1
|
Wang DD, He L, Qi MH, Zhao HY, Yu AX, Huang SW. Mitochondria-targeting artesunate-rhein conjugates: Linker-modulated cell-permeability, heme-affinity and anticancer activity. Eur J Med Chem 2025; 282:117100. [PMID: 39615162 DOI: 10.1016/j.ejmech.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Heme, abundant in the mitochondria of cancer cells, is a key target for the anticancer activity of artemisinin (ART). Current strategies to enhance the anticancer activity of ART focus solely on its delivery to heme-enriched subcellular localizations while overlooking the decisive effects of ART-heme interactions. Here, we propose an ingenious strategy that synergizes mitochondria-targeted drug delivery and linker-mediated drug conformation modulation, thereby significantly enhancing the anticancer activity of ART. By strategically conjugating artemisinin (ART) with the mitochondria-targeting rhein (R) using different linkers, we aimed to precisely adjust the conformation of the conjugates. Comprehensive computational analysis revealed that the conjugate with the optimal linker length (C4) displayed a favorable conformation that facilitated cell permeability and exhibited the highest binding affinity to heme and Fe ions. Moreover, it exhibited superior tumor suppression capabilities both in vitro and in vivo, overcoming the uncertainty of in vivo application caused by the rapid clearance of the conventional mitochondria-targeted cation TPP+, and even inducing immunogenic cell death associated with immunotherapy. This novel strategy opens up a new avenue for the development of drug conjugate systems.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Li He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming-Hui Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hong-Yang Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Ai-Xi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China; Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Zhang J, Pang H, Tang H, Tu Q, Xia F, Zhang H, Meng Y, Han G, Wang J, Qiu C. The pharmacodynamic and pharmacological mechanisms underlying nanovesicles of natural products: Developments and challenges. Pharmacol Ther 2025; 265:108754. [PMID: 39566562 DOI: 10.1016/j.pharmthera.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Natural products such as Traditional Chinese Medicines (TCMs) show great advantages in the treatment and prevention of diseases, but the unclear effective ingredients and mechanisms are key obstacles to restrict their rapid development. Under the guidance of the theoretical guidance of reductionism and the theoretical of allopathic medicine, some researches have indeed achieved some breakthrough results. However, these incomplete methods mainly limited to direct actions or indirect actions (such as the intermediated substances mediated cross-organ or cross-system regulation) mechanism of single active ingredient derived from natural products, which are often inconsistent with Systemism and Harmonizing Medicine and make it difficult to reasonably explain the pharmacodynamics and pharmacological mechanism of most natural products. Actually, effective pharmaceutical ingredients often do not exist in the form of free monomers, but prefer to assembly nanovesicles (NVs) for a combinational pharmacological effect, mainly including self-assembled nanoparticles (SANs) and exosome-like nanoparticles (ELNs). These developments of NVs-based application are a good supplement to existing pharmacological mechanism research. Hence, this review focuses on the developments and strategies of the pharmacodynamics and pharmacological mechanism of NVs-based TCMs under the combining theory of traditional Chinese and western medicine. On this basis, a novel "multidimensional combination" research approach is proposed firstly, which will provide new strategies and directions for breaking through the bottleneck of pharmacological mechanism research, and promote the clinical application of innovative natural products including TCMs.
Collapse
Affiliation(s)
- Junzhe Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingchao Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore.
| | - Chong Qiu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Okoh MP, Egua MO, Alli LA, Dalu D, Gundamaraju R, Singla RK, Shen B. Unveiling the Potential of Natural Resources-Derived Therapeutics for Improved Malaria Management: Computational to Experimental Studies. Adv Biol (Weinh) 2024:e2400282. [PMID: 39703011 DOI: 10.1002/adbi.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/30/2024] [Indexed: 12/21/2024]
Abstract
Malaria kills millions of people annually, and it is one of the major causes of preventable mortality in the world. Of the different plasmodium species that induce malaria, Plasmodium falciparum and Plasmodium vivax account for the most severe form of malarial disease in humans. This review focuses on understanding preventive measures, mutation-based disease evolution, malaria-related biomarkers, and potential plant bioactive components for the treatment and management of malaria. The burden of malaria drug resistance has made it necessary for scientists to focus on alternative therapeutics, with particular interests in those involving plant-based bioactive components that could mediate biochemical pathways, consisting of metabolic interactions essential for parasitic inhibition. To avoid artefacts or false positives, these bioactive components from plant sources are further filtered using the "pan-assay-interfering compounds" (PAINS) tool. This review discussed the history of malaria treatment, current treatment options, malaria preventive measures, and challenges associated with current treatment strategies. Additionally, this work discusses the barriers while developing drugs from phytochemicals and the steps needed to accelerate the development of new antimalarial from the lead compounds.
Collapse
Affiliation(s)
- Michael P Okoh
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Abuja, P.M.B 117 FCT, Nigeria
| | - Maxwell O Egua
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Abuja, Abuja, P.M.B 117 FCT, Nigeria
| | - Lukman A Alli
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Abuja, Abuja, P.M.B 117 FCT, Nigeria
| | - Damayanthi Dalu
- Department of Pharmacology, St Mary's College of Pharmacy, Secunderabad, Telangana, 500025, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, TAS 7248, Australia
- Department of Pharmaceutical Engineering, BV Raju Institute of Technology, Narsapur, Medak, Telangana, 502313, India
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Rosenthal MR, Vijayrajratnam S, Firestone TM, Ng CL. Enhanced cell stress response and protein degradation capacity underlie artemisinin resistance in Plasmodium falciparum. mSphere 2024; 9:e0037124. [PMID: 39436072 PMCID: PMC11580438 DOI: 10.1128/msphere.00371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Malaria remains a global health burden, killing over half a million people each year. Decreased therapeutic efficacy to artemisinin, the most efficacious antimalarial, has been detected in sub-Saharan Africa, a worrying fact given that over 90% of deaths occur on this continent. Mutations in Kelch13 are the most well-established molecular marker for artemisinin resistance, but these do not explain all artemisinin-resistant isolates. Understanding the biological underpinnings of drug resistance is key to curbing the emergence and spread of artemisinin resistance. Artemisinin-mediated non-specific alkylation leads to the accumulation of misfolded and damaged proteins and activation of the parasite unfolded protein response (UPR). In addition, the parasite proteasome is vital to artemisinin resistance, as we have previously shown that chemical inhibition of the proteasome or mutations in the β2 proteasome subunit increase parasite susceptibility to dihydroartemisinin (DHA), the active metabolite of artemisinins. Here, we investigate parasites with mutations at the Kelch13 and/or 19S and 20S proteasome subunits with regard to UPR regulation and proteasome activity in the context of artemisinin resistance. Our data show that perturbing parasite proteostasis kills parasites, early parasite UPR signaling dictates DHA survival outcomes, and DHA susceptibility correlates with impairment of proteasome-mediated protein degradation. Importantly, we show that functional proteasomes are required for artemisinin resistance in a Kelch13-independent manner, and compound-selective proteasome inhibition demonstrates why artemisinin-resistant Kelch13 mutants remain susceptible to the related antimalarial peroxide OZ439. These data provide further evidence for targeting the parasite proteasome and UPR to overcome existing artemisinin resistance.IMPORTANCEDecreased therapeutic efficacy represents a major barrier to malaria treatment control strategies. The malaria proteasome and accompanying unfolded protein response are crucial to artemisinin resistance, revealing novel antimalarial therapeutic strategies.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukhithasri Vijayrajratnam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tessa M. Firestone
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Caroline L. Ng
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biology, University of Omaha, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Li Q, Vetter L, Veith Y, Christ E, Végvári Á, Sahin C, Ribacke U, Wahlgren M, Ankarklev J, Larsson O, Chun-Leung Chan S. tRNA regulation and amino acid usage bias reflect a coordinated metabolic adaptation in Plasmodium falciparum. iScience 2024; 27:111167. [PMID: 39524331 PMCID: PMC11544085 DOI: 10.1016/j.isci.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
An adaptive feature of malaria-causing parasites is the digestion of host hemoglobin (HB) to acquire amino acids (AAs). Here, we describe a link between nutrient availability and translation dependent regulation of gene expression as an adaptive strategy. We show that tRNA expression in Plasmodium falciparum does not match the decoding need expected for optimal translation. A subset of tRNAs decoding AAs that are insufficiently provided by HB are lowly expressed, wherein the abundance of a protein-coding transcript is negatively correlated with the decoding requirement of these tRNAs. Proliferation-related genes have evolved a high requirement of these tRNAs, thereby proliferation can be modulated by repressing protein synthesis of these genes during nutrient stress. We conclude that the parasite modulates translation elongation by maintaining a discordant tRNA profile to exploit variations in AA-composition among genes as an adaptation strategy. This study exemplifies metabolic adaptation as an important driving force for protein evolution.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ylva Veith
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Christ
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chun-Leung Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Rahman A, Tamseel S, Dutta S, Khan N, Faaiz M, Rastogi H, Nath JR, Haldar K, Chowdhury P, Ashish, Bhattacharjee S. Artemisinin-resistant Plasmodium falciparum Kelch13 mutant proteins display reduced heme-binding affinity and decreased artemisinin activation. Commun Biol 2024; 7:1499. [PMID: 39538019 PMCID: PMC11561146 DOI: 10.1038/s42003-024-07178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The potency of frontline antimalarial drug artemisinin (ART) derivatives is triggered by heme-induced cleavage of the endoperoxide bond to form reactive heme-ART alkoxy radicals and covalent heme-ART adducts, which are highly toxic to the parasite. ART-resistant (ART-R) parasites with mutations in the Plasmodium falciparum Kelch-containing protein Kelch13 (PfKekch13) exhibit impaired hemoglobin uptake, reduced yield of hemoglobin-derived heme, and thus decreased ART activation. However, any direct involvement of PfKelch13 in heme-mediated ART activation has not been reported. Here, we show that the purified recombinant PfKelch13 wild-type (WT) protein displays measurable binding affinity for iron and heme, the main effectors for ART activation. The heme-binding property is also exhibited by the native PfKelch13 protein from parasite culture. The two ART-R recombinant PfKelch13 mutants (C580Y and R539T) display weaker heme binding affinities compared to the ART-sensitive WT and A578S mutant proteins, which further translates into reduced yield of heme-ART derivatives when ART is incubated with the heme molecules bound to the mutant PfKelch13 proteins. In conclusion, this study provides the first evidence for ART activation via the heme-binding propensity of PfKelch13. This mechanism may contribute to the modulation of ART-R levels in malaria parasites through a novel function of PfKelch13.
