1
|
Kumari P, Kern J, Raedle M. Self-Supervised and Zero-Shot Learning in Multi-Modal Raman Light Sheet Microscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:8143. [PMID: 39771883 PMCID: PMC11679134 DOI: 10.3390/s24248143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures. Traditional enhancement techniques like Fourier transform filtering and spectral unmixing require extensive preprocessing and often introduce artifacts. More recently, deep learning techniques, which have shown great promise in enhancing image quality, face their own limitations. Specifically, conventional deep learning models require large quantities of high-quality, manually labeled training data for effective denoising and super-resolution tasks, which is challenging to obtain in multi-modal microscopy. In this study, we address these limitations by exploring advanced zero-shot and self-supervised learning approaches, such as ZS-DeconvNet, Noise2Noise, Noise2Void, Deep Image Prior (DIP), and Self2Self, which enhance image quality without the need for labeled and large datasets. This study offers a comparative evaluation of zero-shot and self-supervised learning methods, evaluating their effectiveness in denoising, resolution enhancement, and preserving biological structures in multi-modal Raman light sheet microscopic images. Our results demonstrate significant improvements in image clarity, offering a reliable solution for visualizing complex biological systems. These methods establish the way for future advancements in high-resolution imaging, with broad potential for enhancing biomedical research and discovery.
Collapse
Affiliation(s)
- Pooja Kumari
- CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany;
| | - Johann Kern
- Universitätsklinikum Mannheim, Universität Heidelberg, 68167 Mannheim, Germany;
| | - Matthias Raedle
- CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany;
| |
Collapse
|
2
|
Huang G, Song Z, Xu Y, Sun Y, Ding F. Deciphering the Morphological Difference of Amyloid-β Fibrils in Familial and Sporadic Alzheimer's Diseases. J Chem Inf Model 2024; 64:8024-8033. [PMID: 39382320 PMCID: PMC11590496 DOI: 10.1021/acs.jcim.4c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The aggregation of amyloid-β (Aβ) into amyloid fibrils is the major pathological hallmark of Alzheimer's disease (AD). Aβ fibrils can adopt a variety of morphologies, the relative populations of which are recently found to be associated with different AD subtypes such as familial and sporadic AD (fAD and sAD, respectively). The two AD subtypes differ in their ages of onset, AD-related genetic predispositions, and dominant Aβ fibril morphologies. We postulate that these disease subtype-dependent fibril morphology differences can be attributed to the intrinsic fibril properties and interacting molecules in the environment. Using atomistic discrete molecular dynamics simulations, we demonstrated that the fAD-dominant morphology exhibited a lower free-energy barrier for fibril growth but also a lower stability compared with the sAD-dominant fibril morphology, resulting in the time-dependent population change consistent with experimental observations. Additionally, we studied the effect of the Bri2 BRICHOS domain, an endogenous protein that has been reported to inhibit Aβ aggregation by preferential binding to fibrils, as one of the possible environmental factors. The Bri2 BRICHOS domain showed stronger binding to the fAD-dominant fibril than the sAD-dominant fibril in silico, suggesting a more effective suppression of fAD-dominant fibril formation. This result explains the high population of the sAD-dominant fibril morphology in sporadic cases with normal Bri2 functions. Genetic predisposition in fAD, on the other hand, might impair or overwhelm Bri2 functions, leading to a high population of fAD-associated fibril morphology. Together, our computational findings provide a theoretical framework for elucidating the AD subtypes entailed by distinct dominant amyloid fibril morphologies.
Collapse
Affiliation(s)
- Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yun Xu
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
3
|
Deng Y, Gao G, Yu L, Zhang Z, Zhang B, Li H, Zhang X, Shen L, Sun T. Engineering Core/Ligands Interfacial Anchors of Nanoparticles for Efficiently Inhibiting Both Aβ and Amylin Fibrillization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312046. [PMID: 38829034 DOI: 10.1002/smll.202312046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Indexed: 06/05/2024]
Abstract
Accurate construction of artificial nano-chaperones' structure is crucial for precise regulation of protein conformational transformation, facilitating effective treatment of proteopathy. However, how the ligand-anchors of nano-chaperones affect the spatial conformational changes in proteins remains unclear, limiting the development of efficient nano-chaperones. In this study, three types of gold nanoparticles (AuNPs) with different core/ligands interface anchor structures (Au─NH─R, Au─S─R, and Au─C≡C─R, R = benzoic acid) are synthesized as an ideal model to investigate the effect of interfacial anchors on Aβ and amylin fibrillization. Computational results revealed that the distinct interfacial anchors imparted diverse distributions of electrostatic potential on the nanointerface and core/ligands bond strength of AuNPs, leading to differential interactions with amyloid peptides. Experimental results demonstrated that all three types of AuNPs exhibit site-specific inhibitory effects on Aβ40 fibrillization due to preferential binding. For amylin, amino-anchored AuNPs demonstrate strong adsorption to multiple sites on amylin and effectively inhibit fibrillization. Conversely, thiol- and alkyne-anchored AuNPs adsorb at the head region of amylin, promoting folding and fibrillization. This study not only provided molecular insights into how core/ligands interfacial anchors of nanomaterials induce spatial conformational changes in amyloid peptides but also offered guidance for precisely engineering artificial-chaperones' nanointerfaces to regulate the conformational transformation of proteins.
Collapse
Affiliation(s)
- Yuzhou Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Liangchong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Zijun Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Bin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Hu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Xinyu Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Lei Shen
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
4
|
Secco V, Tiago T, Staats R, Preet S, Chia S, Vendruscolo M, Carra S. HSPB6: A lipid-dependent molecular chaperone inhibits α-synuclein aggregation. iScience 2024; 27:110657. [PMID: 39280615 PMCID: PMC11402235 DOI: 10.1016/j.isci.2024.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
The process of protein misfolding and aggregation is associated with various cytotoxic effects. Understanding how this phenomenon is regulated by the protein homeostasis system, however, is difficult, since it takes place through a complex non-linear network of coupled microscopic steps, including primary nucleation, fibril elongation, and secondary nucleation, which depend on environmental factors. To address this problem, we studied how the aggregation of α-synuclein, a protein associated with Parkinson's disease, is modulated by molecular chaperones and lipid membranes. We focused on small heat shock proteins (sHSPs/HSPBs), which interact with proteins and lipids and are upregulated during aging, a major risk factor for protein misfolding diseases. HSPBs act on different microscopic steps to prevent α-synuclein aggregation, with HSPB6 showing a lipid-dependent chaperone activity. Our findings provide an example of how HSPBs diversified their mechanisms of action to reach an efficient regulation of protein misfolding and aggregation within the complex cellular environment.
Collapse
Affiliation(s)
- Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roxine Staats
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Swapan Preet
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Xu CK, Meisl G, Andrzejewska EA, Krainer G, Dear AJ, Castellana-Cruz M, Turi S, Edu IA, Vivacqua G, Jacquat RPB, Arter WE, Spillantini MG, Vendruscolo M, Linse S, Knowles TPJ. α-Synuclein oligomers form by secondary nucleation. Nat Commun 2024; 15:7083. [PMID: 39153989 PMCID: PMC11330488 DOI: 10.1038/s41467-024-50692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 07/19/2024] [Indexed: 08/19/2024] Open
Abstract
Oligomeric species arising during the aggregation of α-synuclein are implicated as a major source of toxicity in Parkinson's disease, and thus a major potential drug target. However, both their mechanism of formation and role in aggregation are largely unresolved. Here we show that, at physiological pH and in the absence of lipid membranes, α-synuclein aggregates form by secondary nucleation, rather than simple primary nucleation, and that this process is enhanced by agitation. Moreover, using a combination of single molecule and bulk level techniques, we identify secondary nucleation on the surfaces of existing fibrils, rather than formation directly from monomers, as the dominant source of oligomers. Our results highlight secondary nucleation as not only the key source of oligomers, but also the main mechanism of aggregate formation, and show that these processes take place under conditions which recapitulate the neutral pH and ionic strength of the cytosol.
Collapse
Affiliation(s)
- Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ewa A Andrzejewska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Molecular Biosciences (IMB), University of Graz, Graz, Austria
| | - Alexander J Dear
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Marta Castellana-Cruz
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Soma Turi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Irina A Edu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome, Italy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Raphaël P B Jacquat
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - William E Arter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Adam L, Kumar R, Arroyo‐Garcia LE, Molenkamp WH, Nowak JS, Klute H, Farzadfard A, Alkenayeh R, Nielsen J, Biverstål H, Otzen DE, Johansson J, Abelein A. Specific inhibition of α-synuclein oligomer generation and toxicity by the chaperone domain Bri2 BRICHOS. Protein Sci 2024; 33:e5091. [PMID: 38980078 PMCID: PMC11232276 DOI: 10.1002/pro.5091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Protein misfolding and aggregation are involved in several neurodegenerative disorders, such as α-synuclein (αSyn) implicated in Parkinson's disease, where new therapeutic approaches remain essential to combat these devastating diseases. Elucidating the microscopic nucleation mechanisms has opened new opportunities to develop therapeutics against toxic mechanisms and species. Here, we show that naturally occurring molecular chaperones, represented by the anti-amyloid Bri2 BRICHOS domain, can be used to target αSyn-associated nucleation processes and structural species related to neurotoxicity. Our findings revealed that BRICHOS predominantly suppresses the formation of new nucleation units on the fibrils surface (secondary nucleation), decreasing the oligomer generation rate. Further, BRICHOS directly binds to oligomeric αSyn species and effectively diminishes αSyn fibril-related toxicity. Hence, our studies show that molecular chaperones can be utilized as tools to target molecular processes and structural species related to αSyn neurotoxicity and have the potential as protein-based treatments against neurodegenerative disorders.
