1
|
Koshimizu E, Kato M, Misawa K, Uchiyama Y, Tsuchida N, Hamanaka K, Fujita A, Mizuguchi T, Miyatake S, Matsumoto N. Detection of hidden intronic DDC variant in aromatic L-amino acid decarboxylase deficiency by adaptive sampling. J Hum Genet 2024; 69:153-157. [PMID: 38216729 DOI: 10.1038/s10038-023-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter disorder caused by pathogenic DOPA decarboxylase (DDC) variants. We previously reported Japanese siblings with AADC deficiency, which was confirmed by the lack of enzyme activity; however, only a heterozygous missense variant was detected. We therefore performed targeted long-read sequencing by adaptive sampling to identify any missing variants. Haplotype phasing and variant calling identified a novel deep intronic variant (c.714+255 C > A), which was predicted to potentially activate the noncanonical splicing acceptor site. Minigene assay revealed that wild-type and c.714+255 C > A alleles had different impacts on splicing. Three transcripts, including the canonical transcript, were detected from the wild-type allele, but only the noncanonical cryptic exon was produced from the variant allele, indicating that c.714+255 C > A was pathogenic. Target long-read sequencing may be used to detect hidden pathogenic variants in unresolved autosomal recessive cases with only one disclosed hit variant.
Collapse
Affiliation(s)
- Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan.
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
2
|
Demongin C, Tranier S, Joshi V, Ceschi L, Desforges B, Pastré D, Hamon L. RNA and the RNA-binding protein FUS act in concert to prevent TDP-43 spatial segregation. J Biol Chem 2024; 300:105716. [PMID: 38311174 PMCID: PMC10912363 DOI: 10.1016/j.jbc.2024.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
FUS and TDP-43 are two self-adhesive aggregation-prone mRNA-binding proteins whose pathological mutations have been linked to neurodegeneration. While TDP-43 and FUS form reversible mRNA-rich compartments in the nucleus, pathological mutations promote their respective cytoplasmic aggregation in neurons with no apparent link between the two proteins except their intertwined function in mRNA processing. By combining analyses in cellular context and at high resolution in vitro, we unraveled that TDP-43 is specifically recruited in FUS assemblies to form TDP-43-rich subcompartments but without reciprocity. The presence of mRNA provides an additional scaffold to promote the mixing between TDP-43 and FUS. Accordingly, we also found that the pathological truncated form of TDP-43, TDP-25, which has an impaired RNA-binding ability, no longer mixes with FUS. Together, these results suggest that the binding of FUS along nascent mRNAs enables TDP-43, which is highly aggregation-prone, to mix with FUS phase to form mRNA-rich subcompartments. A functional link between FUS and TDP-43 may explain their common implication in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Clément Demongin
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Samuel Tranier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vandana Joshi
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Léa Ceschi
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | | | - David Pastré
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France
| | - Loic Hamon
- SABNP, Univ Evry, INSERM, U1204, Université Paris-Saclay, Evry, France.
| |
Collapse
|
3
|
Gowd V, Kass JD, Sarkar N, Ramakrishnan P. Role of Sam68 as an adaptor protein in inflammatory signaling. Cell Mol Life Sci 2024; 81:89. [PMID: 38351330 PMCID: PMC10864426 DOI: 10.1007/s00018-023-05108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024]
Abstract
Sam68 is a ubiquitously expressed KH-domain containing RNA-binding protein highly studied for its involvement in regulating multiple steps of RNA metabolism. Sam68 also contains multiple protein-protein interaction regions such as proline-rich regions, tyrosine phosphorylation sites, and arginine methylation sites, all of which facilitate its participation as an adaptor protein in multiple signaling pathways, likely independent of its RNA-binding role. This review focuses on providing a comprehensive report on the adaptor roles of Sam68 in inflammatory signaling and inflammatory diseases. The insights presented here have the potential to open new avenues in inflammation research and justify targeting Sam68 to control aberrant inflammatory responses.
Collapse
Affiliation(s)
- Vemana Gowd
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Joseph D'Amato Kass
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Nandini Sarkar
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Kara H, Axer A, Muskett FW, Bueno-Alejo CJ, Paschalis V, Taladriz-Sender A, Tubasum S, Vega MS, Zhao Z, Clark AW, Hudson AJ, Eperon IC, Burley GA, Dominguez C. 2'- 19F labelling of ribose in RNAs: a tool to analyse RNA/protein interactions by NMR in physiological conditions. Front Mol Biosci 2024; 11:1325041. [PMID: 38419689 PMCID: PMC10899400 DOI: 10.3389/fmolb.2024.1325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Protein-RNA interactions are central to numerous cellular processes. In this work, we present an easy and straightforward NMR-based approach to determine the RNA binding site of RNA binding proteins and to evaluate the binding of pairs of proteins to a single-stranded RNA (ssRNA) under physiological conditions, in this case in nuclear extracts. By incorporation of a 19F atom on the ribose of different nucleotides along the ssRNA sequence, we show that, upon addition of an RNA binding protein, the intensity of the 19F NMR signal changes when the 19F atom is located near the protein binding site. Furthermore, we show that the addition of pairs of proteins to a ssRNA containing two 19F atoms at two different locations informs on their concurrent binding or competition. We demonstrate that such studies can be done in a nuclear extract that mimics the physiological environment in which these protein-ssRNA interactions occur. Finally, we demonstrate that a trifluoromethoxy group (-OCF3) incorporated in the 2'ribose position of ssRNA sequences increases the sensitivity of the NMR signal, leading to decreased measurement times, and reduces the issue of RNA degradation in cellular extracts.
Collapse
Affiliation(s)
- Hesna Kara
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Alexander Axer
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Frederick W Muskett
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Carlos J Bueno-Alejo
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Vasileios Paschalis
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Sumera Tubasum
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Marina Santana Vega
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zhengyun Zhao
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Hudson
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Ian C Eperon
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Glenn A Burley
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Cyril Dominguez
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Podszywalow-Bartnicka P, Neugebauer KM. Multiple roles for AU-rich RNA binding proteins in the development of haematologic malignancies and their resistance to chemotherapy. RNA Biol 2024; 21:1-17. [PMID: 38798162 PMCID: PMC11135835 DOI: 10.1080/15476286.2024.2346688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Post-transcriptional regulation by RNA binding proteins can determine gene expression levels and drive changes in cancer cell proteomes. Identifying mechanisms of protein-RNA binding, including preferred sequence motifs bound in vivo, provides insights into protein-RNA networks and how they impact mRNA structure, function, and stability. In this review, we will focus on proteins that bind to AU-rich elements (AREs) in nascent or mature mRNA where they play roles in response to stresses encountered by cancer cells. ARE-binding proteins (ARE-BPs) specifically impact alternative splicing, stability, decay and translation, and formation of RNA-rich biomolecular condensates like cytoplasmic stress granules (SGs). For example, recent findings highlight the role of ARE-BPs - like TIAR and HUR - in chemotherapy resistance and in translational regulation of mRNAs encoding pro-inflammatory cytokines. We will discuss emerging evidence that different modes of ARE-BP activity impact leukaemia and lymphoma development, progression, adaptation to microenvironment and chemotherapy resistance.
Collapse
Affiliation(s)
- Paulina Podszywalow-Bartnicka
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Morgan DC, McDougall L, Knuhtsen A, Jamieson AG. Development of Bifunctional, Raman Active Diyne-Girder Stapled α-Helical Peptides. Chemistry 2023; 29:e202300855. [PMID: 37130830 PMCID: PMC10946806 DOI: 10.1002/chem.202300855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023]
Abstract
Stapled peptides are a unique class of cyclic α-helical peptides that are conformationally constrained via their amino acid side-chains. They have been transformative to the field of chemical biology and peptide drug discovery through addressing many of the physicochemical limitations of linear peptides. However, there are several issues with current chemical strategies to produce stapled peptides. For example, two distinct unnatural amino acids are required to synthesize i, i+7 alkene stapled peptides, leading to high production costs. Furthermore, low purified yields are obtained due to cis/trans isomers produced during ring-closing metathesis macrocyclisation. Here we report the development of a new i, i+7 diyne-girder stapling strategy that addresses these issues. The asymmetric synthesis of nine unnatural Fmoc-protected alkyne-amino acids facilitated a systematic study to determine the optimal (S,S)-stereochemistry and 14-carbon diyne-girder bridge length. Diyne-girder stapled T-STAR peptide 29 was demonstrated to have excellent helicity, cell permeability and stability to protease degradation. Finally, we demonstrate that the diyne-girder constraint is a Raman chromophore with potential use in Raman cell microscopy. Development of this highly effective, bifunctional diyne-girder stapling strategy leads us to believe that it can be used to produce other stapled peptide probes and therapeutics.