Collapse
Affiliation(s)
- Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Sabahat Tamseel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Smritikana Dutta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Nawaal Khan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Mohammad Faaiz
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jyoti Rani Nath
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kasturi Haldar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Pramit Chowdhury
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi, 110067, India.
| |
Collapse
|
7
|
Sun YJ, Zhang Q, Cao SJ, Sun XH, Zhang JC, Zhang BY, Shang ZB, Zhao CY, Cao ZY, Zhang QJ, Gao XM, Qiu F, Kang N. Tetrahydrocurcumin targets TRIP13 inhibiting the interaction of TRIP13/USP7/c-FLIP to mediate c-FLIP ubiquitination in triple-negative breast cancer. J Adv Res 2024:S2090-1232(24)00496-X. [PMID: 39505147 DOI: 10.1016/j.jare.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) has a high mortality rate and limited treatment options. Tetrahydrocurcumin (THC), a major metabolite of curcumin, has potential antitumor activities. However, the antitumor effects and mechanism of THC in TNBC remain elusive. OBJECTIVES To investigate the mechanism of THC in combating TNBC by targeting TRIP13 to disrupt the interaction of the TRIP13/USP7/c-FLIP complex and mediate c-FLIP ubiquitination both in vitro and in vivo. METHODS Apoptosis was measured by TUNEL and flow cytometry. Click chemistry-based target fishing, CETSA, DARTS, and SPR were used to identify direct target of THC. Protein interactions was examined using co-immunoprecipitation. The role of USP7 in THC-mediated c-FLIP ubiquitination was evaluated by in vitro deubiquitination assay. Human breast cancer clinical samples were employed to assess the expression of c-FLIP, TRIP13, and USP7. The impact of THC on USP7/TRIP13/c-FLIP was analyzed using co-immunoprecipitation, confocal microscopy, molecular docking and dynamics simulations. RESULTS THC effectively inhibits TNBC cell proliferation and tumor growth in vitro and in vivo without significant toxicity. Mechanistically, THC induces extrinsic apoptosis in TNBC primarily by promoting degradation of c-FLIP, a key negative regulator in the apoptotic pathway. Furthermore, utilizing click chemistry-based target fishing, we identified TRIP13, a component of the highly conserved AAA ATPase family, as a direct target of THC in combating TNBC. Interestingly, contrary to previous drug-target studies, the knockdown of TRIP13 further amplified the antitumor effects of THC. After in-depth investigation, it was revealed that TRIP13 forms a trimeric complex with USP7 and c-FLIP in TNBC cells. THC specifically targets TRIP13 to disrupt the interaction of TRIP13/USP7/c-FLIP, leading to the ubiquitination of c-FLIP, ultimately inducing extrinsic apoptosis. CONCLUSIONS These findings offer new insights into the novel molecular mechanisms of anti-TNBC effects of THC and present a promising targeted therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Yu-Jie Sun
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiao-Hu Sun
- Tianjin Medical University, Cancer Institute & Hospital, Tianjin 300181, PR China
| | - Ji-Chao Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bing-Yang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ze-Bin Shang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Chong-Yan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhi-Yong Cao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qiu-Ju Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiu-Mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
8
|
Loveridge KM, Sigala PA. Identification of a divalent metal transporter required for cellular iron metabolism in malaria parasites. Proc Natl Acad Sci U S A 2024; 121:e2411631121. [PMID: 39467134 PMCID: PMC11551425 DOI: 10.1073/pnas.2411631121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Plasmodium falciparum malaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells, P. falciparum requires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron. Although most FV heme is sequestered into inert hemozoin crystals, prior studies indicate that trace heme escapes biomineralization and is susceptible to nonenzymatic degradation within the oxidizing FV environment to release labile iron. Parasites retain a homolog of divalent metal transporter 1 (DMT1), a known mammalian iron transporter, but its role in P. falciparum iron acquisition has not been tested. Our phylogenetic studies indicate that P. falciparum DMT1 (PfDMT1) retains conserved molecular features critical for metal transport. We localized this protein to the FV membrane and defined its orientation in an export-competent topology. Conditional knockdown of PfDMT1 expression is lethal to parasites, which display broad cellular defects in iron-dependent functions, including impaired apicoplast biogenesis and mitochondrial polarization. Parasites are selectively rescued from partial PfDMT1 knockdown by supplementation with exogenous iron, but not other metals. These results support a cellular paradigm whereby PfDMT1 is the molecular gatekeeper to essential iron acquisition by blood-stage malaria parasites and suggest that therapeutic targeting of PfDMT1 may be a potent antimalarial strategy.
Collapse
Affiliation(s)
- Kade M. Loveridge
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT84112
| |
Collapse
|
9
|
Kucharski M, Nayak S, Gendrot M, Dondorp AM, Bozdech Z. Peeling the onion: how complex is the artemisinin resistance genetic trait of malaria parasites? Trends Parasitol 2024; 40:970-986. [PMID: 39358163 DOI: 10.1016/j.pt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The genetics of Plasmodium as an intracellular, mostly haploid, sexually reproducing, eukaryotic organism with a complex life cycle, presents unprecedented challenges in studying drug resistance. This article summarizes current knowledge on the genetic basis of artemisinin resistance (AR) - a main component of current drug therapies for falciparum malaria. Although centered on nonsynonymous single-nucleotide polymorphisms (nsSNPs), we describe multifaceted resistance mechanisms as part of a complex, cumulative genetic trait that involves regulation of expression by a wide array of polymorphisms in noncoding regions. These genetic variations alter transcriptome profiles linked to Plasmodium's development and population dynamics, ultimately influencing the emergence and spread of the resistance.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore; Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Zheng H, Huang L, An G, Guo L, Wang N, Yang W, Zhu Y. A Nanoreactor Based on Metal-Organic Frameworks With Triple Synergistic Therapy for Hepatocellular Carcinoma. Adv Healthc Mater 2024; 13:e2401743. [PMID: 39015058 DOI: 10.1002/adhm.202401743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Indexed: 07/18/2024]
Abstract
The transformation of monotherapy into multimodal combined targeted therapy to fully exploit synergistic efficacy is of increasing interest in tumor treatment. In this work, a novel nanodrug-carrying platform based on iron-based MOFs, which is loaded with doxorubicin hydrochloride (DOX), dihydroartemisinin (DHA), and glucose oxidase (GOx), and concurrently covalently linked to the photosensitizer 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) in polydopamine (PDA)-encapsulated MIL-101(Fe) (denoted as MIL-101(Fe)-DOX-DHA@TCPP/GOx@PDA, MDDTG@P), is successfully developed. Upon entering the tumor microenvironment, MDDTG@P catalyzes the hydrogen peroxide (H2O2) into hydroxyl radicals (·OH) and depletes glutathione (GSH); thus, exerting the role of chemodynamic therapy (CDT). The reduced Fe2+ can also activate DHA, further expanding CDT and promoting tumor cell apoptosis. The introduced GOx will rapidly consume glucose and oxygen (O2) in the tumor; while, replenishing H2O2 for Fenton reaction, starving the cancer cells; and thus, realizing starvation and chemodynamic therapy. In addition, the covalent linkage of TCPP endows MDDTG@P with good photodynamic therapeutic (PDT) properties. Therefore, this study develops a nanocarrier platform for triple synergistic chemodynamic/photodynamic/starvation therapy, which has promising applications in the efficient treatment of tumors.
Collapse
Affiliation(s)
- Heming Zheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lei Huang
- School of Stomatology, Minzhu Clinic of Stomatology Hospital Affiliated to Guangxi Medical University, Guangxi, 530007, China
| | - Guanghui An
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lianshan Guo
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Wenhui Yang
- Department of Medical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
11
|
Shaw PJ, Prommana P, Thongpanchang C, Kamchonwongpaisan S, Kongkasuriyachai D, Wang Y, Zhou Z, Zhou Y. Antimalarial mechanism of action of the natural product 9-methoxystrobilurin G. Mol Omics 2024; 20:584-594. [PMID: 39262389 DOI: 10.1039/d4mo00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The natural product 9-methoxystrobilurin G (9MG) from Favolaschia spp basidiomycetes is a potent and selective antimalarial. The mechanism of action of 9MG is unknown. We induced 9MG resistance in Plasmodium falciparum 3D7 and Dd2 strains and identified mutations associated with resistance by genome sequencing. All 9MG-resistant clones possessed missense mutations in the cytochrome b (CYTB) gene, a key component of mitochondrial complex III. The mutations map to the quinol oxidation site of CYTB, which is also the target of antimalarials such as atovaquone. In a complementary approach to identify protein targets of 9MG, a photoactivatable derivative of 9MG was synthesized and applied in chemoproteomic-based target profiling. Three components of mitochondrial complex III (QCR7, QCR9, and COX15) were specifically enriched consistent with 9MG targeting CYTB and complex III function in P. falciparum. Inhibition of complex III activity by 9MG was confirmed by ubiquinone cytochrome c reductase assay using P. falciparum extract. The findings from this study may be useful for developing novel antimalarials targeting CYTB.
Collapse
Affiliation(s)
- Philip J Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chawanee Thongpanchang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Darin Kongkasuriyachai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yiqing Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China.
| |
Collapse
|
12
|
Huang L, Li G, Zhang Y, Zhuge R, Qin S, Qian J, Chen R, Kwan Wong Y, Tang H, Wang P, Xiao W, Wang J. Small-molecule targeting BCAT1-mediated BCAA metabolism inhibits the activation of SHOC2-RAS-ERK to induce apoptosis of Triple-negative breast cancer cells. J Adv Res 2024:S2090-1232(24)00476-4. [PMID: 39490614 DOI: 10.1016/j.jare.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with the worst prognosis. Exploring novel carcinogenic factors and therapeutic drugs for TNBC remains a focus to improve prognosis. Branched-chain amino acid transaminase 1 (BCAT1), a crucial enzyme in branched-chain amino acid (BCAA) metabolism, has been linked to various tumor developments, but its carcinogenic function and mechanism in TNBC remain unclear. Eupalinolide B (EB) is a naturally-derived small-molecule with anti-tumor activity, but its role in TNBC remains unknown. OBJECTIVES By exploring the targets and pharmacological mechanisms of EB in inhibiting TNBC, this study aimed to discover novel therapeutic targets and potential inhibitors for TNBC, and elucidate novel pathogenic mechanisms of TNBC. METHODS The inhibitory effect of EB on TNBC was investigated using mouse models and cellular phenotypic experiments. Activity-based protein profiling (ABPP) technology, pull down-WB, CETSA-WB and MST were utilized to discover and validate the targets of EB. The oncogenic role of BCAT1 was determined through clinical data analysis and biochemical experiments. To elucidate the mechanism by which EB inhibited TNBC, many methods, including but not limited to HPLC and proteomic sequencing were used. RESULTS We found that EB significantly inhibited TNBC progression. We identified BCAT1 as the direct target of EB and confirmed that BCAT1 was critical for TNBC development. EB inhibited BCAT1-involved BCAA metabolism to reduce the synthesis of BCAAs (including Leu, Ile, and Val), thereby inhibiting SHOC2 (a Leu-rich repeat protein) expression and the downstream SHOC2-participating RAS-ERK signaling pathway, ultimately leading to apoptosis of TNBC cells. CONCLUSION Collectively, this study not only elucidates the oncogenic role of BCAT1 and its downstream SHOC2-RAS-ERK signaling axis in TNBC progression but also opens up avenues for potential therapies targeting BCAT1 or BCAA metabolism (using EB alone or in combination with its inhibitor candesartan) for TNBC treatment.
