1
|
Schweicher G, Das S, Resel R, Geerts Y. On the importance of crystal structures for organic thin film transistors. Acta Crystallogr C Struct Chem 2024; 80:601-611. [PMID: 39226426 PMCID: PMC11451017 DOI: 10.1107/s2053229624008283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Historically, knowledge of the molecular packing within the crystal structures of organic semiconductors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding polymorphism in bulk and in thin films, exploring dynamics and elucidating phase-transition mechanisms. This review article introduces the most salient and recent results of the field.
Collapse
Affiliation(s)
- Guillaume Schweicher
- Université Libre de Bruxelles (ULB) Faculté des Sciences Laboratoire de chimie des polyméres Boulevard du Triomphe 1050 Bruxelles Belgium
| | - Susobhan Das
- Université Libre de Bruxelles (ULB) Faculté des Sciences Laboratoire de chimie des polyméres Boulevard du Triomphe 1050 Bruxelles Belgium
| | - Roland Resel
- Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Yves Geerts
- Université Libre de Bruxelles (ULB) Faculté des Sciences Laboratoire de chimie des polyméres Boulevard du Triomphe 1050 Bruxelles Belgium
- Université Libre de Bruxelles (ULB), International Solvay Institutes of Physics and Chemistry, Boulevard du Triomphe, 1050 Bruxelles, Belgium
- WEL Research Institute, avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
2
|
Casalegno M, Provenzano S, Raos G, Moret M. Exploring the phase behavior of C8-BTBT-C8 at ambient and high temperatures: insights and challenges from molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:21990-22005. [PMID: 39109422 DOI: 10.1039/d4cp01884b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
C8-BTBT-C8 is one promising candidate for the development of high-performance electronic devices based on thin-film technologies. Its monoclinic polymorph has a well-established role in thin-film growth. Yet, quite little information is available about its dynamics on the molecular scale, and the structures of the mesophases which form at high temperature (about 100 K above ambient temperature). The present study is devoted to the analysis of such phases, with the ultimate goal of developing molecular models. Already at ambient temperature, our molecular dynamics simulations reveal a rich conformational behavior of the alkyl side chains, with gauche conformations as leading structural defects. Heating promotes the formation of a stacking faulted mesophase (380 K), and a smectic phase, at 385 K, upon side chain melting. Although more disordered, this phase bears several analogies with the smectic A phase, experimentally observed at 382.5 K. At higher temperatures, the increase in configurational disorder is brought by molecular diffusion and other phenomena, finally leading to an isotropic molten phase. Our in-depth analysis, complemented by hot-stage polarizing microscopy data, provides interesting insights into this material, highlighting the challenges associated with the modeling of soft semiconducting systems.
Collapse
Affiliation(s)
- Mosè Casalegno
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy.
| | | | - Guido Raos
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy.
| | - Massimo Moret
- Department of Materials Science, Università degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.
| |
Collapse
|
3
|
Sakurai T, Tanabe T, Iguchi H, Li Z, Matsuda W, Tsutsui Y, Seki S, Matsuda R, Shinokubo H. An n-type semiconducting diazaporphyrin-based hydrogen-bonded organic framework. Chem Sci 2024; 15:12922-12927. [PMID: 39148781 PMCID: PMC11323323 DOI: 10.1039/d4sc03455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Significant effort has been devoted to the development of materials that combine high electrical conductivity and permanent porosity. This paper discloses a diazaporphyrin-based hydrogen-bonded organic framework (HOF) with porosity and n-type semiconductivity. A 5,15-diazaporphyrin Ni(ii) complex with carboxyphenyl groups at the meso positions afforded a HOF due to hydrogen-bonding interactions between the carboxy groups and meso-nitrogen atoms. The thermal and chemical stabilities of the HOF were examined using powder X-ray diffraction analysis, and the charge-carrier mobility was determined to be 2.0 × 10-7 m2 V-1 s-1 using the flash-photolysis time-resolved microwave conductivity (FP-TRMC) method. An analogous diazaporphyrin, which does not form a HOF, exhibited mobility that was 20 times lower. The results presented herein highlight the crucial role of hydrogen-bonding networks in achieving conductive pathways that can tolerate thermal perturbation.
Collapse
Affiliation(s)
- Takahiro Sakurai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Tappei Tanabe
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroaki Iguchi
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Zhuowei Li
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryotaro Matsuda
- Department of Material Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
4
|
Stäter S, Woering EF, Lombeck F, Sommer M, Hildner R. Hexylation Stabilises Twisted Backbone Configurations in the Prototypical Low-Bandgap Copolymer PCDTBT. Chemphyschem 2024; 25:e202300971. [PMID: 38372667 DOI: 10.1002/cphc.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Conjugated donor-acceptor copolymers hold great potential as materials for high-performance organic photovoltaics, organic transistors and organic thermoelectric devices. Their low optical bandgap is achieved by alternation of donor and acceptor moieties along the polymer chain, leading to a pronounced charge-transfer character of electronic excitations. However, the influence of appended side chains and of chemical defects of the backbone on their photophysical and conformational properties remains largely unexplored on the level of individual chains. Here, we employ room temperature single-molecule photoluminescence spectroscopy on four compounds based on the prototypical copolymer PCDTBT with systematically changed chemical structure. Our results show that an increasing density of statistically added hexyl chains to the TBT comonomer distorts the molecular conformation, likely through the increase of average dihedral angles along the backbone. We find that, although the conformation becomes more twisted with high hexyl density, the side chains appear to stabilize the backbone in this twisted conformation. In addition, we demonstrate that homocoupling defects along the backbone barely influence the PL spectra of single chains, and thus intra-chain electronic properties.
Collapse
Affiliation(s)
- Sebastian Stäter
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| | - Erik F Woering
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| | - Florian Lombeck
- Makromolekulare Chemie, Stefan-Meier-Str. 31, Universität Freiburg, 79104, Freiburg, Germany
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Michael Sommer
- TU Chemnitz, Institute for Chemistry, Str. der Nationen 62, 09111, Chemnitz, Germany
| | - Richard Hildner
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| |
Collapse
|
5
|
Qu T, Nan G, Ouyang Y, Bieketuerxun B, Yan X, Qi Y, Zhang Y. Structure-Property Relationship, Glass Transition, and Crystallization Behaviors of Conjugated Polymers. Polymers (Basel) 2023; 15:4268. [PMID: 37959948 PMCID: PMC10649048 DOI: 10.3390/polym15214268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Conjugated polymers have gained considerable interest due to their unique structures and promising applications in areas such as optoelectronics, photovoltaics, and flexible electronics. This review focuses on the structure-property relationship, glass transition, and crystallization behaviors of conjugated polymers. Understanding the relationship between the molecular structure of conjugated polymers and their properties is essential for optimizing their performance. The glass transition temperature (Tg) plays a key role in determining the processability and application of conjugated polymers. We discuss the mechanisms underlying the glass transition phenomenon and explore how side-chain interaction affects Tg. The crystallization behavior of conjugated polymers significantly impacts their mechanical and electrical properties. We investigate the nucleation and growth processes, as well as the factors that influence the crystallization process. The development of the three generations of conjugated polymers in controlling the crystalline structure and enhancing polymer ordering is also discussed. This review highlights advanced characterization techniques such as X-ray diffraction, atomic force microscopy, and thermal analysis, which provide insights into molecular ordering and polymer-crystal interfaces. This review provides an insight of the structure-property relationship, glass transition, and crystallization behaviors of conjugated polymers. It serves as a foundation for further research and development of conjugated polymer-based materials with enhanced properties and performance.
Collapse
Affiliation(s)
- Tengfei Qu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Guangming Nan
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Yan Ouyang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Bahaerguli. Bieketuerxun
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Xiuling Yan
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Yunpeng Qi
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Yi Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| |
Collapse
|
6
|
Yu CP, Kumagai S, Tsutsumi M, Kurosawa T, Ishii H, Watanabe G, Hashizume D, Sugiura H, Tani Y, Ise T, Watanabe T, Sato H, Takeya J, Okamoto T. Asymmetrically Functionalized Electron-Deficient π-Conjugated System for Printed Single-Crystalline Organic Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207440. [PMID: 37712117 PMCID: PMC10582418 DOI: 10.1002/advs.202207440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/22/2023] [Indexed: 09/16/2023]
Abstract
Large-area single-crystalline thin films of n-type organic semiconductors (OSCs) fabricated via solution-processed techniques are urgently demanded for high-end electronics. However, the lack of molecular designs that concomitantly offer excellent charge-carrier transport, solution-processability, and chemical/thermal robustness for n-type OSCs limits the understanding of fundamental charge-transport properties and impedes the realization of large-area electronics. The benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) π-electron system with phenethyl substituents (PhC2 -BQQDI) demonstrates high electron mobility and robustness but its strong aggregation results in unsatisfactory solubility and solution-processability. In this work, an asymmetric molecular design approach is reported that harnesses the favorable charge transport of PhC2 -BQQDI, while introducing alkyl chains to improve the solubility and solution-processability. An effective synthetic strategy is developed to obtain the target asymmetric BQQDI (PhC2 -BQQDI-Cn ). Interestingly, linear alkyl chains of PhC2 -BQQDI-Cn (n = 5-7) exhibit an unusual molecular mimicry geometry with a gauche conformation and resilience to dynamic disorders. Asymmetric PhC2 -BQQDI-C5 demonstrates excellent electron mobility and centimeter-scale continuous single-crystalline thin films, which are two orders of magnitude larger than that of PhC2 -BQQDI, allowing for the investigation of electron transport anisotropy and applicable electronics.
