1
|
Liu X, Lin Z, Zhu K, He R, Jiang Z, Wu H, Yu J, Luo Q, Sheng J, Pan J, Huang H. Dietary, metabolic and gut microbiota influences on primary ovarian failure: a two-sample Mendelian randomization study. Asia Pac J Clin Nutr 2025; 34:57-65. [PMID: 39828258 PMCID: PMC11742604 DOI: 10.6133/apjcn.202502_34(1).0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 06/18/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have reported there were associations between ovarian function and dietary factors, metabolic factors and gut microbiota. However, it is unclear whether causal associations exist. We aimed to explore the causal relationship of these factors with risk of primary ovarian failure (POF). METHODS AND STUDY DESIGN Two-sample Mendelian randomization (MR) analysis was performed to genetically predict the causal effects of dietary and metabolic factors and gut microbiota on POF. The inverse variance weighted (IVW) method was used as the primary statistical method. A series of sensitivity analyses, including weighted median, MR-Egger, simple mode, weighted mode methods, and leave-one-out analysis, were conducted to assess the robustness of the MR analysis results. RESULTS IVW analysis revealed that cigarettes smoked per day, coffee intake and cooked vegetable intake were not causally correlated with POF at the genetic level. However, POF were associated with fresh fruit intake, BMI, Eubacterium (hallii group), Eubacterium (ventriosum group), Adlercreutzia, Intestinibacter, Lachnospiraceae (UCG008), and Terrisporobacter. These findings were robust according to extensive sensitivity analyses. CONCLUSIONS This study identified several dietary factors, metabolic factors and gut microbiota taxa that may be causally implicated in POF, potentially offering new therapeutic targets.
Collapse
Affiliation(s)
- Xueying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongliang Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kejing Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Renke He
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoying Jiang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Wu
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaen Yu
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinyu Luo
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Sheng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jiaxue Pan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
- Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Liu Y, Tian Z, Yang J, Zhou Z. Attraction of Bactrocera cucurbitae (Coquillett) to selected gut microbiota supernatants: implications for pest control. PEST MANAGEMENT SCIENCE 2025. [PMID: 39797524 DOI: 10.1002/ps.8627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera. The proboscis extension response was used to evaluate the impact of these microbial strains. In addition, using food selection experiments, two-choice trap methods, and gas chromatography-mass spectrometry, we isolated and identified the predominant volatile compounds in the microbiota supernatants. RESULTS Among the tested gut microbial strains, Kluyvera, Morganella, and Providencia exhibited notable attraction toward B. cucurbitae. In particular, the supernatant of Providencia M38 revealed the most highly attractive effect on B. cucurbitae larvae, whereas the supernatant of Morganella M72 was highly attractive to B. cucurbitae adults. Primary components present in the supernatant of M38 and M72 were dimethyl disulfide, indole, 2-nonone, phenethyl alcohol, and 1-decanol. CONCLUSION Strains of M38 and M72 displayed remarkable attractive properties for B. cucurbitae larvae and adults, respectively, presenting promising potential for developing a novel attractant for this pest species. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Zhenya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
3
|
Niu T, Ding Z, Zeng J, Yan Z, Duan H, Lv J, Zhang Y, Zhang L, Hu J. Melatonin Sources in Sheep Rumen and Its Role in Reproductive Physiology. Animals (Basel) 2024; 14:3451. [PMID: 39682413 DOI: 10.3390/ani14233451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
In mammals, the melatonin (Mel) concentration in the gastrointestinal tract is 400 times greater than in the pineal gland. However, the origin of Mel in the gastrointestinal tract and its role in reproductive regulation remains unclear. Therefore, we analyzed three potential Mel sources (feed, microorganisms, and the rumen wall) for their contribution to high Mel levels in the rumen and their biological effects. The feed contained high Mel concentrations, and Mel in rumen fluid and blood peaked two hours after feeding. Rumen microbial analysis showed a strong positive correlation between Mel and specific microbes, including Megasphaera, Butyrivibrio, Acetobacter, and Olsenella. In vitro experiments indicated that rumen microorganisms synthesized Mel from tryptophan. The rumen wall also contains key enzymes, AANAT and HIOMT, which catalyze Mel synthesis and membrane receptors MT1 and MT2 that mediate the function of Mel, suggesting that the rumen wall synthesizes Mel. Mel peaked in both rumen fluid and blood two hours after feeding. Feeding also altered blood levels of Mel, Gonadotropin-releasing hormone (GnRH), Luteinizing hormone (LH), Follicle-stimulating hormone (FSH), progesterone (P4), and Estradiol (E2), with a correlation between Mel and fluctuations in GnRH, LH, P4, and E2 levels. Our findings suggest that feed is the primary source of high Mel levels in the rumen and impacts reproductive hormone fluctuations. This study elucidates the origin of high rumen Mel concentrations and reveals that food intake affects the natural secretion of various hormones, offering a new perspective on food sources for regulating reproductive physiology.
