1
|
Vullioud C, Benhaiem S, Meneghini D, Szyf M, Shao Y, Hofer H, East ML, Fickel J, Weyrich A. Epigenetic signatures of social status in wild female spotted hyenas (Crocuta crocuta). Commun Biol 2024; 7:313. [PMID: 38548860 PMCID: PMC10978994 DOI: 10.1038/s42003-024-05926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024] Open
Abstract
In mammalian societies, dominance hierarchies translate into inequalities in health, reproductive performance and survival. DNA methylation is thought to mediate the effects of social status on gene expression and phenotypic outcomes, yet a study of social status-specific DNA methylation profiles in different age classes in a wild social mammal is missing. We tested for social status signatures in DNA methylation profiles in wild female spotted hyenas (Crocuta crocuta), cubs and adults, using non-invasively collected gut epithelium samples. In spotted hyena clans, female social status influences access to resources, foraging behavior, health, reproductive performance and survival. We identified 149 differentially methylated regions between 42 high- and low-ranking female spotted hyenas (cubs and adults). Differentially methylated genes were associated with energy conversion, immune function, glutamate receptor signalling and ion transport. Our results provide evidence that socio-environmental inequalities are reflected at the molecular level in cubs and adults in a wild social mammal.
Collapse
Affiliation(s)
- Colin Vullioud
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Dorina Meneghini
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | | | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- University of Potsdam, Potsdam, Germany
| | - Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
2
|
Rodrigues AMM, Gardner A. Transmission of social status drives cooperation and offspring philopatry. Proc Biol Sci 2023; 290:20231314. [PMID: 38018113 PMCID: PMC10685119 DOI: 10.1098/rspb.2023.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 11/30/2023] Open
Abstract
The evolution of cooperation depends on two crucial overarching factors: relatedness, which describes the extent to which the recipient shares genes in common with the actor; and quality, which describes the recipient's basic capacity to transmit genes into the future. While most research has focused on relatedness, there is a growing interest in understanding how quality modulates the evolution of cooperation. However, the impact of inheritance of quality on the evolution of cooperation remains largely unexplored, especially in spatially structured populations. Here, we develop a mathematical model to understand how inheritance of quality, in the form of social status, influences the evolution of helping and harming within social groups in a viscous-population setting. We find that: (1) status-reversal transmission, whereby parental and offspring status are negatively correlated, strongly inhibits the evolution of cooperation, with low-status individuals investing less in cooperation and high-status individuals being more prone to harm; (2) transmission of high status promotes offspring philopatry, with more cooperation being directed towards the higher-dispersal social class; and (3) fertility inequality and inter-generational status inheritance reduce within-group conflict. Overall, our study highlights the importance of considering different mechanisms of phenotypic inheritance, including social support, and their potential interactions in shaping animal societies.
Collapse
Affiliation(s)
- António M. M. Rodrigues
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
3
|
Menário Costa W, King WJ, Bonnet T, Festa-Bianchet M, Kruuk LEB. Early-life behavior, survival, and maternal personality in a wild marsupial. Behav Ecol 2023; 34:1002-1012. [PMID: 37969552 PMCID: PMC10636729 DOI: 10.1093/beheco/arad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 11/17/2023] Open
Abstract
Individual behavior varies for many reasons, but how early in life are such differences apparent, and are they under selection? We investigated variation in early-life behavior in a wild eastern gray kangaroo (Macropus giganteus) population, and quantified associations of behavior with early survival. Behavior of young was measured while still in the pouch and as subadults, and survival to weaning was monitored. We found consistent variation between offspring of different mothers in levels of activity at the pouch stage, in flight initiation distance (FID) as subadults, and in subadult survival, indicating similarity between siblings. There was no evidence of covariance between the measures of behavior at the pouch young versus subadult stages, nor of covariance of the early-life behavioral traits with subadult survival. However, there was a strong covariance between FIDs of mothers and those of their offspring tested at different times. Further, of the total repeatability of subadult FID (51.5%), more than half could be attributed to differences between offspring of different mothers. Our results indicate that 1) behavioral variation is apparent at a very early stage of development (still in the pouch in the case of this marsupial); 2) between-mother differences can explain much of the repeatability (or "personality") of juvenile behavior; and 3) mothers and offspring exhibit similar behavioral responses to stimuli. However, 4) we found no evidence of selection via covariance between early-life or maternal behavioral traits and juvenile survival in this wild marsupial.
Collapse
Affiliation(s)
- Weliton Menário Costa
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
| | - Wendy J King
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Timothée Bonnet
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
- French National Centre for Scientific Research, Centre d’Études Biologiques de Chizé, UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Marco Festa-Bianchet
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Loeske E B Kruuk
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra Australian Capital Territory, 2601, Australia
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
4
|
Arantes LS, Caccavo JA, Sullivan JK, Sparmann S, Mbedi S, Höner OP, Mazzoni CJ. Scaling-up RADseq methods for large datasets of non-invasive samples: Lessons for library construction and data preprocessing. Mol Ecol Resour 2023. [PMID: 37646753 DOI: 10.1111/1755-0998.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Genetic non-invasive sampling (gNIS) is a critical tool for population genetics studies, supporting conservation efforts while imposing minimal impacts on wildlife. However, gNIS often presents variable levels of DNA degradation and non-endogenous contamination, which can incur considerable processing costs. Furthermore, the use of restriction-site-associated DNA sequencing methods (RADseq) for assessing thousands of genetic markers introduces the challenge of obtaining large sets of shared loci with similar coverage across multiple individuals. Here, we present an approach to handling large-scale gNIS-based datasets using data from the spotted hyena population inhabiting the Ngorongoro Crater in Tanzania. We generated 3RADseq data for more than a thousand individuals, mostly from faecal mucus samples collected non-invasively and varying in DNA degradation and contamination level. Using small-scale sequencing, we screened samples for endogenous DNA content, removed highly contaminated samples, confirmed overlap fragment length between libraries, and balanced individual representation in a sequencing pool. We evaluated the impact of (1) DNA degradation and contamination of non-invasive samples, (2) PCR duplicates and (3) different SNP filters on genotype accuracy based on Mendelian error estimated for parent-offspring trio datasets. Our results showed that when balanced for sequencing depth, contaminated samples presented similar genotype error rates to those of non-contaminated samples. We also showed that PCR duplicates and different SNP filters impact genotype accuracy. In summary, we showed the potential of using gNIS for large-scale genetic monitoring based on SNPs and demonstrated how to improve control over library preparation by using a weighted re-pooling strategy that considers the endogenous DNA content.