Collapse
Affiliation(s)
- Laurène Adam
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Rakesh Kumar
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Luis Enrique Arroyo‐Garcia
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetSolnaSweden
| | | | - Jan Stanislaw Nowak
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Hannah Klute
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Azad Farzadfard
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Rami Alkenayeh
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Henrik Biverstål
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
7
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
8
|
Chen G, Wang Y, Zheng Z, Jiang W, Leppert A, Zhong X, Belorusova A, Siegal G, Jegerschöld C, Koeck PJB, Abelein A, Hebert H, Knight SD, Johansson J. Molecular basis for different substrate-binding sites and chaperone functions of the BRICHOS domain. Protein Sci 2024; 33:e5063. [PMID: 38864729 PMCID: PMC11168071 DOI: 10.1002/pro.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Yu Wang
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- College of Wildlife and Protected Area, Northeast Forestry UniversityHarbinChina
| | - Zihan Zheng
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of PharmacologyXi'an Jiaotong UniversityXi'anChina
| | - Wangshu Jiang
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Axel Leppert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Xueying Zhong
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | | | | | - Caroline Jegerschöld
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Philip J. B. Koeck
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hans Hebert
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyHuddingeSweden
| | - Stefan D. Knight
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
9
|
Heath SG, Gray SG, Hamzah EM, O'Connor KM, Bozonet SM, Botha AD, de Cordovez P, Magon NJ, Naughton JD, Goldsmith DLW, Schwartfeger AJ, Sunde M, Buell AK, Morris VK, Göbl C. Amyloid formation and depolymerization of tumor suppressor p16 INK4a are regulated by a thiol-dependent redox mechanism. Nat Commun 2024; 15:5535. [PMID: 38951545 PMCID: PMC11217399 DOI: 10.1038/s41467-024-49581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.
Collapse
Affiliation(s)
- Sarah G Heath
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shelby G Gray
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emilie M Hamzah
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Karina M O'Connor
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Stephanie M Bozonet
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Alex D Botha
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pierre de Cordovez
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nicholas J Magon
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jennifer D Naughton
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Dylan L W Goldsmith
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, Australia
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vanessa K Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
10
|
Axell E, Hu J, Lindberg M, Dear AJ, Ortigosa-Pascual L, Andrzejewska EA, Šneiderienė G, Thacker D, Knowles TPJ, Sparr E, Linse S. The role of shear forces in primary and secondary nucleation of amyloid fibrils. Proc Natl Acad Sci U S A 2024; 121:e2322572121. [PMID: 38875148 PMCID: PMC11194593 DOI: 10.1073/pnas.2322572121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for A[Formula: see text]42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.
Collapse
Affiliation(s)
- Emil Axell
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Jing Hu
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Max Lindberg
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Alexander J. Dear
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, CB2 1EWCambridge, United Kingdom
| | - Lei Ortigosa-Pascual
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Ewa A. Andrzejewska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, CB2 1EWCambridge, United Kingdom
| | - Greta Šneiderienė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, CB2 1EWCambridge, United Kingdom
| | - Dev Thacker
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Cambridge University, CB2 1EWCambridge, United Kingdom
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, SE-221 00Lund, Sweden
| |
Collapse
|
11
|
Tapia-Arellano A, Cabrera P, Cortés-Adasme E, Riveros A, Hassan N, Kogan MJ. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. J Nanobiotechnology 2024; 22:248. [PMID: 38741193 DOI: 10.1186/s12951-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.
Collapse
Affiliation(s)
- Andreas Tapia-Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Pablo Cabrera
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Elizabeth Cortés-Adasme
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Ana Riveros
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Natalia Hassan
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Marcelo J Kogan
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
| |
Collapse
|
12
|
Carlsson A, Axell E, Emanuelsson C, Olsson U, Linse S. The Ability of DNAJB6b to Suppress Amyloid Formation Depends on the Chaperone Aggregation State. ACS Chem Neurosci 2024; 15:1732-1737. [PMID: 38640082 PMCID: PMC11066835 DOI: 10.1021/acschemneuro.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
For many chaperones, a propensity to self-assemble correlates with function. The highly efficient amyloid suppressing chaperone DNAJB6b has been reported to oligomerize. A key question is whether the DNAJB6b self-assemblies or their subunits are active units in the suppression of amyloid formation. Here, we address this question using a nonmodified chaperone. We use the well-established aggregation kinetics of the amyloid β 42 peptide (Aβ42) as a readout of the amyloid suppression efficiency. The experimental setup relies on the slow dissociation of DNAJB6b assemblies upon dilution. We find that the dissociation of the chaperone assemblies correlates with its ability to suppress fibril formation. Thus, the data show that the subunits of DNAJB6b assemblies rather than the large oligomers are the active forms in amyloid suppression. Our results provide insights into how DNAJB6b operates as a chaperone and illustrate the importance of established assembly equilibria and dissociation rates for the design of kinetic experiments.
Collapse
Affiliation(s)
- Andreas Carlsson
- Lund
University, Biochemistry and Structural Biology, Lund, Naturvetarvägen 16, 223 62, Sweden
| | - Emil Axell
- Lund
University, Biochemistry and Structural Biology, Lund, Naturvetarvägen 16, 223 62, Sweden
| | - Cecilia Emanuelsson
- Lund
University, Biochemistry and Structural Biology, Lund, Naturvetarvägen 16, 223 62, Sweden
| | - Ulf Olsson
- Lund
University, Physical Chemistry, Lund, Naturvetarvägen 16, 223 62, Sweden
| | - Sara Linse
- Lund
University, Biochemistry and Structural Biology, Lund, Naturvetarvägen 16, 223 62, Sweden
| |
Collapse
|
13
|
Masroor A, Zaidi N, Nabi F, Malik S, Zehra S, Arjmand F, Naseem N, Khan RH. Biophysical insight into anti-amyloidogenic nature of novel ionic Co(II)(phen)(H 2O) 4] +[glycinate] - chemotherapeutic drug candidate against human lysozyme aggregation. Biophys Chem 2024; 308:107214. [PMID: 38428228 DOI: 10.1016/j.bpc.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
In the recent past, there has been an ever-increasing interest in the search for metal-based therapeutic drug candidates for protein misfolding disorders (PMDs) particularly neurodegenerative disorders such as Alzheimer's, Parkinson's, Prion's diseases, and amyotrophic lateral sclerosis. Also, different amyloidogenic variants of human lysozyme (HL) are involved in hereditary systemic amyloidosis. Metallo-therapeutic agents are extensively studied as antitumor agents, however, they are relatively unexplored for the treatment of non-neuropathic amyloidoses. In this work, inhibition potential of a novel ionic cobalt(II) therapeutic agent (CoTA) of the formulation [Co(phen)(H2O)4]+[glycinate]- is evaluated against HL fibrillation. Various biophysical techniques viz., dye-binding assays, dynamic light scattering (DLS), differential scanning calorimetry (DSC), electron microscopy, and molecular docking experiments validate the proposed mechanism of inhibition of HL fibrillation by CoTA. The experimental corroborative results of these studies reveal that CoTA can suppress and slow down HL fibrillation at physiological temperature and pH. DLS and 1-anilino-8-naphthalenesulfonate (ANS) assay show that reduced fibrillation in the presence of CoTA is marked by a significant decrease in the size and hydrophobicity of the aggregates. Fluorescence quenching and molecular docking results demonstrate that CoTA binds moderately to the aggregation-prone region of HL (Kb = 6.6 × 104 M-1), thereby, inhibiting HL fibrillation. In addition, far-UV CD and DSC show that binding of CoTA to HL does not cause any change in the stability of HL. More importantly, CoTA attenuates membrane damaging effects of HL aggregates against RBCs. This study identifies inorganic metal complexes as a therapeutic intervention for systemic amyloidosis.
Collapse
Affiliation(s)
- Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Nida Naseem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India.
| |
Collapse
|
14
|
Halipi V, Sasanian N, Feng J, Hu J, Lubart Q, Bernson D, van Leeuwen D, Ahmadpour D, Sparr E, Esbjörner EK. Extracellular Vesicles Slow Down Aβ(1-42) Aggregation by Interfering with the Amyloid Fibril Elongation Step. ACS Chem Neurosci 2024; 15:944-954. [PMID: 38408014 PMCID: PMC10921407 DOI: 10.1021/acschemneuro.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Formation of amyloid-β (Aβ) fibrils is a central pathogenic feature of Alzheimer's disease. Cell-secreted extracellular vesicles (EVs) have been suggested as disease modulators, although their exact roles and relations to Aβ pathology remain unclear. We combined kinetics assays and biophysical analyses to explore how small (<220 nm) EVs from neuronal and non-neuronal human cell lines affected the aggregation of the disease-associated Aβ variant Aβ(1-42) into amyloid fibrils. Using thioflavin-T monitored kinetics and seeding assays, we found that EVs reduced Aβ(1-42) aggregation by inhibiting fibril elongation. Morphological analyses revealed this to result in the formation of short fibril fragments with increased thicknesses and less apparent twists. We suggest that EVs may have protective roles by reducing Aβ(1-42) amyloid loads, but also note that the formation of small amyloid fragments could be problematic from a neurotoxicity perspective. EVs may therefore have double-edged roles in the regulation of Aβ pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Vesa Halipi
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Nima Sasanian
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Julia Feng
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Jing Hu
- Division
of Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Quentin Lubart
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - David Bernson
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Daniel van Leeuwen
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Doryaneh Ahmadpour
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Emma Sparr
- Division
of Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Elin K. Esbjörner
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| |
Collapse
|
15
|
Smirnova EV, Timofeev VI, Rakitina TV, Petrenko DE, Elmeeva OS, Saratov GA, Kudriaeva AA, Bocharov EV, Belogurov AA. Myelin Basic Protein Attenuates Furin-Mediated Bri2 Cleavage and Postpones Its Membrane Trafficking. Int J Mol Sci 2024; 25:2608. [PMID: 38473856 DOI: 10.3390/ijms25052608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked. These observations were supported by the co-expression of MBP with Bri2, its mature form, and disease-associated mutants, which showed that in mammalian cells, MBP indeed modulates the post-translational processing of Bri2 by restriction of the furin-catalyzed release of its C-terminal peptide. Moreover, we showed that the co-expression of MBP and Bri2 also leads to an altered cellular localization of Bri2, restricting its membrane trafficking independently of the MBP-mediated suppression of the Bri2 C-terminal peptide release. Further investigations should elucidate if these observations have physiological meaning in terms of Bri2 as a MBP chaperone activated by the MBP-dependent postponement of Bri2 membrane trafficking.