Collapse
Affiliation(s)
- Tian Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ziqiang Ding
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
4
|
Gu LJ, Li L, Li QN, Xu K, Yue W, Qiao JY, Meng TG, Dong MZ, Lei WL, Guo JN, Wang ZB, Sun QY. The transgenerational effects of maternal low-protein diet during lactation on offspring. J Genet Genomics 2024; 51:824-835. [PMID: 38657948 DOI: 10.1016/j.jgg.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Environmental factors such as diet and lifestyle can influence the health of both mothers and offspring. However, its transgenerational transmission and underlying mechanisms remain largely unknown. Here, using a maternal lactation-period low-protein diet (LPD) mouse model, we show that maternal LPD during lactation causes decreased survival and stunted growth, significantly reduces ovulation and litter size, and alters the gut microbiome in the female LPD-F1 offspring. The transcriptome of LPD-F1 metaphase II (MII) oocytes shows that differentially expressed genes are enriched in female pregnancy and multiple metabolic processes. Moreover, maternal LPD causes early stunted growth and impairs metabolic health, which is transmitted over two generations. The methylome alteration of LPD-F1 oocytes can be partly transmitted to the F2 oocytes. Together, our results reveal that LPD during lactation transgenerationally affects offspring health, probably via oocyte epigenetic changes.
Collapse
Affiliation(s)
- Lin-Jian Gu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing 100021, China
| | - Qian-Nan Li
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Ke Xu
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing-Yi Qiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| |
Collapse
|
5
|
Liu Y, Wang X, Jin C, Qiao J, Wang C, Jiang L, Yu S, Pan D, Zhao D, Wang S, Liu M. Total ginsenosides extend healthspan of aging Drosophila by suppressing imbalances in intestinal stem cells and microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155650. [PMID: 38669971 DOI: 10.1016/j.phymed.2024.155650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Disruption of stem cell and microbial homeostasis accelerates the aging process. Hence, maintaining these balances effectively delays aging and alleviates the symptoms of age-related diseases. Recent research indicates that targeting endoplasmic reticulum (ER) stress and immune deficiency (IMD) signalling may play a positive role in maintaining homeostasis in aging intestinal stem cells (ISC) and microbial equilibrium. Previous research has suggested that total ginsenosides (TG) derived from Panax ginseng C. A. Meyer may exhibit potential anti-aging properties by mitigating ER stress and mediating the IMD pathway. Nevertheless, it remains unclear whether TG improve ISC and microbial homeostasis by modulating ER stress and the IMD pathway to promote healthy aging. PURPOSE To elucidate whether TG promotes healthspan in Drosophila and its underlying molecular mechanisms, focusing on its role in regulating ER stress and the IMD pathway to maintain ISC and intestinal microbiota homeostasis. METHODS High performance liquid chromatography was performed to detect the main saponin monomer in TG. Survival rate, gut length, barrier function, and feeding/excretion behaviour assays were used to evaluate the effects of TG on the lifespan and gut health of Drosophila. At the stem cell level, "esg-luciferase" reporter system, esg-GFP/delta stem cell fluorescent labelling, and phospho-histone H3+ mitotic activity assays were employed to determine whether TG prevented natural aging or oxidative stress-associated ISC over-proliferation in Drosophila. Immunofluorescence staining was used to detect the effects of TG on ER stress during aging. Overexpression or interference of ER stress target genes and their related c-Jun N-terminal kinase (JNK) gene was manipulated using gene editing technology to verify the molecular mechanism by which TG maintains age-related ISC proliferation homeostasis. Molecular docking and isothermal titration calorimetry were used to verify the direct interactions between TG and ER stress target genes. In addition, at the intestinal flora level, 16S rDNA sequencing was used to analyse the effect of TG on the diversity and abundance of Drosophila intestinal flora and the possible functional pathways involved. RT-qPCR was performed to determine whether TG mediated the expression of target genes in the IMD pathway. A dominant bacterial species-specific mono-association analysis were performed to verify whether the effects of TG on IMD target genes and ISC proliferation depended on the direct control of the dominant bacterial species. RESULTS Our results suggest that administration of TG delays the decline in gut morphology and function in aging Drosophila. TG prevents age-associated ISC hyperproliferation by inhibiting ER stress IRE1-mediated JNK signaling. Furthermore, oral TG prevented aging-associated ISC and gut microbiota dysbiosis by remodelling the gut microbiota and inhibiting Acetobacter-mediated activation of IMD target genes. CONCLUSION TG promotes healthy aging by inhibiting the excessive proliferation of ISC and alleviating intestinal microbial imbalance, thereby providing new insights for the research and development of anti-aging TG products.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daian Pan
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
6
|
Argaw-Denboba A, Schmidt TSB, Di Giacomo M, Ranjan B, Devendran S, Mastrorilli E, Lloyd CT, Pugliese D, Paribeni V, Dabin J, Pisaniello A, Espinola S, Crevenna A, Ghosh S, Humphreys N, Boruc O, Sarkies P, Zimmermann M, Bork P, Hackett JA. Paternal microbiome perturbations impact offspring fitness. Nature 2024; 629:652-659. [PMID: 38693261 PMCID: PMC11096121 DOI: 10.1038/s41586-024-07336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.