Collapse
Affiliation(s)
- Craig P. Yu
- Material Innovation Research Center (MIRC) and Department of Advanced Materials ScienceGraduate School of Frontier SciencesThe University of Tokyo5‐1‐5 KashiwanohaKashiwaChiba277‐8561Japan
| | - Shohei Kumagai
- Department of Chemical Science and Engineering, School of Materials and Chemical TechnologyTokyo Institute of Technology4259‐G1‐7 NagatsutaMidori‐kuYokohama226‐8502Japan
| | - Michitsuna Tsutsumi
- Material Innovation Research Center (MIRC) and Department of Advanced Materials ScienceGraduate School of Frontier SciencesThe University of Tokyo5‐1‐5 KashiwanohaKashiwaChiba277‐8561Japan
| | - Tadanori Kurosawa
- Material Innovation Research Center (MIRC) and Department of Advanced Materials ScienceGraduate School of Frontier SciencesThe University of Tokyo5‐1‐5 KashiwanohaKashiwaChiba277‐8561Japan
| | - Hiroyuki Ishii
- Department of Applied PhysicsFaculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennodaiTsukubaIbaraki305‐8573Japan
| | - Go Watanabe
- Department of PhysicsSchool of ScienceKitasato University1‐15‐1 Kitasato, Minami‐kuSagamiharaKanagawa252‐0373Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS)2‐1 HirosawaWakoSaitama351‐0198Japan
| | - Hiroki Sugiura
- FUJIFILM Corp.577 Ushijima, Kaisei‐machiAshigarakami‐gunKanagawa258‐8577Japan
| | - Yukio Tani
- FUJIFILM Corp.577 Ushijima, Kaisei‐machiAshigarakami‐gunKanagawa258‐8577Japan
| | - Toshihiro Ise
- FUJIFILM Corp.577 Ushijima, Kaisei‐machiAshigarakami‐gunKanagawa258‐8577Japan
| | - Tetsuya Watanabe
- FUJIFILM Corp.577 Ushijima, Kaisei‐machiAshigarakami‐gunKanagawa258‐8577Japan
| | - Hiroyasu Sato
- Rigaku Corp.3‐9‐12 Matsubara‐choAkishimaTokyo196‐8666Japan
| | - Jun Takeya
- Material Innovation Research Center (MIRC) and Department of Advanced Materials ScienceGraduate School of Frontier SciencesThe University of Tokyo5‐1‐5 KashiwanohaKashiwaChiba277‐8561Japan
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)1‐1 NamikiTsukuba205‐0044Japan
| | - Toshihiro Okamoto
- PRESTO, JST4‐1‐8 HonchoKawaguchiSaitama332‐0012Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical TechnologyTokyo Institute of Technology4259‐G1‐7 NagatsutaMidori‐kuYokohama226‐8502Japan
| |
Collapse
|
7
|
Alanazi F, Eggeman AS, Stavrou K, Danos A, Monkman AP, Mendis BG. Quantifying Molecular Disorder in Tri-Isopropyl Silane (TIPS) Pentacene Using Variable Coherence Transmission Electron Microscopy. J Phys Chem Lett 2023; 14:8183-8190. [PMID: 37671926 PMCID: PMC10510430 DOI: 10.1021/acs.jpclett.3c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Structural disorder in molecular crystals is a fundamental limitation for achieving high charge carrier mobilities. Quantifying and uncovering the mechanistic origins of disorder are, however, extremely challenging. Here we use variable coherence transmission electron microscopy to analyze disorder in tri-isopropyl silane pentacene films, utilizing diffuse scattering that is present both as linear streaks and as a slowly varying, isotropic background. The former is due to thermal vibration of the pentacene molecules along their long axis, while the latter is due to static defects kinetically frozen during film deposition. The thermal vibrational amplitude is ∼0.4 Å, while the static displacement parameter in our simplified analysis is much larger (1.0 Å), because it represents the cumulative scattering of all defect configurations that are frozen in the film. Thin film fabrication therefore has an important effect on crystallinity; our technique can be readily used to compare samples prepared under different conditions.
Collapse
Affiliation(s)
- F. Alanazi
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - A. S. Eggeman
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - K. Stavrou
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - A. Danos
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - A. P. Monkman
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| | - B. G. Mendis
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
| |
Collapse
|
8
|
Giunchi A, Pandolfi L, Della Valle RG, Salzillo T, Venuti E, Girlando A. Lattice Dynamics of Quinacridone Polymorphs: A Combined Raman and Computational Approach. CRYSTAL GROWTH & DESIGN 2023; 23:6765-6773. [PMID: 37692334 PMCID: PMC10485816 DOI: 10.1021/acs.cgd.3c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Polarized low-frequency Raman microscopy and a posteriori dispersion-corrected density functional simulations are combined to investigate the lattice vibrations of the αI, β, and γ polymorphs of the model organic semiconductor quinacridone, which are known to display different optical and electronic properties. The comparison between experiments and calculations allows for unambiguous mode assignment and identification of the scattering crystal faces. Conversely, the agreement between simulations and experiments validates the adopted computational methods, which correctly describe the intermolecular interaction of the molecular material. The acquired knowledge of quinacridone lattice dynamics is used to describe the αI to β thermal transition and, most consequentially, to reliably characterize the electron-lattice phonon coupling strength of the three polymorphs, obtaining hints about the electrical transport mechanism of the material.
Collapse
Affiliation(s)
- Andrea Giunchi
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Lorenzo Pandolfi
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Raffaele G. Della Valle
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Tommaso Salzillo
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Elisabetta Venuti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
| | - Alberto Girlando
- Molecular
Materials Group, Strada
Fontanini 68, 43124 Parma, Italy
| |
Collapse
|
9
|
Banks PA, Kleist EM, Ruggiero MT. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem 2023; 7:480-495. [PMID: 37414981 DOI: 10.1038/s41570-023-00487-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 07/08/2023]
Abstract
Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the 'terahertz gap', but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Elyse M Kleist
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
10
|
Seki S, Li Z. Electrons lighter than ever. NATURE MATERIALS 2023:10.1038/s41563-023-01563-8. [PMID: 37337070 DOI: 10.1038/s41563-023-01563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Affiliation(s)
- Shu Seki
- Department of Molecular Engineering, Kyoto University, Kyoto, Japan.
| | - Zhuowei Li
- Department of Molecular Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Sawatzki-Park M, Wang SJ, Kleemann H, Leo K. Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices. Chem Rev 2023. [PMID: 37315945 DOI: 10.1021/acs.chemrev.2c00844] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organic semiconductors have opened up many new electronic applications, enabled by properties like flexibility, low-cost manufacturing, and biocompatibility, as well as improved ecological sustainability due to low energy use during manufacturing. Most current devices are made of highly disordered thin-films, leading to poor transport properties and, ultimately, reduced device performance as well. Here, we discuss techniques to prepare highly ordered thin-films of organic semiconductors to realize fast and highly efficient devices as well as novel device types. We discuss the various methods that can be implemented to achieve such highly ordered layers compatible with standard semiconductor manufacturing processes and suitable for complex devices. A special focus is put on approaches utilizing thermal treatment of amorphous layers of small molecules to create crystalline thin-films. This technique has first been demonstrated for rubrene─an organic semiconductor with excellent transport properties─and extended to some other molecular structures. We discuss recent experiments that show that these highly ordered layers show excellent lateral and vertical mobilities and can be electrically doped to achieve high n- and p-type conductivities. With these achievements, it is possible to integrate these highly ordered layers into specialized devices, such as high-frequency diodes or completely new device principles for organics, e.g., bipolar transistors.
Collapse
Affiliation(s)
- Michael Sawatzki-Park
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden 01219, Germany
| | - Shu-Jen Wang
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden 01219, Germany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden 01219, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden 01219, Germany
| |
Collapse
|
12
|
Zhou X, Wu H, Bothra U, Chen X, Lu G, Zhao H, Zhao C, Luo Q, Lu G, Zhou K, Kabra D, Ma Z, Ma W. Over 31% efficient indoor organic photovoltaics enabled by simultaneously reduced trap-assisted recombination and non-radiative recombination voltage loss. MATERIALS HORIZONS 2023; 10:566-575. [PMID: 36458496 DOI: 10.1039/d2mh01229d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Indoor organic photovoltaics (OPVs) have shown great potential application in driving low-energy-consumption electronics for the Internet of Things. There is still great room for further improving the power conversion efficiency (PCE) of indoor OPVs, considering that the desired morphology of the active layer to reduce trap-assisted recombination and voltage losses and thus simultaneously enhance the fill factor (FF) and open-circuit voltage for efficient indoor OPVs remains obscure. Herein, by optimizing the bulk and interface morphology via a layer-by-layer (LBL) processing strategy, low leakage current and low non-radiative recombination loss can be synergistically achieved in PM6:Y6-O based devices. Detailed characterizations reveal the stronger crystallinity, purer domains and ideal interfacial contacts in the LBL devices compared to their bulk-heterojunction (BHJ) counterparts. The optimized morphology yields a reduced voltage loss and an impressive FF of 81.5%, and thus contributes to a high PCE of 31.2% under a 1000 lux light-emitting diode (LED) illumination in the LBL devices, which is the best reported efficiency for indoor OPVs. Additionally, this LBL strategy exhibits great universality in promoting the performance of indoor OPVs, as exemplified by three other non-fullerene acceptor systems. This work provides guidelines for morphology optimization and synergistically promotes the fast development of efficient indoor OPVs.
Collapse
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hongbo Wu
- Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Urvashi Bothra
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India.
| | - Xingze Chen
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guanyu Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qun Luo
- i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dinesh Kabra
- Department of Physics, Indian Institute of Technology, Mumbai, 400076, India.
| | - Zaifei Ma
- Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
13
|
Asher M, Jouclas R, Bardini M, Diskin-Posner Y, Kahn N, Korobko R, Kennedy AR, Silva de Moraes L, Schweicher G, Liu J, Beljonne D, Geerts Y, Yaffe O. Chemical Modifications Suppress Anharmonic Effects in the Lattice Dynamics of Organic Semiconductors. ACS MATERIALS AU 2022; 2:699-708. [PMID: 36397874 PMCID: PMC9650719 DOI: 10.1021/acsmaterialsau.2c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lattice dynamics of organic semiconductors has a significant role in determining their electronic and mechanical properties. A common technique to control these macroscopic properties is to chemically modify the molecular structure. These modifications are known to change the molecular packing, but their effect on the lattice dynamics is relatively unexplored. Therefore, we investigate how chemical modifications to a core [1]benzothieno[3,2-b]benzothiophene (BTBT) semiconducting crystal affect the evolution of the crystal structural dynamics with temperature. Our study combines temperature-dependent polarization-orientation (PO) low-frequency Raman measurements with first-principles calculations and single-crystal X-ray diffraction measurements. We show that chemical modifications can indeed suppress specific expressions of vibrational anharmonicity in the lattice dynamics. Specifically, we detect in BTBT a gradual change in the PO Raman response with temperature, indicating a unique anharmonic expression. This anharmonic expression is suppressed in all examined chemically modified crystals (ditBu-BTBT and diC8-BTBT, diPh-BTBT, and DNTT). In addition, we observe solid-solid phase transitions in the alkyl-modified BTBTs. Our findings indicate that π-conjugated chemical modifications are the most effective in suppressing these anharmonic effects.