Collapse
Affiliation(s)
- Danielle C. Morgan
- School of ChemistryAdvanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUK
| | - Laura McDougall
- School of ChemistryAdvanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUK
| | - Astrid Knuhtsen
- School of ChemistryAdvanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUK
| | - Andrew G. Jamieson
- School of ChemistryAdvanced Research CentreUniversity of Glasgow11 Chapel LaneGlasgowG11 6EWUK
| |
Collapse
|
7
|
Naing YT, Sun L. The Role of Splicing Factors in Adipogenesis and Thermogenesis. Mol Cells 2023; 46:268-277. [PMID: 37170770 PMCID: PMC10183792 DOI: 10.14348/molcells.2023.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023] Open
Abstract
Obesity is a significant global health risk that can cause a range of serious metabolic problems, such as type 2 diabetes and cardiovascular diseases. Adipose tissue plays a pivotal role in regulating energy and lipid storage. New research has underlined the crucial role of splicing factors in the physiological and functional regulation of adipose tissue. By generating multiple transcripts from a single gene, alternative splicing allows for a greater diversity of the proteome and transcriptome, which subsequently influence adipocyte development and metabolism. In this review, we provide an outlook on the part of splicing factors in adipogenesis and thermogenesis, and investigate how the different spliced isoforms can affect the development and function of adipose tissue.
Collapse
Affiliation(s)
- Yadanar Than Naing
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
8
|
Nadal M, Anton R, Dorca‐Arévalo J, Estébanez‐Perpiñá E, Tizzano EF, Fuentes‐Prior P. Structure and function analysis of Sam68 and hnRNP A1 synergy in the exclusion of exon 7 from SMN2 transcripts. Protein Sci 2023; 32:e4553. [PMID: 36560896 PMCID: PMC10031812 DOI: 10.1002/pro.4553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the absence of a functional copy of the Survival of Motor Neuron 1 gene (SMN1). The nearly identical paralog, SMN2, cannot compensate for the loss of SMN1 because exon 7 is aberrantly skipped from most SMN2 transcripts, a process mediated by synergistic activities of Src-associated during mitosis, 68 kDa (Sam68/KHDRBS1) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1. This results in the production of a truncated, nonfunctional protein that is rapidly degraded. Here, we present several crystal structures of Sam68 RNA-binding domain (RBD). Sam68-RBD forms stable symmetric homodimers by antiparallel association of helices α3 from two monomers. However, the details of domain organization and the dimerization interface differ significantly from previously characterized homologs. We demonstrate that Sam68 and hnRNP A1 can simultaneously bind proximal motifs within the central region of SMN2 (ex7). Furthermore, we show that the RNA-binding pockets of the two proteins are close to each other in their heterodimeric complex and identify contact residues using crosslinking-mass spectrometry. We present a model of the ternary Sam68·SMN2 (ex7)·hnRNP A1 complex that reconciles all available information on SMN1/2 splicing. Our findings have important implications for the etiology of SMA and open new avenues for the design of novel therapeutics to treat splicing diseases.
Collapse
Affiliation(s)
- Marta Nadal
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Rosa Anton
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Jonatan Dorca‐Arévalo
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
- Present address:
Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of BellvitgeHospitalet de Llobregat, University of BarcelonaBarcelonaSpain
| | - Eva Estébanez‐Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of BiologyInstitute of Biomedicine (IBUB) of the University of Barcelona (UB)BarcelonaSpain
| | - Eduardo F. Tizzano
- Medicine Genetics GroupVall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of Clinical and Molecular GeneticsHospital Vall d'HebronBarcelonaSpain
| | - Pablo Fuentes‐Prior
- Molecular Bases of DiseaseBiomedical Research Institute Sant Pau (IIB Sant Pau)BarcelonaSpain
| |
Collapse
|
9
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
10
|
Malki I, Liepina I, Kogelnik N, Watmuff H, Robinson S, Lightfoot A, Gonchar O, Bottrill A, Fry AM, Dominguez C. Cdk1-mediated threonine phosphorylation of Sam68 modulates its RNA binding, alternative splicing activity and cellular functions. Nucleic Acids Res 2022; 50:13045-13062. [PMID: 36537190 PMCID: PMC9825155 DOI: 10.1093/nar/gkac1181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Sam68, also known as KHDRBS1, is a member of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins and its role is modulated by post-translational modifications, including serine/threonine phosphorylation, that differ at various stages of the cell cycle. However, the molecular basis and mechanisms of these modulations remain largely unknown. Here, we combined mass spectrometry, nuclear magnetic resonance spectroscopy and cell biology techniques to provide a comprehensive post-translational modification mapping of Sam68 at different stages of the cell cycle in HEK293 and HCT116 cells. We established that Sam68 is specifically phosphorylated at T33 and T317 by Cdk1, and demonstrated that these phosphorylation events reduce the binding of Sam68 to RNA, control its cellular localization and reduce its alternative splicing activity, leading to a reduction in the induction of apoptosis and an increase in the proliferation of HCT116 cells.
Collapse
Affiliation(s)
- Idir Malki
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Inara Liepina
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nora Kogelnik
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Hollie Watmuff
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Sue Robinson
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Adam Lightfoot
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Oksana Gonchar
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrew Bottrill
- Proteomics RTP, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Cyril Dominguez
- The Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
11
|
Okuda H, Miyamoto R, Takahashi S, Kawamura T, Ichikawa J, Harada I, Tamura T, Yokoyama A. RNA-binding proteins of KHDRBS and IGF2BP families control the oncogenic activity of MLL-AF4. Nat Commun 2022; 13:6688. [PMID: 36335100 PMCID: PMC9637093 DOI: 10.1038/s41467-022-34558-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
Abstract
Chromosomal translocation generates the MLL-AF4 fusion gene, which causes acute leukemia of multiple lineages. MLL-AF4 is a strong oncogenic driver that induces leukemia without additional mutations and is the most common cause of pediatric leukemia. However, establishment of a murine disease model via retroviral transduction has been difficult owning to a lack of understanding of its regulatory mechanisms. Here, we show that MLL-AF4 protein is post-transcriptionally regulated by RNA-binding proteins, including those of KHDRBS and IGF2BP families. MLL-AF4 translation is inhibited by ribosomal stalling, which occurs at regulatory sites containing AU-rich sequences recognized by KHDRBSs. Synonymous mutations disrupting the association of KHDRBSs result in proper translation of MLL-AF4 and leukemic transformation. Consequently, the synonymous MLL-AF4 mutant induces leukemia in vivo. Our results reveal that post-transcriptional regulation critically controls the oncogenic activity of MLL-AF4; these findings might be valuable in developing novel therapies via modulation of the activity of RNA-binding proteins.
Collapse
Affiliation(s)
- Hiroshi Okuda
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Ryo Miyamoto
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan
| | - Satoshi Takahashi
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.258799.80000 0004 0372 2033Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto Japan
| | - Takeshi Kawamura
- grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology (RCAST), The University of Tokyo, Bunkyo, Tokyo Japan
| | - Juri Ichikawa
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Ibuki Harada
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Tomohiko Tamura
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan ,grid.268441.d0000 0001 1033 6139Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa Japan
| | - Akihiko Yokoyama
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.272242.30000 0001 2168 5385National Cancer Center Research Institute, Chuo, Tokyo Japan
| |
Collapse
|
12
|
Pieraccioli M, Caggiano C, Mignini L, Zhong C, Babini G, Lattanzio R, Di Stasi S, Tian B, Sette C, Bielli P. The transcriptional terminator XRN2 and the RNA-binding protein Sam68 link alternative polyadenylation to cell cycle progression in prostate cancer. Nat Struct Mol Biol 2022; 29:1101-1112. [PMID: 36344846 PMCID: PMC9872553 DOI: 10.1038/s41594-022-00853-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Alternative polyadenylation (APA) yields transcripts differing in their 3'-end, and its regulation is altered in cancer, including prostate cancer. Here we have uncovered a mechanism of APA regulation impinging on the interaction between the exonuclease XRN2 and the RNA-binding protein Sam68, whose increased expression in prostate cancer is promoted by the transcription factor MYC. Genome-wide transcriptome profiling revealed a widespread impact of the Sam68/XRN2 complex on APA. XRN2 promotes recruitment of Sam68 to its target transcripts, where it competes with the cleavage and polyadenylation specificity factor for binding to strong polyadenylation signals at distal ends of genes, thus promoting usage of suboptimal proximal polyadenylation signals. This mechanism leads to 3' untranslated region shortening and translation of transcripts encoding proteins involved in G1/S progression and proliferation. Thus, our findings indicate that the APA program driven by Sam68/XRN2 promotes cell cycle progression and may represent an actionable target for therapeutic intervention.
Collapse
Affiliation(s)
- Marco Pieraccioli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy.,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy.,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Mignini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Chuwei Zhong
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Gabriele Babini
- GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, G. d’Annunzio University, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), G. d’Annunzio University, Chieti, Italy
| | - Savino Di Stasi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Bin Tian
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, Rome, Italy. .,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy.