Collapse
Affiliation(s)
- Evgeniya V Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Tatiana V Rakitina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry E Petrenko
- National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
| | - Olga S Elmeeva
- Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry Named after N.A. Preobrazhensky, Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eduard V Bocharov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Federal State Budgetary Educational Institution of Higher Education "Russian University of Medicine" of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia
| |
Collapse
|
16
|
Curk S, Krausser J, Meisl G, Frenkel D, Linse S, Michaels TCT, Knowles TPJ, Šarić A. Self-replication of A β42 aggregates occurs on small and isolated fibril sites. Proc Natl Acad Sci U S A 2024; 121:e2220075121. [PMID: 38335256 PMCID: PMC10873593 DOI: 10.1073/pnas.2220075121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
Self-replication of amyloid fibrils via secondary nucleation is an intriguing physicochemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer's A[Formula: see text] amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of A[Formula: see text] fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.
Collapse
Affiliation(s)
- Samo Curk
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
- Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Johannes Krausser
- Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Daan Frenkel
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund22100, Sweden
| | - Thomas C. T. Michaels
- Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, LondonWC1E 6BT, United Kingdom
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich8093, Switzerland
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
- Department of Physics and Astronomy, Laboratory for Molecular Cell Biology, University College London, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
17
|
Kumar R, Le Marchand T, Adam L, Bobrovs R, Chen G, Fridmanis J, Kronqvist N, Biverstål H, Jaudzems K, Johansson J, Pintacuda G, Abelein A. Identification of potential aggregation hotspots on Aβ42 fibrils blocked by the anti-amyloid chaperone-like BRICHOS domain. Nat Commun 2024; 15:965. [PMID: 38302480 PMCID: PMC10834949 DOI: 10.1038/s41467-024-45192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Protein misfolding can generate toxic intermediates, which underlies several devastating diseases, such as Alzheimer's disease (AD). The surface of AD-associated amyloid-β peptide (Aβ) fibrils has been suggested to act as a catalyzer for self-replication and generation of potentially toxic species. Specifically tailored molecular chaperones, such as the BRICHOS protein domain, were shown to bind to amyloid fibrils and break this autocatalytic cycle. Here, we identify a site on the Aβ42 fibril surface, consisting of three C-terminal β-strands and particularly the solvent-exposed β-strand stretching from residues 26-28, which is efficiently sensed by a designed variant of Bri2 BRICHOS. Remarkably, while only a low amount of BRICHOS binds to Aβ42 fibrils, fibril-catalyzed nucleation processes are effectively prevented, suggesting that the identified site acts as a catalytic aggregation hotspot, which can specifically be blocked by BRICHOS. Hence, these findings provide an understanding how toxic nucleation events can be targeted by molecular chaperones.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Tanguy Le Marchand
- Université de Lyon, Centre de Resonance Magnétique Nucléaire (CRMN) à Très Hauts Champs de Lyon (UMR 5082 - CNRS, ENS Lyon, UCB Lyon 1), 69100, Villeurbanne, France
| | - Laurène Adam
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Raitis Bobrovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Jēkabs Fridmanis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Guido Pintacuda
- Université de Lyon, Centre de Resonance Magnétique Nucléaire (CRMN) à Très Hauts Champs de Lyon (UMR 5082 - CNRS, ENS Lyon, UCB Lyon 1), 69100, Villeurbanne, France
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
18
|
Le NTK, Kang EJ, Park JH, Kang K. Catechol-Amyloid Interactions. Chembiochem 2023; 24:e202300628. [PMID: 37850717 DOI: 10.1002/cbic.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
This review introduces multifaceted mutual interactions between molecules containing a catechol moiety and aggregation-prone proteins. The complex relationships between these two molecular species have previously been elucidated primarily in a unidirectional manner, as demonstrated in cases involving the development of catechol-based inhibitors for amyloid aggregation and the elucidation of the role of functional amyloid fibers in melanin biosynthesis. This review aims to consolidate scattered clues pertaining to catechol-based amyloid inhibitors, functional amyloid scaffold of melanin biosynthesis, and chemically designed peptide fibers for providing chemical insights into the role of the local three-dimensional orientation of functional groups in manifesting such interactions. These orientations may play crucial, yet undiscovered, roles in various supramolecular structures.
Collapse
Affiliation(s)
- Nghia T K Le
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul, 03760, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| |
Collapse
|
19
|
Sandler S, Horne RI, Rocchetti S, Novak R, Hsu NS, Castellana Cruz M, Faidon Brotzakis Z, Gregory RC, Chia S, Bernardes GJL, Keyser UF, Vendruscolo M. Multiplexed Digital Characterization of Misfolded Protein Oligomers via Solid-State Nanopores. J Am Chem Soc 2023; 145:25776-25788. [PMID: 37972287 PMCID: PMC10690769 DOI: 10.1021/jacs.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Misfolded protein oligomers are of central importance in both the diagnosis and treatment of Alzheimer's and Parkinson's diseases. However, accurate high-throughput methods to detect and quantify oligomer populations are still needed. We present here a single-molecule approach for the detection and quantification of oligomeric species. The approach is based on the use of solid-state nanopores and multiplexed DNA barcoding to identify and characterize oligomers from multiple samples. We study α-synuclein oligomers in the presence of several small-molecule inhibitors of α-synuclein aggregation as an illustration of the potential applicability of this method to the development of diagnostic and therapeutic methods for Parkinson's disease.
Collapse
Affiliation(s)
- Sarah
E. Sandler
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Robert I. Horne
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sara Rocchetti
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Robert Novak
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Nai-Shu Hsu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marta Castellana Cruz
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Rebecca C. Gregory
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sean Chia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research
(A*STAR), Singapore 138668
| | - Gonçalo J. L. Bernardes
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ulrich F. Keyser
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
20
|
Frankel R, Sparr E, Linse S. Retardation of Aβ42 fibril formation by apolipoprotein A-I and recombinant HDL particles. J Biol Chem 2023; 299:105273. [PMID: 37739034 PMCID: PMC10616404 DOI: 10.1016/j.jbc.2023.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The double nucleation mechanism of amyloid β (Aβ) peptide aggregation is retained from buffer to cerebrospinal fluid (CSF) but with reduced rate of all microscopic processes. Here, we used a bottom-up approach to identify retarding factors in CSF. We investigated the Aβ42 fibril formation as a function of time in the absence and presence of apolipoprotein A-I (ApoA-I), recombinant high-density lipoprotein (rHDL) particles, or lipid vesicles. A retardation was observed in the presence of ApoA-I or rHDL particles, most pronounced with ApoA-I, but not with lipid vesicles. Global kinetic analysis implies that rHDL interferes with secondary nucleation. The effect of ApoA-I could best be described as an interference with secondary and to a smaller extent primary nucleation. Using surface plasmon resonance and microfluidics diffusional sizing analyses, we find that both rHDL and ApoA-I interact with Aβ42 fibrils but not Aβ42 monomer, thus the effect on kinetics seems to involve interference with the catalytic surface for secondary nucleation. The Aβ42 fibrils were imaged using cryogenic-electron microscopy and found to be longer when formed in the presence of ApoA-I or rHDL, compared to formation in buffer. A retarding effect, as observed in CSF, could be replicated using a simpler system, from key components present in CSF but purified from a CSF-free host. However, the effect of CSF is stronger implying the presence of additional retarding factors.
Collapse
Affiliation(s)
- Rebecca Frankel
- Biochemistry and Structural Biology, Lund University, Lund, Sweden; Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Österlund N, Frankel R, Carlsson A, Thacker D, Karlsson M, Matus V, Gräslund A, Emanuelsson C, Linse S. The C-terminal domain of the antiamyloid chaperone DNAJB6 binds to amyloid-β peptide fibrils and inhibits secondary nucleation. J Biol Chem 2023; 299:105317. [PMID: 37797698 PMCID: PMC10641233 DOI: 10.1016/j.jbc.2023.105317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
The DNAJB6 chaperone inhibits fibril formation of aggregation-prone client peptides through interaction with aggregated and oligomeric forms of the amyloid peptides. Here, we studied the role of its C-terminal domain (CTD) using constructs comprising either the entire CTD or the first two or all four of the CTD β-strands grafted onto a scaffold protein. Each construct was expressed as WT and as a variant with alanines replacing five highly conserved and functionally important serine and threonine residues in the first β-strand. We investigated the stability, oligomerization, antiamyloid activity, and affinity for amyloid-β (Aβ42) species using optical spectroscopy, native mass spectrometry, chemical crosslinking, and surface plasmon resonance technology. While DNAJB6 forms large and polydisperse oligomers, CTD was found to form only monomers, dimers, and tetramers of low affinity. Kinetic analyses showed a shift in inhibition mechanism. Whereas full-length DNAJB6 activity is dependent on the serine and threonine residues and efficiently inhibits primary and secondary nucleation, all CTD constructs inhibit secondary nucleation only, independently of the serine and threonine residues, although their dimerization and thermal stabilities are reduced by alanine substitution. While the full-length DNAJB6 inhibition of primary nucleation is related to its propensity to form coaggregates with Aβ, the CTD constructs instead bind to Aβ42 fibrils, which affects the nucleation events at the fibril surface. The retardation of secondary nucleation by DNAJB6 can thus be ascribed to the first two β-strands of its CTD, whereas the inhibition of primary nucleation is dependent on the entire protein or regions outside the CTD.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Rebecca Frankel
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Andreas Carlsson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Dev Thacker
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Maja Karlsson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Vanessa Matus
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Cecilia Emanuelsson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
Wirth F, Heitz FD, Seeger C, Combaluzier I, Breu K, Denroche HC, Thevenet J, Osto M, Arosio P, Kerr-Conte J, Verchere CB, Pattou F, Lutz TA, Donath MY, Hock C, Nitsch RM, Grimm J. A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models. Nat Commun 2023; 14:6294. [PMID: 37813862 PMCID: PMC10562398 DOI: 10.1038/s41467-023-41986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
In patients with type 2 diabetes, pancreatic beta cells progressively degenerate and gradually lose their ability to produce insulin and regulate blood glucose. Beta cell dysfunction and loss is associated with an accumulation of aggregated forms of islet amyloid polypeptide (IAPP) consisting of soluble prefibrillar IAPP oligomers as well as insoluble IAPP fibrils in pancreatic islets. Here, we describe a human monoclonal antibody selectively targeting IAPP oligomers and neutralizing IAPP aggregate toxicity by preventing membrane disruption and apoptosis in vitro. Antibody treatment in male rats and mice transgenic for human IAPP, and human islet-engrafted mouse models of type 2 diabetes triggers clearance of IAPP oligomers resulting in beta cell protection and improved glucose control. These results provide new evidence for the pathological role of IAPP oligomers and suggest that antibody-mediated removal of IAPP oligomers could be a pharmaceutical strategy to support beta cell function in type 2 diabetes.