Collapse
Affiliation(s)
- Maor Asher
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Rémy Jouclas
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Marco Bardini
- Laboratory
for Chemistry of Novel Materials, University
of Mons, 7000 Mons, Belgium
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Nitzan Kahn
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Roman Korobko
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Alan R. Kennedy
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, United Kingdom
| | - Lygia Silva de Moraes
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Guillaume Schweicher
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Jie Liu
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, University
of Mons, 7000 Mons, Belgium
| | - Yves Geerts
- Laboratoire
de Chimie des Polymères, Université
Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- International
Solvay Institutes for Physics and Chemistry, 1050 Brussels, Belgium
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
14
|
Yoon G, Seok J, Puc U, Shin B, Yoon W, Yun H, Kim D, Yu IC, Rotermund F, Jazbinsek M, Kwon O. Phonon-Suppressing Intermolecular Adhesives: Catechol-Based Broadband Organic THz Generators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201391. [PMID: 35839468 PMCID: PMC9403645 DOI: 10.1002/advs.202201391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Solid-state molecular phonons play a crucial role in the performance of diverse photonic and optoelectronic devices. In this work, new organic terahertz (THz) generators based on a catechol group that acts as a phonon suppressing intermolecular adhesive are developed. The catechol group is widely used in mussel-inspired mechanical adhesive chemistry. Newly designed organic electro-optic crystals consist of catechol-based nonlinear optical 4-(3,4-dihydroxystyryl)-1-methylpyridinium (DHP) cations and 4-(trifluoromethyl)benzenesulfonate anions (TFS), which both have multiple interionic interaction capability. Interestingly, compared to benchmark organic crystals for THz generators, DHP-TFS crystals concomitantly achieve top level values of the lowest void volume and the highest crystal density, resulting in an exceptionally small amplitude of solid-state molecular phonons. Simultaneously achieving small molecular phonon amplitude, large optical nonlinearity and good phase matching at infrared optical pump wavelengths, DHP-TFS crystals are capable of generating broadband THz waves of up to 16 THz with high optical-to-THz conversion efficiency; one order of magnitude higher than commercial inorganic THz generators.
Collapse
Affiliation(s)
- Ga‐Eun Yoon
- Department of Molecular Science and TechnologyAjou UniversitySuwon16499Korea
| | - Jin‐Hong Seok
- Department of Molecular Science and TechnologyAjou UniversitySuwon16499Korea
| | - Uros Puc
- Institute of Computational PhysicsZurich University of Applied Sciences (ZHAW)Winterthur8401Switzerland
| | - Bong‐Rim Shin
- Department of Molecular Science and TechnologyAjou UniversitySuwon16499Korea
| | - Woojin Yoon
- Department of Chemistry & Department of Energy Systems ResearchAjou UniversitySuwon443–749Korea
| | - Hoseop Yun
- Department of Chemistry & Department of Energy Systems ResearchAjou UniversitySuwon443–749Korea
| | - Dongwook Kim
- Department of ChemistryKyonggi UniversitySan 94–6, Iui‐dong, Yeongtong‐guSuwonsiGyeonggi443–760Korea
| | - In Cheol Yu
- Department of PhysicsKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| | - Fabian Rotermund
- Department of PhysicsKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Korea
| | - Mojca Jazbinsek
- Institute of Computational PhysicsZurich University of Applied Sciences (ZHAW)Winterthur8401Switzerland
| | - O‐Pil Kwon
- Department of Molecular Science and TechnologyAjou UniversitySuwon16499Korea
| |
Collapse
|
15
|
Jouclas R, Liu J, Volpi M, Silva de Moraes L, Garbay G, McIntosh N, Bardini M, Lemaur V, Vercouter A, Gatsios C, Modesti F, Turetta N, Beljonne D, Cornil J, Kennedy AR, Koch N, Erk P, Samorì P, Schweicher G, Geerts YH. Dinaphthotetrathienoacenes: Synthesis, Characterization, and Applications in Organic Field-Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105674. [PMID: 35297223 PMCID: PMC9259716 DOI: 10.1002/advs.202105674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The charge transport of crystalline organic semiconductors is limited by dynamic disorder that tends to localize charges. It is the main hurdle to overcome in order to significantly increase charge carrier mobility. An innovative design that combines a chemical structure based on sulfur-rich thienoacene with a solid-state herringbone (HB) packing is proposed and the synthesis, physicochemical characterization, and charge transport properties of two new thienoacenes bearing a central tetrathienyl core fused with two external naphthyl rings: naphtho[2,3-b]thieno-[2''',3''':4'',5'']thieno[2″,3″:4',5']thieno[3',2'-b]naphtho[2,3-b]thiophene (DN4T) and naphtho[1,2-b]thieno-[2''',3''':4'',5'']thieno[2'',3'':4',5']thieno[3',2'-b]naphtho[1,2-b]thiophene are presented. Both compounds crystallize with a HB pattern structure and present transfer integrals ranging from 33 to 99 meV (for the former) within the HB plane of charge transport. Molecular dynamics simulations point toward an efficient resilience of the transfer integrals to the intermolecular sliding motion commonly responsible for strong variations of the electronic coupling in the crystal. Best device performances are reached with DN4T with hole mobility up to μ = 2.1 cm2 V-1 s-1 in polycrystalline organic field effect transistors, showing the effectiveness of the electronic coupling enabled by the new aromatic core. These promising results pave the way to the design of high-performing materials based on this new thienoacene, notably through the introduction of alkyl side-chains.
Collapse
Affiliation(s)
- Rémy Jouclas
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Jie Liu
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Martina Volpi
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Lygia Silva de Moraes
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Guillaume Garbay
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Nemo McIntosh
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Marco Bardini
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Alexandre Vercouter
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Christos Gatsios
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH12489BerlinGermany
- Institut für Physik and IRIS AdlershofHumboldt‐Universitat zu Berlin12489BerlinGermany
| | | | - Nicholas Turetta
- University of StrasbourgCNRSISIS UMR 70068 Alleé Gaspard MongeStrasbourgF‐67000France
| | - David Beljonne
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel MaterialsCenter for Research in Molecular Electronics and PhotonicsUniversity of MonsPlace du Parc 23MonsB‐7000Belgium
| | - Alan R. Kennedy
- Dept. of Pure and Applied ChemistryUniversity of StrathclydeCathedral Street 295GlasgowG1 1XLUK
| | - Norbert Koch
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH12489BerlinGermany
- Institut für Physik and IRIS AdlershofHumboldt‐Universitat zu Berlin12489BerlinGermany
| | - Peter Erk
- BASF SERCS – J542S67056Ludwigshafen am RheinGermany
| | - Paolo Samorì
- University of StrasbourgCNRSISIS UMR 70068 Alleé Gaspard MongeStrasbourgF‐67000France
| | - Guillaume Schweicher
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
| | - Yves H. Geerts
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/01Bruxelles1050Belgium
- International Solvay Institutes for Physics and ChemistryUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 231Bruxelles1050Belgium
| |
Collapse
|
16
|
Yu CP, Kumagai S, Kushida T, Mitani M, Mitsui C, Ishii H, Takeya J, Okamoto T. Mixed-Orbital Charge Transport in N-Shaped Benzene- and Pyrazine-Fused Organic Semiconductors. J Am Chem Soc 2022; 144:11159-11167. [PMID: 35701868 PMCID: PMC9490824 DOI: 10.1021/jacs.2c01357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The hole-carrier
transport of organic semiconductors is widely
known to occur via intermolecular orbital overlaps of the highest
occupied molecular orbitals (HOMO), though the effect of other occupied
molecular orbitals on charge transport is rarely investigated. In
this work, we first demonstrate evidence of a mixed-orbital charge
transport concept in the high-performance N-shaped decyl-dinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene (C10–DNBDT–NW), where electronic couplings of the second
HOMO (SHOMO) and third HOMO (THOMO) also contribute to the charge
transport. We then present the molecular design of an N-shaped bis(naphtho[2′,3′:4,5]thieno)[2,3-b:2′,3′-e]pyrazine (BNTP)
π-electron system to induce more pronounced mixed-orbital charge
transport by incorporating the pyrazine moiety. An effective synthetic
strategy for the pyrazine-fused extended π-electron system is
developed. With substituent engineering, the favorable two-dimensional
herringbone assembly can be obtained with BNTP, and the decylphenyl-substituted
BNTP (C10Ph–BNTP) demonstrates large electronic
couplings involving the HOMO, SHOMO, and THOMO in the herringbone
assembly. C10Ph–BNTP further shows enhanced mixed-orbital
charge transport when the electronic couplings of all three occupied
molecular orbitals are taken into consideration, which results in
a high hole mobility up to 9.6 cm2 V–1 s–1 in single-crystal thin-film organic field-effect
transistors. The present study provides insights into the contribution
of HOMO, SHOMO, and THOMO to the mixed-orbital charge transport of
organic semiconductors.