Collapse
Affiliation(s)
- Larissa S Arantes
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Jilda A Caccavo
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques, LOCEAN/IPSL, UPMC-CNRS-IRD-MNHN, Sorbonne Université, Paris, France
| | - James K Sullivan
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Freie Universität, Berlin, Germany
| | - Sarah Sparmann
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Berlin, Germany
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Museum für Naturkunde, Berlin, Germany
| | - Oliver P Höner
- Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| |
Collapse
|
5
|
Smith JE, Natterson-Horowitz B, Mueller MM, Alfaro ME. Mechanisms of equality and inequality in mammalian societies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220307. [PMID: 37381860 PMCID: PMC10291435 DOI: 10.1098/rstb.2022.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023] Open
Abstract
The extent of (in)equality is highly diverse across species of social mammals, but we have a poor understanding of the factors that produce or inhibit equitable social organizations. Here, we adopt a comparative evolutionary perspective to test whether the evolution of social dominance hierarchies, a measure of social inequality in animals, exhibits phylogenetic conservatism and whether interspecific variation in these traits can be explained by sex, age or captivity. We find that hierarchy steepness and directional consistency evolve rapidly without any apparent constraint from evolutionary history. Given this extraordinary variability, we next consider multiple factors that have evolved to mitigate social inequality. Social networks, coalitionary support and knowledge transfer advantage to privilege some individuals over others. Nutritional access and prenatal stressors can impact the development of offspring, generating health disparities with intergenerational consequences. Intergenerational transfer of material resources (e.g. stone tools, food stashes, territories) advantage those who receive. Nonetheless, many of the same social species that experience unequal access to food (survival) and mates (reproduction) engage in levelling mechanisms such as food sharing, adoption, revolutionary coalitions, forgiveness and inequity aversion. Taken together, mammals rely upon a suite of mechanisms of (in)equality to balance the costs and benefits of group living. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Jennifer E. Smith
- Biology Department, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, WI 54702, USA
| | - Barbara Natterson-Horowitz
- School of Medicine, Division of Cardiology, University of California, 650 Charles Young Drive South, A2-237 CHS, Los Angeles, CA 90095, USA
| | - Maddison M. Mueller
- Biology Department, University of Wisconsin Eau Claire, 105 Garfield Avenue, Eau Claire, WI 54702, USA
| | - Michael E. Alfaro
- Department of Ecology and Evolutionary Biology, University of California, 2149 Terasaki Life Sciences Building, 612 Charles E. Young Drive South, Box 957246, Los Angeles, CA 90095-7246, USA
| |
Collapse
|
6
|
Strauss ED. Demographic turnover can be a leading driver of hierarchy dynamics, and social inheritance modifies its effects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220308. [PMID: 37381857 PMCID: PMC10291429 DOI: 10.1098/rstb.2022.0308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/10/2023] [Indexed: 06/30/2023] Open
Abstract
Individuals and societies are linked through a feedback loop of mutual influence. Demographic turnover shapes group composition and structure by adding and removing individuals, and social inheritance shapes social structure through the transmission of social traits from parents to offspring. Here I examine how these drivers of social structure feedback to influence individual outcomes. I explore these society-to-individual effects in systems with social inheritance of hierarchy position, as occur in many primates and spotted hyenas. Applying Markov chain models to empirical and simulated data reveals how demography and social inheritance interact to strongly shape individual hierarchy positions. In hyena societies, demographic processes-not status seeking-account for the majority of hierarchy dynamics and cause an on-average lifetime decline in social hierarchy position. Simulated societies clarify how social inheritance alters demographic effects-demographic processes cause hierarchy position to regress to the mean, but the addition of social inheritance modifies this pattern. Notably, the combination of social inheritance and rank-related reproductive success causes individuals to decline in rank over their lifespans, as seen in the hyena data. Further analyses explore how 'queens' escape this pattern of decline, and how variation in social inheritance generates variability in reproductive inequality. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Baden-Württemberg, 78464, Germany
- Ecology of Animal Societies Department, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, 78315, Germany
- Collective Behavior Department, Max Planck Institute of Animal Behavior, Radolfzell, Baden-Württemberg, 78315, Germany
- Integrative Biology Department, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
7
|
Davidian E, Höner OP. Kinship and similarity drive coordination of breeding-group choice in male spotted hyenas. Biol Lett 2022; 18:20220402. [PMID: 36514956 PMCID: PMC9748768 DOI: 10.1098/rsbl.2022.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
When and where animals reproduce influences the social, demographic and genetic properties of the groups and populations they live in. We examined the extent to which male spotted hyenas (Crocuta crocuta) coordinate their breeding-group choice. We tested whether their propensity to settle in the same group is shaped by passive processes driven by similarities in their socio-ecological background and genotype or by an adaptive process driven by kin selection. We compared the choices of 148 pairs of same-cohort males that varied in similarity and kinship. We found strong support for both processes. Coordination was highest (70% of pairs) for littermates, who share most cumulative similarity, lower (36%) among peers born in the same group to different mothers, and lowest (7%) among strangers originating from different groups and mothers. Consistent with the kin selection hypothesis, the propensity to choose the same group was density dependent for full siblings and close kin, but not distant kin. Coordination increased as the number of breeding females and male competitors in social groups increased, i.e. when costs of kin competition over mates decreased and benefits of kin cooperation increased. Our results contrast with the traditional view that breeding-group choice and dispersal are predominantly solitary processes.
Collapse
Affiliation(s)
- Eve Davidian
- Ngorongoro Hyena Project, Ngorongoro Conservation Area, Arusha, Tanzania
| | - Oliver P. Höner
- Ngorongoro Hyena Project, Ngorongoro Conservation Area, Arusha, Tanzania
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| |
Collapse
|
8
|
Sen S, Carrera SC, Heistermann M, Potter CB, Baniel A, DeLacey PM, Petrullo L, Lu A, Beehner JC. Social correlates of androgen levels and dispersal age in juvenile male geladas. Horm Behav 2022; 146:105264. [PMID: 36155910 DOI: 10.1016/j.yhbeh.2022.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
Androgens offer a window into the timing of important male life history events such as maturation. However, when males are the dispersing sex, piecing together normative androgen profiles across development is challenging because dispersing males are difficult to track. Here, we examined the conditions that may be associated with male androgen status (via fecal androgen metabolites, fAMs) and age at dispersal in wild male geladas (Theropithecus gelada). Gelada male life histories are highly variable - dispersal may occur before sexual maturation, dispersal itself can be immediate or drawn out, and, due to their multi-leveled society, social conditions affecting dispersal can vary for juveniles living in different reproductive units within the same band. Using longitudinal data from known natal males, we examined how androgen levels and age at dispersal were associated with: (1) access to maternal resources (i.e., maternal rank, birth of a younger sibling, experiencing maternal loss), and (2) access to male peers (i.e., number of similar-aged males in their unit). We found that androgens were significantly lower in males with high-ranking mothers (in males >2.5 years of age; infant androgens were unrelated) and that having more male peers in their social group and larger groups overall predicted an earlier age at dispersal. Moreover, dispersal in geladas was not preceded or followed by a surge in androgen levels. Taken together, results suggest that social environments can cause individual variation in androgens and dispersal age. Whether this variation leads to differences in male fitness in later life remains to be determined.