Collapse
Affiliation(s)
- Fabian Wirth
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
| | | | | | | | - Karin Breu
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
| | - Heather C Denroche
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Departments of Surgery and Pathology & Laboratory Medicine, University of British Columbia, A4-151 950 W 28 Ave, Vancouver, BC, Canada
| | - Julien Thevenet
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Melania Osto
- Institute of Veterinary Physiology, Vetsuisse Faculty of the University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Julie Kerr-Conte
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Departments of Surgery and Pathology & Laboratory Medicine, University of British Columbia, A4-151 950 W 28 Ave, Vancouver, BC, Canada
| | - François Pattou
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty of the University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Marc Y Donath
- Clinic for Endocrinology, Diabetes & Metabolism, and Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Christoph Hock
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
- Institute for Regenerative Medicine-IREM, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Roger M Nitsch
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
- Institute for Regenerative Medicine-IREM, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Jan Grimm
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland.
| |
Collapse
|
23
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
24
|
Gupta A, Lu C, Wang F, Chou T, Shan S. An ankyrin repeat chaperone targets toxic oligomers during amyloidogenesis. Protein Sci 2023; 32:e4728. [PMID: 37433015 PMCID: PMC10367600 DOI: 10.1002/pro.4728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Numerous age-linked diseases are rooted in protein misfolding; this has motivated the development of small molecules and therapeutic antibodies that target the aggregation of disease-linked proteins. Here we explore another approach: molecular chaperones with engineerable protein scaffolds such as the ankyrin repeat domain (ARD). We tested the ability of cpSRP43, a small, robust, ATP- and cofactor-independent plant chaperone built from an ARD, to antagonize disease-linked protein aggregation. cpSRP43 delays the aggregation of multiple proteins including the amyloid beta peptide (Aβ) associated with Alzheimer's disease and α-synuclein associated with Parkinson's disease. Kinetic modeling and biochemical analyses show that cpSRP43 targets early oligomers during Aβ aggregation, preventing their transition to a self-propagating nucleus on the fibril surface. Accordingly, cpSRP43 rescued neuronal cells from the toxicity of extracellular Aβ42 aggregates. The substrate-binding domain of cpSRP43, composed primarily of the ARD, is necessary and sufficient to prevent Aβ42 aggregation and protect cells against Aβ42 toxicity. This work provides an example in which an ARD chaperone non-native to mammalian cells harbors anti-amyloidal activity, which may be exploited for bioengineering.
Collapse
Affiliation(s)
- Arpit Gupta
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Chuqi Lu
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Feng Wang
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Tsui‐Fen Chou
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Shu‐ou Shan
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
25
|
Leppert A, Poska H, Landreh M, Abelein A, Chen G, Johansson J. A new kid in the folding funnel: Molecular chaperone activities of the BRICHOS domain. Protein Sci 2023; 32:e4645. [PMID: 37096906 PMCID: PMC10182729 DOI: 10.1002/pro.4645] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
The BRICHOS protein superfamily is a diverse group of proteins associated with a wide variety of human diseases, including respiratory distress, COVID-19, dementia, and cancer. A key characteristic of these proteins-besides their BRICHOS domain present in the ER lumen/extracellular part-is that they harbor an aggregation-prone region, which the BRICHOS domain is proposed to chaperone during biosynthesis. All so far studied BRICHOS domains modulate the aggregation pathway of various amyloid-forming substrates, but not all of them can keep denaturing proteins in a folding-competent state, in a similar manner as small heat shock proteins. Current evidence suggests that the ability to interfere with the aggregation pathways of substrates with entirely different end-point structures is dictated by BRICHOS quaternary structure as well as specific surface motifs. This review aims to provide an overview of the BRICHOS protein family and a perspective of the diverse molecular chaperone-like functions of various BRICHOS domains in relation to their structure and conformational plasticity. Furthermore, we speculate about the physiological implication of the diverse molecular chaperone functions and discuss the possibility to use the BRICHOS domain as a blood-brain barrier permeable molecular chaperone treatment of protein aggregation disorders.
Collapse
Affiliation(s)
- Axel Leppert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Helen Poska
- School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
| | - Michael Landreh
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Axel Abelein
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Gefei Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
26
|
Sanchez-Rodriguez D, Gonzalez-Figueroa I, Alvarez-Berríos MP. Chaperone Activity and Protective Effect against Aβ-Induced Cytotoxicity of Artocarpus camansi Blanco and Amaranthus dubius Mart. ex Thell Seed Protein Extracts. Pharmaceuticals (Basel) 2023; 16:820. [PMID: 37375767 DOI: 10.3390/ph16060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is listed as the sixth-leading cause of death in the United States. Recent findings have linked AD to the aggregation of amyloid beta peptides (Aβ), a proteolytic fragment of 39-43 amino acid residues derived from the amyloid precursor protein. AD has no cure; thus, new therapies to stop the progression of this deadly disease are constantly being searched for. In recent years, chaperone-based medications from medicinal plants have gained significant interest as an anti-AD therapy. Chaperones are responsible for maintaining the three-dimensional shape of proteins and play an important role against neurotoxicity induced by the aggregation of misfolded proteins. Therefore, we hypothesized that proteins extracted from the seeds of Artocarpus camansi Blanco (A. camansi) and Amaranthus dubius Mart. ex Thell (A. dubius) could possess chaperone activity and consequently may exhibit a protective effect against Aβ1-40-induced cytotoxicity. To test this hypothesis, the chaperone activity of these protein extracts was measured using the enzymatic reaction of citrate synthase (CS) under stress conditions. Then, their ability to inhibit the aggregation of Aβ1-40 using a thioflavin T (ThT) fluorescence assay and DLS measurements was determined. Finally, the neuroprotective effect against Aβ1-40 in SH-SY5Y neuroblastoma cells was evaluated. Our results demonstrated that A. camansi and A. dubius protein extracts exhibited chaperone activity and inhibited Aβ1-40 fibril formation, with A. dubius showing the highest chaperone activity and inhibition at the concentration assessed. Additionally, both protein extracts showed neuroprotective effects against Aβ1-40-induced toxicity. Overall, our data demonstrated that the plant-based proteins studied in this research work can effectively overcome one of the most important characteristics of AD.