Collapse
Affiliation(s)
- Craig P Yu
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Shohei Kumagai
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tomokatsu Kushida
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masato Mitani
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Chikahiko Mitsui
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Hiroyuki Ishii
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Jun Takeya
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 205-0044, Japan
| | - Toshihiro Okamoto
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
17
|
Vong D, Nematiaram T, Dettmann MA, Murrey TL, Cavalcante LSR, Gurses SM, Radhakrishnan D, Daemen LL, Anthony JE, Koski KJ, Kronawitter CX, Troisi A, Moulé AJ. Quantitative Hole Mobility Simulation and Validation in Substituted Acenes. J Phys Chem Lett 2022; 13:5530-5537. [PMID: 35695809 DOI: 10.1021/acs.jpclett.2c00898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Knowledge of the full phonon spectrum is essential to accurately calculate the dynamic disorder (σ) and hole mobility (μh) in organic semiconductors (OSCs). However, most vibrational spectroscopy techniques under-measure the phonons, thus limiting the phonon validation. Here, we measure and model the full phonon spectrum using multiple spectroscopic techniques and predict μh using σ from only the Γ-point and the full Brillouin zone (FBZ). We find that only inelastic neutron scattering (INS) provides validation of all phonon modes, and that σ in a set of small molecule semiconductors can be miscalculated by up to 28% when comparing Γ-point against FBZ calculations. A subsequent mode analysis shows that many modes contribute to σ and that no single mode dominates. Our results demonstrate the importance of a thoroughly validated phonon calculation, and a need to develop design rules considering the full spectrum of phonon modes.
Collapse
Affiliation(s)
- Daniel Vong
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Tahereh Nematiaram
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Makena A Dettmann
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Tucker L Murrey
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616-5270, United States
| | - Lucas S R Cavalcante
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Sadi M Gurses
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Dhanya Radhakrishnan
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Luke L Daemen
- Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John E Anthony
- University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Kristie J Koski
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K
| | - Adam J Moulé
- Department of Chemical Engineering, University of California Davis, Davis, California 95616-5294, United States
| |
Collapse
|
18
|
Knepp ZJ, Fredin LA. Real Temperature Model of Dynamic Disorder in Molecular Crystals. J Phys Chem A 2022; 126:3265-3272. [PMID: 35561418 DOI: 10.1021/acs.jpca.2c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charge carrier mobilities in ordered organic semiconductors are limited by inherent vibrational phonons that scatter carriers. To improve a material's intrinsic mobility, restricting particularly detrimental modes with molecular substitutions may be a viable strategy. Here, we develop a probabilistic temperature-dependent displacement model that we couple with the density functional dimer projection protocol to predict effective electronic coupling fluctuations. The phonon-induced deviations from the equilibrium electronic couplings are used to infer the detriment of low-frequency phonons on charge carrier mobilities in a set of organic single crystals. We show that asymmetric sliding motions in pentacene and 2,6-diphenylanthracene induce large electronic coupling fluctuations, whereas seesawlike motions cause large fluctuations in rubrene, 9,10-diphenylanthracene, and, 2,6-diphenylanthracene. Vibrational analyses revealed that the asymmetric sliding phonon in rubrene persists only in the low-mobility direction of the crystal. Therefore, rubrene's intrinsic high mobility is likely due to the absence of this source of disorder in its high-mobility conduction channels. This model can be used to identify particularly harmful or helpful phonons in crystalline materials and may provide design rules for developing materials with intrinsically low disorder.
Collapse
Affiliation(s)
- Zachary J Knepp
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Lisa A Fredin
- Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
19
|
Nematiaram T, Troisi A. Feasibility of p-Doped Molecular Crystals as Transparent Conductive Electrodes via Virtual Screening. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4050-4061. [PMID: 35573107 PMCID: PMC9097283 DOI: 10.1021/acs.chemmater.2c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Transparent conducting materials are an essential component of optoelectronic devices. It is proven difficult, however, to develop high-performance materials that combine the often-incompatible properties of transparency and conductivity, especially for p-type-doped materials. In this work, we have employed a large set of molecular semiconductors extracted from the Cambridge Structural Database to evaluate the likelihood of transparent conducting material technology based on p-type-doped molecular crystals. Candidates are identified imposing the condition of high highest occupied molecular orbital (HOMO) energy level (for the material to be easily dopable), high charge carrier mobility (for the material to display large conductivity when doped), and a high threshold for energy absorption (for the material to absorb radiation only in the ultraviolet). The latest condition is found to be the most stringent criterion in a virtual screening protocol on a database composed of structures with sufficiently wide two-dimensional (2D) electronic bands. Calculation of excited-state energy is shown to be essential as the HOMO-lowest unoccupied molecular orbital (LUMO) gap cannot be reliably used to predict the transparency of this material class. Molecular semiconductors with desirable mobility are transparent because they display either forbidden electronic transition(s) to the lower excited states or small exchange energy between the frontier orbitals. Both features are difficult to design but can be found in a good number of compounds through virtual screening.
Collapse
|
20
|
Giannini S, Blumberger J. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics. Acc Chem Res 2022; 55:819-830. [PMID: 35196456 PMCID: PMC8928466 DOI: 10.1021/acs.accounts.1c00675] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Organic semiconductors (OSs) are an exciting
class of materials
that have enabled disruptive technologies in this century including
large-area electronics, flexible displays, and inexpensive solar cells.
All of these technologies rely on the motion of electrical charges
within the material and the diffusivity of these charges critically
determines their performance. In this respect, it is remarkable that
the nature of the charge transport in these materials has puzzled
the community for so many years, even for apparently simple systems
such as molecular single crystals: some experiments would better fit
an interpretation in terms of a localized particle picture, akin to
molecular or biological electron transfer, while others are in better
agreement with a wave-like interpretation, more akin to band transport
in metals. Exciting recent progress in the theory and simulation
of charge
carrier transport in OSs has now led to a unified understanding of
these disparate findings, and this Account will review one of these
tools developed in our laboratory in some detail: direct charge carrier
propagation by quantum-classical nonadiabatic molecular dynamics.
One finds that even in defect-free crystals the charge carrier can
either localize on a single molecule or substantially delocalize over
a large number of molecules depending on the relative strength of
electronic couplings between the molecules, reorganization, or charge
trapping energy of the molecule and thermal fluctuations of electronic
couplings and site energies, also known as electron–phonon
couplings. Our simulations predict that in molecular OSs exhibiting
some of
the highest measured charge mobilities to date, the charge carrier
forms “flickering” polarons, objects that are delocalized
over 10–20 molecules on average and that constantly change
their shape and extension under the influence of thermal disorder.
The flickering polarons propagate through the OS by short (≈10
fs long) bursts of the wave function that lead to an expansion of
the polaron to about twice its size, resulting in spatial displacement,
carrier diffusion, charge mobility, and electrical conductivity. Arguably
best termed “transient delocalization”, this mechanistic
scenario is very similar to the one assumed in transient localization
theory and supports its assertions. We also review recent applications
of our methodology to charge transport in disordered and nanocrystalline
samples, which allows us to understand the influence of defects and
grain boundaries on the charge propagation. Unfortunately, the
energetically favorable packing structures of
typical OSs, whether molecular or polymeric, places fundamental constraints
on charge mobilities/electronic conductivity compared to inorganic
semiconductors, which limits their range of applications. In this
Account, we review the design rules that could pave the way for new
very high-mobility OS materials and we argue that 2D covalent organic
frameworks are one of the most promising candidates to satisfy them. We conclude that our nonadiabatic dynamics method is a powerful
approach for predicting charge carrier transport in crystalline and
disordered materials. We close with a brief outlook on extensions
of the method to exciton transport, dissociation, and recombination.
This will bring us a step closer to an understanding of the birth,
survival, and annihiliation of charges at interfaces of optoelectronic
devices.
Collapse
Affiliation(s)
- Samuele Giannini
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
21
|
Roosta S, Galami F, Elstner M, Xie W. Efficient Surface Hopping Approach for Modeling Charge Transport in Organic Semiconductors. J Chem Theory Comput 2022; 18:1264-1274. [PMID: 35179894 DOI: 10.1021/acs.jctc.1c00944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trajectory surface hopping (TSH) method is nowadays widely applied to study the charge/exciton transport process in organic semiconductors (OSCs). In the present study, we systematically examine the performance of two approximations in the fewest switched surface hopping (FSSH) simulations for charge transport (CT) in several representative OSCs. These approximations include (i) the substitution of the nuclear velocity scaling along the nonadiabatic coupling vector (NCV) by rescaling the hopping probability with the Boltzmann factor (Boltzmann correction (BC)) and (ii) a phenomenological approach to treat the quantum feedback from the electronic system to the nuclear system (implicit charge relaxation (IR)) in the OSCs. We find that charge mobilities computed by FSSH-BC-IR are in very good agreement with the mobilities obtained by standard FSSH simulations with explicit charge relaxation (FSSH-ER), however, at reduced computational cost. A key parameter determining the charge carrier mobility is the reorganization energy, which is sensitively dependent on DFT functionals applied. By employing the IR approximation, the FSSH method allows systematic investigation of the effect of the reorganization energies obtained by different DFT functionals like B3LYP or ωB97XD on CT in OSCs. In comparison to the experiments, FSSH-BC-IR using ωB97XD reorganization energy underestimates mobilities in the low-coupling regime, which may indicate the lack of nuclear quantum effects (e.g., zero point energy (ZPE)) in the simulations. The mobilities obtained by FSSH-BC-IR using the B3LYP reorganization energy agree well with experimental values in 3 orders of magnitude. The accidental agreement may be the consequence of the underestimation of the reorganization energy by the B3LYP functional, which compensates for the neglect of nuclear ZPE in the simulations.
Collapse
Affiliation(s)
- Sara Roosta
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Farhad Galami
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Weiwei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Kamencek T, Zojer E. Discovering structure-property relationships for the phonon band structures of hydrocarbon-based organic semiconductor crystals: the instructive case of acenes. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:2532-2543. [PMID: 35310857 PMCID: PMC8852262 DOI: 10.1039/d1tc04708f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
By studying the low-frequency phonon bands of a series of crystalline acenes, this article lays the foundation for the development of structure-property relationships for phonons in organic semiconductors. Combining state-of-the art quantum-mechanical simulations with simple classical models, we explain how and why phonon frequencies and group velocities do or do not change when varying the molecular and crystal structures of the materials.