Collapse
Affiliation(s)
- Ayele Argaw-Denboba
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Monica Di Giacomo
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Bobby Ranjan
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Saravanan Devendran
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Eleonora Mastrorilli
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Catrin T Lloyd
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Danilo Pugliese
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Violetta Paribeni
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Juliette Dabin
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Alessandra Pisaniello
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Sergio Espinola
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Alvaro Crevenna
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Subhanita Ghosh
- MRC London Institute for Medical Science (LMS), London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Humphreys
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Olga Boruc
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy
| | - Peter Sarkies
- MRC London Institute for Medical Science (LMS), London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Zimmermann
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory (EMBL), Structural & Computational Biology Unit, Heidelberg, Germany
- Department of Bioinformatics, Biozentrum, University of Würzburg, Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
| | - Jamie A Hackett
- European Molecular Biology Laboratory (EMBL), Epigenetics & Neurobiology Unit, Rome, Italy.
| |
Collapse
|
7
|
Snir O, Elgart M, Gnainsky Y, Goldsmith M, Ciabrelli F, Dagan S, Aviezer I, Stoops E, Cavalli G, Soen Y. Organ transformation by environmental disruption of protein integrity and epigenetic memory in Drosophila. PLoS Biol 2024; 22:e3002629. [PMID: 38805504 PMCID: PMC11161060 DOI: 10.1371/journal.pbio.3002629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/07/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Abstract
Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.
Collapse
Affiliation(s)
- Orli Snir
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elgart
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yulia Gnainsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Filippo Ciabrelli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Shlomi Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Aviezer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth Stoops
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Wang J, Gu J, Yi J, Li J, Li W, Zhai Z. High-fat diets induce inflammatory IMD/NFκB signaling via gut microbiota remodeling in Drosophila. Front Cell Infect Microbiol 2024; 14:1347716. [PMID: 38716198 PMCID: PMC11074423 DOI: 10.3389/fcimb.2024.1347716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2024] [Indexed: 06/05/2024] Open
Abstract
High-fat diets (HFDs), a prevailing daily dietary style worldwide, induce chronic low-grade inflammation in the central nervous system and peripheral tissues, promoting a variety of diseases including pathologies associated with neuroinflammation. However, the mechanisms linking HFDs to inflammation are not entirely clear. Here, using a Drosophila HFD model, we explored the mechanism of HFD-induced inflammation in remote tissues. We found that HFDs activated the IMD/NFκB immune pathway in the head through remodeling of the commensal gut bacteria. Removal of gut microbiota abolished such HFD-induced remote inflammatory response. Further experiments revealed that HFDs significantly increased the abundance of Acetobacter malorum in the gut, and the re-association of this bacterium was sufficient to elicit inflammatory response in remote tissues. Mechanistically, Acetobacter malorum produced a greater amount of peptidoglycan (PGN), a well-defined microbial molecular pattern that enters the circulation and remotely activates an inflammatory response. Our results thus show that HFDs trigger inflammation mediated by a bacterial molecular pattern that elicits host immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Montanari M, Manière G, Berthelot-Grosjean M, Dusabyinema Y, Gillet B, Grosjean Y, Kurz CL, Royet J. Larval microbiota primes the Drosophila adult gustatory response. Nat Commun 2024; 15:1341. [PMID: 38351056 PMCID: PMC10864365 DOI: 10.1038/s41467-024-45532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The survival of animals depends, among other things, on their ability to identify threats in their surrounding environment. Senses such as olfaction, vision and taste play an essential role in sampling their living environment, including microorganisms, some of which are potentially pathogenic. This study focuses on the mechanisms of detection of bacteria by the Drosophila gustatory system. We demonstrate that the peptidoglycan (PGN) that forms the cell wall of bacteria triggers an immediate feeding aversive response when detected by the gustatory system of adult flies. Although we identify ppk23+ and Gr66a+ gustatory neurons as necessary to transduce fly response to PGN, we demonstrate that they play very different roles in the process. Time-controlled functional inactivation and in vivo calcium imaging demonstrate that while ppk23+ neurons are required in the adult flies to directly transduce PGN signal, Gr66a+ neurons must be functional in larvae to allow future adults to become PGN sensitive. Furthermore, the ability of adult flies to respond to bacterial PGN is lost when they hatch from larvae reared under axenic conditions. Recolonization of germ-free larvae, but not adults, with a single bacterial species, Lactobacillus brevis, is sufficient to restore the ability of adults to respond to PGN. Our data demonstrate that the genetic and environmental characteristics of the larvae are essential to make the future adults competent to respond to certain sensory stimuli such as PGN.
Collapse
Affiliation(s)
| | - Gérard Manière
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - Yves Dusabyinema
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, F-69007, Lyon, France
| | - Yaël Grosjean
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAe, Université Bourgogne, F-21000, Dijon, France
| | - C Léopold Kurz
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
10
|
Nguyen JB, Marshall CW, Cook CN. The buzz within: the role of the gut microbiome in honeybee social behavior. J Exp Biol 2024; 227:jeb246400. [PMID: 38344873 DOI: 10.1242/jeb.246400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Gut symbionts influence the physiology and behavior of their host, but the extent to which these effects scale to social behaviors is an emerging area of research. The use of the western honeybee (Apis mellifera) as a model enables researchers to investigate the gut microbiome and behavior at several levels of social organization. Insight into gut microbial effects at the societal level is critical for our understanding of how involved microbial symbionts are in host biology. In this Commentary, we discuss recent findings in honeybee gut microbiome research and synthesize these with knowledge of the physiology and behavior of other model organisms to hypothesize how host-microbe interactions at the individual level could shape societal dynamics and evolution.