Collapse
Affiliation(s)
- Sharmi Sen
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109-1107, USA.
| | - Sofia C Carrera
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Caitlin Barale Potter
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, St. Paul, MN 55108, USA
| | - Alice Baniel
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Patricia M DeLacey
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Lauren Petrullo
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Jacinta C Beehner
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109-1107, USA; Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1107, USA
| |
Collapse
|
9
|
Dheer A, Davidian E, Courtiol A, Bailey LD, Wauters J, Naman P, Shayo V, Höner OP. Diurnal pastoralism does not reduce juvenile recruitment nor elevate allostatic load in spotted hyenas. J Anim Ecol 2022. [DOI: 10.1111/1365-2656.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arjun Dheer
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Ngorongoro Hyena Project Ngorongoro Conservation Area Tanzania
| | - Eve Davidian
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Ngorongoro Hyena Project Ngorongoro Conservation Area Tanzania
| | - Alexandre Courtiol
- Ngorongoro Hyena Project Ngorongoro Conservation Area Tanzania
- Department of Evolutionary Genetics Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Liam D. Bailey
- Ngorongoro Hyena Project Ngorongoro Conservation Area Tanzania
- Department of Evolutionary Genetics Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Jella Wauters
- Department of Reproduction Biology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Philemon Naman
- Ngorongoro Hyena Project Ngorongoro Conservation Area Tanzania
| | - Victoria Shayo
- Department of Wildlife and Rangeland Management, Ngorongoro Conservation Area Authority Ngorongoro Conservation Area Tanzania
| | - Oliver P. Höner
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Ngorongoro Hyena Project Ngorongoro Conservation Area Tanzania
| |
Collapse
|
10
|
Aloni I, Ilany A. Maladaptive evolution or how a beneficial mutation may get lost due to nepotism. Commun Biol 2022; 5:965. [PMID: 36109659 PMCID: PMC9477802 DOI: 10.1038/s42003-022-03901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Spotted hyenas are an exception in the animal kingdom not only due to female dominance over males, but also because of the strict female linear hierarchy which determines priority of access to resources and produces considerable female reproductive skew. This special social system raises a question: what would become of a beneficial mutation if it occurred in a low-ranking female? We used several simulation models in order to address this question. Our modeling results indicate that such a social system may inhibit the establishment of a beneficial mutation. However, this negative effect may be counteracted by random choice of mates by females. Evolutionary simulations demonstrate how beneficial mutations may not be preserved in societies characterized by female dominance and social inheritance of rank, such as in spotted hyenas.
Collapse
|
11
|
Gicquel M, East ML, Hofer H, Benhaiem S. Early-life adversity predicts performance and fitness in a wild social carnivore. J Anim Ecol 2022; 91:2074-2086. [PMID: 35971285 DOI: 10.1111/1365-2656.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Studies on humans indicate that encountering multiple sources of adversity in childhood increases the risk of poor long-term health and premature death. Far less is known about cumulative effects of adversity during early life in wildlife. Focusing on the spotted hyena Crocuta crocuta, a social mammal with small litters, extensive maternal care, slow development and access to resources determined by social rank, we determined the contribution of ecological, maternal, social and demographic factors during early life on performance and fitness, and tested whether the impact of early-life adversity is cumulative. Using longitudinal data from 666 female hyenas in the Serengeti National Park, we determined the early growth rate, survival to adulthood, age at first reproduction (AFR), lifetime reproductive success (LRS) and longevity. We fitted multivariate models in which we tested the effects of environmental factors on these performance measures. We then constructed a cumulative adversity index and fitted models to test the effect of this index on each performance measure. Finally, the value of cumulative adversity models was tested by comparing them to multivariate and single-effect models in which the effect of each environmental factor was considered separately. High maternal rank decreased the AFR of daughters. Singleton and dominant cubs had higher growth rate than subordinate cubs, and singletons also had a higher survival chance to adulthood than subordinates. Daughters of prime age mothers had a higher growth rate, longevity and LRS. Little and heavy rainfall decreased survival to adulthood. Increasing numbers of lactating female clan members decreased growth rate, survival to adulthood and LRS. Cumulative adversity negatively affected short-term performance and LRS. Multivariate models outperformed cumulative adversity and single-effect models for all measures except for AFR and longevity, for which single-effect models performed better. Our results suggest that in some wildlife populations the combination of specific conditions in early life may matter more than the accumulation of adverse conditions as such.
Collapse
Affiliation(s)
- Morgane Gicquel
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marion L East
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Heribert Hofer
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sarah Benhaiem
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
12
|
Curren LJ, Sawdy MA, Scribner KT, Lehmann KDS, Holekamp KE. Endurance rivalry among male spotted hyenas: what does it mean to “endure”? Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Kappeler PM, Huchard E, Baniel A, Canteloup C, Charpentier MJE, Cheng L, Davidian E, Duboscq J, Fichtel C, Hemelrijk CK, Höner OP, Koren L, Micheletta J, Prox L, Saccà T, Seex L, Smit N, Surbeck M, van de Waal E, Girard-Buttoz C. Sex and dominance: How to assess and interpret intersexual dominance relationships in mammalian societies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.918773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The causes and consequences of being in a particular dominance position have been illuminated in various animal species, and new methods to assess dominance relationships and to describe the structure of dominance hierarchies have been developed in recent years. Most research has focused on same-sex relationships, however, so that intersexual dominance relationships and hierarchies including both sexes have remained much less studied. In particular, different methods continue to be employed to rank males and females along a dominance hierarchy, and sex biases in dominance are still widely regarded as simple byproducts of sexual size dimorphism. However, males and females regularly compete over similar resources when living in the same group, and sexual conflict takes a variety of forms across societies. These processes affect the fitness of both sexes, and are mitigated by intersexual hierarchies. In this study, we draw on data from free-ranging populations of nine species of mammals that vary in the degree to which members of one sex dominate members of the other sex to explore the consequences of using different criteria and procedures for describing intra- and intersexual dominance relationships in these societies. Our analyses confirmed a continuum in patterns of intersexual dominance, from strictly male-dominated species to strictly female-dominated species. All indices of the degree of female dominance were well correlated with each other. The rank order among same-sex individuals was highly correlated between the intra- and intersexual hierarchies, and such correlation was not affected by the degree of female dominance. The relative prevalence of aggression and submission was sensitive to variation in the degree of female dominance across species, with more submissive signals and fewer aggressive acts being used in societies where female dominance prevails. Thus, this study provides important insights and key methodological tools to study intersexual dominance relationships in mammals.
Collapse
|
14
|
Stronger maternal social bonds and higher rank are associated with accelerated infant maturation in Kinda baboons. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Bonnet T, Morrissey MB, de Villemereuil P, Alberts SC, Arcese P, Bailey LD, Boutin S, Brekke P, Brent LJN, Camenisch G, Charmantier A, Clutton-Brock TH, Cockburn A, Coltman DW, Courtiol A, Davidian E, Evans SR, Ewen JG, Festa-Bianchet M, de Franceschi C, Gustafsson L, Höner OP, Houslay TM, Keller LF, Manser M, McAdam AG, McLean E, Nietlisbach P, Osmond HL, Pemberton JM, Postma E, Reid JM, Rutschmann A, Santure AW, Sheldon BC, Slate J, Teplitsky C, Visser ME, Wachter B, Kruuk LEB. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science 2022; 376:1012-1016. [PMID: 35617403 DOI: 10.1126/science.abk0853] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.