Collapse
Affiliation(s)
- Tomas Kamencek
- Institute of Solid State Physics, Graz University of Technology NAWI Graz Petersgasse 16 8010 Graz Austria
- Institute of Physical and Theoretical Chemistry, Graz University of Technology NAWI Graz Stremayrgasse 9 8010 Graz Austria
| | - Egbert Zojer
- Institute of Solid State Physics, Graz University of Technology NAWI Graz Petersgasse 16 8010 Graz Austria
| |
Collapse
|
23
|
Banks PA, Dyer AM, Whalley AC, Ruggiero MT. Side-chain torsional dynamics strongly influence charge transport in organic semiconductors. Chem Commun (Camb) 2022; 58:12803-12806. [DOI: 10.1039/d2cc04979a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of terahertz torsional side-chain motions on charge carrier dynamics in organic semiconductors (OSCs) is found to be highly-dependent on the equilibrium conformation of the molecule, highlighted here for thiophene-containing derivatives.
Collapse
Affiliation(s)
- Peter A. Banks
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA
| | - Adam M. Dyer
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA
| | - Adam C. Whalley
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA
| | - Michael T. Ruggiero
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA
| |
Collapse
|
24
|
Ghosh S, Prasanthkumar S, Das S, Saeki A, Seki S, Ajayaghosh A. Structurally directed thienylenevinylene self–assembly for improved charge carrier mobility: 2D sheets vs 1D fibers. Chem Commun (Camb) 2022; 58:6837-6840. [DOI: 10.1039/d2cc02111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High charge carrier mobility is a prerequisite for organic electronics for which molecular arrangement and morphology plays a vital role. Herein, we report how the self-assembly of thienylenevinylenes T1 and...
Collapse
|
25
|
Mombrú D, Romero M, Faccio R, Mombrú ÁW. Ab Initio Molecular Dynamics Assessment on the Mixed Ionic–Electronic Transport for Crystalline Poly(3-Hexylthiophene) Using Full Explicit Lithium-Based Dopants and Additives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominique Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Álvaro W. Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| |
Collapse
|
26
|
Rao VJ, Qi H, Berger FJ, Grieger S, Kaiser U, Backes C, Zaumseil J. Liquid Phase Exfoliation of Rubrene Single Crystals into Nanorods and Nanobelts. ACS NANO 2021; 15:20466-20477. [PMID: 34813291 DOI: 10.1021/acsnano.1c08965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid phase exfoliation (LPE) is a popular method to create dispersions of two-dimensional nanosheets from layered inorganic van der Waals crystals. Here, it is applied to orthorhombic and triclinic single crystals of the organic semiconductor rubrene with only noncovalent interactions (mainly π-π) between the molecules. Distinct nanorods and nanobelts of rubrene are formed, stabilized against aggregation in aqueous sodium cholate solution, and isolated by liquid cascade centrifugation. Selected-area electron diffraction and Raman spectroscopy confirm the crystallinity of the rubrene nanorods and nanobelts while the optical properties (absorbance, photoluminescence) of the dispersions are similar to rubrene solutions due to their randomized orientations. The formation of these stable crystalline rubrene nanostructures with only a few molecular layers by LPE confirms that noncovalent interactions in molecular crystals can be strong enough to enable mechanical exfoliation similar to inorganic layered materials.
Collapse
Affiliation(s)
- Vaishnavi J Rao
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Haoyuan Qi
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
- Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Felix J Berger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Grieger
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ute Kaiser
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Claudia Backes
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
27
|
Cavalcante LSR, Daemen LL, Goldman N, Moulé AJ. Davis Computational Spectroscopy Workflow-From Structure to Spectra. J Chem Inf Model 2021; 61:4486-4496. [PMID: 34449225 DOI: 10.1021/acs.jcim.1c00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe an automated workflow that connects a series of atomic simulation tools to investigate the relationship between atomic structure, lattice dynamics, materials properties, and inelastic neutron scattering (INS) spectra. Starting from the atomic simulation environment (ASE) as an interface, we demonstrate the use of a selection of calculators, including density functional theory (DFT) and density functional tight binding (DFTB), to optimize the structures and calculate interatomic force constants. We present the use of our workflow to compute the phonon frequencies and eigenvectors, which are required to accurately simulate the INS spectra in crystalline solids like diamond and graphite as well as molecular solids like rubrene. We have also implemented a machine-learning force field based on Chebyshev polynomials called the Chebyshev interaction model for efficient simulation (ChIMES) to improve the accuracy of the DFTB simulations. We then explore the transferability of our DFTB/ChIMES models by comparing simulations derived from different training sets. We show that DFTB/ChIMES demonstrates ∼100× reduction in computational expense while retaining most of the accuracy of DFT as well as yielding high accuracy for different materials outside of our training sets. The DFTB/ChIMES method within the workflow expands the possibilities to use simulations to accurately predict materials properties of increasingly complex structures that would be unfeasible with ab initio methods.
Collapse
Affiliation(s)
- L S R Cavalcante
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nir Goldman
- Department of Chemical Engineering, University of California, Davis, California 95616, United States.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Adam J Moulé
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
28
|
Agrawal AR, Kumar NR, Choudhury A, Zade SS. Synthesis of bent-shaped π-extended thienoacenes from 2,5-distannylated 3,4-dialkynethiophene. Chem Commun (Camb) 2021; 57:9538-9541. [PMID: 34546251 DOI: 10.1039/d1cc04283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bent-shaped thienoacenes show promise as next-generation organic semiconductors. Here we present the synthesis of an air-stable, pure and easily scalable thiophene precursor, 2,5-distannylated-3,4-dialkyne thiophene, starting from 3,4-dialkyne thiophene in quantitative yields. This precursor has been used for the synthesis of a versatile class of syn-thienoacenes comprising up to 13 fused rings, helical acenes and donor-acceptor acenes.
Collapse
Affiliation(s)
- Abhijeet R Agrawal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, Nadia, West Bengal, India.
| | - Neha Rani Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, Nadia, West Bengal, India.
| | - Aditya Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, Nadia, West Bengal, India.
| | - Sanjio S Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, Nadia, West Bengal, India.
| |
Collapse
|
29
|
Kousseff CJ, Halaksa R, Parr ZS, Nielsen CB. Mixed Ionic and Electronic Conduction in Small-Molecule Semiconductors. Chem Rev 2021; 122:4397-4419. [PMID: 34491034 DOI: 10.1021/acs.chemrev.1c00314] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small-molecule organic semiconductors have displayed remarkable electronic properties with a multitude of π-conjugated structures developed and fine-tuned over recent years to afford highly efficient hole- and electron-transporting materials. Already making a significant impact on organic electronic applications including organic field-effect transistors and solar cells, this class of materials is also now naturally being considered for the emerging field of organic bioelectronics. In efforts aimed at identifying and developing (semi)conducting materials for bioelectronic applications, particular attention has been placed on materials displaying mixed ionic and electronic conduction to interface efficiently with the inherently ionic biological world. Such mixed conductors are conveniently evaluated using an organic electrochemical transistor, which further presents itself as an ideal bioelectronic device for transducing biological signals into electrical signals. Here, we review recent literature relevant for the design of small-molecule mixed ionic and electronic conductors. We assess important classes of p- and n-type small-molecule semiconductors, consider structural modifications relevant for mixed conduction and for specific interactions with ionic species, and discuss the outlook of small-molecule semiconductors in the context of organic bioelectronics.
Collapse
Affiliation(s)
- Christina J Kousseff
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Roman Halaksa
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
30
|
Selezneva E, Vercouter A, Schweicher G, Lemaur V, Broch K, Antidormi A, Takimiya K, Coropceanu V, Brédas J, Melis C, Cornil J, Sirringhaus H. Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Low-Disorder Molecular Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008708. [PMID: 34342927 PMCID: PMC11468527 DOI: 10.1002/adma.202008708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Indexed: 06/13/2023]
Abstract
While the charge transport properties of organic semiconductors have been extensively studied over the recent years, the field of organics-based thermoelectrics is still limited by a lack of experimental data on thermal transport and of understanding of the associated structure-property relationships. To fill this gap, a comprehensive experimental and theoretical investigation of the lattice thermal conductivity in polycrystalline thin films of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (Cn-DNTT-Cn with n = 0, 8) semiconductors is reported. Strikingly, thermal conductivity appears to be much more isotropic than charge transport, which is confined to the 2D molecular layers. A direct comparison between experimental measurements (3ω-Völklein method) and theoretical estimations (approach-to-equilibrium molecular dynamics (AEMD) method) indicates that the in-plane thermal conductivity is strongly reduced in the presence of the long terminal alkyl chains. This evolution can be rationalized by the strong localization of the intermolecular vibrational modes in C8-DNTT-C8 in comparison to unsubstituted DNTT cores, as evidenced by a vibrational mode analysis. Combined with the enhanced charge transport properties of alkylated DNTT systems, this opens the possibility to decouple electron and phonon transport in these materials, which provides great potential for enhancing the thermoelectric figure of merit ZT.
Collapse
Affiliation(s)
- Ekaterina Selezneva
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Alexandre Vercouter
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsMons7000Belgium
| | - Guillaume Schweicher
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsMons7000Belgium
| | - Katharina Broch
- Institut für Angewandte PhysikUniversität TübingenAuf der Morgenstelle 1072076TübingenGermany
| | - Aleandro Antidormi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UAB, BellaterraBarcelona08193Spain
| | - Kazuo Takimiya
- Emergent Molecular Function Research GroupRIKEN Center for Emergent Matter Science (CEMS)WakoSaitama351‐0198Japan
| | - Veaceslav Coropceanu
- School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics (COPE)Georgia Institute of TechnologyAtlantaGA30332‐0400USA
| | - Jean‐Luc Brédas
- School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics (COPE)Georgia Institute of TechnologyAtlantaGA30332‐0400USA
- Department of Chemistry and BiochemistryThe University of ArizonaTucsonAZ85721‐0088USA
| | - Claudio Melis
- Dipartimento di FisicaUniversità di Cagliari, Cittadella UniversitariaMonserrato (Ca)09042Italy
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel MaterialsUniversity of MonsMons7000Belgium
| | - Henning Sirringhaus
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|
31
|
Zojer E, Winkler C. Maximizing the Carrier Mobilities of Metal-Organic Frameworks Comprising Stacked Pentacene Units. J Phys Chem Lett 2021; 12:7002-7009. [PMID: 34283912 PMCID: PMC8397338 DOI: 10.1021/acs.jpclett.1c01892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Charge transport properties of metal-organic frameworks (MOFs) are of distinct interest for (opto)electronic applications. In contrast to the situation in molecular crystals, MOFs allow an extrinsic control of the relative arrangement of π-conjugated entities through the framework architecture. This suggests that MOFs should enable materials with particularly high through-space charge carrier mobilities. Such materials, however, do not yet exist, despite the synthesis of MOFs with, for example, seemingly ideally packed stacks of pentacene-bearing linkers. Their rather low mobilities have been attributed to dynamic disorder effects. Using dispersion-corrected density functional theory calculations, we show that this is only part of the problem and that targeted network design involving comparably easy-to-implement structural modifications have the potential to massively boost charge transport. For the pentacene stacks, this is related to the a priori counterintuitive observation that the electronic coupling between neighboring units can be strongly increased by increasing the stacking distance.
