisation was examined in the human placenta and E2F8 mRNA expression was detected in primary cultured EVTs. The human EVT cell line, HTR‑8/SVneo, was divided into two groups and treated separately, one with retrovirus expressing short hairpin (sh)‑RNA against E2F8 (shE2F8 cells) and the other with non‑target control shRNA (shControl cells). The cell functions, including cell cycle, proliferation, invasion and adhesion, were compared between the shE2F8 and shControl cells. A histological examination revealed that E2F8 was localised in the decidua cells, EVTs, and cytotrophoblasts in the placenta. E2F8 mRNA was confirmed to be expressed in cultured primary EVTs. No significant difference was observed in the cell cycle, proliferation or adhesion between the shE2F8 and shControl cells. The invasive ability was ~2‑fold higher in the shE2F8 cells when compared with the shControl cells (P<0.01). Production of matrix metalloproteinase‑1 was significantly increased in the shE2F8 cells when compared with the shControl cells (P<0.05). Taken together, E2F8 is present in the EVTs of the human placenta, but, unlike murine placenta, it may suppress the invasiveness of EVTs. E2F8 was also present in cytotrophoblasts in cell columns, which have no invasive ability and differentiate into EVTs. In conclusion, E2F8 also exists in the human placenta, and its function may be different from that in the murine placenta, although further investigation is required.
Collapse
Affiliation(s)
- Masako Mizuno
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Rika Miki
- Laboratory of Bell Research Center‑Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yoshinori Moriyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Tomoko Nakano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi 453‑8511, Japan
| | - Seiji Sumigama
- Office of International Affairs, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Eiko Yamamoto
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Takeshi Senga
- Department of Internal Medicine, Yahagigawa Hospital, Anjo, Aichi 444‑1164, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| |
Collapse
|
35
|
Ma YS, Lv ZW, Yu F, Chang ZY, Cong XL, Zhong XM, Lu GX, Zhu J, Fu D. MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:252. [PMID: 30326936 PMCID: PMC6192354 DOI: 10.1186/s13046-018-0927-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is increasing evidence that liver cancer stem cells (LCSCs) contribute to hepatocellular carcinoma (HCC) initiation and progression. MicroRNA (miRNA) plays a significant functional role by directly regulating respective targets in LCSCs-triggered HCC, however, little is known about the function of the miRNA-302 family in LCSCs. METHODS MiRNAs microarray was used to detect the miRNAs involved in LCSCs maintenance and differentiation. Biological roles and the molecular mechanism of miRNA-302a/d and its target gene E2F7 were detected in HCC in vitro. The expression and correlation of miRNA-302a/d and E2F7 in HCC patients was evaluated by quantitative PCR and Kaplan-Meier survival analysis. RESULTS We found that the miRNA-302 family was downregulated during the spheroid formation of HCC cells and patients with lower miRNA-302a/d expression had shorter overall survival (OS) and progression-free survival (PFS). Moreover, E2F7 was confirmed to be directly targeted and inhibited by miRNA-302a/d. Furthermore, concomitant low expression of miRNA-302a/d and high expression of E2F7 correlated with a shorter median OS and PFS in HCC patients. Cellular functional analysis demonstrated that miRNA-302a/d negatively regulates self-renewal capability and cell cycle entry of liver cancer stem cells via suppression of its target gene E2F7 and its downstream AKT/β-catenin/CCND1 signaling pathway. CONCLUSIONS Our data provide the first evidence that E2F7 is a direct target of miRNA-302a/d and miRNA-302a/d inhibits the stemness of LCSCs and proliferation of HCC cells by targeting the E2F7/AKT/β-catenin/CCND1 signaling pathway.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zheng-Yan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xian-Ling Cong
- Department of Biobank, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xiao-Ming Zhong
- Department of Radiology, Jiangxi Provincial Tumor Hospital, Nanchang, 330029, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Zhu
- Department of Digestive Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
36
|
Mohan Bangalore D, Tessmer I. Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
37
|
Korhonen JH, Palin K, Taipale J, Ukkonen E. Fast motif matching revisited: high-order PWMs, SNPs and indels. Bioinformatics 2017; 33:514-521. [PMID: 28011774 DOI: 10.1093/bioinformatics/btw683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
Motivation While the position weight matrix (PWM) is the most popular model for sequence motifs, there is growing evidence of the usefulness of more advanced models such as first-order Markov representations, and such models are also becoming available in well-known motif databases. There has been lots of research of how to learn these models from training data but the problem of predicting putative sites of the learned motifs by matching the model against new sequences has been given less attention. Moreover, motif site analysis is often concerned about how different variants in the sequence affect the sites. So far, though, the corresponding efficient software tools for motif matching have been lacking. Results We develop fast motif matching algorithms for the aforementioned tasks. First, we formalize a framework based on high-order position weight matrices for generic representation of motif models with dinucleotide or general q -mer dependencies, and adapt fast PWM matching algorithms to the high-order PWM framework. Second, we show how to incorporate different types of sequence variants , such as SNPs and indels, and their combined effects into efficient PWM matching workflows. Benchmark results show that our algorithms perform well in practice on genome-sized sequence sets and are for multiple motif search much faster than the basic sliding window algorithm. Availability and Implementation Implementations are available as a part of the MOODS software package under the GNU General Public License v3.0 and the Biopython license ( http://www.cs.helsinki.fi/group/pssmfind ). Contact janne.h.korhonen@gmail.com.