Collapse
Affiliation(s)
- Timothée Bonnet
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Susan C Alberts
- Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Peter Arcese
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam D Bailey
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Penryn, UK
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anne Charmantier
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Tim H Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Andrew Cockburn
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Alexandre Courtiol
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Eve Davidian
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Simon R Evans
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | | | - Christophe de Franceschi
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lars Gustafsson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Oliver P Höner
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Thomas M Houslay
- Department of Zoology, University of Cambridge, Cambridge, UK.,Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Zoological Museum, University of Zurich,, Zurich, Switzerland
| | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Emily McLean
- Biology Department, Oxford College, Emory University, Oxford, GA, USA
| | - Pirmin Nietlisbach
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Helen L Osmond
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Erik Postma
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Jane M Reid
- Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Alexis Rutschmann
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ben C Sheldon
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Jon Slate
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Céline Teplitsky
- Centre d'Écologie Fonctionnelle et Évolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Bettina Wachter
- Departments of Evolutionary Ecology and Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Loeske E B Kruuk
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
East ML, Thierer D, Benhaiem S, Metzger S, Hofer H. Infanticide by Adult Females Causes Sexual Conflict in a Female-Dominated Social Mammal. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.860854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infanticide by adult females includes any substantial contribution to the demise of young and inevitably imposes fitness costs on the victim’s genetic fathers, thereby generating sexual conflict with them. Few if any studies have quantified the impact of infanticide by females on male reproductive success, the magnitude of sexual conflict this causes and possible counterstrategies males use against infanticidal females. We examine these topics in spotted hyena (Crocuta crocuta) clans, where females socially dominate breeding males and strong female mate-choice is independent of male social status. We consider two causes of infanticide by females, violent attacks on cubs and fatal maternal neglect. Violent attacks are predicted during periods of social instability at the top of the female linear dominance hierarchy and victims are expected to predominantly have mothers above median rank. Fatal maternal neglect, when starving litters are abandoned, is associated with monopolization of food in clan territories by high-ranking females, and victims are predicted to have mothers below median rank. Female perpetrators of violent attacks are expected to reduce the reproductive success of the fathers of their victims more than perpetrators of fatal maternal neglect. We tested these predictions using 30 + years of data (54 recorded violent attacks, 43 cases of fatal maternal neglect, DNA profiling of 1,671 individuals). Using long-term observations at communal dens we investigated whether males use counterstrategies against infanticide reported in other mammals. Due to female social dominance over breeding males, strong female mate-choice and prolonged offspring dependence on lactation in spotted hyenas, we predicted that these counterstrategies were unlikely to be used by males against females, thus no incidences of them were likely to be observed. Our results revealed that breeding males lost cubs to violent attacks at all stages of their reproductive tenure and to perpetrators with whom they did not sire offspring. Amongst known sources of paternity loss, violent attacks comprised 12.2% and maternal neglect 9.8% of cases. Violent attacks significantly reduced offspring production rates of breeding males, suggesting that infanticide by females generates sexual conflict. As predicted, no evidence of males using counterstrategies against infanticide by females were observed.
Collapse
|
17
|
Strauss ED, Shizuka D. The dynamics of dominance: open questions, challenges and solutions. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200445. [PMID: 35000440 PMCID: PMC8743878 DOI: 10.1098/rstb.2020.0445] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
Although social hierarchies are recognized as dynamic systems, they are typically treated as static entities for practical reasons. Here, we ask what we can learn from a dynamical view of dominance, and provide a research agenda for the next decades. We identify five broad questions at the individual, dyadic and group levels, exploring the causes and consequences of individual changes in rank, the dynamics underlying dyadic dominance relationships, and the origins and impacts of social instability. Although challenges remain, we propose avenues for overcoming them. We suggest distinguishing between different types of social mobility to provide conceptual clarity about hierarchy dynamics at the individual level, and emphasize the need to explore how these dynamic processes produce dominance trajectories over individual lifespans and impact selection on status-seeking behaviour. At the dyadic level, there is scope for deeper exploration of decision-making processes leading to observed interactions, and how stable but malleable relationships emerge from these interactions. Across scales, model systems where rank is manipulable will be extremely useful for testing hypotheses about dominance dynamics. Long-term individual-based studies will also be critical for understanding the impact of rare events, and for interrogating dynamics that unfold over lifetimes and generations. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, Lansing, MI, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
| |
Collapse
|
18
|
Holekamp KE, Strauss ED. Reproduction Within a Hierarchical Society from a Female's Perspective. Integr Comp Biol 2021; 60:753-764. [PMID: 32667986 DOI: 10.1093/icb/icaa068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reproductive biology of many female mammals is affected by their social environment and their interactions with conspecifics. In mammalian societies structured by linear dominance hierarchies, such as that of the spotted hyena (Crocuta crocuta), a female's social rank can have profound effects on both her reproductive success and her longevity. In this species, social rank determines priority of access to food, which is the resource limiting reproduction. Due largely to rank-related variation in access to food, reproduction from the perspective of a female spotted hyena can only be understood in the context of her position in the social hierarchy. In this review, we examine the effects of rank on the various phases of reproduction, from mating to weaning. Summed over many individual reproductive lifespans, the effect of rank at these different reproductive phases leads to dramatic rank-related variation in fitness among females and their lineages. Finally, we ask why females reproduce socially despite these apparent costs of group living to low-ranking females. Gregariousness enhances the fitness of females regardless of their positions in the social hierarchy, and females attempting to survive and reproduce without clanmates lose all their offspring. The positive effects of gregariousness appear to result from having female allies, both kin and non-kin, who cooperate to advertise and defend a shared territory, acquire, and defend food resources, maintain the status quo, and occasionally also to rise in social rank.
Collapse
Affiliation(s)
- Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Eli D Strauss
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
19
|
Davidian E, Wachter B, Heckmann I, Dehnhard M, Hofer H, Höner OP. The interplay between social rank, physiological constraints and investment in courtship in male spotted hyenas. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Eve Davidian
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Bettina Wachter
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Ilja Heckmann
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Martin Dehnhard
- Department of Reproduction Biology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Heribert Hofer
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Department of Veterinary Medicine Freie Universität Berlin Berlin Germany
- Department of Biology, Chemistry, Pharmacy Freie Universität Berlin Berlin Germany
| | - Oliver P. Höner
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| |
Collapse
|
20
|
Kappeler PM. Parental Care. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Turner JW, Robitaille AL, Bills PS, Holekamp KE. Early-life relationships matter: Social position during early life predicts fitness among female spotted hyenas. J Anim Ecol 2020; 90:183-196. [PMID: 32578217 DOI: 10.1111/1365-2656.13282] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
How social development in early-life affects fitness remains poorly understood. Though there is growing evidence that early-life relationships can affect fitness, little research has investigated how social positions develop or whether there are particularly important periods for social position development in an animal's life history. In long-lived species in particular, understanding the lasting consequences of early-life social environments requires detailed, long-term datasets. Here we used a 25-year dataset to test whether social positions held during early development predicted adult fitness. Specifically, we quantified social position using three social network metrics: degree, strength and betweenness. We determined the social position of each individual in three types of networks during each of three stages of ontogeny to test whether they predict annual reproductive success (ARS) or longevity among adult female spotted hyenas Crocuta crocuta. The social positions occupied by juvenile hyenas did predict their fitness, but the effects of social position on fitness measures differed between stages of early development. Network metrics when individuals were young adults better predicted ARS, but network metrics for younger animals, particularly when youngsters were confined to the communal den, better predicted longevity than did metrics assessed during other stages of development. Our study shows how multiple types of social bonds formed during multiple stages of social development predict lifetime fitness outcomes. We suggest that social bonds formed during specific phases of development may be more important than others when considering fitness outcomes.