Collapse
Affiliation(s)
- Ling Huang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanjun Li
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Zhang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China; Oncology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Bei Xian Ge, Xi Cheng District, Beijing 100053, China
| | - Ruishen Zhuge
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China; Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shijie Qin
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Ruixing Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin Kwan Wong
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Tang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peili Wang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Wei Xiao
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Clinical Research Center for Geriatrics, Center for Drug Research and Development Guangdong Provincial Key Laboratory of Advanced Drug Delivery System Guangdong Pharmaceutical University Guangzhou 510006, China.
| | - Jigang Wang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Guangdong Provincial Clinical Research Center for Geriatrics, Center for Drug Research and Development Guangdong Provincial Key Laboratory of Advanced Drug Delivery System Guangdong Pharmaceutical University Guangzhou 510006, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
13
|
Wang S, Zhang Y, Yu R, Chai Y, Liu R, Yu J, Qu Z, Zhang W, Zhuang C. Labeled and Label-Free Target Identifications of Natural Products. J Med Chem 2024; 67:17980-17996. [PMID: 39360958 DOI: 10.1021/acs.jmedchem.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Target identification, employing chemical proteomics, constitutes a continuous challenging endeavor in the drug development of natural products (NPs). Understanding their targets is crucial for deciphering their mechanisms and developing potential probes or drugs. Identifications fall into two main categories: labeled and label-free techniques. Labeled methods use the molecules tagged with markers such as biotin or fluorescent labels to easily detect interactions with target proteins. Thorough structure-activity relationships are essential before labeling to avoid changes in the biological activity or binding specificity. In contrast, label-free technologies identify target proteins without modifying natural products, relying on changes in the stability, thermal properties, or precipitation in the presence or absence of these products. Each approach has its advantages and disadvantages, offering a comprehensive understanding of the mechanisms and therapeutic potential of the NPs. Here, we summarize target identification techniques for natural molecules, highlight case studies of notable NPs, and explore future applications and directions.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruizhi Yu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Chai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruyun Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Ma X, Xu M, Wang F, Hu T, Chen X, Zhang CJ. New electrophiles targeting thiols in a reversible covalent manner. Chem Commun (Camb) 2024; 60:12437-12440. [PMID: 39380305 DOI: 10.1039/d4cc04612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Reversible covalent electrophiles with the advantages of both reversible and covalent interactions receive much attention in the fields of chemical biology and medicinal chemistry. Here, we report two electron-deficient olefins activated by amide and ester, amide-substituted acrylamide and methyl ester-substituted acrylamide, targeting thiols in a reversible covalent manner.
Collapse
Affiliation(s)
- Xingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Fengge Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Tingting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Xinyuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
15
|
Zhu Y, Meng Y, Zhang J, Liu R, Shen S, Gu L, Wong YK, Ma A, Chai X, Zhang Y, Liu Y, Wang J. Recent Trends in anti-tumor mechanisms and molecular targets of celastrol. Int J Biol Sci 2024; 20:5510-5530. [PMID: 39494324 PMCID: PMC11528459 DOI: 10.7150/ijbs.99592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Celastrol, a compound derived from traditional Chinese medicine, has therapeutic effects and has been used to treat inflammation-related diseases, cancer, cardiovascular diseases, and neurodegenerative diseases. However, current reviews lack a comprehensive and systematic summary of the anti-tumor mechanisms and molecular targets of celastrol. For this reason, this paper reviews the anticancer properties of celastrol and the molecular mechanisms underlying its anticancer effects. This paper primarily focuses on the mechanism of action of celastrol in terms of inhibition of cell proliferation and regulation of the cell cycle, regulation of apoptosis and autophagy, inhibition of cell invasion and metastasis, anti-inflammation, regulation of immunotherapy, and angiogenesis. More importantly, the target proteins of celastrol identified by chemical proteomics or other methods are highlighted, providing detailed targets with novel therapeutic potential for anti-tumor treatment. In addition, we describe the side effects and strategies to improve the bioavailability of celastrol. In summary, this paper analyzes celastrol, a natural compound with therapeutic effects and clear targets, aiming to draw more attention from the scientific and pharmacological communities and accelerating its clinical application for the benefit of cancer patients.
Collapse
Affiliation(s)
- Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin-kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
16
|
Yang S, Cao SJ, Li CY, Zhang Q, Zhang BL, Qiu F, Kang N. Berberine directly targets AKR1B10 protein to modulate lipid and glucose metabolism disorders in NAFLD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118354. [PMID: 38762210 DOI: 10.1016/j.jep.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.
Collapse
Affiliation(s)
- Sa Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Cong-Yu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
17
|
Song F, Li J, Shi Q, Wong YK, Liu D, Lin Q, Wang J, Chen X. Quantitative Chemical Proteomics Reveals Triptolide Selectively Inhibits HCT116 Human Colon Cancer Cell Viability and Migration Through Binding to Peroxiredoxin 1 and Annexin A1. Adv Biol (Weinh) 2024; 8:e2300452. [PMID: 37794608 DOI: 10.1002/adbi.202300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Triptolide (TPL), a natural product extracted from Tripterygium wilfordii Hook F, exerts potential anti-cancer activity. Studies have shown that TPL is involved in multiple cellular processes and signal pathways; however, its pharmaceutical activity in human colorectal cancer (CRC) as well as the underlying molecular mechanism remain elusive. In this study, the effects of TPL on HCT116 human colon cancer cells and CCD841 human colon epithelial cells are first evaluated. Next, the protein targets of TPL in HCT116 cells are identified through an activity-based protein profiling approach. With subsequent in vitro experiments, the mode of action of TPL in HCT116 cells is elucidated. As a result, TPL is found to selectively inhibit HCT116 cell viability and migration. A total of 54 proteins are identified as the targets of TPL in HCT116 cells, among which, Annexin A1 (ANXA1) and Peroxiredoxin I/II (Prdx I/II) are picked out for further investigation due to their important role in CRC. The interaction between TPL and ANXA1 or Prdx I is confirmed, and it is discovered that TPL exerts inhibitory effect against HCT116 cells through binding to ANXA1 and Prdx I. The study reinforces the potential of TPL in the CRC therapy, and provides novel therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Fangli Song
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10700, China
| | - Jinglin Li
- Department of biological Sciences, National University of Singapore, Singapore, 117600, Singapore
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10700, China
| | - Yin Kwan Wong
- Department of biological Sciences, National University of Singapore, Singapore, 117600, Singapore
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10700, China
| | - Qingsong Lin
- Department of biological Sciences, National University of Singapore, Singapore, 117600, Singapore
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10700, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
18
|
Micchelli CE, Percopo C, Traver M, Brzostowski J, Amin SN, Prigge ST, Sá JM, Wellems TE. Progressive heterogeneity of enlarged and irregularly shaped apicoplasts in Plasmodium falciparum persister blood stages after drug treatment. PNAS NEXUS 2024; 3:pgae424. [PMID: 39381646 PMCID: PMC11460358 DOI: 10.1093/pnasnexus/pgae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024]
Abstract
Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a fraction of the blood-stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring-stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.
Collapse
Affiliation(s)
- Chiara E Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Traver
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuchi N Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean T Prigge
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Naik B, Gupta N, Godara P, Srivastava V, Kumar P, Giri R, Prajapati VK, Pandey KC, Prusty D. Structure-based virtual screening approach reveals natural multi-target compounds for the development of antimalarial drugs to combat drug resistance. J Biomol Struct Dyn 2024; 42:7384-7408. [PMID: 37528665 DOI: 10.1080/07391102.2023.2240415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Compared to the previous year, there has been an increase of nearly 2 million malaria cases in 2021. The emergence of drug-resistant strains of Plasmodium falciparum, the most deadly malaria parasite, has led to a decline in the effectiveness of existing antimalarial drugs. To address this problem, the present study aimed to identify natural compounds with the potential to inhibit multiple validated antimalarial drug targets. The natural compounds from the Natural Product Activity and Species Source (NPASS) database were screened against ten validated drug targets of Plasmodium falciparum using a structure-based molecular docking method. Twenty compounds, with targets ranging from three to five, were determined as the top hits. The molecular dynamics simulations of the top six complexes (NPC246162 in complex with PfAdSS, PfGDH, and PfNMT; NPC271270 in complex with PfCK, PfGDH, and PfdUTPase) confirmed their stable binding affinity in the dynamic environment. The Tanimoto coefficient and distance matrix score analysis show the structural divergence of all the hit compounds from known antimalarials, indicating minimum chances of cross-resistance. Thus, we propose further investigating these compounds in biochemical and parasite inhibition studies to reveal the real therapeutic potential. If found successful, these compounds may be a new avenue for future drug discovery efforts to combat existing antimalarial drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Kailash C Pandey
- Icmr-National Institute of Malaria Research, And Academy of Scientific and Innovative Research (AcSIR-ICMR), India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
20
|
Adapa SR, Meshram P, Sami A, Jiang RHY. Harnessing Porphyrin Accumulation in Liver Cancer: Combining Genomic Data and Drug Targeting. Biomolecules 2024; 14:959. [PMID: 39199347 PMCID: PMC11352895 DOI: 10.3390/biom14080959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The liver, a pivotal organ in human metabolism, serves as a primary site for heme biosynthesis, alongside bone marrow. Maintaining precise control over heme production is paramount in healthy livers to meet high metabolic demands while averting potential toxicity from intermediate metabolites, notably protoporphyrin IX. Intriguingly, our recent research uncovers a disrupted heme biosynthesis process termed 'porphyrin overdrive' in cancers that fosters the accumulation of heme intermediates, potentially bolstering tumor survival. Here, we investigate heme and porphyrin metabolism in both healthy and oncogenic human livers, utilizing primary human liver transcriptomics and single-cell RNA sequencing (scRNAseq). Our investigations unveil robust gene expression patterns in heme biosynthesis in healthy livers, supporting electron transport chain (ETC) and cytochrome P450 function without intermediate accumulation. Conversely, liver cancers exhibit rewired heme biosynthesis and a massive downregulation of cytochrome P450 gene expression. Notably, despite diminished drug metabolism, gene expression analysis shows that heme supply to the ETC remains largely unaltered or even elevated with patient cancer progression, suggesting a metabolic priority shift. Liver cancers selectively accumulate intermediates, which are absent in normal tissues, implicating their role in disease advancement as inferred by expression analysis. Furthermore, our findings in genomics establish a link between the aberrant gene expression of porphyrin metabolism and inferior overall survival in aggressive cancers, indicating potential targets for clinical therapy development. We provide in vitro proof-of-concept data on targeting porphyrin overdrive with a drug synergy strategy.