Collapse
Affiliation(s)
- David Sanchez-Rodriguez
- Department of Science and Technology, Inter American University of Puerto Rico at Ponce, Ponce, PR 00715-1602, USA
| | - Idsa Gonzalez-Figueroa
- Department of Science and Technology, Inter American University of Puerto Rico at Ponce, Ponce, PR 00715-1602, USA
| | - Merlis P Alvarez-Berríos
- Department of Science and Technology, Inter American University of Puerto Rico at Ponce, Ponce, PR 00715-1602, USA
| |
Collapse
|
27
|
Abelein A, Johansson J. Amyloid inhibition by molecular chaperones in vitro can be translated to Alzheimer's pathology in vivo. RSC Med Chem 2023; 14:848-857. [PMID: 37252101 PMCID: PMC10211315 DOI: 10.1039/d3md00040k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/21/2023] [Indexed: 09/23/2023] Open
Abstract
Molecular chaperones are important components in the cellular quality-control machinery and increasing evidence points to potential new roles for them as suppressors of amyloid formation in neurodegenerative diseases, such as Alzheimer's disease. Approaches to treat Alzheimer's disease have not yet resulted in an effective treatment, suggesting that alternative strategies may be useful. Here, we discuss new treatment approaches based on molecular chaperones that inhibit amyloid-β (Aβ) aggregation by different microscopic mechanisms of action. Molecular chaperones that specifically target secondary nucleation reactions during Aβ aggregation in vitro - a process closely associated with Aβ oligomer generation - have shown promising results in animal treatment studies. The inhibition of Aβ oligomer generation in vitro seemingly correlates with the effects of treatment, giving indirect clues about the molecular mechanisms present in vivo. Interestingly, recent immunotherapy advances, which have demonstrated significant improvements in clinical phase III trials, have used antibodies that selectively act against Aβ oligomer formation, supporting the notion that specific inhibition of Aβ neurotoxicity is more rewarding than reducing overall amyloid fibril formation. Hence, specific modulation of chaperone activity represents a promising new strategy for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet 141 83 Huddinge Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet 141 83 Huddinge Sweden
| |
Collapse
|
28
|
Ghosh S, Tugarinov V, Clore GM. Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation. Proc Natl Acad Sci U S A 2023; 120:e2305823120. [PMID: 37186848 PMCID: PMC10214214 DOI: 10.1073/pnas.2305823120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-β42 (Aβ42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded 1H-15N correlation spectra to monitor the disappearance of Aβ42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 μM Aβ42 at 20 °C), Aβ42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aβ42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aβ42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
29
|
Tigro H, Shimozawa M, Nilsson P, Lyashkov A, Khadeer M, Järving I, Ferrucci L, Shimmo R, Johansson J, Moaddel R. Identification of glycolytic proteins as binding partners of Bri2 BRICHOS domain. J Pharm Biomed Anal 2023; 232:115465. [PMID: 37220701 DOI: 10.1016/j.jpba.2023.115465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Human integral membrane protein 2B (ITM2B or Bri2) is a member of the BRICHOS family, that can attenuate Aβ pathology in the brain. As a result, the identification of novel Bri2 BRICHOS client proteins has been sought to help elucidate signaling pathways and the potential identification of novel therapeutic targets. To identify Bri2 BRICHOS interacting partners, we carried out a 'protein fishing' experiment using recombinant human (rh) Bri2 BRICHOS-coated magnetic particles, in combination with proteomic analysis on cytosolic and membrane fractions of cortical homogenates from C57BL/6 J WT mouse. We identified 4 proteins from the cytosolic fractions and 44 proteins from the membrane fractions that had significant interactions (p < 0.05) with Bri2 BRICHOS domain, of which 11 proteins were previously identified as proteins that interacted with Bri2 BRICHOS domain. Enrichment analysis of the retained proteins identified glycolysis/gluconeogenesis as the most enriched pathway, with several proteins identified playing roles in carbon metabolism, amino acid synthesis. The data suggested that Bri2 BRICHOS may have a role in cellular energy demands in the brain via glycolysis and mitochondrial oxidative phosphorylation and may play a role in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Helene Tigro
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - Alexey Lyashkov
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Mohammed Khadeer
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Luigi Ferrucci
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ruin Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
30
|
Chen G, Leppert A, Poska H, Nilsson HE, Alvira CP, Zhong X, Koeck P, Jegerschöld C, Abelein A, Hebert H, Johansson J. Short hydrophobic loop motifs in BRICHOS domains determine chaperone activity against amorphous protein aggregation but not against amyloid formation. Commun Biol 2023; 6:497. [PMID: 37156997 PMCID: PMC10167226 DOI: 10.1038/s42003-023-04883-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
ATP-independent molecular chaperones are important for maintaining cellular fitness but the molecular determinants for preventing aggregation of partly unfolded protein substrates remain unclear, particularly regarding assembly state and basis for substrate recognition. The BRICHOS domain can perform small heat shock (sHSP)-like chaperone functions to widely different degrees depending on its assembly state and sequence. Here, we observed three hydrophobic sequence motifs in chaperone-active domains, and found that they get surface-exposed when the BRICHOS domain assembles into larger oligomers. Studies of loop-swap variants and site-specific mutants further revealed that the biological hydrophobicities of the three short motifs linearly correlate with the efficiency to prevent amorphous protein aggregation. At the same time, they do not at all correlate with the ability to prevent ordered amyloid fibril formation. The linear correlations also accurately predict activities of chimeras containing short hydrophobic sequence motifs from a sHSP that is unrelated to BRICHOS. Our data indicate that short, exposed hydrophobic motifs brought together by oligomerisation are sufficient and necessary for efficient chaperone activity against amorphous protein aggregation.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Helen Poska
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Harriet E Nilsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | | | - Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Philip Koeck
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Caroline Jegerschöld
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
31
|
Caruso Bavisotto C, Provenzano A, Passantino R, Marino Gammazza A, Cappello F, San Biagio PL, Bulone D. Oligomeric State and Holding Activity of Hsp60. Int J Mol Sci 2023; 24:ijms24097847. [PMID: 37175554 PMCID: PMC10177986 DOI: 10.3390/ijms24097847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Similar to its bacterial homolog GroEL, Hsp60 in oligomeric conformation is known to work as a folding machine, with the assistance of co-chaperonin Hsp10 and ATP. However, recent results have evidenced that Hsp60 can stabilize aggregation-prone molecules in the absence of Hsp10 and ATP by a different, "holding-like" mechanism. Here, we investigated the relationship between the oligomeric conformation of Hsp60 and its ability to inhibit fibrillization of the Ab40 peptide. The monomeric or tetradecameric form of the protein was isolated, and its effect on beta-amyloid aggregation was separately tested. The structural stability of the two forms of Hsp60 was also investigated using differential scanning calorimetry (DSC), light scattering, and circular dichroism. The results showed that the protein in monomeric form is less stable, but more effective against amyloid fibrillization. This greater functionality is attributed to the disordered nature of the domains involved in subunit contacts.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alessia Provenzano
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| | - Rosa Passantino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | | | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| |
Collapse
|
32
|
Kumar R, Arroyo-García LE, Manchanda S, Adam L, Pizzirusso G, Biverstål H, Nilsson P, Fisahn A, Johansson J, Abelein A. Molecular Mechanisms of Amyloid-β Self-Assembly Seeded by In Vivo-Derived Fibrils and Inhibitory Effects of the BRICHOS Chaperone. ACS Chem Neurosci 2023; 14. [PMID: 37023330 PMCID: PMC10119923 DOI: 10.1021/acschemneuro.3c00044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Self-replication of amyloid-β-peptide (Aβ) fibril formation is a hallmark in Alzheimer's disease (AD). Detailed insights have been obtained in Aβ self-assembly in vitro, yet whether similar mechanisms are relevant in vivo has remained elusive. Here, we investigated the ability of in vivo-derived Aβ fibrils from two different amyloid precursor protein knock-in AD mouse models to seed Aβ42 aggregation, where we quantified the microscopic rate constants. We found that the nucleation mechanism of in vivo-derived fibril-seeded Aβ42 aggregation can be described with the same kinetic model as that in vitro. Further, we identified the inhibitory mechanism of the anti-amyloid BRICHOS chaperone on seeded Aβ42 fibrillization, revealing a suppression of secondary nucleation and fibril elongation, which is strikingly similar as observed in vitro. These findings hence provide a molecular understanding of the Aβ42 nucleation process triggered by in vivo-derived Aβ42 propagons, providing a framework for the search for new AD therapeutics.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Luis Enrique Arroyo-García
- Division
of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology,
Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Department
of Women’s and Children’s Health, Karolinska Institutet, 171 64 Solna, Sweden
| | - Shaffi Manchanda
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Laurène Adam
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Giusy Pizzirusso
- Division
of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology,
Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
- Department
of Women’s and Children’s Health, Karolinska Institutet, 171 64 Solna, Sweden
| | - Henrik Biverstål
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Per Nilsson
- Division
of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology,
Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - André Fisahn
- Division
of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology,
Care Sciences and Society, Karolinska Institutet, 171 64 Solna, Sweden
| | - Jan Johansson
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| | - Axel Abelein
- Department
of Biosciences and Nutrition, Karolinska
Institutet, 141 52 Huddinge, Sweden
| |
Collapse
|
33
|
Shimozawa M, Tigro H, Biverstål H, Shevchenko G, Bergquist J, Moaddel R, Johansson J, Nilsson P. Identification of cytoskeletal proteins as binding partners of Bri2 BRICHOS domain. Mol Cell Neurosci 2023; 125:103843. [PMID: 36935047 DOI: 10.1016/j.mcn.2023.103843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Proteins must fold into three-dimensional structures to execute their biological functions. Therefore, maintenance of protein homeostasis, proteostasis, including prevention of protein misfolding is essential for cellular activity and health. Molecular chaperones are key actors in proteostasis. BRICHOS domain is an intramolecular chaperone that also interferes with several aggregation-prone proteins including amyloid β (Aβ), involved in Alzheimer's disease (AD). To extend the knowledge about Bri2 BRICHOS interactome we here used recombinant human (rh) Bri2 BRICHOS-mCherry fusion protein to probe for potential binding partners. Firstly, exogenously added Bri2 BRICHOS-mCherry was used to stain brain sections of wildtype and amyloid precursor protein (App) knock-in AD mice exhibiting robust Aβ pathology. Unexpectedly, we found that rh Bri2 BRICHOS-mCherry stained the cytoplasm of neurons which are devoid of Aβ deposits. To identify these intraneuronal proteins that bind to the rh Bri2 BRICHOS domain, we performed co-immunoprecipitation (co-IP) of mouse brain hippocampi homogenates using the Bri2 BRICHOS-mCherry probe and analyzed co-IP proteins by LC-MS/MS. This identified several cytoskeletal proteins including spectrin alpha and beta chain, drebrin, tubulin β3, and β-actin as binding partners. The interactions were confirmed by a second round of pulldown experiments using rh Bri2 BRICHOS linked to magnetic beads. The interaction of rh Bri2 BRICHOS and tubulin β3 was further investigated by staining both mouse brain sections and SH-SY5Y neuroblastoma cells with rh Bri2 BRICHOS-mCherry and tubulin β3 immunostaining, which revealed partial co-localization. These data suggest a possible interplay of extracellular chaperone Bri2 BRICHOS domain in the intracellular space including the cytoskeleton.