Collapse
Affiliation(s)
- J B Nguyen
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - C W Marshall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - C N Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
11
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the microbiome have distinct roles in Hawaiian drosophila reproduction. ISME COMMUNICATIONS 2024; 4:ycae134. [PMID: 39678232 PMCID: PMC11643357 DOI: 10.1093/ismeco/ycae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
The microbiome provides numerous physiological benefits for host animals. The role of bacterial members of microbiomes to host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members, even though fungi are integral components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, Drosophila grimshawi, and identified distinct effects for each treatment on microbiome community stability, reproduction, and lipid metabolism. Female oogenesis, fecundity, and mating drive were significantly diminished with antifungal treatment. In contrast, male fecundity was affected by antibacterial but not antifungal treatment. For males and females, simultaneous treatment with both antibacterial and antifungal drugs resulted in severely reduced fecundity and changes in fatty acid levels and composition. Microbial transplants using frass harvested from control flies partially restored microbiome composition and female fecundity. Overall, our results reveal that antibacterial and antifungal treatments have distinct effects on host fecundity, mating behavior, and lipid metabolism, and that interkingdom interactions contribute to microbial community stability and reproduction.
Collapse
Affiliation(s)
- Matthew J Medeiros
- Pacific Biosciences Research Center, University of Hawai`i at Mānoa, 1993 East West Rd., Honolulu, HI 96826, United States
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Laura Seo
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Aziel Macias
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai`i at Mānoa, 1993 East West Rd., Honolulu, HI 96826, United States
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154-4004, United States
| |
Collapse
|
12
|
Junrui-Fu, Rong Z, Huang X, Wang J, Long X, Feng Q, Deng H. Gut dysbacteriosis induces expression differences in the adult head transcriptome of Spodoptera frugiperda in a sex-specific manner. BMC Microbiol 2023; 23:388. [PMID: 38057708 PMCID: PMC10702092 DOI: 10.1186/s12866-023-03089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Mounting evidence indicates that the gut microbiota influences the neurodevelopment and behavior of insects through the gut-brain axis. However, it is currently unclear whether the gut microbiota affect the head profiles and immune pathway in pests. Here, we find that gut bacteria is essential for the immune and neural development of adult Spodoptera frugiperda, which is an extremely destructive agricultural pest worldwide. 16 S rRNA sequencing analysis showed that antibiotics exposure significantly disturbed the composition and diversity of gut bacteria. Further transcriptomic analysis revealed that the adult head transcripts were greatly affected by gut dysbacteriosis, and differently expression genes critical for brain and neural development including A4galt, Tret1, nsun4, Galt, Mitofilin, SLC2A3, snk, GABRB3, Oamb and SLC6A1 were substantially repressed. Interestingly, the dysbacteriosis caused sex-specific differences in immune response. The mRNA levels of pll (serine/threonine protein kinase Pelle), PGRP (peptidoglycan-sensing receptor), CECA (cecropin A) and CECB (cecropin B) involved in Toll and Imd signaling pathway were drastically decreased in treated male adults' heads but not in female adults; however, genes of HIVEP2, ZNF131, inducible zinc finger protein 1-like and zinc finger protein 99-like encoding zinc-finger antiviral protein (ZAP) involved in the interferon (IFNα/β) pathway were significantly inhibited in treated female adults' heads. Collectively, these results demonstrate that gut microbiota may regulate head transcription and impact the S. frugiperda adults' heads through the immune pathway in a sex-specific manner. Our finding highlights the relationship between the gut microbiota and head immune systems of S. frugiperda adults, which is an astonishing similarity with the discoveries of other animals. Therefore, this is the basis for further research to understand the interactions between hosts and microorganisms via the gut-brain axis in S. frugiperda and other insects.
Collapse
Affiliation(s)
- Junrui-Fu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zixia Rong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ximei Huang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Junhan Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Long
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510631, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China.