Collapse
|
32
|
Li W, Ren J, Shuai Z. A general charge transport picture for organic semiconductors with nonlocal electron-phonon couplings. Nat Commun 2021; 12:4260. [PMID: 34253724 PMCID: PMC8275621 DOI: 10.1038/s41467-021-24520-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
The nonlocal electron-phonon couplings in organic semiconductors responsible for the fluctuation of intermolecular transfer integrals has been the center of interest recently. Several irreconcilable scenarios coexist for the description of the nonlocal electron-phonon coupling, such as phonon-assisted transport, transient localization, and band-like transport. Through a nearly exact numerical study for the carrier mobility of the Holstein-Peierls model using the matrix product states approach, we locate the phonon-assisted transport, transient localization and band-like regimes as a function of the transfer integral (V) and the nonlocal electron-phonon couplings (ΔV), and their distinct transport behaviors are analyzed by carrier mobility, mean free path, optical conductivity and one-particle spectral function. We also identify an "intermediate regime" where none of the established pictures applies, and the generally perceived hopping regime is found to be at a very limited end in the proposed regime paradigm.
Collapse
Affiliation(s)
- Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
33
|
Reiser P, Konrad M, Fediai A, Léon S, Wenzel W, Friederich P. Analyzing Dynamical Disorder for Charge Transport in Organic Semiconductors via Machine Learning. J Chem Theory Comput 2021; 17:3750-3759. [PMID: 33944566 DOI: 10.1021/acs.jctc.1c00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic semiconductors are indispensable for today's display technologies in the form of organic light-emitting diodes (OLEDs) and further optoelectronic applications. However, organic materials do not reach the same charge carrier mobility as inorganic semiconductors, limiting the efficiency of devices. To find or even design new organic semiconductors with higher charge carrier mobility, computational approaches, in particular multiscale models, are becoming increasingly important. However, such models are computationally very costly, especially when large systems and long timescales are required, which is the case to compute static and dynamic energy disorder, i.e., the dominant factor to determine charge transport. Here, we overcome this drawback by integrating machine learning models into multiscale simulations. This allows us to obtain unprecedented insight into relevant microscopic materials properties, in particular static and dynamic disorder contributions for a series of application-relevant molecules. We find that static disorder and thus the distribution of shallow traps are highly asymmetrical for many materials, impacting widely considered Gaussian disorder models. We furthermore analyze characteristic energy level fluctuation times and compare them to typical hopping rates to evaluate the importance of dynamic disorder for charge transport. We hope that our findings will significantly improve the accuracy of computational methods used to predict application-relevant materials properties of organic semiconductors and thus make these methods applicable for virtual materials design.
Collapse
Affiliation(s)
- Patrick Reiser
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe 76131, Germany
| | - Manuel Konrad
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Artem Fediai
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Salvador Léon
- Department of Industrial Chemical Engineering and Environment, Universidad Politécnica de Madrid, C/ José Gutierrez Abascal, 2, Madrid 28006, Spain
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Pascal Friederich
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe 76131, Germany
| |
Collapse
|
34
|
Li QY, Yao ZF, Wang JY, Pei J. Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076601. [PMID: 33887704 DOI: 10.1088/1361-6633/abfaad] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aggregation of molecules is a multi-molecular phenomenon occurring when two or more molecules behave differently from discrete molecules due to their intermolecular interactions. Moving beyond single molecules, aggregation usually demonstrates evolutive or wholly emerging new functionalities relative to the molecular components. Conjugated small molecules and polymers interact with each other, resulting in complex solution-state aggregates and solid-state microstructures. Optoelectronic properties of conjugated small molecules and polymers are sensitively determined by their aggregation states across a broad range of spatial scales. This review focused on the aggregation ranging from molecular structure, intermolecular interactions, solution-state assemblies, and solid-state microstructures of conjugated small molecules and polymers. We addressed the importance of such aggregation in filling the gaps from the molecular level to device functions and highlighted the multi-scale structures and properties at different scales. From the view of multi-level aggregation behaviors, we divided the whole process from the molecule to devices into several parts: molecular design, solvation, solution-state aggregation, crystal engineering, and solid-state microstructures. We summarized the progress and challenges of relationships between optoelectronic properties and multi-level aggregation. We believe aggregation science will become an interdisciplinary research field and serves as a general platform to develop future materials with the desired functions.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
35
|
Guilbert AAY, Parr ZS, Kreouzis T, Woods DJ, Sprick RS, Abrahams I, Nielsen CB, Zbiri M. Effect of substituting non-polar chains with polar chains on the structural dynamics of small organic molecule and polymer semiconductors. Phys Chem Chem Phys 2021; 23:7462-7471. [PMID: 33876106 DOI: 10.1039/d1cp00670c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The processability and optoelectronic properties of organic semiconductors can be tuned and manipulated via chemical design. The substitution of the popular alkyl side chains by oligoethers has recently been successful for applications such as bioelectronic sensors and photocatalytic hydrogen evolution. Beyond the differences in polarity, the carbon-oxygen bond in oligoethers is likely to render the system softer and more prone to dynamical disorder that can be detrimental to charge transport for example. In this context, we use neutron spectroscopy as a master method of probe, in addition to characterisation techniques such as X-ray diffraction, differential scanning calorimetry and polarized optical microscopy to study the effect of the substitution of n-hexyl (Hex) chains by triethylene glycol (TEG) chains on the structural dynamics of two organic semiconducting materials: a phenylene-bithiophene-phenylene (PTTP) small molecule and a fluorene-co-dibenzothiophene (FS) polymer. Counterintuitively, inelastic neutron scattering (INS) reveals a general softening of the modes of PTTP and FS materials with Hex chains, pointing towards an increased dynamical disorder in the Hex-based systems. However, temperature-dependent X-ray and neutron diffraction as well as INS and differential scanning calorimetry evidence an extra reversible transition close to room temperature for PTTP with TEG chains. The observed extra structural transition, which is not accompanied by a change in birefringence, can also be observed by quasi-elastic neutron scattering (QENS). A fastening of the TEG chains dynamics is observed in the case of PTTP and not FS. We therefore assign this transition to the melt of the TEG chains. Overall the TEG chains are promoting dynamical order at room temperature, but if crystallising, may introduce an extra reversible structural transition above room temperature leading to thermal instabilities. Ultimately, a deeper understanding of chain polarity and structural dynamics can help guide new materials design and navigate the intricate balance between electronic charge transport and aqueous swelling that is being sought for a number of emerging organic electronic and bioelectronic applications.
Collapse
Affiliation(s)
- Anne A Y Guilbert
- Department of Physics and Centre for Plastic Electronics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pazoki S, Frick J, Dougherty DB. Dynamics of domain boundaries at metal-organic interfaces. J Chem Phys 2021; 154:124704. [PMID: 33810683 DOI: 10.1063/5.0029313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Domain boundaries are a determining factor in the performance of organic electronic devices since they can trap mobile charge carriers. We point out the possibility of time-dependent motion of these boundaries and suggest that their thermal fluctuations can be a source of dynamic disorder in organic films. In particular, we study the C8-BTBT monolayer films with several different domain boundaries. After characterizing the crystallography and diversity of structures in the first layer of C8-BTBT on Au(111), we focus on quantifying the domain boundary fluctuations in the saturated monolayer. We find that the mean squared displacement of the boundary position grows linearly with time at early times but tends to saturate after about 7 s. This behavior is ascribed to confined diffusion of the interface position based on fits and numerical integration of a Langevin equation for the interface motion.
Collapse
Affiliation(s)
- Sara Pazoki
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jordan Frick
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Daniel B Dougherty
- Organic and Carbon Electronics Lab (ORaCEL) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
37
|
Haldar R, Kozlowska M, Ganschow M, Ghosh S, Jakoby M, Chen H, Ghalami F, Xie W, Heidrich S, Tsutsui Y, Freudenberg J, Seki S, Howard IA, Richards BS, Bunz UHF, Elstner M, Wenzel W, Wöll C. Interplay of structural dynamics and electronic effects in an engineered assembly of pentacene in a metal-organic framework. Chem Sci 2021; 12:4477-4483. [PMID: 34168750 PMCID: PMC8179632 DOI: 10.1039/d0sc07073d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/07/2021] [Indexed: 11/23/2022] Open
Abstract
Charge carrier mobility is an important figure of merit to evaluate organic semiconductor (OSC) materials. In aggregated OSCs, this quantity is determined by inter-chromophoric electronic and vibrational coupling. These key parameters sensitively depend on structural properties, including the density of defects. We have employed a new type of crystalline assembly strategy to engineer the arrangement of the OSC pentacene in a structure not realized as crystals to date. Our approach is based on metal-organic frameworks (MOFs), in which suitably substituted pentacenes act as ditopic linkers and assemble into highly ordered π-stacks with long-range order. Layer-by-layer fabrication of the MOF yields arrays of electronically coupled pentacene chains, running parallel to the substrate surface. Detailed photophysical studies reveal strong, anisotropic inter-pentacene electronic coupling, leading to efficient charge delocalization. Despite a high degree of structural order and pronounced dispersion of the 1D-bands for the static arrangement, our experimental results demonstrate hopping-like charge transport with an activation energy of 64 meV dominating the band transport over a wide range of temperatures. A thorough combined quantum mechanical and molecular dynamics investigation identifies frustrated localized rotations of the pentacene cores as the reason for the breakdown of band transport and paves the way for a crystal engineering strategy of molecular OSCs that independently varies the arrangement of the molecular cores and their vibrational degrees of freedom.