Collapse
Affiliation(s)
- Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.
| | - Helene Tigro
- School of Natural Sciences and Health, Tallinn University, Tallin, Estonia; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ganna Shevchenko
- Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Ruin Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
34
|
Ghosh S, Ali R, Verma S. Aβ-oligomers: A potential therapeutic target for Alzheimer's disease. Int J Biol Macromol 2023; 239:124231. [PMID: 36996958 DOI: 10.1016/j.ijbiomac.2023.124231] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The cascade of amyloid formation relates to multiple complex events at the molecular level. Previous research has established amyloid plaque deposition as the leading cause of Alzheimer's disease (AD) pathogenesis, detected mainly in aged population. The primary components of the plaques are two alloforms of amyloid-beta (Aβ), Aβ1-42 and Aβ1-40 peptides. Recent studies have provided considerable evidence contrary to the previous claim indicating that amyloid-beta oligomers (AβOs) as the main culprit responsible for AD-associated neurotoxicity and pathogenesis. In this review, we have discussed the primary features of AβOs, such as assembly formation, the kinetics of oligomer formation, interactions with various membranes/membrane receptors, the origin of toxicity, and oligomer-specific detection methods. Recently, the discovery of rationally designed antibodies has opened a gateway for using synthesized peptides as a grafting component in the complementarity determining region (CDR) of antibodies. Thus, the Aβ sequence motif or the complementary peptide sequence in the opposite strand of the β-sheet (extracted from the Protein Data Bank: PDB) helps design oligomer-specific inhibitors. The microscopic event responsible for oligomer formation can be targeted, and thus prevention of the overall macroscopic behaviour of the aggregation or the associated toxicity can be achieved. We have carefully reviewed the oligomer formation kinetics and associated parameters. Besides, we have depicted a thorough understanding of how the synthesized peptide inhibitors can impede the early aggregates (oligomers), mature fibrils, monomers, or a mixture of the species. The oligomer-specific inhibitors (peptides or peptide fragments) lack in-depth chemical kinetics and optimization control-based screening. In the present review, we have proposed a hypothesis for effectively screening oligomer-specific inhibitors using the chemical kinetics (determining the kinetic parameters) and optimization control strategy (cost-dependent analysis). Further, it may be possible to implement the structure-kinetic-activity-relationship (SKAR) strategy instead of structure-activity-relationship (SAR) to improve the inhibitor's activity. The controlled optimization of the kinetic parameters and dose usage will be beneficial for narrowing the search window for the inhibitors.
Collapse
|
35
|
Guan Y, Cao W, Li T, Qin J, He Q, Jia X, Li Y, Zhang Y, Liao J. NIR-excited upconversion nanoparticles used for targeted inhibition of Aβ42 monomers and disassembly of Aβ42 fibrils. J Mater Chem B 2023; 11:1445-1455. [PMID: 36628620 DOI: 10.1039/d2tb02104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Much attention has been paid to oxidising amyloid-β peptides (Aβ) for inhibiting their aggregation using photosensitive materials. However, the low penetration of ultraviolet/visible light into biological tissues and low targeting properties of the materials hinder their application. Here, we constructed a novel platform for attenuating the neurotoxicity of Aβ through functional upconversion nanoparticles (UCNPs@SiO2-ThS). UCNPs@SiO2-ThS can not only inhibit the aggregation of Aβ42 monomers, but also disassemble Aβ42 fibrils by its selective photooxidative capacity under the irradiation of near-infrared (NIR) light. Moreover, based on the enhancement of ThS fluorescence after attaching to Aβ42 fibrils, only Aβ42 fibrils exposed to both UCNPs@SiO2-ThS and light can be oxidized rather than other normal proteins. To further enhance Aβ-target photooxygenation, we introduced the Aβ-target peptide (KLVFF) on the surface. Compared to traditional chemotherapies and radiotherapies, this novel PDT strategy shows remarkably reduced side effects and improved targeting.
Collapse
Affiliation(s)
- Yijia Guan
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Weijie Cao
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Tao Li
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China. .,SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg DK-6400, Denmark
| | - Jieyi Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Qilong He
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Xiaofeng Jia
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Yuqing Li
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Yuhua Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| | - Jianguo Liao
- School of Materials Science and Engineering, Henan Polytechnic University, Siji Road 2001, Jiaozuo, Henan, 454000, China.
| |
Collapse
|
36
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Kaygisiz K, Ender AM, Gačanin J, Kaczmarek LA, Koutsouras DA, Nalakath AN, Winterwerber P, Mayer FJ, Räder HJ, Marszalek T, Blom PWM, Synatschke CV, Weil T. Photoinduced Amyloid Fibril Degradation for Controlled Cell Patterning. Macromol Biosci 2023; 23:e2200294. [PMID: 36281903 DOI: 10.1002/mabi.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/14/2022] [Indexed: 11/12/2022]
Abstract
Amyloid-like fibrils are a special class of self-assembling peptides that emerge as a promising nanomaterial with rich bioactivity for applications such as cell adhesion and growth. Unlike the extracellular matrix, the intrinsically stable amyloid-like fibrils do not respond nor adapt to stimuli of their natural environment. Here, a self-assembling motif (CKFKFQF), in which a photosensitive o-nitrobenzyl linker (PCL) is inserted, is designed. This peptide (CKFK-PCL-FQF) assembles into amyloid-like fibrils comparable to the unsubstituted CKFKFQF and reveals a strong response to UV-light. After UV irradiation, the secondary structure of the fibrils, fibril morphology, and bioactivity are lost. Thus, coating surfaces with the pre-formed fibrils and exposing them to UV-light through a photomask generate well-defined areas with patterns of intact and destroyed fibrillar morphology. The unexposed, fibril-coated surface areas retain their ability to support cell adhesion in culture, in contrast to the light-exposed regions, where the cell-supportive fibril morphology is destroyed. Consequently, the photoresponsive peptide nanofibrils provide a facile and efficient way of cell patterning, exemplarily demonstrated for A549, Chinese Hamster Ovary, and Raw Dual type cells. This study introduces photoresponsive amyloid-like fibrils as adaptive functional materials to precisely arrange cells on surfaces.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Adriana M Ender
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmina Gačanin
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - L Alix Kaczmarek
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dimitrios A Koutsouras
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Abin N Nalakath
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Pia Winterwerber
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Franz J Mayer
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Hans-Joachim Räder
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tomasz Marszalek
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Paul W M Blom
- Department of Molecular Electronics, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
38
|
Manchanda S, Galan-Acosta L, Abelein A, Tambaro S, Chen G, Nilsson P, Johansson J. Intravenous treatment with a molecular chaperone designed against β-amyloid toxicity improves Alzheimer's disease pathology in mouse models. Mol Ther 2023; 31:487-502. [PMID: 35982621 PMCID: PMC9931549 DOI: 10.1016/j.ymthe.2022.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/12/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Attempts to treat Alzheimer's disease with immunotherapy against the β-amyloid (Aβ) peptide or with enzyme inhibitors to reduce Aβ production have not yet resulted in effective treatment, suggesting that alternative strategies may be useful. Here we explore the possibility of targeting the toxicity associated with Aβ aggregation by using the recombinant human (rh) Bri2 BRICHOS chaperone domain, mutated to act selectively against Aβ42 oligomer generation and neurotoxicity in vitro. We find that treatment of Aβ precursor protein (App) knockin mice with repeated intravenous injections of rh Bri2 BRICHOS R221E, from an age close to the start of development of Alzheimer's disease-like pathology, improves recognition and working memory, as assessed using novel object recognition and Y maze tests, and reduces Aβ plaque deposition and activation of astrocytes and microglia. When treatment was started about 4 months after Alzheimer's disease-like pathology was already established, memory improvement was not detected, but Aβ plaque deposition and gliosis were reduced, and substantially reduced astrocyte accumulation in the vicinity of Aβ plaques was observed. The degrees of treatment effects observed in the App knockin mouse models apparently correlate with the amounts of Bri2 BRICHOS detected in brain sections after the end of the treatment period.
Collapse
Affiliation(s)
- Shaffi Manchanda
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Lorena Galan-Acosta
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83 Huddinge, Sweden; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Stockholm, Sweden.
| |
Collapse
|
39
|
Saluri M, Leppert A, Gese GV, Sahin C, Lama D, Kaldmäe M, Chen G, Elofsson A, Allison TM, Arsenian-Henriksson M, Johansson J, Lane DP, Hällberg BM, Landreh M. A "grappling hook" interaction connects self-assembly and chaperone activity of Nucleophosmin 1. PNAS NEXUS 2023; 2:pgac303. [PMID: 36743470 PMCID: PMC9896144 DOI: 10.1093/pnasnexus/pgac303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a "grappling hook" mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.
Collapse
Affiliation(s)
- Mihkel Saluri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden,Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Margit Kaldmäe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - Arne Elofsson
- Science for Life Laboratory and Department of Biochemistry and Biophysics, Stockholm University, 114 19 Stockholm, Sweden
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Upper Riccarton, Christchurch 8041, New Zealand
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge,, Sweden
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet – Biomedicum, Solnavägen 9, 171 65 Solna, Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Figueira AJ, Saavedra J, Cardoso I, Gomes CM. S100B chaperone multimers suppress the formation of oligomers during Aβ42 aggregation. Front Neurosci 2023; 17:1162741. [PMID: 37025373 PMCID: PMC10070764 DOI: 10.3389/fnins.2023.1162741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Extracellular aggregation of the amyloid-β 1-42 (Aβ42) peptide is a major hallmark of Alzheimer's disease (AD), with recent data suggesting that Aβ intermediate oligomers (AβO) are more cytotoxic than mature amyloid fibrils. Understanding how chaperones harness such amyloid oligomers is critical toward establishing the mechanisms underlying regulation of proteostasis in the diseased brain. This includes S100B, an extracellular signaling Ca2+-binding protein which is increased in AD as a response to neuronal damage and whose holdase-type chaperone activity was recently unveiled. Driven by this evidence, we here investigate how different S100B chaperone multimers influence the formation of oligomers during Aβ42 fibrillation. Resorting to kinetic analysis coupled with simulation of AβO influx distributions, we establish that supra-stoichiometric ratios of dimeric S100B-Ca2+ drastically decrease Aβ42 oligomerization rate by 95% and AβO levels by 70% due to preferential inhibition of surface-catalyzed secondary nucleation, with a concomitant redirection of aggregation toward elongation. We also determined that sub-molar ratios of tetrameric apo-S100B decrease Aβ42 oligomerization influx down to 10%, while precluding both secondary nucleation and, more discreetly, fibril elongation. Coincidently, the mechanistic predictions comply with the independent screening of AβO using a combination of the thioflavin-T and X-34 fluorophores. Altogether, our findings illustrate that different S100B multimers act as complementary suppressors of Aβ42 oligomerization and aggregation, further underpinning their potential neuroprotective role in AD.