| |
Collapse
|
13
|
Tando Y, Matsui Y. Inheritance of environment-induced phenotypic changes through epigenetic mechanisms. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad008. [PMID: 38094661 PMCID: PMC10719065 DOI: 10.1093/eep/dvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 03/08/2024]
Abstract
Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
14
|
Liu Y, Liu J, Zhang X, Yun Y. Diversity of Bacteria Associated with Guts and Gonads in Three Spider Species and Potential Transmission Pathways of Microbes within the Same Spider Host. INSECTS 2023; 14:792. [PMID: 37887804 PMCID: PMC10607309 DOI: 10.3390/insects14100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Microbial symbiosis plays a crucial role in the ecological and evolutionary processes of animals. It is well known that spiders, with their unique and diverse predatory adaptations, assume an indispensable role in maintaining ecological balance and the food chain. However, our current understanding of spider microbiomes remains relatively limited. The gut microbiota and gonad microbiota of spiders can both potentially influence their physiology, ecology, and behavior, including aspects such as digestion, immunity, reproductive health, and reproductive behavior. In the current study, based on high-throughput sequencing of the 16S rRNA V3 and V4 regions, we detected the gut and gonad microbiota communities of three spider species captured from the same habitat, namely, Eriovixia cavaleriei, Larinioides cornutus, and Pardosa pseudoannulata. In these three species, we observed that, at the phylum level classification, the gut and gonad of E. cavaleriei are primarily composed of Proteobacteria, while those of L. cornutus and P. pseudoannulata are primarily composed of Firmicutes. At the genus level of classification, we identified 372 and 360 genera from the gut and gonad bacterial communities. It is noteworthy that the gut and gonad bacterial flora of E. cavaleriei and L. cornutus were dominated by Wolbachia and Spiroplasma. Results show that there were no differences in microbial communities between females and males of the same spider species. Furthermore, there is similarity between the gut and ovary microbial communities of female spiders, implying a potential avenue for microbial transmission between the gut and gonad within female spiders. By comprehensively studying these two microbial communities, we can establish the theoretical foundation for exploring the relationship between gut and gonad microbiota and their host, as well as the mechanisms through which microbes exert their effects.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jia Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaopan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
- Centre for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
15
|
Fu J, Wang J, Huang X, Guan B, Feng Q, Deng H. Composition and diversity of gut microbiota across developmental stages of Spodoptera frugiperda and its effect on the reproduction. Front Microbiol 2023; 14:1237684. [PMID: 37789854 PMCID: PMC10543693 DOI: 10.3389/fmicb.2023.1237684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Spodoptera frugiperda is a serious world-wide agricultural pest. Gut microorganisms play crucial roles in growth, development, immunity and behavior of host insects. Methods Here, we reported the composition of gut microbiota in a laboratory-reared strain of S. frugiperda using 16S rDNA sequencing and the effects of gut microbiota on the reproduction. Results Proteobacteria and Firmicutes were the predominant bacteria and the taxonomic composition varied during the life cycle. Alpha diversity indices indicated that the eggs had higher bacterial diversity than larvae, pupae and adults. Furthermore, eggs harbored a higher abundance of Ralstonia, Sediminibacterium and microbes of unclassified taxonomy. The dynamics changes in bacterial communities resulted in differences in the metabolic functions of the gut microbiota during development. Interestingly, the laid eggs in antibiotic treatment groups did not hatch much due to the gut dysbacteriosis, the results showed gut microbiota had a significant impact on the male reproduction. Discussion Our findings provide new perspectives to understand the intricate associations between microbiota and host, and have value for the development of S. frugiperda management strategies focusing on the pest gut microbiota.
Collapse
Affiliation(s)
- Junrui Fu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junhan Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ximei Huang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Boyang Guan
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qili Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
16
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the gut microbiome have distinct, sex-specific roles in Hawaiian Drosophila reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549088. [PMID: 37503295 PMCID: PMC10370118 DOI: 10.1101/2023.07.14.549088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Gut microbiomes provide numerous physiological benefits for host animals. The role of bacterial members of microbiomes in host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members of the microbiome even though fungi are significant components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, D. grimshawi, and identified distinct, sex-specific roles for the bacteria and fungi in microbiome community stability and reproduction. Female oogenesis, fecundity and mating drive were significantly diminished when fungal communities were suppressed. By contrast, male fecundity was more strongly affected by bacterial but not fungal populations. For males and females, suppression of both bacteria and fungi severely reduced fecundity and altered fatty acid levels and composition, implicating the importance of interkingdom interactions on reproduction and lipid metabolism. Overall, our results reveal that bacteria and fungi have distinct, sexually-dimorphic effects on host physiology and interkingdom dynamics in the gut help to maintain microbiome community stability and enhance reproduction.
Collapse
Affiliation(s)
- Matthew J. Medeiros
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Laura Seo
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Aziel Macias
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Donald K. Price
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| |
Collapse
|
17
|
Angstmann H, Pfeiffer S, Kublik S, Ehrhardt B, Uliczka K, Rabe KF, Roeder T, Wagner C, Schloter M, Krauss-Etschmann S. The microbial composition of larval airways from Drosophila melanogaster differ between specimens from laboratory and natural habitats. ENVIRONMENTAL MICROBIOME 2023; 18:55. [PMID: 37370177 DOI: 10.1186/s40793-023-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The fruit fly Drosophila melanogaster lives in natural habitats and has also long been used as a model organism in biological research. In this study, we used a molecular barcoding approach to analyse the airways microbiome of larvae of D. melanogaster, which were obtained from eggs of flies of the laboratory strain w1118 and from immune deficient flies (NF-kB-K), and from wild-caught flies. To assess intergenerational transmission of microbes, all eggs were incubated under the same semi-sterile conditions. RESULTS The airway microbiome of larvae from both lab-strains was dominated by the two families Acetobacteraceae and Lactobacillaceae, while larvae from wild-caught flies were dominated by Lactobacillaceae, Anaplasmataceae and Leuconostocaceae. Barcodes linked to Anaplasmataceae could be further assigned to Wolbachia sp., which is a widespread intracellular pathogen in arthropods. For Leuconostoceae, the most abundant reads were assigned to Weissella sp. Both Wolbachia and Weissella affect the development of the insects. Finally, a relative high abundance of Serratia sp. was found in larvae from immune deficient relish-/- compared to w1118 and wild-caught fly airways. CONCLUSIONS Our results show for the first time that larvae from D. melanogaster harbor an airway microbiome, which is of low complexity and strongly influenced by the environmental conditions and to a lesser extent by the immune status. Furthermore, our data indicate an intergenerational transmission of the microbiome as shaped by the environment.