Collapse
Affiliation(s)
- Swamy R. Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Pravin Meshram
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Abdus Sami
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Rays H. Y. Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
21
|
Sivakumar R, Floyd K, Erath J, Jacoby A, Kim Kim J, Bayguinov PO, Fitzpatrick JAJ, Goldfarb D, Jovanovic M, Tripathi A, Djuranovic S, Pavlovic-Djuranovic S. Poly-basic peptides and polymers as new drug candidates against Plasmodium falciparum. Malar J 2024; 23:227. [PMID: 39090669 PMCID: PMC11295857 DOI: 10.1186/s12936-024-05056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-based combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs, such as lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. In this study, a common characteristic of the P. falciparum proteome-stretches of poly-lysine residues, such as those found in proteins related to adhesion and pathogenicity-is investigated for its potential to treat infected erythrocytes. METHODS This study utilizes in vitro culturing of intra-erythrocytic P. falciparum to assess the ability of poly-lysine peptides to inhibit the parasite's growth, measured via flow cytometry of acridine orange-stained infected erythrocytes. The inhibitory effect of many poly-lysine lengths and modifications were tested this way. Affinity pull-downs and mass spectrometry were performed to identify the proteins interacting with these poly-lysines. RESULTS A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 h. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers retains or increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. CONCLUSION Since poly-lysine dendrimers are already FDA-approved for drug delivery and this study displays their potency against intraerythrocytic P. falciparum, their adaptation as anti-malarial drugs presents a promising new therapeutic strategy for malaria.
Collapse
Affiliation(s)
- Roshan Sivakumar
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine Floyd
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Roche Pharma Research & Early Development, F. Hoffmann-LaRoche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Abhai Tripathi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
22
|
Tang J, Liu Y, Xue Y, Jiang Z, Chen B, Liu J. Endoperoxide-enhanced self-assembled ROS producer as intracellular prodrugs for tumor chemotherapy and chemodynamic therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230127. [PMID: 39175885 PMCID: PMC11335464 DOI: 10.1002/exp.20230127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 08/24/2024]
Abstract
Prodrug-based self-assembled nanoparticles (PSNs) with tailored responses to tumor microenvironments show a significant promise for chemodynamic therapy (CDT) by generating highly toxic reactive oxygen species (ROS). However, the insufficient level of intracellular ROS and the limited drug accumulation remain major challenges for further clinical transformation. In this study, the PSNs for the delivery of artesunate (ARS) are demonstrated by designing the pH-responsive ARS-4-hydroxybenzoyl hydrazide (HBZ)-5-amino levulinic acid (ALA) nanoparticles (AHA NPs) with self-supplied ROS for excellent chemotherapy and CDT. The PSNs greatly improved the loading capacity of artesunate and the ROS generation from endoperoxide bridge using the electron withdrawing group attached directly to C10 site of artesunate. The ALA and ARS-HBZ could be released from AHA NPs under the cleavage of hydrazone bonds triggered by the acidic surroundings. Besides, the ALA increased the intracellular level of heme in mitochondria, further promoting the ROS generation and lipid peroxidation with ARS-HBZ for excellent anti-tumor effects. Our study improved the chemotherapy of ARS through the chemical modification, pointing out the potential applications in the clinical fields.
Collapse
Affiliation(s)
- JunJie Tang
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Yadong Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Yifan Xue
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Zhaozhong Jiang
- Department of Biomedical EngineeringIntegrated Science and Technology CenterYale UniversityWest HavenConnecticutUSA
| | - Baizhu Chen
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSun Yat‐Sen UniversityGuangzhouChina
| | - Jie Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| |
Collapse
|
23
|
Xue H, Chen P, Jiao J, Zhu X. Probing Dual Covalent Irreversible Inhibition of EGFR/FGFR4 by Electrophilic-Based Natural Compounds to Overcome Resistance and Enhance Combination Therapeutic Potentials and Management of Hepatocellular Carcinoma (HCC). Protein J 2024; 43:793-804. [PMID: 38981944 DOI: 10.1007/s10930-024-10211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancer types in the world and accounts for the majority of cases of primary liver cancer. A crucial part of the carcinogenesis of HCC involves aberrant stimulation of the FGF19-FGFR4 signaling pathway. Therefore, FGFR4 inhibition has become a strategic therapeutic approach for the treatment of HCC. However, the clinical treatment procedure is significantly hampered by the prevalence of kinase inhibitors resistance. It was recently established that the activation of EGFR signaling was found to be one of the primary mechanisms mediating the acquired resistance to FGFR4 inhibitors, moreover, sensitivity to FGFR4 inhibitors was effectively restored by inhibiting EGFR. These results provide compelling evidence that dual inhibition of EGFR and FGFR4 could represent a viable therapeutic approach to overcome resistance, hence enhanced management of HCC. To this end, we proposed a dual irreversible inhibition strategy through covalent binding by naturally occurring electrophilic warhead-bearing compounds (curcumin, deoxyelephantopin, eupalmerin acetate, syringolin A and andrographolide) to covalently target both EGFR and FGFR4 through cysteine residues, Cys797 and Cys552, respectively. Covalent docking and covalent molecular dynamics (MM/MDcov) simulations combined with thermodynamic binding free energy calculations were performed, and the results were compared against known potent and selective covalent EGFR and FGFR4 inhibitors with available X-ray crystal structures, Afatinib and BLU9931, respectively. Curcumin, deoxyelephantopin, eupalmerin acetate, syringolin A, and andrographolide showed relative binding free energies of -22.85, -17.14, -12.98, -21.81, and - 19.00 kcal/mol against EGFR and - 41.06, -29.45, -24.76, -40.11, and - 37.55 kcal/mol against FGFR4, respectively. The mechanisms of binding were emphasized by hydrogen bonding and binding forces analysis as well as active site physicochemical profiling. The findings of this study identified that curcumin, syringolin A and andrographolide-but not eupalmerin acetate or deoxyelephantopin -could be viable dual EGFR and FGFR4 covalent irreversible inhibitors and could be implemented in HCC combination therapy protocols alone or in conjunction with other chemotherapeutic agents. Investigations of this study conclusively indicate dual blockade of EGFR and FGFR4 may be a promising future therapeutic strategy for enhanced management of HCC.
Collapse
Affiliation(s)
- Huimin Xue
- Department of General Surgery, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Peng Chen
- Medical School, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jingyi Jiao
- Medical School, Nantong University, No.19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiaojun Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, No.20 Xisi Road, Nantong, 226001, Jiangsu, China
| |
Collapse
|
24
|
Konyanee A, Chaniad P, Chukaew A, Payaka A, Septama AW, Phuwajaroanpong A, Plirat W, Punsawad C. Antiplasmodial potential of isolated xanthones from Mesua ferrea Linn. roots: an in vitro and in silico molecular docking and pharmacokinetics study. BMC Complement Med Ther 2024; 24:282. [PMID: 39054443 PMCID: PMC11270968 DOI: 10.1186/s12906-024-04580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Malaria is a major global health concern, particularly in tropical and subtropical countries. With growing resistance to first-line treatment with artemisinin, there is an urgent need to discover novel antimalarial drugs. Mesua ferrea Linn., a plant used in traditional medicine for various purposes, has previously been investigated by our research group for its cytotoxic properties. The objective of this study was to explore the compounds isolated from M. ferrea with regards to their potential antiplasmodial activity, their interaction with Plasmodium falciparum lactate dehydrogenase (PfLDH), a crucial enzyme for parasite survival, and their pharmacokinetic and toxicity profiles. METHODS The isolated compounds were assessed for in vitro antiplasmodial activity against a multidrug-resistant strain of P. falciparum K1 using a parasite lactate dehydrogenase (pLDH) assay. In vitro cytotoxicity against Vero cells was determined using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The interactions between the isolated compounds and the target enzyme PfLDH were investigated using molecular docking. Additionally, pharmacokinetic and toxicity properties were estimated using online web tools SwissADME and ProTox-II, respectively. RESULTS Among the seven compounds isolated from M. ferrea roots, rheediachromenoxanthone (5), which belongs to the pyranoxanthone class, demonstrated good in vitro antiplasmodial activity, with the IC50 being 19.93 µM. Additionally, there was no toxicity towards Vero cells (CC50 = 112.34 µM) and a selectivity index (SI) of 5.64. Molecular docking analysis revealed that compound (5) exhibited a strong binding affinity of - 8.6 kcal/mol towards PfLDH and was stabilized by forming hydrogen bonds with key amino acid residues, including ASP53, TYR85, and GLU122. Pharmacokinetic predictions indicated that compound (5) possessed favorable drug-like properties and desired pharmacokinetic characteristics. These include high absorption in the gastrointestinal tract, classification as a non-substrate of permeability glycoprotein (P-gp), non-inhibition of CYP2C19, ease of synthesis, a high predicted LD50 value of 4,000 mg/kg, and importantly, non-hepatotoxic, non-carcinogenic, and non-cytotoxic effects. CONCLUSIONS This study demonstrated that compounds isolated from M. ferrea exhibit activity against P. falciparum. Rheediachromenoxanthone has significant potential as a scaffold for the development of potent antimalarial drugs.
Collapse
Affiliation(s)
- Atthaphon Konyanee
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prapaporn Chaniad
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Arnon Chukaew
- Chemistry Department, Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, 84100, Thailand
| | - Apirak Payaka
- School of Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), West Java, 16915, Indonesia
| | - Arisara Phuwajaroanpong
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Walaiporn Plirat
- College of Graduate Studies, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
25
|
Zou M, Zhou H, Gu L, Zhang J, Fang L. Therapeutic Target Identification and Drug Discovery Driven by Chemical Proteomics. BIOLOGY 2024; 13:555. [PMID: 39194493 DOI: 10.3390/biology13080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Throughout the human lifespan, from conception to the end of life, small molecules have an intrinsic relationship with numerous physiological processes. The investigation into small-molecule targets holds significant implications for pharmacological discovery. The determination of the action sites of small molecules provide clarity into the pharmacodynamics and toxicological mechanisms of small-molecule drugs, assisting in the elucidation of drug off-target effects and resistance mechanisms. Consequently, innovative methods to study small-molecule targets have proliferated in recent years, with chemical proteomics standing out as a vanguard development in chemical biology in the post-genomic age. Chemical proteomics can non-selectively identify unknown targets of compounds within complex biological matrices, with both probe and non-probe modalities enabling effective target identification. This review attempts to summarize methods and illustrative examples of small-molecule target identification via chemical proteomics. It delves deeply into the interactions between small molecules and human biology to provide pivotal directions and strategies for the discovery and comprehension of novel pharmaceuticals, as well as to improve the evaluation of drug safety.