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy. .,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
13
|
Fisher E, Feng J. RNA splicing regulators play critical roles in neurogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1728. [PMID: 35388651 DOI: 10.1002/wrna.1728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Alternative RNA splicing increases transcript diversity in different cell types and under varying conditions. It is executed with the help of RNA splicing regulators (RSRs), which are operationally defined as RNA-binding proteins (RBPs) that regulate alternative splicing, but not directly catalyzing the chemical reactions of splicing. By systematically searching for RBPs and manually identifying those that regulate splicing, we curated 305 RSRs in the human genome. Surprisingly, most of the RSRs are involved in neurogenesis. Among these RSRs, we focus on nine families (PTBP, NOVA, RBFOX, ELAVL, CELF, DBHS, MSI, PCBP, and MBNL) that play essential roles in the neurogenic pathway. A better understanding of their functions will provide novel insights into the role of splicing in brain development, health, and disease. This comprehensive review serves as a stepping-stone to explore the diverse and complex set of RSRs as fundamental regulators of neural development. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Emily Fisher
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| |
Collapse
|
14
|
Pathogenic variants detected by RNA sequencing in Cornelia de Lange syndrome. Genomics 2022; 114:110468. [PMID: 36041635 DOI: 10.1016/j.ygeno.2022.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
Recent studies suggest that transcript isoforms significantly overlap (approximately 60%) between brain tissue and Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs). Interestingly, 14 cohesion-related genes with variants that cause Cornelia de Lange Syndrome (CdLS) are highly expressed in the brain and LCLs. In this context, we first performed RNA sequencing of LCLs from 22 solved (with pathogenic variants) and 19 unsolved (with no confirmed variants) CdLS cases. Next, an RNA sequencing pipeline was developed using solved cases with two different methods: short variant analysis (for single-nucleotide and indel variants) and aberrant splicing detection analysis. Then, 19 unsolved cases were subsequently applied to our pipeline, and four pathogenic variants in NIPBL (one inframe deletion and three intronic variants) were newly identified. Two of three intronic variants were located at Alu elements in deep-intronic regions, creating cryptic exons. RNA sequencing with LCLs was useful for identifying hidden variants in exome-negative cases.
Collapse
|
15
|
González-Blanco G, García-Rivera G, Talmás-Rohana P, Orozco E, Galindo-Rosales JM, Vélez C, Salucedo-Cárdenas O, Azuara-Liceaga E, Rodríguez-Rodríguez MA, Nozaki T, Valdés J. An Unusual U2AF2 Inhibits Splicing and Attenuates the Virulence of the Human Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 12:888428. [PMID: 35782149 PMCID: PMC9247205 DOI: 10.3389/fcimb.2022.888428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
E. histolytica is the etiological agent of intestinal amebiasis and liver abscesses, which still poses public health threat globally. Metronidazole is the drug of choice against amebiasis. However, metronidazole-resistant amoebic clinical isolates and strains have been reported recently, challenging the efforts for amebiasis eradication. In search of alternative treatments, E. histolytica transcriptomes have shown the association of genes involved in RNA metabolism with the virulence of the parasite. Among the upregulated genes in amoebic liver abscesses are the splicing factors EhU2AF2 and a paralog of EhSF3B1. For this reason and because EhU2AF2 contains unusual KH-QUA2 (84KQ) motifs in its lengthened C-terminus domain, here we investigated how the role of EhU2AF2 in pre-mRNA processing impacts the virulence of the parasite. We found that 84KQ is involved in splicing inhibition/intron retention of several virulence and non-virulence-related genes. The 84KQ domain interacts with the same domain of the constitutive splicing factor SF1 (SF1KQ), both in solution and when SF1KQ is bound to branchpoint signal RNA probes. The 84KQ–SF1KQ interaction prevents splicing complex E to A transition, thus inhibiting splicing. Surprisingly, the deletion of the 84KQ domain in EhU2AF2 amoeba transformants increased splicing and enhanced the in vitro and in vivo virulence phenotypes. We conclude that the interaction of the 84KQ and SF1KQ domains, probably involving additional factors, tunes down Entamoeba virulence by favoring intron retention.
Collapse
Affiliation(s)
- Gretter González-Blanco
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Patricia Talmás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Ester Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - José Manuel Galindo-Rosales
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Cristina Vélez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Odila Salucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX, Mexico
| | - Mario Alberto Rodríguez-Rodríguez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), CDMX, Mexico
- *Correspondence: Jesús Valdés,
| |
Collapse
|
16
|
Benegas G, Fischer J, Song YS. Robust and annotation-free analysis of alternative splicing across diverse cell types in mice. eLife 2022; 11:73520. [PMID: 35229721 PMCID: PMC8975553 DOI: 10.7554/elife.73520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although alternative splicing is a fundamental and pervasive aspect of gene expression in higher eukaryotes, it is often omitted from single-cell studies due to quantification challenges inherent to commonly used short-read sequencing technologies. Here, we undertake the analysis of alternative splicing across numerous diverse murine cell types from two large-scale single-cell datasets-the Tabula Muris and BRAIN Initiative Cell Census Network-while accounting for understudied technical artifacts and unannotated events. We find strong and general cell-type-specific alternative splicing, complementary to total gene expression but of similar discriminatory value, and identify a large volume of novel splicing events. We specifically highlight splicing variation across different cell types in primary motor cortex neurons, bone marrow B cells, and various epithelial cells, and we show that the implicated transcripts include many genes which do not display total expression differences. To elucidate the regulation of alternative splicing, we build a custom predictive model based on splicing factor activity, recovering several known interactions while generating new hypotheses, including potential regulatory roles for novel alternative splicing events in critical genes like Khdrbs3 and Rbfox1. We make our results available using public interactive browsers to spur further exploration by the community.
Collapse
Affiliation(s)
- Gonzalo Benegas
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Jonathan Fischer
- Department of Biostatistics, University of Florida, Gainesville, United States
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
17
|
Gao L, Yu W, Song P, Li Q. Non-histone methylation of SET7/9 and its biological functions. Recent Pat Anticancer Drug Discov 2021; 17:231-243. [PMID: 34856916 DOI: 10.2174/1574892816666211202160041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) is a member of the protein lysine methyltransferases (PLMTs or PKMTs) family. It contains a SET domain. Recent studies demonstrate that SET7/9 methylates both lysine 4 of histone 3 (H3-K4) and lysine(s) of non-histone proteins, including transcription factors, tumor suppressors, and membrane-associated receptors. OBJECTIVE This article mainly reviews the non-histone methylation effects of SET7/9 and its functions in tumorigenesis and development. METHODS PubMed was screened for this information. RESULTS SET7/9 plays a key regulatory role in various biological processes such as cell proliferation, transcription regulation, cell cycle, protein stability, cardiac morphogenesis, and development. In addition, SET7/9 is involved in the pathogenesis of hair loss, breast cancer progression, human carotid plaque atherosclerosis, chronic kidney disease, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. CONCLUSION SET7/9 is an important methyltransferase, which can catalyze the methylation of a variety of proteins. Its substrates are closely related to the occurrence and development of tumors.
Collapse
Affiliation(s)
- Lili Gao
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Weiping Yu
- Department of Pathophysiology, Medical school of Southeast University, Nanjing 210009, Jiangsu. China
| | - Peng Song
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Qing Li
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| |
Collapse
|
18
|
Transcriptome programs involved in the development and structure of the cerebellum. Cell Mol Life Sci 2021; 78:6431-6451. [PMID: 34406416 PMCID: PMC8558292 DOI: 10.1007/s00018-021-03911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
In the past two decades, mounting evidence has modified the classical view of the cerebellum as a brain region specifically involved in the modulation of motor functions. Indeed, clinical studies and engineered mouse models have highlighted cerebellar circuits implicated in cognitive functions and behavior. Furthermore, it is now clear that insults occurring in specific time windows of cerebellar development can affect cognitive performance later in life and are associated with neurological syndromes, such as Autism Spectrum Disorder. Despite its almost homogenous cytoarchitecture, how cerebellar circuits form and function is not completely elucidated yet. Notably, the apparently simple neuronal organization of the cerebellum, in which Purkinje cells represent the only output, hides an elevated functional diversity even within the same neuronal population. Such complexity is the result of the integration of intrinsic morphogenetic programs and extracellular cues from the surrounding environment, which impact on the regulation of the transcriptome of cerebellar neurons. In this review, we briefly summarize key features of the development and structure of the cerebellum before focusing on the pathways involved in the acquisition of the cerebellar neuron identity. We focus on gene expression and mRNA processing programs, including mRNA methylation, trafficking and splicing, that are set in motion during cerebellar development and participate to its physiology. These programs are likely to add new layers of complexity and versatility that are fundamental for the adaptability of cerebellar neurons.
Collapse
|
19
|
Boeckel JN, Möbius-Winkler M, Müller M, Rebs S, Eger N, Schoppe L, Tappu R, Kokot KE, Kneuer JM, Gaul S, Bordalo DM, Lai A, Haas J, Ghanbari M, Drewe-Boss P, Liss M, Katus HA, Ohler U, Gotthardt M, Laufs U, Streckfuss-Bömeke K, Meder B. SLM2 Is A Novel Cardiac Splicing Factor Involved in Heart Failure due to Dilated Cardiomyopathy. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:129-146. [PMID: 34273561 PMCID: PMC9510876 DOI: 10.1016/j.gpb.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Alternative mRNA splicing is a fundamental process to increase the versatility of the genome. In humans, cardiac mRNA splicing is involved in the pathophysiology of heart failure. Mutations in the splicing factor RNA binding motif protein 20 (RBM20) cause severe forms of cardiomyopathy. To identify novel cardiomyopathy-associated splicing factors, RNA-seq and tissue-enrichment analyses were performed, which identified up-regulated expression of Sam68-Like mammalian protein 2 (SLM2) in the left ventricle of dilated cardiomyopathy (DCM) patients. In the human heart, SLM2 binds to important transcripts of sarcomere constituents, such as those encoding myosin light chain 2 (MYL2), troponin I3 (TNNI3), troponin T2 (TNNT2), tropomyosin 1/2 (TPM1/2), and titin (TTN). Mechanistically, SLM2 mediates intron retention, prevents exon exclusion, and thereby mediates alternative splicing of the mRNA regions encoding the variable proline-, glutamate-, valine-, and lysine-rich (PEVK) domain and another part of the I-band region of titin. In summary, SLM2 is a novel cardiac splicing regulator with essential functions for maintaining cardiomyocyte integrity by binding to and processing the mRNAs of essential cardiac constituents such as titin.