Collapse
Affiliation(s)
- Julie W Turner
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Ecology, Evolutionary Biology, and Behavior, East Lansing, MI, USA.,Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alec L Robitaille
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Patrick S Bills
- Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Ecology, Evolutionary Biology, and Behavior, East Lansing, MI, USA
| |
Collapse
|
22
|
Armansin NC, Stow AJ, Cantor M, Leu ST, Klarevas-Irby JA, Chariton AA, Farine DR. Social Barriers in Ecological Landscapes: The Social Resistance Hypothesis. Trends Ecol Evol 2020; 35:137-148. [DOI: 10.1016/j.tree.2019.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
|
23
|
Samuni L, Tkaczynski P, Deschner T, Löhrrich T, Wittig RM, Crockford C. Maternal effects on offspring growth indicate post-weaning juvenile dependence in chimpanzees ( Pan troglodytes verus). Front Zool 2020; 17:1. [PMID: 31911809 PMCID: PMC6945487 DOI: 10.1186/s12983-019-0343-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In animals with altricial offspring, most growth occurs after birth and may be optimized by post-natal maternal care. Maternal effects on growth may be influenced by individual characteristics of the mothers, such as social status, individual investment strategies and the length of association with offspring. The prolonged juvenile dependence seen in humans is a distinctive life history adaptation, which may have evolved to facilitate sustained somatic and brain growth.In chimpanzees, offspring are typically weaned at approximately 4 years old, yet immature individuals continue to associate with their mothers for up to 10 years beyond weaning. Whether this lengthy association or the individual characteristics of mothers influences growth patterns in this species is not clear.The relationship between urinary creatinine and specific gravity is an established non-invasive measure of muscle mass in humans and chimpanzees. We analysed the urinary creatinine and specific gravity of 1318 urine samples from 70 wild chimpanzees from the Taï Forest, Ivory Coast aged 4 to 15 years. RESULTS We showed a clear increase in urinary creatinine levels with age in both males and females, replicating established growth curves in this species and reaffirming this measure as a reliable proxy for lean body mass. Comparing those who experience maternal loss (orphans) with non-orphan chimpanzees, maternal presence beyond weaning age and into late juvenility positively influenced offspring muscle mass throughout ontogeny such that orphans had significantly less muscle mass than age-matched non-orphans. In age-matched offspring with mothers, those with high-ranking mothers had greater muscle mass. Accounting for variation in muscle mass attributable to maternal presence, we found no effect of maternal investment (length of inter birth interval, from own birth to birth of following sibling) on offspring muscle mass. CONCLUSION Chimpanzee mothers have an extended and multi-faceted influence on offspring phenotypes. Our results suggest that maternal investment extends beyond lactation and into early adulthood and has clear benefits to offspring physical development. Therefore, prolonged juvenile dependence, although unique in its form in human societies, may be a trait with deeper evolutionary origins.
Collapse
Affiliation(s)
- Liran Samuni
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
- Department of Human Evolutionary Biology, Harvard University, Cambridge, UK
| | - Patrick Tkaczynski
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Therese Löhrrich
- World Wide Fund for Nature, Dzanga Sangha Protected Areas, Bangui, Central African Republic
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Roman M. Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Catherine Crockford
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| |
Collapse
|
24
|
Laubach ZM, Faulk CD, Dolinoy DC, Montrose L, Jones TR, Ray D, Pioon MO, Holekamp KE. Early life social and ecological determinants of global DNA methylation in wild spotted hyenas. Mol Ecol 2019; 28:3799-3812. [PMID: 31291495 DOI: 10.1111/mec.15174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022]
Abstract
Environmental factors early in life can have lasting influence on the development and phenotypes of animals, but the underlying molecular modifications remain poorly understood. We examined cross-sectional associations among early life socioecological factors and global DNA methylation in 293 wild spotted hyenas (Crocuta crocuta) in the Masai Mara National Reserve, Kenya, grouped according to three age classes (cub, subadult and adult). Explanatory variables of interest included annual maternal rank based on outcomes of dyadic agonistic interactions, litter size, wild ungulate prey density and anthropogenic disturbance in the year each hyena was born based on counts of illegal livestock in the Reserve. The dependent variable of interest was global DNA methylation, assessed via the LUminometric Methylation Assay, which provides a percentage methylation value calculated at CCGG sites across the genome. Among cubs, we observed approximately 2.75% higher CCGG methylation in offspring born to high- than low-ranking mothers. Among cubs and subadults, higher anthropogenic disturbance corresponded with greater %CCGG methylation. In both cubs and adults, we found an inverse association between prey density measured before a hyena was 3 months old and %CCGG methylation. Our results suggest that maternal rank, anthropogenic disturbance and prey availability early in life are associated with later life global DNA methylation. Future studies are required to understand the extent to which these DNA methylation patterns relate to adult phenotypes and fitness outcomes.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Mara Hyena Project, Michigan State University, Masai Mara National Reserve, Talek, Kenya
| | | | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Luke Montrose
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tamara R Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Donna Ray
- Divisions of Geriatric Medicine and Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Malit O Pioon
- Mara Hyena Project, Michigan State University, Masai Mara National Reserve, Talek, Kenya
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.,Mara Hyena Project, Michigan State University, Masai Mara National Reserve, Talek, Kenya
| |
Collapse
|
25
|
Social support drives female dominance in the spotted hyaena. Nat Ecol Evol 2018; 3:71-76. [DOI: 10.1038/s41559-018-0718-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022]
|
26
|
Marescot L, Benhaiem S, Gimenez O, Hofer H, Lebreton J, Olarte‐Castillo XA, Kramer‐Schadt S, East ML. Social status mediates the fitness costs of infection with canine distemper virus in Serengeti spotted hyenas. Funct Ecol 2018; 32:1237-1250. [PMID: 32313354 PMCID: PMC7163977 DOI: 10.1111/1365-2435.13059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/26/2018] [Indexed: 02/06/2023]
Abstract
The extent to which the fitness costs of infection are mediated by key life-history traits such as age or social status is still unclear. Within populations, individual heterogeneity in the outcome of infection is the result of two successive processes; the degree of contact with the pathogen (exposure) and the immune response to infection. In social mammals, because individuals holding high social status typically interact more frequently with group members, they should be more often in contact with infected individuals than those of low social status. However, when access to resources is determined by social status, individuals with a high social status are often better nourished, have a greater opportunity to allocate resources to immune processes and therefore should have a smaller chance of succumbing to infection than individuals with low social status.We investigated the risk and fitness costs of infection during a virulent epidemic of canine distemper virus (CDV) in a social carnivore, the spotted hyena, in the Serengeti National Park. We analysed two decades of detailed life-history data from 625 females and 816 males using a multi-event capture-mark-recapture model that accounts for uncertainty in the assignment of individual infection states.Cubs of mothers with a high social status had a lower probability of CDV infection and were more likely to survive infection than those with low social status. Subadult and adult females with high social status had a higher infection probability than those with low social status. Subadult females and pre-breeder males that had recovered from CDV infection had a lower survival than susceptible ones.Our study disentangles the relative importance of individual exposure and resource allocation to immune processes, demonstrates fitness costs of infection for juveniles, particularly for those with low social status, shows that patterns of infection can be driven by different mechanisms among juveniles and adults and establishes a negative relationship between infection and fitness in a free-ranging mammal. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13059/suppinfo is available for this article.