Collapse
Affiliation(s)
- Hanna Angstmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Stefan Pfeiffer
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Birte Ehrhardt
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Karin Uliczka
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Klaus F Rabe
- Department of Pneumology, Lungen Clinic, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Germany Member of the German Center for Lung Research, Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Christina Wagner
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany
| | - Michael Schloter
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, Germany
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Susanne Krauss-Etschmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Leibniz Lung Center, Borstel, Germany.
- Department of Medicine, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany.
| |
Collapse
|
18
|
Gao H, Jiang S, Wang Y, Hu M, Xue Y, Cao B, Dou H, Li R, Yi X, Jiang L, Zhang B, Li Y. Comparison of gut bacterial communities of Hyphantriacunea Drury (Lepidoptera, Arctiidae), based on 16S rRNA full-length sequencing. Biodivers Data J 2023; 11:e98143. [PMID: 38327372 PMCID: PMC10848398 DOI: 10.3897/bdj.11.e98143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/14/2023] [Indexed: 02/09/2024] Open
Abstract
There are a large number of microorganisms in the gut of insects, which form a symbiotic relationship with the host during the long-term co-evolution process and have a significant impact on the host's nutrition, physiology, development, immunity, stress tolerance and other aspects. However, the composition of the gut microbes of Hyphantriacunea remains unclear. In order to investigate the difference and diversity of intestinal microbiota of H.cunea larvae feeding on different host plants, we used PacBio sequencing technology for the first time to sequence the 16S rRNA full-length gene of the intestinal microbiota of H.cunea. The species classification, β diversity and function of intestinal microflora of the 5th instar larvae of four species of H.cunea feeding on apricot, plum, redbud and Chinese ash were analysed. The results showed that a total of nine phyla and 65 genera were identified by PacBio sequencing, amongst which Firmicutes was the dominant phylum and Enterococcus was the dominant genus, with an average relative abundance of 59.29% and 52.16%, respectively. PERMANOVA analysis and cluster heat map showed that the intestinal microbiomes of H.cunea larvae, fed on different hosts, were significantly different. LEfSe analysis confirmed the effect of host diet on intestinal community structure and PICRUSt2 analysis showed that most of the predictive functions were closely related to material transport and synthetic, metabolic and cellular processes. The results of this study laid a foundation for revealing the interaction between the intestinal microorganisms of H.cunea and its hosts and provided ideas for exploring new green prevention and control strategies of H.cunea.
Collapse
Affiliation(s)
- Hui Gao
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
- School of Life Sciences, Shandong University, Qingdao, ChinaSchool of Life Sciences, Shandong UniversityQingdaoChina
| | - Sai Jiang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Yinan Wang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Meng Hu
- Forestry Protection and Development Service Center of Jining City, Jining, ChinaForestry Protection and Development Service Center of Jining CityJiningChina
| | - Yuyan Xue
- Qufu Bureau of Natural Resources and Planning, Qufu, ChinaQufu Bureau of Natural Resources and PlanningQufuChina
| | - Bing Cao
- Animal Husbandry and Fisheries Development Centre of Tengzhou, Tengzhou, ChinaAnimal Husbandry and Fisheries Development Centre of TengzhouTengzhouChina
| | - Hailong Dou
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Ran Li
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Lina Jiang
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia Autonomous Region, ChinaCollege of Life Sciences and Technology, Inner Mongolia Normal UniversityHohhot, Inner Mongolia Autonomous RegionChina
| | - Yujian Li
- School of Life Sciences, Qufu Normal University, Qufu, ChinaSchool of Life Sciences, Qufu Normal UniversityQufuChina
| |
Collapse
|
19
|
Brown JJ, Jandová A, Jeffs CT, Higgie M, Nováková E, Lewis OT, Hrček J. Microbiome Structure of a Wild Drosophila Community along Tropical Elevational Gradients and Comparison to Laboratory Lines. Appl Environ Microbiol 2023; 89:e0009923. [PMID: 37154737 DOI: 10.1128/aem.00099-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Variation along environmental gradients in host-associated microbial communities is not well understood compared to free-living microbial communities. Because elevational gradients may serve as natural proxies for climate change, understanding patterns along these gradients can inform our understanding of the threats hosts and their symbiotic microbes face in a warming world. In this study, we analyzed bacterial microbiomes from pupae and adults of four Drosophila species native to Australian tropical rainforests. We sampled wild individuals at high and low elevations along two mountain gradients to determine natural diversity patterns. Further, we sampled laboratory-reared individuals from isofemale lines established from the same localities to see if any natural patterns are retained in the lab. In both environments, we controlled for diet to help elucidate other deterministic patterns of microbiome composition. We found small but significant differences in Drosophila bacterial community composition across elevation, with some notable taxonomic differences between different Drosophila species and sites. Further, we found that field-collected fly pupae had significantly richer microbiomes than laboratory-reared pupae. We also found similar microbiome composition in both types of provided diet, suggesting that the significant differences found among Drosophila microbiomes are the products of surrounding environments with different bacterial species pools, possibly bound to elevational differences in temperature. Our results suggest that comparative studies between lab and field specimens help reveal the true variability in microbiome communities that can exist within a single species. IMPORTANCE Bacteria form microbial communities inside most higher-level organisms, but we know little about how the microbiome varies along environmental gradients and between natural host populations and laboratory colonies. To explore such effects on insect-associated microbiomes, we studied the gut microbiome in four Drosophila species over two mountain gradients in tropical Australia. We also compared these data to individuals kept in the laboratory to understand how different settings changed microbiome communities. We found that field-sampled individuals had significantly higher microbiome diversity than those from the lab. In wild Drosophila populations, elevation explains a small but significant amount of the variation in their microbial communities. Our study highlights the importance of environmental bacterial sources for Drosophila microbiome composition across elevational gradients and shows how comparative studies help reveal the true flexibility in microbiome communities that can exist within a species.