Collapse
Affiliation(s)
- Jes-Niels Boeckel
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | | | - Marion Müller
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen 32545, Germany
| | - Sabine Rebs
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Nicole Eger
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Laura Schoppe
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Rewati Tappu
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Karoline E Kokot
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Diana M Bordalo
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Alan Lai
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Jan Haas
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Mahsa Ghanbari
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Philipp Drewe-Boss
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany; Institute of Biology, Humboldt Universität zu Berlin, Berlin 10099, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin 10117, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätskrankenhaus Leipzig, Leipzig 04103, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, Goettingen 37075, Germany; German Center for Cardiovascular Research (DZHK), Partner site Goettingen, Goettingen 37075, Germany
| | - Benjamin Meder
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg 69120, Germany; German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg 69120, Germany; Stanford Genome Technology Center, Department of Genetics, Stanford Medical School, Palo Alto, CA 94304, USA.
| |
Collapse
|
20
|
Fang Z, Wu D, Deng J, Yang Q, Zhang X, Chen J, Wang S, Hu S, Hou W, Ning S, Ding Y, Fan Z, Jiang Z, Kang J, Liu Y, Miao J, Ji X, Dong H, Xiong L. An MD2-perturbing peptide has therapeutic effects in rodent and rhesus monkey models of stroke. Sci Transl Med 2021; 13:13/597/eabb6716. [PMID: 34108252 DOI: 10.1126/scitranslmed.abb6716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
Studies have failed to translate more than 1000 experimental treatments from bench to bedside, leaving stroke as the second leading cause of death in the world. Thrombolysis within 4.5 hours is the recommended therapy for stroke and cannot be performed until neuroimaging is used to distinguish ischemic stroke from hemorrhagic stroke. Therefore, finding a common and critical therapeutic target for both ischemic and hemorrhagic stroke is appealing. Here, we report that the expression of myeloid differentiation protein 2 (MD2), which is traditionally regarded to be expressed only in microglia in the normal brain, was markedly increased in cortical neurons after stroke. We synthesized a small peptide, Trans-trans-activating (Tat)-cold-inducible RNA binding protein (Tat-CIRP), which perturbed the function of MD2 and strongly protected neurons against excitotoxic injury in vitro. In addition, systemic administration of Tat-CIRP or genetic deletion of MD2 induced robust neuroprotection against ischemic and hemorrhagic stroke in mice. Tat-CIRP reduced the brain infarct volume and preserved neurological function in rhesus monkeys 30 days after ischemic stroke. Tat-CIRP efficiently crossed the blood-brain barrier and showed a wide therapeutic index for stroke because no toxicity was detected when high doses were administered to the mice. Furthermore, we demonstrated that MD2 elicited neuronal apoptosis and necroptosis via a TLR4-independent, Sam68-related cascade. In summary, Tat-CIRP provides robust neuroprotection against stroke in rodents and gyrencephalic nonhuman primates. Further efforts should be made to translate these findings to treat both ischemic and hemorrhagic stroke in patients.
Collapse
Affiliation(s)
- Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Di Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian Chen
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Siming Ning
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhongmin Fan
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junjun Kang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yingying Liu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jinlin Miao
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xunming Ji
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China. .,Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
21
|
Debackere K, Marcelis L, Demeyer S, Vanden Bempt M, Mentens N, Gielen O, Jacobs K, Broux M, Verhoef G, Michaux L, Graux C, Wlodarska I, Gaulard P, de Leval L, Tousseyn T, Cools J, Dierickx D. Fusion transcripts FYN-TRAF3IP2 and KHDRBS1-LCK hijack T cell receptor signaling in peripheral T-cell lymphoma, not otherwise specified. Nat Commun 2021; 12:3705. [PMID: 34140493 PMCID: PMC8211700 DOI: 10.1038/s41467-021-24037-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas with poor prognosis. Up to 30% of PTCL lack distinctive features and are classified as PTCL, not otherwise specified (PTCL-NOS). To further improve our understanding of the genetic landscape and biology of PTCL-NOS, we perform RNA-sequencing of 18 cases and validate results in an independent cohort of 37 PTCL cases. We identify FYN-TRAF3IP2, KHDRBS1-LCK and SIN3A-FOXO1 as new in-frame fusion transcripts, with FYN-TRAF3IP2 as a recurrent fusion detected in 8 of 55 cases. Using ex vivo and in vivo experiments, we demonstrate that FYN-TRAF3IP2 and KHDRBS1-LCK activate signaling pathways downstream of the T cell receptor (TCR) complex and confer therapeutic vulnerability to clinically available drugs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cohort Studies
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Intracellular Signaling Peptides and Proteins/metabolism
- Kaplan-Meier Estimate
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Mice
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Proteins c-fyn/genetics
- Proto-Oncogene Proteins c-fyn/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Seq
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction/genetics
- Sin3 Histone Deacetylase and Corepressor Complex/genetics
- Sin3 Histone Deacetylase and Corepressor Complex/metabolism
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Koen Debackere
- Laboratory for Experimental Hematology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lukas Marcelis
- Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Marlies Vanden Bempt
- Laboratory for Experimental Hematology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Nicole Mentens
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Olga Gielen
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Kris Jacobs
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Michael Broux
- Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Gregor Verhoef
- Laboratory for Experimental Hematology, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Lucienne Michaux
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Carlos Graux
- Mont-Godinne University Hospital, Yvoir, Belgium
| | - Iwona Wlodarska
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Gaulard
- Département de Pathologie, Groupe Hospitalier Henri Mondor, AP-HP, Créteil, France
- INSERM U955 and Université Paris-Est, Créteil, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Thomas Tousseyn
- Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Jan Cools
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Human Genetics, KU Leuven, Leuven, Belgium.
| | - Daan Dierickx
- Laboratory for Experimental Hematology, KU Leuven, Leuven, Belgium.
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Chorostecki U, Saus E, Gabaldón T. Structural characterization of NORAD reveals a stabilizing role of spacers and two new repeat units. Comput Struct Biotechnol J 2021; 19:3245-3254. [PMID: 34141143 PMCID: PMC8192489 DOI: 10.1016/j.csbj.2021.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can perform a variety of key cellular functions by interacting with proteins and other RNAs. Recent studies have shown that the functions of lncRNAS are largely mediated by their structures. However, our structural knowledge for most lncRNAS is limited to sequence-based computational predictions. Non-coding RNA activated by DNA damage (NORAD) is an atypical lncRNA due to its abundant expression and high sequence conservation. NORAD regulates genomic stability by interacting with proteins and microRNAs. Previous sequence-based characterization has identified a modular organization of NORAD composed of several NORAD repeat units (NRUs). These units comprise the protein-binding elements and are separated by regular spacers. Here, we experimentally determine for the first time the secondary structure of NORAD using the nextPARS approach. Our results suggest that the spacer regions provide structural stability to NRUs. Furthermore, we uncover two previously unreported NRUs, and determine the core structural motifs conserved across NRUs. Overall, these findings will help to elucidate the function and evolution of NORAD.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, 29. 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Farini D, Cesari E, Weatheritt RJ, La Sala G, Naro C, Pagliarini V, Bonvissuto D, Medici V, Guerra M, Di Pietro C, Rizzo FR, Musella A, Carola V, Centonze D, Blencowe BJ, Marazziti D, Sette C. A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum. Cell Rep 2021; 31:107703. [PMID: 32492419 DOI: 10.1016/j.celrep.2020.107703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3' splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum.
Collapse
Affiliation(s)
- Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Robert J Weatheritt
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Davide Bonvissuto
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Vanessa Medici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Francesca Romana Rizzo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; San Raffaele Pisana and University San Raffaele, IRCCS, Rome, Italy
| | | | - Valeria Carola
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Department of Dynamic and Clinical Psychology, University of Rome Sapienza, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Benjamin J Blencowe
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Claudio Sette
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
24
|
Bcl-xL: A Focus on Melanoma Pathobiology. Int J Mol Sci 2021; 22:ijms22052777. [PMID: 33803452 PMCID: PMC7967179 DOI: 10.3390/ijms22052777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is the main mechanism by which multicellular organisms eliminate damaged or unwanted cells. To regulate this process, a balance between pro-survival and pro-apoptotic proteins is necessary in order to avoid impaired apoptosis, which is the cause of several pathologies, including cancer. Among the anti-apoptotic proteins, Bcl-xL exhibits a high conformational flexibility, whose regulation is strictly controlled by alternative splicing and post-transcriptional regulation mediated by transcription factors or microRNAs. It shows relevant functions in different forms of cancer, including melanoma. In melanoma, Bcl-xL contributes to both canonical roles, such as pro-survival, protection from apoptosis and induction of drug resistance, and non-canonical functions, including promotion of cell migration and invasion, and angiogenesis. Growing evidence indicates that Bcl-xL inhibition can be helpful for cancer patients, but at present, effective and safe therapies targeting Bcl-xL are lacking due to toxicity to platelets. In this review, we summarized findings describing the mechanisms of Bcl-xL regulation, and the role that Bcl-xL plays in melanoma pathobiology and response to therapy. From these findings, it emerged that even if Bcl-xL plays a crucial role in melanoma pathobiology, we need further studies aimed at evaluating the involvement of Bcl-xL and other members of the Bcl-2 family in the progression of melanoma and at identifying new non-toxic Bcl-xL inhibitors.