Collapse
Affiliation(s)
- Lucile Marescot
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Sarah Benhaiem
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Olivier Gimenez
- CEFEUMR 5175CNRSUniversité de MontpellierUniversité Paul‐Valéry MontpellierEPHEMontpellier Cedex 5France
| | - Heribert Hofer
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of Veterinary MedicineFreie Universität BerlinBerlinGermany
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
| | - Jean‐Dominique Lebreton
- CEFEUMR 5175CNRSUniversité de MontpellierUniversité Paul‐Valéry MontpellierEPHEMontpellier Cedex 5France
| | | | - Stephanie Kramer‐Schadt
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Marion L. East
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| |
Collapse
|
27
|
Turner JW, Bills PS, Holekamp KE. Ontogenetic change in determinants of social network position in the spotted hyena. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2426-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Dupont P, Allainé D, Cohas A, Pradel R. Testing determinants of the annual individual fitness: An overall mean mixture model for de‐lifing data. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre Dupont
- CNRSUMR 5558 ‘Biométrie et Biologie Evolutive’Université de LyonUniversité Lyon 1 Villeurbanne France
| | - Dominique Allainé
- CNRSUMR 5558 ‘Biométrie et Biologie Evolutive’Université de LyonUniversité Lyon 1 Villeurbanne France
| | - Aurélie Cohas
- CNRSUMR 5558 ‘Biométrie et Biologie Evolutive’Université de LyonUniversité Lyon 1 Villeurbanne France
| | - Roger Pradel
- CEFEUMR 5175CNRSUniversité de MontpellierUniversité Paul‐Valéry MontpellierEPHE Montpellier Cedex 5 France
| |
Collapse
|
29
|
Smith JE, Lehmann KDS, Montgomery TM, Strauss ED, Holekamp KE. Insights from long‐term field studies of mammalian carnivores. J Mammal 2017. [DOI: 10.1093/jmammal/gyw194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
30
|
Lewin N, Swanson EM, Williams BL, Holekamp KE. Juvenile concentrations of
IGF
‐1 predict life‐history trade‐offs in a wild mammal. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12808] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Nora Lewin
- Department of Integrative Biology Michigan State University East Lansing MI48824 USA
- Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing MI48824 USA
| | - Eli M. Swanson
- Department of Ecology, Evolution and Behavior University of Minnesota St. Paul MN55108 USA
| | - Barry L. Williams
- Department of Integrative Biology Michigan State University East Lansing MI48824 USA
- Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing MI48824 USA
| | - Kay E. Holekamp
- Department of Integrative Biology Michigan State University East Lansing MI48824 USA
- Ecology, Evolutionary Biology, and Behavior Program Michigan State University East Lansing MI48824 USA
| |
Collapse
|
31
|
Robbins AM, Gray M, Breuer T, Manguette M, Stokes EJ, Uwingeli P, Mburanumwe I, Kagoda E, Robbins MM. Mothers may shape the variations in social organization among gorillas. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160533. [PMID: 27853570 PMCID: PMC5098995 DOI: 10.1098/rsos.160533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
When mothers continue to support their offspring beyond infancy, they can influence the fitness of those offspring, the strength of social relationships within their groups, and the life-history traits of their species. Using up to 30 years of demographic data from 58 groups of gorillas in two study sites, this study extends such findings by showing that mothers may also contribute to differences in social organization between closely related species. Female mountain gorillas remained with their sons for significantly longer than western gorillas, which may explain why male philopatry and multimale groups are more common among mountain gorillas. The presence of the putative father and other familiar males did not vary significantly between species, and we found only limited support for the socio-ecological theory that the distribution of adult males is influenced by the distribution of females. Within each gorilla species, variations in those distributions may also reflect the different stages in the typical life cycle of a group. Collectively, our results highlight the potentially far-reaching consequences of maternal support that extends beyond infancy, and they illustrate the opportunity to incorporate additional factors into phylogenetic analyses of variations in social organization, including studies of human evolution.
Collapse
Affiliation(s)
- Andrew M. Robbins
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Maryke Gray
- Formerly with the International Gorilla Conservation Programme, PO Box 931, Kigali, Rwanda
| | - Thomas Breuer
- Wildlife Conservation Society, Global Conservation Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
- Mbeli Bai Study, Wildlife Conservation Society—Congo Program, BP 14537 Brazzaville, Republic of Congo
| | - Marie Manguette
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Mbeli Bai Study, Wildlife Conservation Society—Congo Program, BP 14537 Brazzaville, Republic of Congo
| | - Emma J. Stokes
- Wildlife Conservation Society, Global Conservation Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Prosper Uwingeli
- Volcanoes National Park, Rwanda Development Board, PO Box 6239, Gishushu, Kigali, Rwanda
| | - Innocent Mburanumwe
- Parc National des Virunga-sud, Institut Congolais pour la Conservation de la Nature, c/o IGCP-DRC, B.P. 137 Gisenyi, Rwanda
| | - Edwin Kagoda
- Formerly with the Mgahinga Gorilla National Park, Uganda Wildlife Authority, PO Box 3530, Kampala, Uganda
| | - Martha M. Robbins
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
32
|
Berger V, Lemaître JF, Allainé D, Gaillard JM, Cohas A. Early and adult social environments have independent effects on individual fitness in a social vertebrate. Proc Biol Sci 2016; 282:20151167. [PMID: 26246552 DOI: 10.1098/rspb.2015.1167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evidence that the social environment at critical stages of life-history shapes individual trajectories is accumulating. Previous studies have identified either current or delayed effects of social environments on fitness components, but no study has yet analysed fitness consequences of social environments at different life stages simultaneously. To fill the gap, we use an extensive dataset collected during a 24-year intensive monitoring of a population of Alpine marmots (Marmota marmota), a long-lived social rodent. We test whether the number of helpers in early life and over the dominance tenure length has an impact on litter size at weaning, juvenile survival, longevity and lifetime reproductive success (LRS) of dominant females. Dominant females, who were born into a group containing many helpers and experiencing a high number of accumulated helpers over dominance tenure length showed an increased LRS through an increased longevity. We provide evidence that in a wild vertebrate, both early and adult social environments influence individual fitness, acting additionally and independently. These findings demonstrate that helpers have both short- and long-term effects on dominant female Alpine marmots and that the social environment at the time of birth can play a key role in shaping individual fitness in social vertebrates.
Collapse
Affiliation(s)
- Vérane Berger
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| | - Jean-François Lemaître
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| | - Dominique Allainé
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| | - Jean-Michel Gaillard
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| | - Aurélie Cohas
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| |
Collapse
|
33
|
Davidian E, Courtiol A, Wachter B, Hofer H, Höner OP. Why do some males choose to breed at home when most other males disperse? SCIENCE ADVANCES 2016; 2:e1501236. [PMID: 27034982 PMCID: PMC4803491 DOI: 10.1126/sciadv.1501236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/04/2016] [Indexed: 05/16/2023]
Abstract
Dispersal is a key driver of ecological and evolutionary processes. Despite substantial efforts to explain the evolution of dispersal, we still do not fully understand why individuals of the same sex of a species vary in their propensity to disperse. The dominant hypothesis emphasizes movements and assumes that leaving home (dispersal) and staying at home (philopatry) are two alternative strategies providing different fitness. It suggests that only individuals of high phenotypic quality can pursue the most beneficial strategy; the others are left to do a "best-of-a-bad" job. An alternative hypothesis emphasizes settlement decisions and suggests that all individuals pursue a single strategy of choosing the breeding habitat or group with the highest fitness prospects; choosing the natal group (philopatry) and choosing a nonnatal group (dispersal) are then outcomes of these decisions. We tested both hypotheses using a long-term study of a free-ranging population of a group-living carnivore, the spotted hyena. We combined demographic data with data on dispersal-relevant phenotypic traits, breeding-group choice, survival, and reproductive success of 254 males. Our results contradict the best-of-a-bad-job hypothesis: philopatric males and dispersers were of similar phenotypic quality, had similar fitness, and applied similar settlement rules based on the fitness prospects in groups. Our findings demonstrate that the distribution of breeding partners can be more important in shaping dispersal patterns than the costs associated with the dispersal movement. The study provides novel insights into the processes leading to the coexistence of philopatry and dispersal within the same sex of a species.