Collapse
Affiliation(s)
- António J. Figueira
- BioISI–Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Saavedra
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Cláudio M. Gomes
- BioISI–Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Cláudio M. Gomes,
| |
Collapse
|
41
|
Törner R, Kupreichyk T, Hoyer W, Boisbouvier J. The role of heat shock proteins in preventing amyloid toxicity. Front Mol Biosci 2022; 9:1045616. [PMID: 36589244 PMCID: PMC9798239 DOI: 10.3389/fmolb.2022.1045616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The oligomerization of monomeric proteins into large, elongated, β-sheet-rich fibril structures (amyloid), which results in toxicity to impacted cells, is highly correlated to increased age. The concomitant decrease of the quality control system, composed of chaperones, ubiquitin-proteasome system and autophagy-lysosomal pathway, has been shown to play an important role in disease development. In the last years an increasing number of studies has been published which focus on chaperones, modulators of protein conformational states, and their effects on preventing amyloid toxicity. Here, we give a comprehensive overview of the current understanding of chaperones and amyloidogenic proteins and summarize the advances made in elucidating the impact of these two classes of proteins on each other, whilst also highlighting challenges and remaining open questions. The focus of this review is on structural and mechanistic studies and its aim is to bring novices of this field "up to speed" by providing insight into all the relevant processes and presenting seminal structural and functional investigations.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS CEA Institut de Biologie Structurale (IBS), Grenoble, France,*Correspondence: Ricarda Törner, ; Jerome Boisbouvier,
| |
Collapse
|
42
|
Bortoletto AS, Graham WV, Trout G, Bonito‐Oliva A, Kazmi MA, Gong J, Weyburne E, Houser BL, Sakmar TP, Parchem RJ. Human Islet Amyloid Polypeptide (hIAPP) Protofibril-Specific Antibodies for Detection and Treatment of Type 2 Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202342. [PMID: 36257905 PMCID: PMC9731688 DOI: 10.1002/advs.202202342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/26/2022] [Indexed: 05/27/2023]
Abstract
Type 2 diabetes mellitus (T2D) is a major public health concern and is characterized by sustained hyperglycemia due to insulin resistance and destruction of insulin-producing β cells. One pathological hallmark of T2D is the toxic accumulation of human islet amyloid polypeptide (hIAPP) aggregates. Monomeric hIAPP is a hormone normally co-secreted with insulin. However, increased levels of hIAPP in prediabetic and diabetic patients can lead to the formation of hIAPP protofibrils, which are toxic to β cells. Current therapies fail to address hIAPP aggregation and current screening modalities do not detect it. Using a stabilizing capping protein, monoclonal antibodies (mAbs) can be developed against a previously nonisolatable form of hIAPP protofibrils, which are protofibril specific and do not engage monomeric hIAPP. Shown here are two candidate mAbs that can detect hIAPP protofibrils in serum and hIAPP deposits in pancreatic islets in a mouse model of rapidly progressing T2D. Treatment of diabetic mice with the mAbs delays disease progression and dramatically increases overall survival. These results demonstrate the potential for using novel hIAPP protofibril-specific mAbs as a diagnostic screening tool for early detection of T2D, as well as therapeutically to preserve β cell function and target one of the underlying pathological mechanisms of T2D.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene TherapyStem Cells and Regenerative Medicine CenterDepartment of NeuroscienceDepartment of Molecular and Cellular BiologyTranslational Biology and Molecular Medicine ProgramMedical Scientist Training ProgramBaylor College of MedicineOne Baylor PlazaHoustonTX77030USA
| | - W. Vallen Graham
- Laboratory of Chemical Biology & Signal TransductionThe Rockefeller University1230 York AvenueNew YorkNY10065USA
| | - Gabriella Trout
- Center for Cell and Gene TherapyStem Cells and Regenerative Medicine CenterDepartment of NeuroscienceDepartment of Molecular and Cellular BiologyTranslational Biology and Molecular Medicine ProgramMedical Scientist Training ProgramBaylor College of MedicineOne Baylor PlazaHoustonTX77030USA
| | - Alessandra Bonito‐Oliva
- Laboratory of Chemical Biology & Signal TransductionThe Rockefeller University1230 York AvenueNew YorkNY10065USA
| | - Manija A. Kazmi
- Laboratory of Chemical Biology & Signal TransductionThe Rockefeller University1230 York AvenueNew YorkNY10065USA
| | - Jing Gong
- Celdara Medical16 Cavendish CourtLebanonNH03766USA
| | | | | | - Thomas P. Sakmar
- Laboratory of Chemical Biology & Signal TransductionThe Rockefeller University1230 York AvenueNew YorkNY10065USA
- Department of Neurobiology, Care Sciences, and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska InstitutetSolna17164Sweden
| | - Ronald J. Parchem
- Center for Cell and Gene TherapyStem Cells and Regenerative Medicine CenterDepartment of NeuroscienceDepartment of Molecular and Cellular BiologyTranslational Biology and Molecular Medicine ProgramMedical Scientist Training ProgramBaylor College of MedicineOne Baylor PlazaHoustonTX77030USA
| |
Collapse
|
43
|
Abelein A, Ciofi-Baffoni S, Mörman C, Kumar R, Giachetti A, Piccioli M, Biverstål H. Molecular Structure of Cu(II)-Bound Amyloid-β Monomer Implicated in Inhibition of Peptide Self-Assembly in Alzheimer's Disease. JACS AU 2022; 2:2571-2584. [PMID: 36465548 PMCID: PMC9709942 DOI: 10.1021/jacsau.2c00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 05/22/2023]
Abstract
Metal ions, such as copper and zinc ions, have been shown to strongly modulate the self-assembly of the amyloid-β (Aβ) peptide into insoluble fibrils, and elevated concentrations of metal ions have been found in amyloid plaques of Alzheimer's patients. Among the physiological transition metal ions, Cu(II) ions play an outstanding role since they can trigger production of neurotoxic reactive oxygen species. In contrast, structural insights into Cu(II) coordination of Aβ have been challenging due to the paramagnetic nature of Cu(II). Here, we employed specifically tailored paramagnetic NMR experiments to determine NMR structures of Cu(II) bound to monomeric Aβ. We found that monomeric Aβ binds Cu(II) in the N-terminus and combined with molecular dynamics simulations, we could identify two prevalent coordination modes of Cu(II). For these, we report here the NMR structures of the Cu(II)-bound Aβ complex, exhibiting heavy backbone RMSD values of 1.9 and 2.1 Å, respectively. Further, applying aggregation kinetics assays, we identified the specific effect of Cu(II) binding on the Aβ nucleation process. Our results show that Cu(II) efficiently retards Aβ fibrillization by predominately reducing the rate of fibril-end elongation at substoichiometric ratios. A detailed kinetic analysis suggests that this specific effect results in enhanced Aβ oligomer generation promoted by Cu(II). These results can quantitatively be understood by Cu(II) interaction with the Aβ monomer, forming an aggregation inert complex. In fact, this mechanism is strikingly similar to other transition metal ions, suggesting a common mechanism of action of retarding Aβ self-assembly, where the metal ion binding to monomeric Aβ is a key determinant.
Collapse
Affiliation(s)
- Axel Abelein
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Huddinge141 83, Sweden
| | - Simone Ciofi-Baffoni
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019 , Florence, Italy
| | - Cecilia Mörman
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Huddinge141 83, Sweden
- Department
of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, Stockholm106 91, Sweden
| | - Rakesh Kumar
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Huddinge141 83, Sweden
| | - Andrea Giachetti
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019 , Florence, Italy
| | - Mario Piccioli
- Magnetic
Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino50019 , Florence, Italy
| | - Henrik Biverstål
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Huddinge141 83, Sweden
- Department
of Physical Organic Chemistry, Latvian Institute
of Organic Synthesis, RigaLV-1006, Latvia
| |
Collapse
|
44
|
Chen G, Andrade-Talavera Y, Zhong X, Hassan S, Biverstål H, Poska H, Abelein A, Leppert A, Kronqvist N, Rising A, Hebert H, Koeck PJB, Fisahn A, Johansson J. Abilities of the BRICHOS domain to prevent neurotoxicity and fibril formation are dependent on a highly conserved Asp residue. RSC Chem Biol 2022; 3:1342-1358. [PMID: 36349220 PMCID: PMC9627735 DOI: 10.1039/d2cb00187j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 09/23/2023] Open
Abstract
Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but to what extent the respective mechanisms are overlapping is not fully understood. The BRICHOS domain constitutes a disease-associated chaperone family, with activities against amyloid neurotoxicity, fibril formation, and amorphous protein aggregation. Here, we show that the activities of BRICHOS against amyloid-induced neurotoxicity and fibril formation, respectively, are oppositely dependent on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families. The conserved Asp in its ionized state promotes structural flexibility and has a pK a value between pH 6.0 and 7.0, suggesting that chaperone effects can be differently affected by physiological pH variations.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet 171 77 Stockholm Sweden
| | - Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology 141 52 Huddinge Sweden
| | - Sameer Hassan
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis Riga LV-1006 Latvia
| | - Helen Poska
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
- School of Natural Sciences and Health, Tallinn University Tallinn Estonia
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences 750 07 Uppsala Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology 141 52 Huddinge Sweden
| | - Philip J B Koeck
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology 141 52 Huddinge Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet 171 77 Stockholm Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet 141 52 Huddinge Sweden
| |
Collapse
|
45
|
Uddin A, Malla JA, Kumar H, Kumari M, Sinha S, Sharma VK, Kumar Y, Talukdar P, Lahiri M, Maiti TK, Hazra P. Development of a Systematic Strategy toward Promotion of α-Synuclein Aggregation Using 2-Hydroxyisophthalamide-Based Systems. Biochemistry 2022; 61:2267-2279. [PMID: 36219819 DOI: 10.1021/acs.biochem.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Establishing a potent scheme against α-synuclein aggregation involved in Parkinson's disease has been evaluated as a promising route to identify compounds that either inhibit or promote the aggregation process of α-synuclein. In the last two decades, this perspective has guided a dramatic increase in the efforts, focused on developing potent drugs either for retardation or promotion of the self-assembly process of α-synuclein. To address this issue, using a chemical kinetics platform, we developed a strategy that enabled a progressively detailed analysis of the molecular events leading to protein aggregation at the microscopic level in the presence of a recently synthesized 2-hydroxyisophthalamide class of small organic molecules based on their binding affinity. Furthermore, qualitatively, we have developed a strategy of disintegration of α-synuclein fibrils in the presence of these organic molecules. Finally, we have shown that these organic molecules effectively suppress the toxicity of α-synuclein oligomers in neuron cells.