Collapse
|
25
|
Abstract
The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.
Collapse
|
26
|
Pankivskyi S, Pastré D, Steiner E, Joshi V, Rynditch A, Hamon L. ITSN1 regulates SAM68 solubility through SH3 domain interactions with SAM68 proline-rich motifs. Cell Mol Life Sci 2020; 78:1745-1763. [PMID: 32780150 PMCID: PMC7904728 DOI: 10.1007/s00018-020-03610-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
SAM68 is an mRNA-binding protein involved in mRNA processing in the nucleus that forms membraneless compartments called SAM68 Nuclear Bodies (SNBs). We found that intersectin 1 (ITSN1), a multidomain scaffold protein harboring five soluble SH3 domains, interacts with SAM68 proline-rich motifs (PRMs) surrounded by self-adhesive low complexity domains. While SAM68 is poorly soluble in vitro, the interaction of ITSN1 SH3 domains and mRNA with SAM68 enhances its solubility. In HeLa cells, the interaction between the first ITSN1 SH3 domain (SH3A) and P0, the N-terminal PRM of SAM68, induces the dissociation of SNBs. In addition, we reveal the ability of another SH3 domain (SH3D) of ITSN1 to bind to mRNAs. ITSN1 and mRNA may thus act in concert to promote SAM68 solubilization, consistent with the absence of mRNA in SNBs in cells. Together, these results support the notion of a specific chaperoning of PRM-rich SAM68 within nuclear ribonucleoprotein complexes by ITSN1 that may regulate the processing of a fraction of nuclear mRNAs, notably SAM68-controlled splicing events related to higher neuronal functions or cancer progression. This observation may also serve as a putative model of the interaction between other PRM-rich RBPs and signaling proteins harboring SH3 domains.
Collapse
Affiliation(s)
- S Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.,Institute of Molecular Biology and Genetics, The National Academy of Sciences, 150 Zabolotnogo Street, Kyiv, 03680, Ukraine
| | - D Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - E Steiner
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - V Joshi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - A Rynditch
- Institute of Molecular Biology and Genetics, The National Academy of Sciences, 150 Zabolotnogo Street, Kyiv, 03680, Ukraine.
| | - L Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.
| |
Collapse
|
27
|
McLellan H, Chen K, He Q, Wu X, Boevink PC, Tian Z, Birch PR. The Ubiquitin E3 Ligase PUB17 Positively Regulates Immunity by Targeting a Negative Regulator, KH17, for Degradation. PLANT COMMUNICATIONS 2020; 1:100020. [PMID: 32715295 PMCID: PMC7371183 DOI: 10.1016/j.xplc.2020.100020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 01/02/2020] [Indexed: 05/12/2023]
Abstract
Ubiquitination is a post-translational modification that regulates many processes in plants. Several ubiquitin E3 ligases act as either positive or negative regulators of immunity by promoting the degradation of different substrates. StPUB17 is an E3 ligase that has previously been shown to positively regulate immunity to bacteria, fungi and oomycetes, including the late blight pathogen Phytophthora infestans. Silencing of StPUB17 promotes pathogen colonization and attenuates Cf4/avr4 cell death. Using yeast-2-hybrid and co-immunoprecipitation we identified the putative K-homology (KH) RNA-binding protein (RBP), StKH17, as a candidate substrate for degradation by StPUB17. StKH17 acts as a negative regulator of immunity that promotes P. infestans infection and suppresses specific immune pathways. A KH RBP domain mutant of StKH17 (StKH17GDDG) is no longer able to negatively regulate immunity, indicating that RNA binding is likely required for StKH17 function. As StPUB17 is a known target of the ubiquitin E3 ligase, StPOB1, we reveal an additional step in an E3 ligase regulatory cascade that controls plant defense.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Kai Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin He
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Petra C. Boevink
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Paul R.J. Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
28
|
RNA-Binding Proteins in Acute Leukemias. Int J Mol Sci 2020; 21:ijms21103409. [PMID: 32408494 PMCID: PMC7279408 DOI: 10.3390/ijms21103409] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Collapse
|
29
|
Naro C, Pellegrini L, Jolly A, Farini D, Cesari E, Bielli P, de la Grange P, Sette C. Functional Interaction between U1snRNP and Sam68 Insures Proper 3' End Pre-mRNA Processing during Germ Cell Differentiation. Cell Rep 2020; 26:2929-2941.e5. [PMID: 30865884 DOI: 10.1016/j.celrep.2019.02.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023] Open
Abstract
Male germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells, and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing program operated by Sam68 across meiosis, primarily characterized by alternative last exon (ALE) regulation in genes of functional relevance for spermatogenesis. Lack of Sam68 preferentially causes premature transcript termination at internal polyadenylation sites, a feature observed also upon depletion of the spliceosomal U1snRNP in somatic cells. Notably, Sam68-regulated ALEs are characterized by proximity between U1snRNP and Sam68 binding motifs. We demonstrate a physical association between Sam68 and U1snRNP and show that U1snRNP recruitment to Sam68-regulated ALEs is impaired in Sam68-/- germ cells. Thus, our study reveals an unexpected cooperation between Sam68 and U1snRNP that insures proper processing of transcripts essential for male fertility.
Collapse
Affiliation(s)
- Chiara Naro
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Livia Pellegrini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ariane Jolly
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Eleonora Cesari
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Pamela Bielli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Pierre de la Grange
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, 00168 Rome, Italy; IRCCS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
30
|
Pagliarini V, Jolly A, Bielli P, Di Rosa V, De la Grange P, Sette C. Sam68 binds Alu-rich introns in SMN and promotes pre-mRNA circularization. Nucleic Acids Res 2020; 48:633-645. [PMID: 31777926 PMCID: PMC6954450 DOI: 10.1093/nar/gkz1117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
The Spinal Muscular Atrophy (SMA) gene SMN was recently duplicated (SMN1 and SMN2) in higher primates. Furthermore, invasion of the locus by repetitive elements almost doubled its size with respect to mouse Smn, in spite of an almost identical protein-coding sequence. Herein, we found that SMN ranks among the human genes with highest density of Alus, which are evolutionary conserved in primates and often occur in inverted orientation. Inverted repeat Alus (IRAlus) negatively regulate splicing of long introns within SMN, while promoting widespread alternative circular RNA (circRNA) biogenesis. Bioinformatics analyses revealed the presence of ultra-conserved Sam68 binding sites in SMN IRAlus. Cross-link-immunoprecipitation (CLIP), mutagenesis and silencing experiments showed that Sam68 binds in proximity of intronic Alus in the SMN pre-mRNA, thus favouring circRNA biogenesis in vitro and in vivo. These findings highlight a novel layer of regulation in SMN expression, uncover the crucial impact exerted by IRAlus and reveal a role for Sam68 in SMN circRNA biogenesis.
Collapse
Affiliation(s)
- Vittoria Pagliarini
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome 00168, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Ariane Jolly
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Pamela Bielli
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome 00143, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Valentina Di Rosa
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome 00143, Italy.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Pierre De la Grange
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome 00168, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| |
Collapse
|
31
|
Vasileva E, Shuvalov O, Petukhov A, Fedorova O, Daks A, Nader R, Barlev N. KMT Set7/9 is a new regulator of Sam68 STAR-protein. Biochem Biophys Res Commun 2020; 525:1018-1024. [PMID: 32178870 DOI: 10.1016/j.bbrc.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Lysine-specific methyltransferase Set7/9 (KMT7) belongs to the SET domain family of proteins. Besides the SET domain, Set7/9 also contains a so-called MORN (Membrane Occupation and Recognition Nexus) domain whose function in high eukaryotes is largely unknown. Set7/9 has been shown to specifically methylate both histones H1 and H3 as well as a number of non-histone substrates, including p53, E2F1, RelA, AR, and other important transcription factors. However, despite the ever growing list of potential substrates of Set7/9, the question of its substrate specificity is still debatable. To gain a better understanding of the Set7/9 substrate specificity and to clarify the importance of structural domains of Set7/9 for protein-protein interactions (PPIs) we determined interactomes for both MORN and SET domains of Set7/9 by pull-down assay coupled with mass-spectrometry. Importantly, we demonstrated that most of PPIs of Set7/9 are mediated via its MORN domain. The latter has preference towards positively charged amino acids that are often found in RNA-binding proteins. One of the Set7/9-interacting proteins was identified as Sam68, an RNA splicing protein with a KH (heterogeneous nuclear ribonucleoprotein K (hnRNP K) homology) domain. Importantly, the RG-rich domain of Sam68 that is also present in many splicing factors was found to interact with Set7/9. We revealed that Set7/9 not only co-immunoprecipitated with Sam68, but also methylated the latter on K208. Functionally, knockout of Set7/9 decreased the protein level of Sam68 in cells resulting in altered regulation of cell cycle and apoptosis. Finally, the bioinformatics analysis established a correlation between the high levels of Sam68/Set7/9 co-expression and better survival rates of patients with colon cancer.