Collapse
Affiliation(s)
- Eve Davidian
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany
| | - Alexandre Courtiol
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany
| | - Bettina Wachter
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany
| | - Heribert Hofer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany
| | - Oliver P. Höner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany
- Corresponding author. E-mail:
| |
Collapse
|
34
|
Davidian E, Benhaiem S, Courtiol A, Hofer H, Höner OP, Dehnhard M. Determining hormone metabolite concentrations when enzyme immunoassay accuracy varies over time. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Eve Davidian
- Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Strasse 17 D‐10315 Berlin Germany
| | - Sarah Benhaiem
- Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Strasse 17 D‐10315 Berlin Germany
| | - Alexandre Courtiol
- Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Strasse 17 D‐10315 Berlin Germany
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Strasse 17 D‐10315 Berlin Germany
| | - Oliver P. Höner
- Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Strasse 17 D‐10315 Berlin Germany
| | - Martin Dehnhard
- Leibniz Institute for Zoo and Wildlife Research Alfred‐Kowalke‐Strasse 17 D‐10315 Berlin Germany
| |
Collapse
|
35
|
Markham AC, Lonsdorf EV, Pusey AE, Murray CM. Maternal rank influences the outcome of aggressive interactions between immature chimpanzees. Anim Behav 2015; 100:192-198. [PMID: 25624528 PMCID: PMC4304065 DOI: 10.1016/j.anbehav.2014.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For many long-lived mammalian species, extended maternal investment has a profound effect on offspring integration in complex social environments. One component of this investment may be aiding young in aggressive interactions, which can set the stage for offspring social position later in life. Here we examined maternal effects on dyadic aggressive interactions between immature (<12 years) chimpanzees. Specifically, we tested whether relative maternal rank predicted the probability of winning an aggressive interaction. We also examined maternal responses to aggressive interactions to determine whether maternal interventions explain interaction outcomes. Using a 12-year behavioural data set (2000-2011) from Gombe National Park, Tanzania, we found that relative maternal rank predicted the probability of winning aggressive interactions in male-male and male-female aggressive interactions: offspring were more likely to win if their mother outranked their opponent's mother. Female-female aggressive interactions occurred infrequently (two interactions), so could not be analysed. The probability of winning was also higher for relatively older individuals in male-male interactions, and for males in male-female interactions. Maternal interventions were rare (7.3% of 137 interactions), suggesting that direct involvement does not explain the outcome for the vast majority of aggressive interactions. These findings provide important insight into the ontogeny of aggressive behaviour and early dominance relationships in wild apes and highlight a potential social advantage for offspring of higher-ranking mothers. This advantage may be particularly pronounced for sons, given male philopatry in chimpanzees and the potential for social status early in life to translate more directly to adult rank.
Collapse
Affiliation(s)
- A. Catherine Markham
- Center for the Advanced Study of Hominid Paleobiology, The George Washington University, Washington, D.C., U.S.A
- Department of Anthropology, Stony Brook University, Stony Brook, NY, U.S.A
| | - Elizabeth V. Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, PA, U.S.A
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
| | - Carson M. Murray
- Center for the Advanced Study of Hominid Paleobiology, The George Washington University, Washington, D.C., U.S.A
| |
Collapse
|
36
|
Lea AJ, Learn NH, Theus MJ, Altmann J, Alberts SC. Complex sources of variance in female dominance rank in a nepotistic society. Anim Behav 2014; 94:87-99. [PMID: 26997663 PMCID: PMC4794277 DOI: 10.1016/j.anbehav.2014.05.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many mammalian societies are structured by dominance hierarchies, and an individual's position within this hierarchy can influence reproduction, behaviour, physiology and health. In nepotistic hierarchies, which are common in cercopithecine primates and also seen in spotted hyaenas, Crocuta crocuta, adult daughters are expected to rank immediately below their mother, and in reverse age order (a phenomenon known as 'youngest ascendancy'). This pattern is well described, but few studies have systematically examined the frequency or causes of departures from the expected pattern. Using a longitudinal data set from a natural population of yellow baboons, Papio cynocephalus, we measured the influence of maternal kin, paternal kin and group size on female rank positions at two life history milestones, menarche and first live birth. At menarche, most females (73%) ranked adjacent to their family members (i.e. the female held an ordinal rank in consecutive order with other members of her maternal family); however, only 33% of females showed youngest ascendancy within their matriline at menarche. By the time they experienced their first live birth, many females had improved their dominance rank: 78% ranked adjacent to their family members and 49% showed youngest ascendancy within their matriline. The presence of mothers and maternal sisters exerted a powerful influence on rank outcomes. However, the presence of fathers, brothers and paternal siblings did not produce a clear effect on female dominance rank in our analyses, perhaps because females in our data set co-resided with variable numbers and types of paternal and male relatives. Our results also raise the possibility that female body size or competitive ability may influence dominance rank, even in this classically nepotistic species. In total, our analyses reveal that the predictors of dominance rank in nepotistic rank systems are much more complex than previously thought.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biology, Duke University, Durham, NC, U.S.A
| | - Niki H. Learn
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, U.S.A
| | - Marcus J. Theus
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, U.S.A
| | - Jeanne Altmann
- Department of Ecology and Evolution, Princeton University, Princeton, NJ, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham, NC, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
37
|
Cafazzo S, Bonanni R, Valsecchi P, Natoli E. Social variables affecting mate preferences, copulation and reproductive outcome in a pack of free-ranging dogs. PLoS One 2014; 9:e98594. [PMID: 24905360 PMCID: PMC4048177 DOI: 10.1371/journal.pone.0098594] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/05/2014] [Indexed: 11/19/2022] Open
Abstract
Mating and reproductive outcome is often determined by the simultaneous operation of different mechanisms like intra-sexual competition, mating preferences and sexual coercion. The present study investigated how social variables affected mating outcome in a pack of free-ranging dogs, a species supposed to have lost most features of the social system of wolves during domestication. We found that, although the pack comprised multiple breeding individuals, both male copulation success and female reproductive success were positively influenced by a linear combination of dominance rank, age and leadership. Our results also suggest that mate preferences affect mating outcome by reinforcing the success of most dominant individuals. In particular, during their oestrous period bitches clearly searched for the proximity of high-ranking males who displayed affiliative behaviour towards them, while they were more likely to reject the males who intimidated them. At the same time, male courting effort and male-male competition for receptive females appeared to be stronger in the presence of higher-ranking females, suggesting a male preference for dominant females. To our knowledge, these results provide the first clear evidence of social regulation of reproductive activities in domestic dogs, and suggest that some common organizing mechanisms may contribute to shape the social organization of both dogs and wolves.
Collapse
Affiliation(s)
- Simona Cafazzo
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy
- Wolf Science Center, Ernstbrunn, Austria
| | - Roberto Bonanni
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy
| | - Paola Valsecchi
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy
| | - Eugenia Natoli
- Azienda USL Roma D, Area Dipartimentale Sanità Pubblica Veterinaria, Rome, Italy
| |
Collapse
|
38
|
Holekamp KE, Swanson EM, Van Meter PE. Developmental constraints on behavioural flexibility. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120350. [PMID: 23569298 DOI: 10.1098/rstb.2012.0350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.