Collapse
Affiliation(s)
- Mingjie Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haiyuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Letian Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jingzi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Hu J, Yu T, Huang K, Liang C, Li Y, Li X, Sun J, Bai W. Covalent Interactions of Anthocyanins with Proteins: Activity-Based Protein Profiling of Cyanidin-3- O-glucoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39036896 DOI: 10.1021/acs.jafc.4c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Anthocyanins are common natural pigments with a variety of physiological activities. Traditional perspectives attribute their molecular mechanism to noncovalent interactions influencing signaling pathways. However, this ignores the nature of its benzopyrylium skeleton, which readily reacts with the electron-rich groups of proteins. Here, we modified cyanidin-3-O-glucoside (C3G) via activity-based protein profiling technology by our previous synthesis route and prepared the covalent binding probe (C3G-Probe) and the noncovalent photoaffinity probe (C3G-Diazirine). The properties of C3G's covalent binding to proteins were also discovered by comparing the labeling of the two probes to the whole HepG2 cell proteome. We further explored its target proteins and enriched pathways in HepG2 and HeLa cells. Western blot analysis further confirmed the covalent binding of C3G to four target proteins: insulin-degrading enzyme, metal cation symporter ZIP14, spermatid perinuclear RNA-binding protein, and Cystatin-B. Pathway analysis showed that covalent targets of C3G were concentrated in metabolic pathways and several ribonucleoprotein complexes that were also coenriched. The results of this study provide new insights into the interaction of the naturally active molecule C3G with proteins.
Collapse
Affiliation(s)
- Jun Hu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Tingxin Yu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Kuanchen Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Chujie Liang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Yue Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510632, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| |
Collapse
|
27
|
Ruddell SA, Mostert D, Sieber SA. Target identification of usnic acid in bacterial and human cells. RSC Chem Biol 2024; 5:617-621. [PMID: 38966671 PMCID: PMC11221533 DOI: 10.1039/d4cb00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Usnic acid is a natural product with versatile biological activities against various organisms. Here, we utilise a chemical proteomic strategy to gain insights into its target scope in bacterial and human cells. First, we excluded DNA binding as a major reason for its antibacterial activity, and second, we commenced with target profiling, which unravelled several metal cofactor-dependent enzymes in both species indicating a polypharmacological mode of action. Interestingly, our synthetic studies revealed a selectivity switch at usnic acid, which maintains antibacterial activity but lacks strong cytotoxic effects.
Collapse
Affiliation(s)
- Stuart A Ruddell
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Dietrich Mostert
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| |
Collapse
|
28
|
Zhang T, An W, You S, Chen S, Zhang S. G protein-coupled receptors and traditional Chinese medicine: new thinks for the development of traditional Chinese medicine. Chin Med 2024; 19:92. [PMID: 38956679 PMCID: PMC11218379 DOI: 10.1186/s13020-024-00964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) widely exist in vivo and participate in many physiological processes, thus emerging as important targets for drug development. Approximately 30% of the Food and Drug Administration (FDA)-approved drugs target GPCRs. To date, the 'one disease, one target, one molecule' strategy no longer meets the demands of drug development. Meanwhile, small-molecule drugs account for 60% of FDA-approved drugs. Traditional Chinese medicine (TCM) has garnered widespread attention for its unique theoretical system and treatment methods. TCM involves multiple components, targets and pathways. Centered on GPCRs and TCM, this paper discusses the similarities and differences between TCM and GPCRs from the perspectives of syndrome of TCM, the consistency of TCM's multi-component and multi-target approaches and the potential of GPCRs and TCM in the development of novel drugs. A novel strategy, 'simultaneous screening of drugs and targets', was proposed and applied to the study of GPCRs. We combine GPCRs with TCM to facilitate the modernisation of TCM, provide valuable insights into the rational application of TCM and facilitate the research and development of novel drugs. This study offers theoretical support for the modernisation of TCM and introduces novel ideas for development of safe and effective drugs.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Wenqiao An
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Shengjie You
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China.
| |
Collapse
|
29
|
Liu Y, Jiang JJ, Du SY, Mu LS, Fan JJ, Hu JC, Ye Y, Ding M, Zhou WY, Yu QH, Xia YF, Xu HY, Shi YJ, Qian SW, Tang Y, Li W, Dang YJ, Dong X, Li XY, Xu CJ, Tang QQ. Artemisinins ameliorate polycystic ovarian syndrome by mediating LONP1-CYP11A1 interaction. Science 2024; 384:eadk5382. [PMID: 38870290 DOI: 10.1126/science.adk5382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024]
Abstract
Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing-Jing Jiang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shao-Yue Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200032, China
| | - Liang-Shan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Jun Fan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Jun-Chi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Yao Ye
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei-Yu Zhou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiu-Han Yu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yi-Fan Xia
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong-Yu Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi-Jie Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yong-Jun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Ying Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cong-Jian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Loveridge KM, Sigala PA. Identification of a divalent metal transporter required for cellular iron metabolism in malaria parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.587216. [PMID: 38798484 PMCID: PMC11118319 DOI: 10.1101/2024.05.10.587216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plasmodium falciparum malaria parasites invade and multiply inside red blood cells (RBCs), the most iron-rich compartment in humans. Like all cells, P. falciparum requires nutritional iron to support essential metabolic pathways, but the critical mechanisms of iron acquisition and trafficking during RBC infection have remained obscure. Parasites internalize and liberate massive amounts of heme during large-scale digestion of RBC hemoglobin within an acidic food vacuole (FV) but lack a heme oxygenase to release porphyrin-bound iron. Although most FV heme is sequestered into inert hemozoin crystals, prior studies indicate that trace heme escapes biomineralization and is susceptible to non-enzymatic degradation within the oxidizing FV environment to release labile iron. Parasites retain a homolog of divalent metal transporter 1 (DMT1), a known mammalian iron transporter, but its role in P. falciparum iron acquisition has not been tested. Our phylogenetic studies indicate that P. falciparum DMT1 (PfDMT1) retains conserved molecular features critical for metal transport. We localized this protein to the FV membrane and defined its orientation in an export-competent topology. Conditional knockdown of PfDMT1 expression is lethal to parasites, which display broad cellular defects in iron-dependent functions, including impaired apicoplast biogenesis and mitochondrial polarization. Parasites are selectively rescued from partial PfDMT1 knockdown by supplementation with exogenous iron, but not other metals. These results support a cellular paradigm whereby PfDMT1 is the molecular gatekeeper to essential iron acquisition by blood-stage malaria parasites and suggest that therapeutic targeting of PfDMT1 may be a potent antimalarial strategy.
Collapse
Affiliation(s)
- Kade M. Loveridge
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
31
|
Chen X, Tian J, Zhao C, Wu Y, Li J, Ji Z, Lian D, Jia Z, Chen X, Zhou Z, Zhu B, Hua Z. Resveratrol, a novel inhibitor of fatty acid binding protein 5, inhibits cervical cancer metastasis by suppressing fatty acid transport into nucleus and downstream pathways. Br J Pharmacol 2024; 181:1614-1634. [PMID: 38158217 DOI: 10.1111/bph.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Because of cervical cancer (CC) metastasis, the prognosis of diagnosed patients is poor. However, the molecular mechanisms and therapeutic approach for metastatic CC remain elusive. EXPERIMENTAL APPROACH In this study, we first evaluated the effect of resveratrol (RSV) on CC cell migration and metastasis. Via an activity-based protein profiling (ABPP) approach, a photoaffinity probe of RSV (RSV-P) was synthesized, and the protein targets of RSV in HeLa cells were identified. Based on target information and subsequent in vivo and in vitro validation experiments, we finally elucidated the mechanism of RSV corresponding to its antimetastatic activity. KEY RESULTS The results showed that RSV concentration-dependently suppressed CC cell migration and metastasis. A list of proteins was identified as the targets of RSV, through the ABPP approach with RSV-P, among which fatty acid binding protein 5 (FABP5) attracted our attention based on The Cancer Genome Atlas (TCGA) database analysis. Subsequent knockout and overexpression experiments confirmed that RSV directly interacted with FABP5 to inhibit fatty acid transport into the nucleus, thereby suppressing downstream matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-9 (MMP9) expression, thus inhibiting CC metastasis. CONCLUSIONS AND IMPLICATIONS Our study confirmed the key role of FABP5 in CC metastasis and provided important target information for the design of therapeutic lead compounds for metastatic CC.
Collapse
Affiliation(s)
- Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chunyuan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanhui Wu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiahuang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zehan Ji
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Danchen Lian
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhibo Jia
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Xingyu Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zixin Zhou
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 2024; 22:373-384. [PMID: 38321292 DOI: 10.1038/s41579-024-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.
Collapse
Affiliation(s)
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
- University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
33
|
Ullah I, Farringer MA, Burkhard AY, Hathaway E, Khushu M, Willett BC, Shin SH, Sharma AI, Martin MC, Shao KL, Dvorin JD, Hartl DL, Volkman SK, Bopp S, Absalon S, Wirth DF. Artemisinin resistance mutations in Pfcoronin impede hemoglobin uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572193. [PMID: 38187525 PMCID: PMC10769401 DOI: 10.1101/2023.12.22.572193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Artemisinin (ART) combination therapies have been critical in reducing malaria morbidity and mortality, but these important drugs are threatened by growing resistance associated with mutations in Pfcoronin and Pfkelch13 . Here, we describe the mechanism of Pfcoronin -mediated ART resistance. Pf Coronin interacts with Pf Actin and localizes to the parasite plasma membrane (PPM), the digestive vacuole (DV) membrane, and membrane of a newly identified preDV compartment-all structures involved in the trafficking of hemoglobin from the RBC for degradation in the DV. Pfcoronin mutations alter Pf Actin homeostasis and impair the development and morphology of the preDV. Ultimately, these changes are associated with decreased uptake of red blood cell cytosolic contents by ring-stage Plasmodium falciparum . Previous work has identified decreased hemoglobin uptake as the mechanism of Pfkelch 13-mediated ART resistance. This work demonstrates that Pf Coronin appears to act via a parallel pathway. For both Pfkelch13 -mediated and Pfcoronin -mediated ART resistance, we hypothesize that the decreased hemoglobin uptake in ring stage parasites results in less heme-based activation of the artemisinin endoperoxide ring and reduced cytocidal activity. This study deepens our understanding of ART resistance, as well as hemoglobin uptake and development of the DV in early-stage parasites.