Collapse
Affiliation(s)
- Aslam Uddin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Manisha Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad121001, India
| | - Suman Sinha
- Institute of Pharmaceutical Research, GLA University, Mathura281406, India
| | - Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Yashwant Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad121001, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune411008, Maharashtra, India
| |
Collapse
|
46
|
Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022; 12:biom12101344. [PMID: 36291553 PMCID: PMC9599460 DOI: 10.3390/biom12101344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Tiziana Sanfilippo
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Sonya Vasto
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Istituti Euro-Mediterranei di Scienza e Tecnologia (IEMEST), Via M. Miraglia 20, 90139 Palermo, Italy
| | - Sara Baldassano
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Rossella Guggino
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Roberto Monastero
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| |
Collapse
|
47
|
Forloni G, La Vitola P, Balducci C. Oligomeropathies, inflammation and prion protein binding. Front Neurosci 2022; 16:822420. [PMID: 36081661 PMCID: PMC9445368 DOI: 10.3389/fnins.2022.822420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The central role of oligomers, small soluble aggregates of misfolded proteins, in the pathogenesis of neurodegenerative disorders is recognized in numerous experimental conditions and is compatible with clinical evidence. To underline this concept, some years ago we coined the term oligomeropathies to define the common mechanism of action of protein misfolding diseases like Alzheimer, Parkinson or prion diseases. Using simple experimental conditions, with direct application of synthetic β amyloid or α-synuclein oligomers intraventricularly at micromolar concentrations, we could detect differences and similarities in the biological consequences. The two oligomer species affected cognitive behavior, neuronal dysfunction and cerebral inflammatory reactions with distinct mechanisms. In these experimental conditions the proposed mediatory role of cellular prion protein in oligomer activities was not confirmed. Together with oligomers, inflammation at different levels can be important early in neurodegenerative disorders; both β amyloid and α-synuclein oligomers induce inflammation and its control strongly affects neuronal dysfunction. This review summarizes our studies with β-amyloid or α-synuclein oligomers, also considering the potential curative role of doxycycline, a well-known antibiotic with anti-amyloidogenic and anti-inflammatory activities. These actions are analyzed in terms of the therapeutic prospects.
Collapse
|
48
|
Figueira AJ, Moreira GG, Saavedra J, Cardoso I, Gomes CM. Tetramerization of the S100B Chaperone Spawns a Ca 2+ Independent Regulatory Surface that Enhances Anti-aggregation Activity and Client Specificity. J Mol Biol 2022; 434:167791. [PMID: 35970403 DOI: 10.1016/j.jmb.2022.167791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) hallmarks include the aggregation of amyloid-β (Aβ), tau and neuroinflammation promoted by several alarmins. Among these is S100B, a small astrocytic homodimeric protein, upregulated in AD, whose multiple biological activities depend on localization, concentration, and assembly state. S100B was reported to inhibit the aggregation and toxicity of Aβ42 and tau similarly to a holdase-type chaperone. This activity is dependent of Ca2+-binding, which triggers the exposure of a regulatory binding cleft at the S100B dimer interface with which amyloidogenic clients dynamically interact. Although the dimer prevails, a significant portion of secreted S100B in the human brain occurs as higher order multimers, whose protective functions remain uncharacterized and which we here investigate. Resorting to ThT-monitored aggregation kinetics, we determined that unlike the dimer, tetrameric S100B inhibits Aβ42 aggregation at sub/equimolar ratios, an effect that persists in the absence of Ca2+ binding. Structural analysis revealed that S100B tetramerization spawns a novel extended cleft accommodating an aggregation-prone surface that mediates interactions with monomeric Aβ client via hydrophobic interactions, as corroborated by Bis-ANS fluorescence and docking analysis. Correspondingly, at high ionic strength that reduces solvation and favours hydrophobic contacts, the inhibition of Aβ42 aggregation by tetrameric S100B is 3-fold increased. Interestingly, this extended Ca2+-independent surface favours Aβ42 as substrate, as tau K18 aggregation is not inhibited by the apo tetramer. Overall, results illustrate a mechanism through which oligomerization of the S100B chaperone fine-tunes anti-aggregation activity and client specificity, highlighting the potential functional relevance of S100B multimers in the regulation of AD proteotoxicity.
Collapse
Affiliation(s)
- António J Figueira
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. https://twitter.com/Antonio27902425
| | - Guilherme G Moreira
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. https://twitter.com/GuilhermeGilMo1
| | - Joana Saavedra
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Isabel Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Cláudio M Gomes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
49
|
Sinnige T. Molecular mechanisms of amyloid formation in living systems. Chem Sci 2022; 13:7080-7097. [PMID: 35799826 PMCID: PMC9214716 DOI: 10.1039/d2sc01278b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/14/2022] [Indexed: 12/28/2022] Open
Abstract
Fibrillar protein aggregation is a hallmark of a variety of human diseases. Examples include the deposition of amyloid-β and tau in Alzheimer's disease, and that of α-synuclein in Parkinson's disease. The molecular mechanisms by which soluble proteins form amyloid fibrils have been extensively studied in the test tube. These investigations have revealed the microscopic steps underlying amyloid formation, and the role of factors such as chaperones that modulate these processes. This perspective explores the question to what extent the mechanisms of amyloid formation elucidated in vitro apply to human disease. The answer is not yet clear, and may differ depending on the protein and the associated disease. Nevertheless, there are striking qualitative similarities between the aggregation behaviour of proteins in vitro and the development of the related diseases. Limited quantitative data obtained in model organisms such as Caenorhabditis elegans support the notion that aggregation mechanisms in vivo can be interpreted using the same biophysical principles established in vitro. These results may however be biased by the high overexpression levels typically used in animal models of protein aggregation diseases. Molecular chaperones have been found to suppress protein aggregation in animal models, but their mechanisms of action have not yet been quantitatively analysed. Several mechanisms are proposed by which the decline of protein quality control with organismal age, but also the intrinsic nature of the aggregation process may contribute to the kinetics of protein aggregation observed in human disease.
Collapse
Affiliation(s)
- Tessa Sinnige
- Bijvoet Centre for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
50
|
Linse S, Sormanni P, O’Connell DJ. An aggregation inhibitor specific to oligomeric intermediates of Aβ42 derived from phage display libraries of stable, small proteins. Proc Natl Acad Sci U S A 2022; 119:e2121966119. [PMID: 35580187 PMCID: PMC9173773 DOI: 10.1073/pnas.2121966119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
The self-assembly of amyloid β peptide (Aβ) to fibrillar and oligomeric aggregates is linked to Alzheimer’s disease. Aβ binders may serve as inhibitors of aggregation to prevent the generation of neurotoxic species and for the detection of Aβ species. A particular challenge involves finding binders to on-pathway oligomers given their transient nature. Here we construct two phage–display libraries built on the highly inert and stable protein scaffold S100G, one containing a six-residue variable surface patch and one harboring a seven-residue variable loop insertion. Monomers and fibrils of Aβ40 and Aβ42 were separately coupled to silica nanoparticles, using a coupling strategy leading to the presence of oligomers on the monomer beads, and they were used in three rounds of affinity selection. Next-generation sequencing revealed sequence clusters and candidate binding proteins (SXkmers). Two SXkmers were expressed as soluble proteins and tested in terms of aggregation inhibition via thioflavin T fluorescence. We identified an SXkmer with loop–insertion YLTIRLM as an inhibitor of the secondary nucleation of Aβ42 and binding analyses using surface plasmon resonance technology, Förster resonance energy transfer, and microfluidics diffusional sizing imply an interaction with intermediate oligomeric species. A linear peptide with the YLTIRLM sequence was found inhibitory but at a lower potency than the more constrained SXkmer loop. We identified an SXkmer with side-patch VI-WI-DD as an inhibitor of Aβ40 aggregation. Remarkably, our data imply that SXkmer-YLTIRLM blocks secondary nucleation through an interaction with oligomeric intermediates in solution or at the fibril surface, which is a unique inhibitory mechanism for a library-derived inhibitor.
Collapse
Affiliation(s)
- Sara Linse
- Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| | - David J. O’Connell
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 V1W8, Ireland
- BiOrbic, Bioeconomy SFI Research Centre, University College Dublin, Dublin 04 V1W8, Ireland
| |
Collapse
|