Collapse
Affiliation(s)
- Ritesh Haldar
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Mariana Kozlowska
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) Hermann-von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Ganschow
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Samrat Ghosh
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Marius Jakoby
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT) Hermann von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Hongye Chen
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute of Nano Science Nanjing China
| | - Farhad Ghalami
- Karlsruhe Institute of Technology, Institute of Physical Chemistry (IPC), Institute of Biological Interfaces (IBG2) 76131 Karlsruhe Germany
| | - Weiwei Xie
- Karlsruhe Institute of Technology, Institute of Physical Chemistry (IPC), Institute of Biological Interfaces (IBG2) 76131 Karlsruhe Germany
| | - Shahriar Heidrich
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) Hermann-von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ian A Howard
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT) Hermann von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology (KIT), Light Technology Institute (LTI) Engesserstrasse 13 76131 Karlsruhe Germany
| | - Bryce S Richards
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT) Hermann von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology (KIT), Light Technology Institute (LTI) Engesserstrasse 13 76131 Karlsruhe Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marcus Elstner
- Karlsruhe Institute of Technology, Institute of Physical Chemistry (IPC), Institute of Biological Interfaces (IBG2) 76131 Karlsruhe Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) Hermann-von-Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof Wöll
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von Helmholtz Platz-1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
38
|
Peng X, Li Q, Shuai Z. Influences of dynamic and static disorder on the carrier mobility of BTBT-C12 derivatives: a multiscale computational study. NANOSCALE 2021; 13:3252-3262. [PMID: 33533394 DOI: 10.1039/d0nr08320h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The role of dynamic and static disorder has been widely discussed for carrier transport in organic semiconductors. In this work, we apply a multiscale approach by combining molecular dynamics simulations, quantum mechanics calculations and kinetic Monte-Carlo simulations to study the influence of dynamic and static disorder on the hole mobility of four didodecyl[1]benzothieno[3,2-b]benzothiophene (BTBT-C12) isomers. It is found that the dynamic disorder of transfer integral tends to decrease the mobility for quasi-1D (quasi one-dimensional) BTBT1 and BTBT4 isomers and increase the mobility for 2D (two-dimensional) BTBT2 and BTBT3 isomers, while the dynamic disorder of site energy tends to decrease mobility for all the four isomers; however, the reduction in 2D molecules is much less than that in quasi-1D molecules. Results show that trap defects could reduce the mobility for both the quasi-1D and 2D molecular structures significantly, even to several orders of magnitude. In addition, our work also reveals that there might exist two kinds of oxidation defects of the scatter type for the concerned isomers, which thus leads to greater reduction in mobility for the quasi-1D molecular structures than the 2D molecular structures. The study shows that the 2D molecular structures are favored over the quasi-1D or 1D molecular structure, and it is expected that these results could be used to shed light on device design in organic electronics.
Collapse
Affiliation(s)
- Xingliang Peng
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | |
Collapse
|
39
|
Termine R, Golemme A. Charge Mobility in Discotic Liquid Crystals. Int J Mol Sci 2021; 22:E877. [PMID: 33467214 PMCID: PMC7830985 DOI: 10.3390/ijms22020877] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Discotic (disk-shaped) molecules or molecular aggregates may form, within a certain temperature range, partially ordered phases, known as discotic liquid crystals, which have been extensively studied in the recent past. On the one hand, this interest was prompted by the fact that they represent models for testing energy and charge transport theories in organic materials. However, their long-range self-assembling properties, potential low cost, ease of processability with a variety of solvents and the relative ease of tailoring their properties via chemical synthesis, drove the attention of researchers also towards the exploitation of their semiconducting properties in organic electronic devices. This review covers recent research on the charge transport properties of discotic mesophases, starting with an introduction to their phase structure, followed by an overview of the models used to describe charge mobility in organic substances in general and in these systems in particular, and by the description of the techniques most commonly used to measure their charge mobility. The reader already familiar or not interested in such details can easily skip these sections and refer to the core section of this work, focusing on the most recent and significant results regarding charge mobility in discotic liquid crystals.
Collapse
Affiliation(s)
- Roberto Termine
- LASCAMM CR-INSTM, CNR-NANOTEC SS di Rende, Dipartimento di Fisica, Università Della Calabria, 87036 Rende, Italy;
| | | |
Collapse
|
40
|
Huang Y, Gong X, Meng Y, Wang Z, Chen X, Li J, Ji D, Wei Z, Li L, Hu W. Effectively modulating thermal activated charge transport in organic semiconductors by precise potential barrier engineering. Nat Commun 2021; 12:21. [PMID: 33397923 PMCID: PMC7782849 DOI: 10.1038/s41467-020-20209-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
The temperature dependence of charge transport dramatically affects and even determines the properties and applications of organic semiconductors, but is challenging to effectively modulate. Here, we develop a strategy to circumvent this challenge through precisely tuning the effective height of the potential barrier of the grain boundary (i.e., potential barrier engineering). This strategy shows that the charge transport exhibits strong temperature dependence when effective potential barrier height reaches maximum at a grain size near to twice the Debye length, and that larger or smaller grain sizes both reduce effective potential barrier height, rendering devices relatively thermostable. Significantly, through this strategy a traditional thermo-stable organic semiconductor (dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene, DNTT) achieves a high thermo-sensitivity (relative current change) of 155, which is far larger than what is expected from a standard thermally-activated carrier transport. As demonstrations, we show that thermo-sensitive OFETs perform as highly sensitive temperature sensors. Controlling temperature-depending charge transport in organic semiconductors is key to tailoring their electronic properties. Here, the authors report a potential barrier engineering strategy for modulating thermally-activated charge transport in organic semiconductors.
Collapse
Affiliation(s)
- Yinan Huang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Xue Gong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, China.,Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, China
| | - Yancheng Meng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, China.,Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, China
| | - Zhongwu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Xiaosong Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Jie Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China.,Beijing National Laboratory for Molecular Sciences, 100190, Beijing, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
| |
Collapse
|
41
|
Sosorev AY, Parashchuk OD, Tukachev NV, Maslennikov DR, Dominskiy DI, Borshchev OV, Polinskaya MS, Skorotetcky MS, Kharlanov OG, Paraschuk DY. Suppression of dynamic disorder by electrostatic interactions in structurally close organic semiconductors. Phys Chem Chem Phys 2021; 23:15485-15491. [PMID: 34278404 DOI: 10.1039/d1cp01599k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamic disorder manifested in fluctuations of charge transfer integrals considerably hinders charge transport in high-mobility organic semiconductors. Accordingly, strategies for suppression of the dynamic disorder are highly desirable. In this study, we suggest a novel promising strategy for suppression of dynamic disorder-tuning the molecular electrostatic potential. Specifically, we show that the intensities of the low-frequency (LF) Raman spectra for crystalline organic semiconductors consisting of π-isoelectronic small molecules (i.e. bearing the same number of π electrons)-benzothieno[3,2-b][1]benzothiophene (BTBT), chrysene, tetrathienoacene (TTA) and naphtho[1,2-b:5,6-b']dithiophene (NDT)-differ significantly, indicating significant differences in the dynamic disorder. This difference is explained by suppression of the dynamic disorder in chrysene and NDT because of stronger intermolecular electrostatic interactions. As a result, guidelines for the increase of the crystal rigidity for the rational design of high-mobility organic semiconductors are suggested.
Collapse
Affiliation(s)
- Andrey Yu Sosorev
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Str., 5, Troitsk, Moscow 108840, Russia. and Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Olga D Parashchuk
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Nikita V Tukachev
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Str., 5, Troitsk, Moscow 108840, Russia.
| | - Dmitry R Maslennikov
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Str., 5, Troitsk, Moscow 108840, Russia.
| | - Dmitry I Dominskiy
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Oleg V Borshchev
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia
| | - Marina S Polinskaya
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia
| | - Maxim S Skorotetcky
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Science, Profsoyuznaya 70, Moscow 117393, Russia
| | - Oleg G Kharlanov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Dmitry Yu Paraschuk
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| |
Collapse
|
42
|
Kumagai S, Watanabe S, Ishii H, Isahaya N, Yamamura A, Wakimoto T, Sato H, Yamano A, Okamoto T, Takeya J. Coherent Electron Transport in Air-Stable, Printed Single-Crystal Organic Semiconductor and Application to Megahertz Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003245. [PMID: 33191541 DOI: 10.1002/adma.202003245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors (OSCs) have attracted growing attention for optoelectronic applications such as field-effect transistors (FETs), and coherent (or band-like) carrier transport properties in OSC single crystals (SCs) have been of interest as they can lead to high carrier mobilities. Recently, such p-type OSC SCs compatible with a printing technology have been used to achieve high-speed FETs; therefore, developments of n-type counterparts may be promising for realizing high-speed complementary organic circuits. Herein, coherent electron transport properties in a printed SC of a state-of-the-art, air-stable n-type OSC, PhC2 -BQQDI, by means of variable-temperature gated Hall effect measurements and X-ray single-crystal diffraction analyses in conjunction with band structure calculations, are reported. Furthermore, the SC FET is tested for high-speed operations, which obtains a cutoff frequency of 4.3 MHz at an operation voltage of 20 V in air. Thus, PhC2 -BQQDI is shown as a new candidate for practical applications of SC-based, organic complementary devices.