Collapse
|
34
|
Zhao F, Yao Z, Li Y, Zhao W, Sun Y, Yang X, Zhao Z, Huang B, Wang J, Li X, Chen A. Targeting the molecular chaperone CCT2 inhibits GBM progression by influencing KRAS stability. Cancer Lett 2024; 590:216844. [PMID: 38582394 DOI: 10.1016/j.canlet.2024.216844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.
Collapse
Affiliation(s)
- Feihu Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China
| | - Yaquan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Wenbo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Xiaobing Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China.
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, PR China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250017, PR China.
| |
Collapse
|
35
|
Chen C, Chen YX, Zhang CJ. A Radical-Generating Probe to Release Free Fluorophores and Identify Artemisinin-Sensitive Cancer Cells. ACS Sens 2024; 9:2310-2316. [PMID: 38651676 DOI: 10.1021/acssensors.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The smart light-up probes have been extensively developed to image various enzymes and other bioactive molecules. Upon activation, these probes result in light-up fluorophores that exist in a protein-bound or a free form. The difference between these two forms has not yet been reported. Here, we present a pair of smart light-up probes that generate a protein-bound fluorophore and a free fluorophore upon activation by heme. Probe 8 generated a radical-attached fluorophore that predominantly existed in the free form, while probe 10 generated an α,β-unsaturated ketone-attached fluorophore that showed extensive labeling of proteins. In live-cell imaging, probe 8 showed greater fluorescence intensity than probe 10 when low concentrations (0.1-5 μM) of the probes were used, but probe 8 was less fluorescent than probe 10 when the concentrations of the probes were high (10 μM). Finally, probe 8 was used to reflect the activation level of the endoperoxide bond in cancer cells and to effectively distinguish ART-sensitive cancer cells from ART-insensitive ones.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi-Xin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
36
|
Lee BST, Sinha A, Dedon P, Preiser P. Charting new territory: The Plasmodium falciparum tRNA modification landscape. Biomed J 2024:100745. [PMID: 38734409 DOI: 10.1016/j.bj.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonucleoside modifications comprising the epitranscriptome are present in all organisms and all forms of RNA, including mRNA, rRNA and tRNA, the three major RNA components of the translational machinery. Of these, tRNA is the most heavily modified and the tRNA epitranscriptome has the greatest diversity of modifications. In addition to their roles in tRNA biogenesis, quality control, structure, cleavage, and codon recognition, tRNA modifications have been shown to regulate gene expression post-transcriptionally in prokaryotes and eukaryotes, including humans. However, studies investigating the impact of tRNA modifications on gene expression in the malaria parasite Plasmodium falciparum are currently scarce. Current evidence shows that the parasite has a limited capacity for transcriptional control, which points to a heavier reliance on strategies for posttranscriptional regulation such as tRNA epitranscriptome reprogramming. This review addresses the known functions of tRNA modifications in the biology of P. falciparum while highlighting the potential therapeutic opportunities and the value of using P. falciparum as a model organism for addressing several open questions related to the tRNA epitranscriptome.
Collapse
Affiliation(s)
- Benjamin Sian Teck Lee
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore;; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore;; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA.
| | - Peter Preiser
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore;; School of Biological Sciences, Nanyang Technological University, Singapore;.
| |
Collapse
|
37
|
Weathers P, Towler M, Kiani BH, Dolivo D, Dominko T. Differential Anti-Fibrotic and Remodeling Responses of Human Dermal Fibroblasts to Artemisia sp., Artemisinin, and Its Derivatives. Molecules 2024; 29:2107. [PMID: 38731597 PMCID: PMC11085156 DOI: 10.3390/molecules29092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Fibrosis is a ubiquitous pathology, and prior studies have indicated that various artemisinin (ART) derivatives (including artesunate (AS), artemether (AM), and dihydroartemisinin (DHA)) can reduce fibrosis in vitro and in vivo. The medicinal plant Artemisia annua L. is the natural source of ART and is widely used, especially in underdeveloped countries, to treat a variety of diseases including malaria. A. afra contains no ART but is also antimalarial. Using human dermal fibroblasts (CRL-2097), we compared the effects of A. annua and A. afra tea infusions, ART, AS, AM, DHA, and a liver metabolite of ART, deoxyART (dART), on fibroblast viability and expression of key fibrotic marker genes after 1 and 4 days of treatment. AS, DHA, and Artemisia teas reduced fibroblast viability 4 d post-treatment in up to 80% of their respective controls. After 4 d of treatment, AS DHA and Artemisia teas downregulated ACTA2 up to 10 fold while ART had no significant effect, and AM increased viability by 10%. MMP1 and MMP3 were upregulated by AS, 17.5 and 32.6 fold, respectively, and by DHA, 8 and 51.8 fold, respectively. ART had no effect, but A. annua and A. afra teas increased MMP3 5 and 16-fold, respectively. Although A. afra tea increased COL3A1 5 fold, MMP1 decreased >7 fold with no change in either transcript by A. annua tea. Although A. annua contains ART, it had a significantly greater anti-fibrotic effect than ART alone but was less effective than A. afra. Immunofluorescent staining for smooth-muscle α-actin (α-SMA) correlated well with the transcriptional responses of drug-treated fibroblasts. Together, proliferation, qPCR, and immunofluorescence results show that treatment with ART, AS, DHA, and the two Artemisia teas yield differing responses, including those related to fibrosis, in human dermal fibroblasts, with evidence also of remodeling of fibrotic ECM.
Collapse
Affiliation(s)
- Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (M.T.); (B.H.K.); (D.D.); (T.D.)
| | | | | | | | | |
Collapse
|
38
|
Wirjanata G, Lin J, Dziekan JM, El Sahili A, Chung Z, Tjia S, Binte Zulkifli NE, Boentoro J, Tham R, Jia LS, Go KD, Yu H, Partridge A, Olsen D, Prabhu N, Sobota RM, Nordlund P, Lescar J, Bozdech Z. Identification of an inhibitory pocket in falcilysin provides a new avenue for malaria drug development. Cell Chem Biol 2024; 31:743-759.e8. [PMID: 38593807 DOI: 10.1016/j.chembiol.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/02/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.
Collapse
Affiliation(s)
- Grennady Wirjanata
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Infectious Diseases Labs & Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore, Singapore
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore
| | - Zara Chung
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - Josephine Boentoro
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Roy Tham
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Lai Si Jia
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | | | - David Olsen
- Merck & Co., Inc., West Point, PA 19486, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technology University, Singapore 637551, Singapore; Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 637551, Singapore.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technology University, Singapore 637551, Singapore.
| |
Collapse
|
39
|
Lindblom JR, Zhang X, Lehane AM. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infect Dis 2024; 10:1185-1200. [PMID: 38499199 PMCID: PMC11019546 DOI: 10.1021/acsinfecdis.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australian Capital
Territory 2600, Australia
| |
Collapse
|
40
|
Feng J, Wang ZX, Bin JL, Chen YX, Ma J, Deng JH, Huang XW, Zhou J, Lu GD. Pharmacological approaches for targeting lysosomes to induce ferroptotic cell death in cancer. Cancer Lett 2024; 587:216728. [PMID: 38431036 DOI: 10.1016/j.canlet.2024.216728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Lysosomes are crucial organelles responsible for the degradation of cytosolic materials and bulky organelles, thereby facilitating nutrient recycling and cell survival. However, lysosome also acts as an executioner of cell death, including ferroptosis, a distinctive form of regulated cell death that hinges on iron-dependent phospholipid peroxidation. The initiation of ferroptosis necessitates three key components: substrates (membrane phospholipids enriched with polyunsaturated fatty acids), triggers (redox-active irons), and compromised defence mechanisms (GPX4-dependent and -independent antioxidant systems). Notably, iron assumes a pivotal role in ferroptotic cell death, particularly in the context of cancer, where iron and oncogenic signaling pathways reciprocally reinforce each other. Given the lysosomes' central role in iron metabolism, various strategies have been devised to harness lysosome-mediated iron metabolism to induce ferroptosis. These include the re-mobilization of iron from intracellular storage sites such as ferritin complex and mitochondria through ferritinophagy and mitophagy, respectively. Additionally, transcriptional regulation of lysosomal and autophagy genes by TFEB enhances lysosomal function. Moreover, the induction of lysosomal iron overload can lead to lysosomal membrane permeabilization and subsequent cell death. Extensive screening and individually studies have explored pharmacological interventions using clinically available drugs and phytochemical agents. Furthermore, a drug delivery system involving ferritin-coated nanoparticles has been specifically tailored to target cancer cells overexpressing TFRC. With the rapid advancements in understandings the mechanistic underpinnings of ferroptosis and iron metabolism, it is increasingly evident that lysosomes represent a promising target for inducing ferroptosis and combating cancer.
Collapse
Affiliation(s)
- Ji Feng
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Zi-Xuan Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, PR China
| | - Jin-Lian Bin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Yong-Xin Chen
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China; Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing Ma
- Department of Physiology, School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi Province, 530200, PR China
| | - Jing-Huan Deng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiao-Wei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, 530021, PR China.
| | - Guo-Dong Lu
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Nanning, Guangxi Province, 530021, PR China.