Collapse
Affiliation(s)
- Elena Vasileva
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation
| | - Alexey Petukhov
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation; Almazov National Medical Research Centre, Institute of Hematology, 197341, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation
| | - Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation
| | - Rahimi Nader
- Department of Pathology & Laboratory Medicine, Boston University, 72 East Concord St., Boston, MA, 02118, USA
| | - Nickolai Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, Russian Federation; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141700, Russian Federation.
| |
Collapse
|
32
|
Subramania S, Gagné LM, Campagne S, Fort V, O'Sullivan J, Mocaer K, Feldmüller M, Masson JY, Allain FHT, Hussein SM, Huot MÉ. SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing. Nucleic Acids Res 2019; 47:4181-4197. [PMID: 30767021 PMCID: PMC6486544 DOI: 10.1093/nar/gkz099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5′ splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5′ splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5′ splice sites.
Collapse
Affiliation(s)
- Suryasree Subramania
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Laurence M Gagné
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Sébastien Campagne
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Victoire Fort
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Julia O'Sullivan
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Karel Mocaer
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada
| | - Miki Feldmüller
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jean-Yves Masson
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Frédéric H T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Samer M Hussein
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Marc-Étienne Huot
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| |
Collapse
|
33
|
Iijima Y, Tanaka M, Suzuki S, Hauser D, Tanaka M, Okada C, Ito M, Ayukawa N, Sato Y, Ohtsuka M, Scheiffele P, Iijima T. SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3' UTR Isoforms in the Nervous System. iScience 2019; 22:318-335. [PMID: 31805436 PMCID: PMC6909182 DOI: 10.1016/j.isci.2019.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Neuronal alternative splicing is a core mechanism for functional diversification. We previously found that STAR family proteins (SAM68, SLM1, SLM2) regulate spatiotemporal alternative splicing in the nervous system. However, the whole aspect of alternative splicing programs by STARs remains unclear. Here, we performed a transcriptomic analysis using SAM68 knockout and SAM68/SLM1 double-knockout midbrains. We revealed different alternative splicing activity between SAM68 and SLM1; SAM68 preferentially targets alternative 3′ UTR exons. SAM68 knockout causes a long-to-short isoform switch of a number of neuronal targets through the alteration in alternative last exon (ALE) selection or alternative polyadenylation. The altered ALE usage of a novel target, interleukin 1 receptor accessory protein (Il1rap), results in remarkable conversion from a membrane-bound type to a secreted type in Sam68KO brains. Proper ALE selection is necessary for IL1RAP neuronal function. Thus the SAM68-specific splicing program provides a mechanism for neuronal selection of alternative 3′ UTR isoforms. SAM68 and the related protein SLM1 exhibit distinct alternative splicing activity SAM68 specifically controls 3′ UTR selection of multiple neuronal genes Proper 3′ UTR selection is necessary for IL1RAP neuronal function Neuronal expression of SAM68 requires proper 3′ UTR selection in the nervous system
Collapse
Affiliation(s)
- Yoko Iijima
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masami Tanaka
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Satoko Suzuki
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - David Hauser
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel 4056, Switzerland
| | - Masayuki Tanaka
- The Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Chisa Okada
- The Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Masatoshi Ito
- The Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Noriko Ayukawa
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Yuji Sato
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Peter Scheiffele
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel 4056, Switzerland
| | - Takatoshi Iijima
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
34
|
Munteanu A, Mukherjee N, Ohler U. SSMART: sequence-structure motif identification for RNA-binding proteins. Bioinformatics 2019; 34:3990-3998. [PMID: 29893814 DOI: 10.1093/bioinformatics/bty404] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Motivation RNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized. Results We developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3'UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP. Availability and implementation SSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alina Munteanu
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Computer Science, Humboldt University, Berlin, Germany
| | - Neelanjan Mukherjee
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Computer Science, Humboldt University, Berlin, Germany
| |
Collapse
|
35
|
Stability and flexibility of full-length human oligodendrocytic QKI6. BMC Res Notes 2019; 12:609. [PMID: 31547849 PMCID: PMC6757426 DOI: 10.1186/s13104-019-4629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 11/15/2022] Open
Abstract
Objective Oligodendrocytes account for myelination in the central nervous system. During myelin compaction, key proteins are translated in the vicinity of the myelin membrane, requiring targeted mRNA transport. Quaking isoform 6 (QKI6) is a STAR domain-containing RNA transport protein, which binds a conserved motif in the 3′-UTR of certain mRNAs, affecting the translation of myelination-involved proteins. RNA binding has been earlier structurally characterized, but information about full-length QKI6 conformation is lacking. Based on known domains and structure predicitons, we expected full-length QKI6 to be flexible and carry disordered regions. Hence, we carried out biophysical and structural characterization of human QKI6. Results We expressed and purified full-length QKI6 and characterized it using mass spectrometry, light scattering, small-angle X-ray scattering, and circular dichroism spectroscopy. QKI6 was monodisperse, folded, and mostly dimeric, being oxidation-sensitive. The C-terminal tail was intrinsically disordered, as predicted. In the absence of RNA, the RNA-binding subdomain is likely to present major flexibility. In thermal stability assays, a double sequential unfolding behaviour was observed in the presence of phosphate, which may interact with the RNA-binding domain. The results confirm the flexibility and partial disorder of QKI6, which may be functionally relevant.
Collapse
|
36
|
Yang XJ, Zhu H, Mu SR, Wei WJ, Yuan X, Wang M, Liu Y, Hui J, Huang Y. Crystal structure of a Y-box binding protein 1 (YB-1)-RNA complex reveals key features and residues interacting with RNA. J Biol Chem 2019; 294:10998-11010. [PMID: 31160337 PMCID: PMC6635445 DOI: 10.1074/jbc.ra119.007545] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/26/2019] [Indexed: 01/07/2023] Open
Abstract
The Y-box binding protein 1 (YB-1) is a member of the cold shock domain (CSD) protein family and is recognized as an oncogenic factor in several solid tumors. By binding to RNA, YB-1 participates in several steps of posttranscriptional regulation of gene expression, including mRNA splicing, stability, and translation; microRNA processing; and stress granule assembly. However, the mechanisms in YB-1-mediated regulation of RNAs are unclear. Previously, we used both systematic evolution of ligands by exponential enrichment (SELEX) and individual-nucleotide resolution UV cross-linking and immunoprecipitation coupled RNA-Seq (iCLIP-Seq) analyses, which defined the RNA-binding consensus sequence of YB-1 as CA(U/C)C. We also reported that through binding to its core motif CAUC in primary transcripts, YB-1 regulates the alternative splicing of a CD44 variable exon and the biogenesis of miR-29b-2 during both Drosha and Dicer steps. To elucidate the molecular basis of the YB-1-RNA interactions, we report high-resolution crystal structures of the YB-1 CSD in complex with different RNA oligos at 1.7 Å resolution. The structure revealed that CSD interacts with RNA mainly through π-π stacking interactions assembled by four highly conserved aromatic residues. Interestingly, YB-1 CSD forms a homodimer in solution, and we observed that two residues, Tyr-99 and Asp-105, at the dimer interface are important for YB-1 CSD dimerization. Substituting these two residues with Ala reduced CSD's RNA-binding activity and abrogated the splicing activation of YB-1 targets. The YB-1 CSD-RNA structures presented here at atomic resolution provide mechanistic insights into gene expression regulated by CSD-containing proteins.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Hong Zhu
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Shi-Rong Mu
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Wen-Juan Wei
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Xun Yuan
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Meng Wang
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Yanchao Liu
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China
| | - Jingyi Hui
- From the CAS Center for Excellence in Molecular Cell Science, Shanghai 200031, China, ,the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and , To whom correspondence may be addressed:
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China. Tel.:
86-21-54921354; E-mail:
| | - Ying Huang
- the State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China, and ,the Shanghai Key Laboratory of Molecular Andrology, Shanghai 200031, China, To whom correspondence may be addressed:
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China. Tel.:
86-21-20778200; E-mail:
| |
Collapse
|
37
|
Mureddu L, Vuister GW. Simple high-resolution NMR spectroscopy as a tool in molecular biology. FEBS J 2019; 286:2035-2042. [PMID: 30706658 PMCID: PMC6563160 DOI: 10.1111/febs.14771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022]
Abstract
NMR is one of the major techniques for investigating the structure, dynamics and interactions between biomolecules. However, non-experts often experience NMR experimentation and data analysis as intimidating. We discuss a simple yet powerful NMR technique, the so-called chemical shift perturbation (CSP) analysis, as a tool to elucidate macromolecular interactions in small- and medium-sized complexes, including protein-protein, protein-drug, and protein-DNA/RNA interactions. We discuss current software packages for NMR data analysis and present a new interactive graphical tool implemented in CcpNmr AnalysisAssign version-3, which can drastically reduce the time required for the CSP analysis. Lastly, we illustrate the usefulness of a protein three-dimensional structure for interpretation of the CSP data.