Collapse
Affiliation(s)
- Joel J Brown
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Anna Jandová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jan Hrček
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
20
|
Xie J, Cai Z, Zheng W, Zhang H. Integrated analysis of miRNA and mRNA expression profiles in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. INSECT SCIENCE 2023; 30:443-458. [PMID: 35751912 DOI: 10.1111/1744-7917.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Insect gut microbiota has been reported to participate in regulating host multiple biological processes including metabolism and reproduction. However, the corresponding molecular mechanisms remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in complex interactions between the gut microbiota and the host. Here, we used next-generation sequencing technology to characterize miRNA and mRNA expression profiles and construct the miRNA-gene regulatory network in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. A total of 3016 differentially expressed genes (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Based on the integrated analysis of miRNA and mRNA sequencing data, 229 negatively correlated miRNA-gene pairs were identified from the miRNA-mRNA network. Gene ontology enrichment analysis indicated that DEMs could target several genes involved in the metabolic process, oxidation-reduction process, oogenesis, and insulin signaling pathway. Finally, real-time quantitative polymerase chain reaction further verified the accuracy of RNA sequencing results. In conclusion, our study provides the profiles of miRNA and mRNA expressions under antibiotics treatment and provides an insight into the roles of miRNAs and their target genes in the interaction between the gut microbiota and its host.
Collapse
Affiliation(s)
- Junfei Xie
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohui Cai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
21
|
Wang N, Chen L, Yi K, Zhang B, Li C, Zhou X. The effects of microbiota on reproductive health: A review. Crit Rev Food Sci Nutr 2022; 64:1486-1507. [PMID: 36066460 DOI: 10.1080/10408398.2022.2117784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
22
|
Dong Y, Ding Z, Song L, Zhang D, Xie C, Zhang S, Feng L, Liu H, Pang Q. Sodium Benzoate Delays the Development of Drosophila melanogaster Larvae and Alters Commensal Microbiota in Adult Flies. Front Microbiol 2022; 13:911928. [PMID: 35814654 PMCID: PMC9257017 DOI: 10.3389/fmicb.2022.911928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/16/2022] [Indexed: 12/05/2022] Open
Abstract
Sodium benzoate (SB), the sodium salt of benzoic acid, is widely used as a preservative in foods and drinks. The toxicity of SB to the human body attracted people’s attention due to the excessive use of preservatives and the increased consumption of processed and fast foods in modern society. The SB can inhibit the growth of bacteria, fungi, and yeast. However, less is known of the effect of SB on host commensal microbial community compositions and their functions. In this study, we investigated the effect of SB on the growth and development of Drosophila melanogaster larvae and whether SB affects the commensal microbial compositions and functions. We also attempted to clarify the interaction between SB, commensal microbiota and host development by detecting the response of commensal microbiota after the intervention. The results show that SB significantly retarded the development of D. melanogaster larvae, shortened the life span, and changed the commensal microbial community. In addition, SB changed the transcription level of endocrine coding genes such as ERR and DmJHAMT. These results indicate that the slow down in D. melanogaster larvae developmental timing and shortened life span of adult flies caused by SB intake may result from the changes in endocrine hormone levels and commensal microbiota. This study provided experimental data that indicate SB could affect host growth and development of D. melanogaster through altering endocrine hormone levels and commensal microbial composition.