| |
Collapse
|
41
|
Rahman SU, Weng TN, Qadeer A, Nawaz S, Ullah H, Chen CC. Omega-3 and omega-6 polyunsaturated fatty acids and their potential therapeutic role in protozoan infections. Front Immunol 2024; 15:1339470. [PMID: 38633251 PMCID: PMC11022163 DOI: 10.3389/fimmu.2024.1339470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Protozoa exert a serious global threat of growing concern to human, and animal, and there is a need for the advancement of novel therapeutic strategies to effectively treat or mitigate the impact of associated diseases. Omega polyunsaturated fatty acids (ω-PUFAs), including Omega-3 (ω-3) and omega-6 (ω-6), are constituents derived from various natural sources, have gained significant attention for their therapeutic role in parasitic infections and a variety of essential structural and regulatory functions in animals and humans. Both ω-3 and ω-6 decrease the growth and survival rate of parasites through metabolized anti-inflammatory mediators, such as lipoxins, resolvins, and protectins, and have both in vivo and in vitro protective effects against various protozoan infections. The ω-PUFAs have been shown to modulate the host immune response by a commonly known mechanism such as (inhibition of arachidonic acid (AA) metabolic process, production of anti-inflammatory mediators, modification of intracellular lipids, and activation of the nuclear receptor), and promotion of a shift towards a more effective immune defense against parasitic invaders by regulation the inflammation like prostaglandins, leukotrienes, thromboxane, are involved in controlling the inflammatory reaction. The immune modulation may involve reducing inflammation, enhancing phagocytosis, and suppressing parasitic virulence factors. The unique properties of ω-PUFAs could prevent protozoan infections, representing an important area of study. This review explores the clinical impact of ω-PUFAs against some protozoan infections, elucidating possible mechanisms of action and supportive therapy for preventing various parasitic infections in humans and animals, such as toxoplasmosis, malaria, coccidiosis, and chagas disease. ω-PUFAs show promise as a therapeutic approach for parasitic infections due to their direct anti-parasitic effects and their ability to modulate the host immune response. Additionally, we discuss current treatment options and suggest perspectives for future studies. This could potentially provide an alternative or supplementary treatment option for these complex global health problems.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tzu-Nin Weng
- Department of Stomatology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Abdul Qadeer
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China Hospital, School of Nursing, Sichuan University, Chengdu, China
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
42
|
Platon L, Leroy D, Fidock DA, Ménard D. Drug-induced stress mediates Plasmodium falciparum ring-stage growth arrest and reduces in vitro parasite susceptibility to artemisinin. Microbiol Spectr 2024; 12:e0350023. [PMID: 38363132 PMCID: PMC10986542 DOI: 10.1128/spectrum.03500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
During blood-stage infection, Plasmodium falciparum parasites are constantly exposed to a range of extracellular stimuli, including host molecules and drugs such as artemisinin derivatives, the mainstay of artemisinin-based combination therapies currently used as first-line treatment worldwide. Partial resistance of P. falciparum to artemisinin has been associated with mutations in the propeller domain of the Pfkelch13 gene, resulting in a fraction of ring stages that are able to survive exposure to artemisinin through a temporary growth arrest. Here, we investigated whether the growth arrest in ring-stage parasites reflects a general response to stress. We mimicked a stressful environment in vitro by exposing parasites to chloroquine or dihydroartemisinin (DHA). We observed that early ring-stage parasites pre-exposed to a stressed culture supernatant exhibited a temporary growth arrest and a reduced susceptibility to DHA, as assessed by the ring-stage survival assay, irrespective of their Pfkelch13 genotype. These data suggest that temporary growth arrest of early ring stages may be a constitutive, Pfkelch13-independent survival mechanism in P. falciparum.IMPORTANCEPlasmodium falciparum ring stages have the ability to sense the extracellular environment, regulate their growth, and enter a temporary growth arrest state in response to adverse conditions such as drug exposure. This temporary growth arrest results in reduced susceptibility to artemisinin in vitro. The signal responsible for this process is thought to be small molecules (less than 3 kDa) released by stressed mature-stage parasites. These data suggest that Pfkelch13-dependent artemisinin resistance and the growth arrest phenotype are two complementary but unrelated mechanisms of ring-stage survival in P. falciparum. This finding provides new insights into the field of P. falciparum antimalarial drug resistance by highlighting the extracellular compartment and cellular communication as an understudied mechanism.
Collapse
Affiliation(s)
- Lucien Platon
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, Paris, France
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host–Pathogen Interactions, Université de Strasbourg, Strasbourg, France
| | - Didier Leroy
- Department of Drug Discovery, Medicines for Malaria Venture, Geneva, Switzerland
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, Paris, France
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host–Pathogen Interactions, Université de Strasbourg, Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, Strasbourg, France
| |
Collapse
|
43
|
Gao P, Wang J, Qiu C, Zhang H, Wang C, Zhang Y, Sun P, Chen H, Wong YK, Chen J, Zhang J, Tang H, Shi Q, Zhu Y, Shen S, Han G, Xu C, Dai L, Wang J. Photoaffinity probe-based antimalarial target identification of artemisinin in the intraerythrocytic developmental cycle of Plasmodium falciparum. IMETA 2024; 3:e176. [PMID: 38882489 PMCID: PMC11170969 DOI: 10.1002/imt2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 06/18/2024]
Abstract
Malaria continues to pose a serious global health threat, and artemisinin remains the core drug for global malaria control. However, the situation of malaria resistance has become increasingly severe due to the emergence and spread of artemisinin resistance. In recent years, significant progress has been made in understanding the mechanism of action (MoA) of artemisinin. Prior research on the MoA of artemisinin mainly focused on covalently bound targets that are alkylated by artemisinin-free radicals. However, less attention has been given to the reversible noncovalent binding targets, and there is a paucity of information regarding artemisinin targets at different life cycle stages of the parasite. In this study, we identified the protein targets of artemisinin at different stages of the parasite's intraerythrocytic developmental cycle using a photoaffinity probe. Our findings demonstrate that artemisinin interacts with parasite proteins in vivo through both covalent and noncovalent modes. Extensive mechanistic studies were then conducted by integrating target validation, phenotypic studies, and untargeted metabolomics. The results suggest that protein synthesis, glycolysis, and oxidative homeostasis are critically involved in the antimalarial activities of artemisinin. In summary, this study provides fresh insights into the mechanisms underlying artemisinin's antimalarial effects and its protein targets.
Collapse
Affiliation(s)
- Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Jianyou Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine Jinan China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Peng Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Yin Kwan Wong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Lingyun Dai
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medical China Academy of Chinese Medical Sciences Beijing China
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology Shenzhen China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy Henan University Kaifeng China
- Shandong Academy of Chinese Medicine Jinan China
| |
Collapse
|
44
|
Herrmann L, Leidenberger M, Quadros HC, Grau BW, Hampel F, Friedrich O, Moreira DRM, Kappes B, Tsogoeva SB. Access to Artemisinin-Triazole Antimalarials via Organo-Click Reaction: High In Vitro/ In Vivo Activity against Multi-Drug-Resistant Malaria Parasites. JACS AU 2024; 4:951-957. [PMID: 38559731 PMCID: PMC10976565 DOI: 10.1021/jacsau.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 04/04/2024]
Abstract
Malaria is one of the most widespread diseases worldwide. Besides a growing number of people potentially threatened by malaria, the consistent emergence of resistance against established antimalarial pharmaceuticals leads to an urge toward new antimalarial drugs. Hybridization of two chemically diverse compounds into a new bioactive product is a successful concept to improve the properties of a hybrid drug relative to the parent compounds and also to overcome multidrug resistance. 1,2,3-Triazoles are a significant pharmacophore system among nitrogen-containing heterocycles with various applications, such as antiviral, antimalarial, antibacterial, and anticancer agents. Several marketed drugs possess these versatile moieties, which are used in a wide range of medical indications. While the synthesis of hybrid compounds containing a 1,2,3-triazole unit was described using Cu- and Ru-catalyzed azide-alkyne cycloaddition, an alternative metal-free pathway has never been reported for the synthesis of antimalarial hybrids. However, a metal-free pathway is a green method that allows toxic and expensive metals to be replaced with an organocatalyst. Herein, we present the synthesis of new artemisinin-triazole antimalarial hybrids via a facile Ramachary-Bressy-Wang organocatalyzed azide-carbonyl [3 + 2] cycloaddition (organo-click) reaction. The prepared new hybrid compounds are highly potent in vitro against chloroquine (CQ)-resistant and multi-drug-resistant Plasmodium falciparum strains (IC50 (Dd2) down to 2.1 nM; IC50 (K1) down to 1.8 nM) compared to CQ (IC50 (Dd2) = 165.3 nM; IC50 (K1) = 302.8 nM). Moreover, the most potent hybrid drug was more efficacious in suppressing parasitemia and extending animal survival in Plasmodium berghei-infected mice (up to 100% animal survival and up to 40 days of survival time) than the reference drug artemisinin, illustrating the potential of the hybridization concept as an alternative and powerful drug-discovery approach.
Collapse
Affiliation(s)
- Lars Herrmann
- Department
of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary
Center for Molecular Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Maria Leidenberger
- Institute
of Medical Biotechnology, Friedrich-Alexander-University
Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | | | - Benedikt W. Grau
- Department
of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary
Center for Molecular Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Frank Hampel
- Department
of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary
Center for Molecular Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Oliver Friedrich
- Institute
of Medical Biotechnology, Friedrich-Alexander-University
Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | | | - Barbara Kappes
- Institute
of Medical Biotechnology, Friedrich-Alexander-University
Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Svetlana B. Tsogoeva
- Department
of Chemistry and Pharmacy, Organic Chemistry Chair I and Interdisciplinary
Center for Molecular Materials (ICMM), Friedrich-Alexander-University
Erlangen-Nürnberg, Nikolaus Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
45
|
Kim JE, Budluang P, Park J, Lee KH, Pakdeepromma S, Kaewpiboon C, Kang HY, Hwang DY, Chung YH. N-benzyl-N-methyldecan-1-amine, derived from garlic, and its derivative alleviate 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice. Sci Rep 2024; 14:6776. [PMID: 38514712 PMCID: PMC10958003 DOI: 10.1038/s41598-024-56496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Given the intricate etiology and pathogenesis of atopic dermatitis (AD), the complete cure of AD remains challenging. This study aimed to investigate if topically applying N-benzyl-N-methyldecan-1-amine (BMDA), derived from garlic, and its derivative [decyl-(4-methoxy-benzyl)-methyl-1-amine] (DMMA) could effectively alleviate AD-like skin lesions in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Administering these compounds to the irritated skin of DNCB-treated mice significantly reduced swelling, rash, and excoriation severity, alongside a corresponding decrease in inflamed epidermis and dermis. Moreover, they inhibited spleen and lymph node enlargement and showed fewer infiltrated mast cells in the epidermis and dermis through toluidine-blue staining. Additionally, they led to a lower IgE titer in mouse sera as determined by ELISA, compared to vehicle treatment. Analyzing skin tissue from the mice revealed decreased transcript levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6), IL-4, iNOS, and COX-2, compared to control mice. Simultaneously, the compounds impeded the activation of inflammation-related signaling molecules such as JNK, p38 MAPK, and NF-κB in the mouse skin. In summary, these findings suggest that BMDA and DMMA hold the potential to be developed as a novel treatment for healing inflammatory AD.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Phatcharaporn Budluang
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jumin Park
- Department of Food Science and Nutrition, Pusan National University, Busan, 46241, Republic of Korea
| | - Kon Ho Lee
- Department of Convergence Medical Science, Gyeongsang National University College of Medicine, Jinju, 52828, Republic of Korea
| | - Sirichatnach Pakdeepromma
- Department of General Science and Liberal Arts, King Mongkut's Institute of Technology Ladkrabang Prince of Chumphon Campus, Pathio, Chumphon, 86160, Thailand
| | - Chutima Kaewpiboon
- Department of Biology, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung Campus, Phatthalung, 93210, Thailand
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Republic of Korea.
| | - Young-Hwa Chung
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
46
|
Cassiano GC, Martinelli A, Mottin M, Neves BJ, Andrade CH, Ferreira PE, Cravo P. Whole genome sequencing identifies novel mutations in malaria parasites resistant to artesunate (ATN) and to ATN + mefloquine combination. Front Cell Infect Microbiol 2024; 14:1353057. [PMID: 38495651 PMCID: PMC10940360 DOI: 10.3389/fcimb.2024.1353057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction The global evolution of resistance to Artemisinin-based Combination Therapies (ACTs) by malaria parasites, will severely undermine our ability to control this devastating disease. Methods Here, we have used whole genome sequencing to characterize the genetic variation in the experimentally evolved Plasmodium chabaudi parasite clone AS-ATNMF1, which is resistant to artesunate + mefloquine. Results and discussion Five novel single nucleotide polymorphisms (SNPs) were identified, one of which was a previously undescribed E738K mutation in a 26S proteasome subunit that was selected for under artesunate pressure (in AS-ATN) and retained in AS-ATNMF1. The wild type and mutated three-dimensional (3D) structure models and molecular dynamics simulations of the P. falciparum 26S proteasome subunit Rpn2 suggested that the E738K mutation could change the toroidal proteasome/cyclosome domain organization and change the recognition of ubiquitinated proteins. The mutation in the 26S proteasome subunit may therefore contribute to altering oxidation-dependent ubiquitination of the MDR-1 and/or K13 proteins and/or other targets, resulting in changes in protein turnover. In light of the alarming increase in resistance to artemisin derivatives and ACT partner drugs in natural parasite populations, our results shed new light on the biology of resistance and provide information on novel molecular markers of resistance that may be tested (and potentially validated) in the field.