Collapse
Affiliation(s)
- Luca Mureddu
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, UK
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, UK
| |
Collapse
|
38
|
Wang X, Yu H, Sun W, Kong J, Zhang L, Tang J, Wang J, Xu E, Lai M, Zhang H. The long non-coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Mol Cancer 2018; 17:110. [PMID: 30064438 PMCID: PMC6069835 DOI: 10.1186/s12943-018-0860-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/20/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) function as key molecules in cancer progression. The lncRNA CYTOR plays oncogenic roles in multiple types of cancer, yet the detailed molecular mechanisms of those roles remain unknown. The aim of this study was to investigate the clinical significance, biological function and interacting partners of CYTOR in colorectal cancer (CRC). METHODS A systematic and comprehensive analysis of CYTOR expression was performed in 138 CRC samples and in the TCGA and GEO databases. Biological function was investigated through knockdown and overexpression of CYTOR in vitro and in vivo. In addition, its protein binding partner was identified and validated using ChIRP-MS and RNA immunoprecipitation assays. Their key interaction sites on CYTOR were verified by CRISPR/Cas9 and a series of mutant constructs. Furthermore, the downstream targets of CYTOR were confirmed via immunoblotting and luciferase reporter assays. RESULTS CYTOR was significantly up-regulated in CRC samples and associated with poor prognosis, promoting proliferation and metastasis in vitro and in vivo. NCL and Sam68 could recognize their specific motifs and directly bind to EXON1 of CYTOR. Moreover, EXON1 was the key functional site mediating the interaction of CYTOR with NCL and Sam68. NCL and Sam68 functioned as oncogenes to promote CRC progression. Furthermore, we confirmed that the heterotrimeric complex of CYTOR, NCL and Sam68 activated the NF-κB pathway and EMT to contribute to CRC progression. CONCLUSION CYTOR plays important roles in CRC progression by interacting with NCL and Sam68 and may serve as a prognostic biomarker and/or an effective target for CRC therapies.
Collapse
Affiliation(s)
- Xue Wang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009 China
| | - Hongfei Yu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Wenjie Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Jianlu Kong
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Lei Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009 China
| | - Jinlong Tang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Jingyu Wang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009 China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058 China
| |
Collapse
|
39
|
Goel RK, Paczkowska M, Reimand J, Napper S, Lukong KE. Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase, Src- related Kinase Lacking C-terminal Regulatory Tyrosine and N-terminal Myristoylation Sites (SRMS). Mol Cell Proteomics 2018; 17:925-947. [PMID: 29496907 DOI: 10.1074/mcp.ra118.000643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/23/2023] Open
Abstract
SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites), also known as PTK 70 (Protein tyrosine kinase 70), is a non-receptor tyrosine kinase that belongs to the BRK family of kinases (BFKs). To date less is known about the cellular role of SRMS primarily because of the unidentified substrates or signaling intermediates regulated by the kinase. In this study, we used phosphotyrosine antibody-based immunoaffinity purification in large-scale label-free quantitative phosphoproteomics to identify novel candidate substrates of SRMS. Our analyses led to the identification of 1258 tyrosine-phosphorylated peptides which mapped to 663 phosphoproteins, exclusively from SRMS-expressing cells. DOK1, a previously characterized SRMS substrate, was also identified in our analyses. Functional enrichment analyses revealed that the candidate SRMS substrates were enriched in various biological processes including protein ubiquitination, mitotic cell cycle, energy metabolism and RNA processing, as well as Wnt and TNF signaling. Analyses of the sequence surrounding the phospho-sites in these proteins revealed novel candidate SRMS consensus substrate motifs. We utilized customized high-throughput peptide arrays to validate a subset of the candidate SRMS substrates identified in our MS-based analyses. Finally, we independently validated Vimentin and Sam68, as bona fide SRMS substrates through in vitro and in vivo assays. Overall, our study identified a number of novel and biologically relevant SRMS candidate substrates, which suggests the involvement of the kinase in a vast array of unexplored cellular functions.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Marta Paczkowska
- §Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto M5G 0A3, Ontario, Canada
| | - Jüri Reimand
- §Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto M5G 0A3, Ontario, Canada.,¶Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto M5G 1L7, Ontario, Canada
| | - Scott Napper
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada.,‖Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon S7N 5E3, Saskatchewan, Canada
| | - Kiven Erique Lukong
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada;
| |
Collapse
|
40
|
Post-Transcriptional Regulation of Anti-Apoptotic BCL2 Family Members. Int J Mol Sci 2018; 19:ijms19010308. [PMID: 29361709 PMCID: PMC5796252 DOI: 10.3390/ijms19010308] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Anti-apoptotic B cell lymphoma 2 (BCL2) family members (BCL2, MCL1, BCLxL, BCLW, and BFL1) are key players in the regulation of intrinsic apoptosis. Dysregulation of these proteins not only impairs normal development, but also contributes to tumor progression and resistance to various anti-cancer therapies. Therefore, cells maintain strict control over the expression of anti-apoptotic BCL2 family members using multiple mechanisms. Over the past two decades, the importance of post-transcriptional regulation of mRNA in controlling gene expression and its impact on normal homeostasis and disease have begun to be appreciated. In this review, we discuss the RNA binding proteins (RBPs) and microRNAs (miRNAs) that mediate post-transcriptional regulation of the anti-apoptotic BCL2 family members. We describe their roles and impact on alternative splicing, mRNA turnover, and mRNA subcellular localization. We also point out the importance of future studies in characterizing the crosstalk between RBPs and miRNAs in regulating anti-apoptotic BCL2 family member expression and ultimately apoptosis.
Collapse
|
41
|
Tichon A, Perry RBT, Stojic L, Ulitsky I. SAM68 is required for regulation of Pumilio by the NORAD long noncoding RNA. Genes Dev 2018; 32:70-78. [PMID: 29386330 PMCID: PMC5828396 DOI: 10.1101/gad.309138.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
Abstract
The number of known long noncoding RNA (lncRNA) functions is rapidly growing, but how those functions are encoded in their sequence and structure remains poorly understood. NORAD (noncoding RNA activated by DNA damage) is a recently characterized, abundant, and highly conserved lncRNA that is required for proper mitotic divisions in human cells. NORAD acts in the cytoplasm and antagonizes repressors from the Pumilio family that bind at least 17 sites spread through 12 repetitive units in NORAD sequence. Here we study conserved sequences in NORAD repeats, identify additional interacting partners, and characterize the interaction between NORAD and the RNA-binding protein SAM68 (KHDRBS1), which is required for NORAD function in antagonizing Pumilio. These interactions provide a paradigm for how repeated elements in a lncRNA facilitate function.
Collapse
Affiliation(s)
- Ailone Tichon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lovorka Stojic
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
42
|
|
43
|
Ehrmann I, Gazzara MR, Pagliarini V, Dalgliesh C, Kheirollahi-Chadegani M, Xu Y, Cesari E, Danilenko M, Maclennan M, Lowdon K, Vogel T, Keskivali-Bond P, Wells S, Cater H, Fort P, Santibanez-Koref M, Middei S, Sette C, Clowry GJ, Barash Y, Cunningham MO, Elliott DJ. A SLM2 Feedback Pathway Controls Cortical Network Activity and Mouse Behavior. Cell Rep 2017; 17:3269-3280. [PMID: 28009295 PMCID: PMC5199341 DOI: 10.1016/j.celrep.2016.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023] Open
Abstract
The brain is made up of trillions of synaptic connections that together form neural networks needed for normal brain function and behavior. SLM2 is a member of a conserved family of RNA binding proteins, including Sam68 and SLM1, that control splicing of Neurexin1-3 pre-mRNAs. Whether SLM2 affects neural network activity is unknown. Here, we find that SLM2 levels are maintained by a homeostatic feedback control pathway that predates the divergence of SLM2 and Sam68. SLM2 also controls the splicing of Tomosyn2, LysoPLD/ATX, Dgkb, Kif21a, and Cask, each of which are important for synapse function. Cortical neural network activity dependent on synaptic connections between SLM2-expressing-pyramidal neurons and interneurons is decreased in Slm2-null mice. Additionally, these mice are anxious and have a decreased ability to recognize novel objects. Our data reveal a pathway of SLM2 homeostatic auto-regulation controlling brain network activity and behavior. SLM2 splicing targets are spatially controlled within the hippocampus RNA-seq reveals SLM2 feedback control and synaptic protein splicing targets Loss of SLM2 dampens patterns of hippocampal γ oscillations Loss of SLM2 changes mouse behavior that depends on these neural networks
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome and Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | | | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Eleonora Cesari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome and Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Marie Maclennan
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Kate Lowdon
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | | | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire OX11 ORD, UK
| | - Heather Cater
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire OX11 ORD, UK
| | - Philippe Fort
- Université Montpellier, UMR 5237, Centre de Recherche de Biologie cellulaire de Montpellier, CNRS, Montpellier 34293, France
| | | | - Silvia Middei
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche, Via E. Ramarini 32, 00015 Monterotondo Scalo-Roma, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome and Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
44
|
Choudhury NR, Heikel G, Trubitsyna M, Kubik P, Nowak JS, Webb S, Granneman S, Spanos C, Rappsilber J, Castello A, Michlewski G. RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. BMC Biol 2017; 15:105. [PMID: 29117863 PMCID: PMC5678581 DOI: 10.1186/s12915-017-0444-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND TRIM25 is a novel RNA-binding protein and a member of the Tripartite Motif (TRIM) family of E3 ubiquitin ligases, which plays a pivotal role in the innate immune response. However, there is scarce knowledge about its RNA-related roles in cell biology. Furthermore, its RNA-binding domain has not been characterized. RESULTS Here, we reveal that the RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain, which we postulate to be a novel RNA-binding domain. Using CLIP-seq and SILAC-based co-immunoprecipitation assays, we uncover TRIM25's endogenous RNA targets and protein binding partners. We demonstrate that TRIM25 controls the levels of Zinc Finger Antiviral Protein (ZAP). Finally, we show that the RNA-binding activity of TRIM25 is important for its ubiquitin ligase activity towards itself (autoubiquitination) and its physiologically relevant target ZAP. CONCLUSIONS Our results suggest that many other proteins with the PRY/SPRY domain could have yet uncharacterized RNA-binding potential. Together, our data reveal new insights into the molecular roles and characteristics of RNA-binding E3 ubiquitin ligases and demonstrate that RNA could be an essential factor in their enzymatic activity.