Collapse
Affiliation(s)
- Kay E Holekamp
- Department of Zoology, Michigan State University, 203 Natural Sciences, MI 48824, USA.
| | | | | |
Collapse
|
39
|
No evidence for adaptive sex ratio variation in the cooperatively breeding meerkat, Suricata suricatta. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2012.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Benhaiem S, Hofer H, Kramer-Schadt S, Brunner E, East ML. Sibling rivalry: training effects, emergence of dominance and incomplete control. Proc Biol Sci 2012; 279:3727-35. [PMID: 22719032 DOI: 10.1098/rspb.2012.0925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within-brood or -litter dominance provides fitness-related benefits if dominant siblings selfishly skew access to food provided by parents in their favour. Models of facultative siblicide assume that dominants exert complete control over their subordinate sibling's access to food and that control is maintained, irrespective of the subordinate's hunger level. By contrast, a recent functional hypothesis suggests that subordinates should contest access to food when the cost of not doing so is high. Here, we show that within spotted hyena (Crocuta crocuta) twin litters, dominants most effectively skew access to maternal milk in their favour when their aggression prompts a highly submissive response. When hungry, subordinates were less submissive in response to aggression, thereby decreasing lost suckling time and increasing suckling time lost by dominants. In a species where adult females socially dominate adult males, juvenile females were more often dominant than males in mixed-sex litters, and subordinate sisters used more effective counter-tactics against dominant brothers than subordinate brothers against dominant sisters. Our results provide, to our knowledge, the first evidence in a mammal that dominant offspring in twin litters do not exert complete control over their sibling's access to resources (milk), and that sibling dominance relationships are influenced by sibling sex and training effects.
Collapse
Affiliation(s)
- Sarah Benhaiem
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany.
| | | | | | | | | |
Collapse
|
41
|
Höner OP, Wachter B, Goller KV, Hofer H, Runyoro V, Thierer D, Fyumagwa RD, Müller T, East ML. The impact of a pathogenic bacterium on a social carnivore population. J Anim Ecol 2012; 81:36-46. [PMID: 21631499 PMCID: PMC7194172 DOI: 10.1111/j.1365-2656.2011.01873.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. The long-term ecological impact of pathogens on group-living, large mammal populations is largely unknown. We evaluated the impact of a pathogenic bacterium, Streptococcus equi ruminatorum, and other key ecological factors on the dynamics of the spotted hyena Crocuta crocuta population in the Ngorongoro Crater, Tanzania. 2. We compared key demographic parameters during two years when external signs of bacterial infection were prevalent ('outbreak') and periods of five years before and after the outbreak when such signs were absent or rare. We also tested for density dependence and calculated the basic reproductive rate R(0) of the bacterium. 3. During the five pre-outbreak years, the mean annual hyena mortality rate was 0.088, and annual population growth was relatively high (13.6%). During the outbreak, mortality increased by 78% to a rate of 0.156, resulting in an annual population decline of 4.3%. After the outbreak, population size increased moderately (5.1%) during the first three post-outbreak years before resuming a growth similar to pre-outbreak levels (13.9%). We found no evidence that these demographic changes were driven by density dependence or other ecological factors. 4. Most hyenas showed signs of infection when prey abundance in their territory was low. During the outbreak, mortality increased among adult males and yearlings, but not among adult females - the socially dominant group members. These results suggest that infection and mortality were modulated by factors linked to low social status and poor nutrition. During the outbreak, we estimated R(0) for the bacterium to be 2.7, indicating relatively fast transmission. 5. Our results suggest that the short-term 'top-down' impact of S. equi ruminatorum during the outbreak was driven by 'bottom-up' effects on nutritionally disadvantaged age-sex classes, whereas the longer-term post-outbreak reduction in population growth was caused by poor survival of juveniles during the outbreak and subsequent poor recruitment of breeding females. These results suggest synergistic effects of 'bottom-up' and 'top-down' processes on host population dynamics.
Collapse
Affiliation(s)
- Oliver P Höner
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Holekamp KE, Smith JE, Strelioff CC, Van Horn RC, Watts HE. Society, demography and genetic structure in the spotted hyena. Mol Ecol 2011; 21:613-32. [PMID: 21880088 DOI: 10.1111/j.1365-294x.2011.05240.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spotted hyenas (Crocuta crocuta) are large mammalian carnivores, but their societies, called 'clans', resemble those of such cercopithecine primates as baboons and macaques with respect to their size, hierarchical structure, and frequency of social interaction among both kin and unrelated group-mates. However, in contrast to cercopithecine primates, spotted hyenas regularly hunt antelope and compete with group-mates for access to kills, which are extremely rich food sources, but also rare and ephemeral. This unique occurrence of baboon-like sociality among top-level predators has favoured the evolution of many unusual traits in this species. We briefly review the relevant socio-ecology of spotted hyenas, document great demographic variation but little variation in social structure across the species' range, and describe the long-term fitness consequences of rank-related variation in resource access among clan-mates. We then summarize patterns of genetic relatedness within and between clans, including some from a population that had recently gone through a population bottleneck, and consider the roles of sexually dimorphic dispersal and female mate choice in the generation of these patterns. Finally, we apply social network theory under varying regimes of resource availability to analyse the effects of kinship on the stability of social relationships among members of one large hyena clan in Kenya. Although social bonds among both kin and non-kin are weakest when resource competition is most intense, hyenas sustain strong social relationships with kin year-round, despite constraints imposed by resource limitation. Our analyses suggest that selection might act on both individuals and matrilineal kin groups within clans containing multiple matrilines.
Collapse
Affiliation(s)
- Kay E Holekamp
- Department of Zoology, Michigan State University, East Lansing, MI 48824-1115, USA.
| | | | | | | | | |
Collapse
|
43
|
Whiteside HM, Dawson DA, Soulsbury CD, Harris S. Mother knows best: dominant females determine offspring dispersal in red foxes (Vulpes vulpes). PLoS One 2011; 6:e22145. [PMID: 21799780 PMCID: PMC3140410 DOI: 10.1371/journal.pone.0022145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/16/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Relatedness between group members is central to understanding the causes of animal dispersal. In many group-living mammals this can be complicated as extra-pair copulations result in offspring having varying levels of relatedness to the dominant animals, leading to a potential conflict between male and female dominants over offspring dispersal strategies. To avoid resource competition and inbreeding, dominant males might be expected to evict unrelated males and related females, whereas the reverse strategy would be expected for dominant females. METHODOLOGY/PRINCIPAL FINDINGS We used microsatellites and long-term data from an urban fox (Vulpes vulpes) population to compare dispersal strategies between offspring with intra- and extra-group fathers and mothers of differing social status in red foxes. Relatedness to the dominant male had no effect on dispersal in offspring of either sex, whereas there was a strong effect of relatedness to resident females on offspring dispersal independent of population density. Males with dominant mothers dispersed significantly more often than males with subordinate mothers, whereas dispersing females were significantly more likely to have subordinate mothers compared to philopatric females. CONCLUSIONS/SIGNIFICANCE This is the first study to demonstrate that relatedness to resident females is important in juvenile dispersal in group-living mammals. Male dispersal may be driven by inbreeding avoidance, whereas female dispersal appears to be influenced by the fitness advantages associated with residing with the same-sex dominant parent. Selection pressure for paternal influence on offspring dispersal is low due to the limited costs associated with retaining unrelated males and the need for alternative inbreeding avoidance mechanisms between the dominant male and his female offspring. These findings have important implications for the evolution of dispersal and group living in social mammals, and our understanding of a key biological process.
Collapse
Affiliation(s)
- Helen M Whiteside
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Berghänel A, Ostner J, Schröder U, Schülke O. Social bonds predict future cooperation in male Barbary macaques, Macaca sylvanus. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.02.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|