Collapse
Affiliation(s)
- Gustavo Capatti Cassiano
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, (LA-REAL), Instituto de Higiene e Medicina Tropical, (IHMT), Universidade NOVA de Lisboa, (UNL), Lisbon, Portugal
| | | | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno Junior Neves
- Laboratory or Cheminformatics (LabChem), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
- Center for the Research and Advancement in Fragments and Molecular Targets (CRAFT), School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Pedro Cravo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, (LA-REAL), Instituto de Higiene e Medicina Tropical, (IHMT), Universidade NOVA de Lisboa, (UNL), Lisbon, Portugal
| |
Collapse
|
47
|
Ma Z, Chen W, Liu Y, Yu L, Mao X, Guo X, Jiang F, Guo Q, Lin N, Zhang Y. Artesunate Sensitizes human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy. Autophagy 2024; 20:541-556. [PMID: 37733919 PMCID: PMC10936616 DOI: 10.1080/15548627.2023.2261758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023] Open
Abstract
Sorafenib is the most widely used first-line drug for the treatment of the advanced hepatocellular carcinoma (HCC). Unfortunately, sorafenib resistance often limits its therapeutic efficacy. To evaluate the efficacy of artesunate against sorafenib-resistant HCC and to investigate its underlying pharmacological mechanisms, a "sorafenib resistance related gene-ART candidate target" interaction network was constructed, and a signaling axis consisting with artesunate candidate target AFAP1L2 and sorafenib target SRC, and the downstream FUNDC1-dependent mitophagy was identified as a major contributor to the sorafenib resistance and a potential way of artesunate to mitigate resistance. Notably, our clinical data demonstrated that AFAP1L2 expression in HCC tissues was markedly higher than that in adjacent non-cancerous liver tissues (P < 0.05), and high AFAP1L2 expression was also significantly associated with an unfavorable overall survival of HCC patients (P < 0.05). Experimentally, AFAP1L2 was overexpressed in sorafenib resistant cells, leading to the activation of downstream SRC-FUNDC1 signaling axis, further blocking the FUNDC1 recruitment of LC3B to mitochondria and inhibiting the activation of mitophagy, based on both in vitro and in vivo systems. Moreover, artesunate significantly enhanced the inhibitory effects of sorafenib on resistant cells and tumors by inducing excessive mitophagy. Mechanically, artesunate reduced the expression of AFAP1L2 protein, suppressed the phosphorylation levels of SRC and FUNDC1 proteins, promoted the FUNDC1 recruitment of massive LC3B to mitochondria, and further overactivated the mitophagy and subsequent cell apoptosis of sorafenib resistant cells. In conclusion, artesunate may be a promising strategy to mitigate sorafenib resistance in HCC via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy.Abbreviations: AFAP1L2, actin filament associated protein 1 like 2; ANOVA, analysis of variance; ANXA5, annexin V; ART: artesunate; CETSA, cellular thermal shift assay; CI: combination index; CO-IP: co-immunoprecipitation; CQ: chloroquine; CT, computed tomography; [18F]-FDG, fluoro-2-D-deoxyglucose F18; FUNDC1: FUN14 domain containing 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC, hepatocellular carcinoma; H&E Staining: hematoxylin - eosin staining; HepG2R, sorafenib resistant HepG2; IF, immunofluorescence; IHC, immunohistochemistry; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; miR, microRNA; mRNA: messenger RNA; OE, overexpression; OS, overall survival; PET, positron emission tomography; qRT-PCR: quantitative real-time PCR; sh, short hairpin; shNC: negative control shRNA; shAFAP1L2: short hairpin AFAP1L2; SORA, sorafenib; SPR, surface plasmon resonance; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; SUV, standardized uptake value; TEM, transmission electron microscopy; TOMM20: translocase of outer mitochondrial membrane 20.
Collapse
Affiliation(s)
- Zhaochen Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjia Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lingxiang Yu
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodong Guo
- The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Funeng Jiang
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, South China University of Technology, Guangzhou, Guangdong, China
| | - Qiuyan Guo
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
48
|
Gao P, Wang J, Tang H, Pang H, Liu J, Wang C, Xia F, Chen H, Xu L, Zhang J, Yuan L, Han G, Wang J, Liu G. Chemoproteomics-based profiling reveals potential antimalarial mechanism of Celastrol by disrupting spermidine and protein synthesis. Cell Commun Signal 2024; 22:139. [PMID: 38378659 PMCID: PMC10877925 DOI: 10.1186/s12964-023-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Malaria remains a global health burden, and the emergence and increasing spread of drug resistance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive. METHODS We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling (ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and transcriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experiments and functional assays. RESULTS The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target proteins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, thus exerting its antimalarial effects. CONCLUSIONS In conclusion, this study reports for the first time the potential antimalarial targets and mechanism of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial drugs with pentacyclic triterpenoid structures, as represented by Cel. Video Abstract.
Collapse
Affiliation(s)
- Peng Gao
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Jianyou Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiemei Liu
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Liting Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China.
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; First Affiliated Hospital of Southern University of Science and Technology; Second Clinical Medical College of Jinan University, Shenzhen, 518020, China.
| | - Gang Liu
- Department of rehabilitation medicine, Shunde Hospital, Southern Medical University, Foshan, 528300, China.
| |
Collapse
|
49
|
Tian X, Gu L, Zeng F, Liu X, Zhou Y, Dou Y, Han J, Zhao Y, Zhang Y, Luo Q, Wang F. Strophanthidin Induces Apoptosis of Human Lung Adenocarcinoma Cells by Promoting TRAIL-DR5 Signaling. Molecules 2024; 29:877. [PMID: 38398629 PMCID: PMC10892344 DOI: 10.3390/molecules29040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Strophanthidin (SPTD), one of the cardiac glycosides, is refined from traditional Chinese medicines such as Semen Lepidii and Antiaris toxicaria, and was initially used for the treatment of heart failure disease in clinic. Recently, SPTD has been shown to be a potential anticancer agent, but the underlying mechanism of action is poorly understood. Herein, we explored the molecular mechanism by which SPTD exerts anticancer effects in A549 human lung adenocarcinoma cells by means of mass spectrometry-based quantitative proteomics in combination with bioinformatics analysis. We revealed that SPTD promoted the expression of tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, or DR5) in A549 cells to activate caspase 3/6/8, in particular caspase 3. Consequently, the activated caspases elevated the expression level of apoptotic chromatin condensation inducer in the nucleus (ACIN1) and prelamin-A/C (LMNA), ultimately inducing apoptosis via cooperation with the SPTD-induced overexpressed barrier-to-autointegration factor 1 (Banf1). Moreover, the SPTD-induced DEPs interacted with each other to downregulate the p38 MAPK/ERK signaling, contributing to the SPTD inhibition of the growth of A549 cells. Additionally, the downregulation of collagen COL1A5 by SPTD was another anticancer benefit of SPTD through the modulation of the cell microenvironment.
Collapse
Affiliation(s)
- Xiao Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangang Zeng
- School of Environment of Natural Resources, Remin University of China, Beijing 100875, China;
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
| | - Yang Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Dou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (L.G.); (X.L.); (Y.Z.); (Y.D.); (J.H.); (Y.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
An Y, Zhang Q, Chen Y, Xia F, Wong YK, He H, Hao M, Tian J, Zhang X, Luo P, Wang J. Chemoproteomics Reveals Glaucocalyxin A Induces Mitochondria-Dependent Apoptosis of Leukemia Cells via Covalently Binding to VDAC1. Adv Biol (Weinh) 2024; 8:e2300538. [PMID: 38105424 DOI: 10.1002/adbi.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Chronic myelogenous leukemia (CML) that is resistant to tyrosine kinase inhibitors is one of the deadliest hematologic malignancies, and the T315I mutation in the breakpoint cluster region-Abelson (BCR-ABL) kinase domain is the most prominent point mutation responsible for imatinib resistance in CML. Glaucocalyxin A (GLA), a natural bioactive product derived from the Rabdosia rubescens plant, has strong anticancer activity. In this study, the effect and molecular mechanism of GLA on imatinib-sensitive and imatinib-resistant CML cells harboring T315I mutation via a combined deconvolution strategy of chemoproteomics and label-free proteomics is investigated. The data demonstrated that GLA restrains proliferation and induces mitochondria-dependent apoptosis in both imatinib-sensitive and resistant CML cells. GLA covalently binds to the cysteine residues of mitochondrial voltage-dependent anion channels (VDACs), resulting in mitochondrial damage and overflow of intracellular apoptotic factors, eventually leading to apoptosis. In addition, the combination of GLA with elastin, a mitochondrial channel VDAC2/3 inhibitor, enhances mitochondria-dependent apoptosis in imatinib-sensitive and -resistant CML cells, representing a promising therapeutic approach for leukemia treatment. Taken together, the results show that GLA induces mitochondria-dependent apoptosis via covalently targeting VDACs in CML cells. GLA may thus be a candidate compound for the treatment of leukemia.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Apoptosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitochondria/metabolism
- Mitochondria/pathology
- Voltage-Dependent Anion Channel 1/genetics
- Voltage-Dependent Anion Channel 1/therapeutic use
- Diterpenes, Kaurane
Collapse
Affiliation(s)
- Yehai An
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Zhang
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin-Kwan Wong
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hengkai He
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjing Hao
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jiahang Tian
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Piao Luo
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|