Collapse
Affiliation(s)
- Nila Roy Choudhury
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Gregory Heikel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Maryia Trubitsyna
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Roger Land Building, Edinburgh, EH9 3FF, UK
| | - Peter Kubik
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Jakub Stanislaw Nowak
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, CH Waddington Building, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK
- Department of Biotechnology, Technische Universität Berlin, 13353, Berlin, Germany
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Gracjan Michlewski
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
45
|
Munkley J, Livermore K, Rajan P, Elliott DJ. RNA splicing and splicing regulator changes in prostate cancer pathology. Hum Genet 2017; 136:1143-1154. [PMID: 28382513 PMCID: PMC5602090 DOI: 10.1007/s00439-017-1792-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/29/2017] [Indexed: 11/26/2022]
Abstract
Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, England, UK
| | - Karen Livermore
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, England, UK
| | - Prabhakar Rajan
- Barts Cancer Institute, John Vane Science Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, England, UK.
| |
Collapse
|
46
|
Danilenko M, Dalgliesh C, Pagliarini V, Naro C, Ehrmann I, Feracci M, Kheirollahi-Chadegani M, Tyson-Capper A, Clowry GJ, Fort P, Dominguez C, Sette C, Elliott DJ. Binding site density enables paralog-specific activity of SLM2 and Sam68 proteins in Neurexin2 AS4 splicing control. Nucleic Acids Res 2017; 45:4120-4130. [PMID: 27994030 PMCID: PMC5397175 DOI: 10.1093/nar/gkw1277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/08/2016] [Indexed: 01/09/2023] Open
Abstract
SLM2 and Sam68 are splicing regulator paralogs that usually overlap in function, yet only SLM2 and not Sam68 controls the Neurexin2 AS4 exon important for brain function. Herein we find that SLM2 and Sam68 similarly bind to Neurexin2 pre-mRNA, both within the mouse cortex and in vitro. Protein domain-swap experiments identify a region including the STAR domain that differentiates SLM2 and Sam68 activity in splicing target selection, and confirm that this is not established via the variant amino acids involved in RNA contact. However, far fewer SLM2 and Sam68 RNA binding sites flank the Neurexin2 AS4 exon, compared with those flanking the Neurexin1 and Neurexin3 AS4 exons under joint control by both Sam68 and SLM2. Doubling binding site numbers switched paralog sensitivity, by placing the Neurexin2 AS4 exon under joint splicing control by both Sam68 and SLM2. Our data support a model where the density of shared RNA binding sites around a target exon, rather than different paralog-specific protein-RNA binding sites, controls functional target specificity between SLM2 and Sam68 on the Neurexin2 AS4 exon. Similar models might explain differential control by other splicing regulators within families of paralogs with indistinguishable RNA binding sites.
Collapse
Affiliation(s)
- Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Chiara Naro
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | - Mikael Feracci
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | | | - Alison Tyson-Capper
- Institute for Cellular Medicine, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK
| | - Gavin J Clowry
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle, UK
| | - Philippe Fort
- Université Montpellier, UMR 5237, Centre de Recherche de Biologie cellulaire de Montpellier, CNRS, 34293 Montpellier, France
| | - Cyril Dominguez
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| |
Collapse
|
47
|
Abstract
STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system).
Collapse
|
48
|
Afroz T, Hock EM, Ernst P, Foglieni C, Jambeau M, Gilhespy LAB, Laferriere F, Maniecka Z, Plückthun A, Mittl P, Paganetti P, Allain FHT, Polymenidou M. Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat Commun 2017; 8:45. [PMID: 28663553 PMCID: PMC5491494 DOI: 10.1038/s41467-017-00062-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
TDP-43 is a primarily nuclear RNA-binding protein, whose abnormal phosphorylation and cytoplasmic aggregation characterizes affected neurons in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Here, we report that physiological nuclear TDP-43 in mouse and human brain forms homo-oligomers that are resistant to cellular stress. Physiological TDP-43 oligomerization is mediated by its N-terminal domain, which can adopt dynamic, solenoid-like structures, as revealed by a 2.1 Å crystal structure in combination with nuclear magnetic resonance spectroscopy and electron microscopy. These head-to-tail TDP-43 oligomers are unique among known RNA-binding proteins and represent the functional form of the protein in vivo, since their destabilization results in loss of alternative splicing regulation of known neuronal RNA targets. Our findings indicate that N-terminal domain-driven oligomerization spatially separates the adjoining highly aggregation-prone, C-terminal low-complexity domains of consecutive TDP-43 monomers, thereby preventing low-complexity domain inter-molecular interactions and antagonizing the formation of pathologic aggregates.TDP-43 aggregation is observed in amyotrophic lateral sclerosis. Here the authors combine X-ray crystallography, nuclear magnetic resonance and electron microscopy studies and show that physiological oligomerization of TDP-43 is mediated through its N-terminal domain, which forms functional and dynamic oligomers antagonizing pathologic aggregation.
Collapse
Affiliation(s)
- Tariq Afroz
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Eva-Maria Hock
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Chiara Foglieni
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Via Tesserete 46, CH-6900, Lugano, Switzerland
| | - Melanie Jambeau
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Larissa A B Gilhespy
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Florent Laferriere
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Zuzanna Maniecka
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Peer Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Via Tesserete 46, CH-6900, Lugano, Switzerland
| | - Frédéric H T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
49
|
Plumridge A, Meisburger SP, Pollack L. Visualizing single-stranded nucleic acids in solution. Nucleic Acids Res 2017; 45:e66. [PMID: 28034955 PMCID: PMC5435967 DOI: 10.1093/nar/gkw1297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Single-stranded nucleic acids (ssNAs) are ubiquitous in many key cellular functions. Their flexibility limits both the number of high-resolution structures available, leaving only a small number of protein-ssNA crystal structures, while forcing solution investigations to report ensemble averages. A description of the conformational distributions of ssNAs is essential to more fully characterize biologically relevant interactions. We combine small angle X-ray scattering (SAXS) with ensemble-optimization methods (EOM) to dynamically build and refine sets of ssNA structures. By constructing candidate chains in representative dinucleotide steps and refining the models against SAXS data, a broad array of structures can be obtained to match varying solution conditions and strand sequences. In addition to the distribution of large scale structural parameters, this approach reveals, for the first time, intricate details of the phosphate backbone and underlying strand conformations. Such information on unperturbed strands will critically inform a detailed understanding of an array of problems including protein-ssNA binding, RNA folding and the polymer nature of NAs. In addition, this scheme, which couples EOM selection with an iteratively refining pool to give confidence in the underlying structures, is likely extendable to the study of other flexible systems.
Collapse
Affiliation(s)
- Alex Plumridge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
50
|
Grosheva AS, Zharkov DO, Stahl J, Gopanenko AV, Tupikin AE, Kabilov MR, Graifer DM, Karpova GG. Recognition but no repair of abasic site in single-stranded DNA by human ribosomal uS3 protein residing within intact 40S subunit. Nucleic Acids Res 2017; 45:3833-3843. [PMID: 28334742 PMCID: PMC5397187 DOI: 10.1093/nar/gkx052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/04/2023] Open
Abstract
Isolated human ribosomal protein uS3 has extra-ribosomal functions including those related to base excision DNA repair, e.g. AP lyase activity that nicks double-stranded (ds) DNA 3΄ to the abasic (AP) site. However, the ability of uS3 residing within ribosome to recognize and cleave damaged DNA has never been addressed. Here, we compare interactions of single-stranded (ss) DNA and dsDNA bearing AP site with human ribosome-bound uS3 and with the isolated protein, whose interactions with ssDNA were not yet studied. The AP lyase activity of free uS3 was much higher with ssDNA than with dsDNA, whereas ribosome-bound uS3 was completely deprived of this activity. Nevertheless, an exposed peptide of ribosome-bound uS3 located far away from the putative catalytic center previously suggested for isolated uS3 cross-linked to full-length uncleaved ssDNA, but not to dsDNA. In contrast, free uS3 cross-linked mainly to the 5΄-part of the damaged DNA strand after its cleavage at the AP site. ChIP-seq analysis showed preferential uS3 binding to nucleolus-associated chromatin domains. We conclude that free and ribosome-bound uS3 proteins interact with AP sites differently, exhibiting their non-translational functions in DNA repair in and around the nucleolus and in regulation of DNA damage response in looped DNA structures, respectively.
Collapse
Affiliation(s)
- Anastasia S. Grosheva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Joachim Stahl
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin, Germany
| | - Alexander V. Gopanenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitri M. Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Galina G. Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|