Collapse
Affiliation(s)
- Shohei Kumagai
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Shun Watanabe
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Hiroyuki Ishii
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Nobuaki Isahaya
- Pi-Crystal Inc., 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Akifumi Yamamura
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Takahiro Wakimoto
- Pi-Crystal Inc., 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Hiroyasu Sato
- Rigaku Corp, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Akihito Yamano
- Rigaku Corp, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Toshihiro Okamoto
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Jun Takeya
- Material Innovation Research Center and Department of Advanced Materials Science, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- AIST-UTokyo Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Pi-Crystal Inc., 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 205-0044, Japan
| |
Collapse
|
43
|
Giannini S, Ziogos OG, Carof A, Ellis M, Blumberger J. Flickering Polarons Extending over Ten Nanometres Mediate Charge Transport in High‐Mobility Organic Crystals. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Samuele Giannini
- Department of Physics and Astronomy and Thomas Young Centre University College London London WC1E 6BT UK
| | - Orestis George Ziogos
- Department of Physics and Astronomy and Thomas Young Centre University College London London WC1E 6BT UK
| | - Antoine Carof
- Laboratoire de Physique et Chimie Théoriques, CNRS, UMR No. 7019 Université de Lorraine BP 239 Vandœuvre‐lès‐Nancy Cedex 54506 France
| | - Matthew Ellis
- Department of Physics and Astronomy and Thomas Young Centre University College London London WC1E 6BT UK
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre University College London London WC1E 6BT UK
| |
Collapse
|
44
|
Jiang S, Wang Q, Qian J, Guo J, Duan Y, Wang H, Shi Y, Li Y. Molecular Layer-Defined Transition of Carrier Distribution and Correlation with Transport in Organic Crystalline Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26267-26275. [PMID: 32406235 DOI: 10.1021/acsami.0c04873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the great efforts to unveil the charge carrier behavior at the semiconductor/dielectric interface of organic field-effect transistors, an examination of the interfacial carrier distribution and the correlation with the charge transport in molecular crystalline semiconductors remains fundamental for understanding the nature of the microscopic carrier motion. Hence, an effective approach to accurately tune the carrier distribution with molecular-layer precision is essential. Here, we find that the carrier accumulation is strictly modulated in highly ordered, few-layer molecular crystalline semiconducting films by tuning the polaronic coupling between the charge carriers and dielectric. The admittance method reveals that the carriers distribute only within a monolayer with stronger localization on a high-κ dielectric and extend to a second layer with better delocalization on a low-κ dielectric. Furthermore, a unique dimensional transition in the charge transport at the dielectric interface is evidenced under a transistor architecture by temperature-dependent measurements. The presented microscopic nature of charge carriers with layer-defined precision in molecular crystalline films should provide an unprecedented opportunity in organic electronics in terms of interface engineering, quantum transport, and device physics.
Collapse
Affiliation(s)
- Sai Jiang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Qijing Wang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jun Qian
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jianhang Guo
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Yiwei Duan
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Hengyuan Wang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Yi Shi
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Yun Li
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
45
|
Nematiaram T, Troisi A. Modeling charge transport in high-mobility molecular semiconductors: Balancing electronic structure and quantum dynamics methods with the help of experiments. J Chem Phys 2020; 152:190902. [DOI: 10.1063/5.0008357] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tahereh Nematiaram
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Alessandro Troisi
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
46
|
Dantanarayana V, Nematiaram T, Vong D, Anthony JE, Troisi A, Nguyen Cong K, Goldman N, Faller R, Moulé AJ. Predictive Model of Charge Mobilities in Organic Semiconductor Small Molecules with Force-Matched Potentials. J Chem Theory Comput 2020; 16:3494-3503. [DOI: 10.1021/acs.jctc.0c00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Varuni Dantanarayana
- Department of Chemistry, University of California—Davis, Davis, California 95616, United States
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tahereh Nematiaram
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Daniel Vong
- Department of Materials Science and Engineering, University of California—Davis, Davis, California 95616, United States
| | - John E. Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Alessandro Troisi
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Kien Nguyen Cong
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Nir Goldman
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Department of Chemical Engineering, University of California—Davis - Davis, California 95616, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California—Davis - Davis, California 95616, United States
| | - Adam J. Moulé
- Department of Chemical Engineering, University of California—Davis - Davis, California 95616, United States
| |
Collapse
|
47
|
Okamoto T, Kumagai S, Fukuzaki E, Ishii H, Watanabe G, Niitsu N, Annaka T, Yamagishi M, Tani Y, Sugiura H, Watanabe T, Watanabe S, Takeya J. Robust, high-performance n-type organic semiconductors. SCIENCE ADVANCES 2020; 6:eaaz0632. [PMID: 32494668 PMCID: PMC7195148 DOI: 10.1126/sciadv.aaz0632] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/07/2020] [Indexed: 05/03/2023]
Abstract
Organic semiconductors (OSCs) are important active materials for the fabrication of next-generation organic-based electronics. However, the development of n-type OSCs lags behind that of p-type OSCs in terms of charge-carrier mobility and environmental stability. This is due to the absence of molecular designs that satisfy the requirements. The present study describes the design and synthesis of n-type OSCs based on challenging molecular features involving a π-electron core containing electronegative N atoms and substituents. The unique π-electron system simultaneously reinforces both electronic and structural interactions. The current n-type OSCs exhibit high electron mobilities with high reliability, atmospheric stability, and robustness against environmental and heat stresses and are superior to other existing n-type OSCs. This molecular design represents a rational strategy for the development of high-end organic-based electronics.
Collapse
Affiliation(s)
- Toshihiro Okamoto
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), AIST, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shohei Kumagai
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Eiji Fukuzaki
- Fujifilm Corp., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Hiroyuki Ishii
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Naoyuki Niitsu
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tatsuro Annaka
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masakazu Yamagishi
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College, 13 Hongo-machi, Toyama City, Toyama 939-8630, Japan
| | - Yukio Tani
- Fujifilm Corp., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Hiroki Sugiura
- Fujifilm Corp., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Tetsuya Watanabe
- Fujifilm Corp., 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Shun Watanabe
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), AIST, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jun Takeya
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)–University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), AIST, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- MANA, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 205-0044, Japan
| |
Collapse
|
48
|
Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. NATURE MATERIALS 2020; 19:491-502. [PMID: 32296138 DOI: 10.1038/s41563-020-0647-2] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Conjugated polymers and molecular semiconductors are emerging as a viable semiconductor technology in industries such as displays, electronics, renewable energy, sensing and healthcare. A key enabling factor has been significant scientific progress in improving their charge transport properties and carrier mobilities, which has been made possible by a better understanding of the molecular structure-property relationships and the underpinning charge transport physics. Here we aim to present a coherent review of how we understand charge transport in these high-mobility van der Waals bonded semiconductors. Specific questions of interest include estimates for intrinsic limits to the carrier mobilities that might ultimately be achievable; a discussion of the coupling between charge and structural dynamics; the importance of molecular conformations and mesoscale structural features; how the transport physics of conjugated polymers and small molecule semiconductors are related; and how the incorporation of counterions in doped films-as used, for example, in bioelectronics and thermoelectric devices-affects the electronic structure and charge transport properties.
Collapse
Affiliation(s)
| | - Mark Nikolka
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
49
|
Okamoto T, Yu CP, Mitsui C, Yamagishi M, Ishii H, Takeya J. Bent-Shaped p-Type Small-Molecule Organic Semiconductors: A Molecular Design Strategy for Next-Generation Practical Applications. J Am Chem Soc 2020; 142:9083-9096. [PMID: 32293879 DOI: 10.1021/jacs.9b10450] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significant progress has been made in both molecular design and fundamental scientific understanding of organic semiconductors (OSCs) in recent years. Suitable charge-carrier mobilities (μ) have been obtained by many high-performance OSCs (μ > 10 cm2 V-1 s-1), but drawbacks remain, including low solution processability and poor thermal durability. In addition, since aggregation of OSCs involves weak intermolecular interactions, the molecules are perpetually in thermal motion, even in the solid state, which disrupts charge-carrier transport. These issues limit potential applications of OSCs. The present work examines a molecular design for hole-transporting (p-type) OSCs based on the "bent-shaped" geometry with specific molecular orbital configurations, which aims to enhance effective intermolecular orbital overlaps, stabilize crystal phases, suppress detrimental molecular motions in the solid state, and improve solution processability. The results indicated that such OSCs have high μ and suitable solution processability, and are resistant to ambient and thermal conditions, making them suitable for practical applications.
Collapse
Affiliation(s)
- Toshihiro Okamoto
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Craig P Yu
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Chikahiko Mitsui
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masakazu Yamagishi
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College, 13 Hongo-machi, Toyama City, Toyama 939-8630, Japan
| | - Hiroyuki Ishii
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Jun Takeya
- Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,University of Tokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,MANA, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 205-0044, Japan
| |
Collapse
|
50
|
Asher M, Angerer D, Korobko R, Diskin-Posner Y, Egger DA, Yaffe O. Anharmonic Lattice Vibrations in Small-Molecule Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908028. [PMID: 32003507 DOI: 10.1002/adma.201908028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/26/2019] [Indexed: 06/10/2023]
Abstract
The intermolecular lattice vibrations in small-molecule organic semiconductors have a strong impact on their functional properties. Existing models treat the lattice vibrations within the harmonic approximation. In this work, polarization-orientation (PO) Raman measurements are used to monitor the temperature-evolution of the symmetry of lattice vibrations in anthracene and pentacene single crystals. Combined with first-principles calculations, it is shown that at 10 K, the lattice dynamics of the crystals are indeed harmonic. However, as the temperature is increased, specific lattice modes gradually lose their PO dependence and become more liquid-like. This finding is indicative of a dynamic symmetry breaking of the crystal structure and shows clear evidence of the strongly anharmonic nature of these vibrations. Pentacene also shows an apparent phase transition between 80 and 150 K, indicated by a change in the vibrational symmetry of one of the lattice modes. These findings lay the groundwork for accurate predictions of the electronic properties of high-mobility organic semiconductors at room temperature.
Collapse
Affiliation(s)
- Maor Asher
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniel Angerer
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Institute of Theoretical Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Roman Korobko
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Diskin-Posner
- Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - David A Egger
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Omer Yaffe
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|