Collapse
Affiliation(s)
- Janne H Korhonen
- School of Computer Science, Reykjavík University, Reykjavík, Iceland.,Helsinki Institute for Information Technology HIIT, Helsinki, Finland.,Department of Computer Science
| | - Kimmo Palin
- Genome-Scale Biology Research Program, Research Programs Unit
| | - Jussi Taipale
- Department of Biosciences and Nutrition, Karolinska Institutet, Genome Scale Biology Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esko Ukkonen
- Helsinki Institute for Information Technology HIIT, Helsinki, Finland.,Department of Computer Science
| |
Collapse
|
38
|
Metformin induces cell cycle arrest at the G1 phase through E2F8 suppression in lung cancer cells. Oncotarget 2017; 8:101509-101519. [PMID: 29254182 PMCID: PMC5731892 DOI: 10.18632/oncotarget.21552] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023] Open
Abstract
A target molecule responsible for cell cycle arrest by metformin was discovered using a gene chip array in lung cancer cells and the effect of metformin on E2F8 was assessed. The siRNA-mediated knockdown of E2F8 significantly suppressed G1-S progression while ectopic expression of E2F8 relieved metformin-induced G1 arrest. The mRNA levels of p21 were found to be inversely related to those of E2F8 in lung cancer cells while siRNA-mediated knockdown of p21 partly rescued siE2F8-induced arrest of the cell cycle. Metformin had no effect on degradation of E2F8 mRNA. Activation and inhibition of AMPK by AICAR and Dorsomorphin, respectively, did not affect E2F8 suppression by metformin. The clinical significance of E2F8 was analyzed in The Cancer Genome Atlas (TCGA) data. One hundred six (13%) of 848 TCGA lung cancers overexpressed E2F8 mRNA. The overexpression of E2F8 was associated with poor overall survival (adjusted hazard ratio = 1.58, 95% confidence interval = 1.13-2.22; P = 0.008). The present study suggests that metformin may induce cell cycle arrest at the G1 phase by suppressing E2F8 expression in lung cancer cells. In addition, E2F8 may be associated with poor overall survival in lung cancer patients irrespective of histology.
Collapse
|
39
|
Liang B, Zhao J, Wang X. Clinical performance of E2Fs 1-3 in kidney clear cell renal cancer, evidence from bioinformatics analysis. Genes Cancer 2017; 8:600-607. [PMID: 28740578 PMCID: PMC5511893 DOI: 10.18632/genesandcancer.143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Extensive research on the E2F transcription factor family has led to numerous insights that E2Fs were involved not only in proliferation and tumorigenesis but also in apoptosis and differentiation. In the present study, we analyzed the differential expression of E2Fs1-3 genes, and also evaluated the impact of E2Fs 1-3 genes expression on clinical outcome from the Cancer Genome Atlas (TCGA) database. The results showed that E2F1, E2F2 and E2F3 expression was increased in KIRC tissues than matched normal tissues (E2F1, P < 0.001; E2F2, P < 0.001, E2F3, P = 0.001), respectively. E2F1, E2F2 and E2F3 were significantly different in metastasis status, lymph node status, stage, and T stage in KIRC patients (all P < 0.01). E2F1 and E2F2 had the sensitivity of 96.1% and 93.1% and the specificity of 87.2% and 91.7% in discriminating KIRC from normal controls. High E2F1, E2F2 and E2F3 expression were correlated to worsen overall survival (all P < 0.01), and high E2F3 expression had worse disease free survival (P = 0.0404). Multivariate Cox regression analysis revealed that E2F1 and E2F3 were independent prognostic factors for overall survival. Taken together, E2F1 and E2F2 may serve as valuable diagnostic markers for KIRC. Moreover, E2F1, E2F2 and E2F3 could provide valuable prognostic information for KIRC patients.
Collapse
Affiliation(s)
- Bin Liang
- Department of bioinformatics, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jianying Zhao
- Department of Clinical Laboratory, No.202 Hospital of PLA, Shenyang, China.,Graduate School, Jinzhou Medical University, Jinzhou, China
| | - Xuan Wang
- Graduate School, Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Maniga A, Ghisaura S, Perrotta L, Marche MG, Cella R, Albani D. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana. PLoS One 2017; 12:e0179338. [PMID: 28594957 PMCID: PMC5464667 DOI: 10.1371/journal.pone.0179338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 01/16/2023] Open
Abstract
In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities.
Collapse
Affiliation(s)
- Antonio Maniga
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Stefania Ghisaura
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | - Lara Perrotta
- Department of Agriculture, University of Sassari, Sassari, Italy
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | | | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Diego Albani
- Department of Agriculture, University of Sassari, Sassari, Italy
- Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Sassari, Italy
- * E-mail:
| |
Collapse
|
41
|
Morgunova E, Taipale J. Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol 2017; 47:1-8. [PMID: 28349863 DOI: 10.1016/j.sbi.2017.03.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/07/2017] [Indexed: 12/27/2022]
Abstract
In prokaryotes, individual transcription factors (TFs) can recognize long DNA motifs that are alone sufficient to define the genes that they induce or repress. In contrast, in higher organisms that have larger genomes, TFs recognize sequences that are too short to define unique genomic positions. In addition, development of multicellular organisms requires molecular systems that are capable of executing combinatorial logical operations. Co-operative recognition of DNA by multiple TFs allows both definition of unique genomic positions in large genomes, and complex information processing at the level of individual regulatory elements. The TFs can co-operate in multiple different ways, and the precise mechanism used for co-operation determines important features of the regulatory interactions. Here, we present an overview of the structural basis of the different mechanisms by which TFs can cooperate, focusing on insight from recent functional studies and structural analyses of specific TF-TF-DNA complexes.
Collapse
Affiliation(s)
- Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden; Genome-Scale Biology Research Program, P.O. Box 63, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
42
|
Okuda M, Araki K, Ohtani K, Nishimura Y. The Interaction Mode of the Acidic Region of the Cell Cycle Transcription Factor DP1 with TFIIH. J Mol Biol 2016; 428:4993-5006. [DOI: 10.1016/j.jmb.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|