Collapse
Affiliation(s)
- Yuling Dong
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- *Correspondence: Yuling Dong,
| | - Zhongfeng Ding
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Linxia Song
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Desheng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Changjian Xie
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shujing Zhang
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ling Feng
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Hongliang Liu
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- Institute for Anti-aging and Regenerative Medicine Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Qiuxiang Pang,
| |
Collapse
|
23
|
Gnainsky Y, Itkin M, Mehlman T, Brandis A, Malitsky S, Soen Y. Protocol for studying microbiome impact on host energy and reproduction in Drosophila. STAR Protoc 2022; 3:101253. [PMID: 35330965 PMCID: PMC8938908 DOI: 10.1016/j.xpro.2022.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Drosophila gut microbiome in flies has been shown to have a systemic influence on energy production by the host and the energetic investment in growth and reproduction. Here we describe a protocol for studying the mechanisms responsible for this remote regulation by gut bacteria. This protocol enables whole-body and ovary-specific quantification of energy-storing molecules as well as identification of host metabolites and pathways that are regulated by gut microbiome-derived factors. Similar procedures are applicable to additional treatments and genetic manipulations. For complete details on the use and execution of this protocol, please refer to Gnainsky et al. (2021). Protocol for studying Drosophila gut bacteria impact on host metabolism and reproduction Preparation of germ-free flies and evaluation of oocyte development An assay for sensitive detection and quantification of energy-storing molecules Metabolomic analysis and identification of altered metabolic pathways
Collapse
Affiliation(s)
- Yulia Gnainsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7670001, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7670001, Israel
| | - Tevie Mehlman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7670001, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7670001, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7670001, Israel
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7670001, Israel
| |
Collapse
|
24
|
Chandler JA, Innocent LV, Martinez DJ, Huang IL, Yang JL, Eisen MB, Ludington WB. Microbiome-by-ethanol interactions impact Drosophila melanogaster fitness, physiology, and behavior. iScience 2022; 25:104000. [PMID: 35313693 PMCID: PMC8933687 DOI: 10.1016/j.isci.2022.104000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/24/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota can affect how animals respond to ingested toxins, such as ethanol, which is prevalent in the diets of diverse animals and often leads to negative health outcomes in humans. Ethanol is a complex dietary factor because it acts as a toxin, behavioral manipulator, and nutritional source, with both direct effects on the host as well as indirect ones through the microbiome. Here, we developed a model for chronic, non-intoxicating ethanol ingestion in the adult fruit fly, Drosophila melanogaster, and paired this with the tractability of the fly gut microbiota, which can be experimentally removed. We linked numerous physiological, behavioral, and transcriptional variables to fly fitness, including a combination of intestinal barrier integrity, stored triglyceride levels, feeding behavior, and the immunodeficiency pathway. Our results reveal a complex tradeoff between lifespan and fecundity that is microbiome-dependent and modulated by dietary ethanol and feeding behavior.
Collapse
Affiliation(s)
- James Angus Chandler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Lina Victoria Innocent
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Isaac Li Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jane Lani Yang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Bruce Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - William Basil Ludington
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
25
|
Abstract
Increasing evidence has demonstrated that obesity impairs female fertility and negatively affects human reproductive outcome following medically assisted reproduction (MAR) treatment. In the United States, 36.5% of women of reproductive age are obese. Obesity results not only in metabolic disorders including type II diabetes and cardiovascular disease, but might also be responsible for chronic inflammation and oxidative stress. Several studies have demonstrated that inflammation and reactive oxygen species (ROS) in the ovary modify steroidogenesis and might induce anovulation, as well as affecting oocyte meiotic maturation, leading to impaired oocyte quality and embryo developmental competence. Although the adverse effect of female obesity on human reproduction has been an object of debate in the past, there is growing evidence showing a link between female obesity and increased risk of infertility. However, further studies need to clarify some gaps in knowledge. We reviewed the recent evidence on the association between female obesity and infertility. In particular, we highlight the association between fat distribution and reproductive outcome, and how the inflammation and oxidative stress mechanisms might reduce ovarian function and oocyte quality. Finally, we evaluate the connection between female obesity and endometrial receptivity.
Collapse
|
26
|
Abstract
As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Xinyu Qi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Chuyu Yun
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,CONTACT Yanli Pang M.D.,Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China,Jie Qiao M.D., Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
27
|
Abstract
Tea is the second most popular beverage in the world and beneficial to health. It has been demonstrated that tea polyphenols can reduce the risk of diseases, such as cancers, diabetes, obesity, Alzheimer's disease, etc. But the knowledge of tea extract on the female germline is limited. Folliculogenesis is a complicated process and prone to be affected by ROS. Tea polyphenols can reduce the accumulation of ROS in folliculogenesis and affect oocyte maturation. Tea extract also influences granulosa cell proliferation and expansion during oocyte growth and maturation. However, the studies about the benefits of tea extract on female germline are few, and the underlying mechanisms are obscure. In the present study, we will mainly discuss the effects of tea extract on ovarian function, oocyte maturation, and the underlying possible mechanisms, and according to the discussion, we suggest that tea extract may have benefits for oocytes at an appropriate dose.
Collapse
Affiliation(s)
- Lei Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China. .,Fertility Preservation Lab and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, P.R. China.
| |
Collapse
|
28
|
Nguyen B, Dinh H, Morimoto J, Ponton F. Sex-specific effects of the microbiota on adult carbohydrate intake and body composition in a polyphagous fly. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104308. [PMID: 34474015 DOI: 10.1016/j.jinsphys.2021.104308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The microbiota influences hosts' health and fitness. However, the extent to which the microbiota affects host' foraging decisions and related life history traits remains to be fully understood. Our study explored the effects of microbiota manipulation on foraging preference and phenotypic traits of larval and adult stages of the polyphagous fruit fly Bactrocera tryoni, one of the main horticultural pests in Australia. We generated three treatments: control (non-treated microbiota), axenic (removed microbiota), and reinoculation (individuals which had their microbiota removed then re-introduced). Our results confirmed that axenic larvae and immature (i.e., newly emerged 0 day-old, sexually-immature) adults were lighter than control and reinoculated individuals. Interestingly, we found a sex-specific effect of the microbiota manipulation on carbohydrate intake and body composition of 10 day-old mature adults. Axenic males ate less carbohydrate, and had lower body weight and total body fat relative to control and reinoculated males. Conversely, axenic females ate more carbohydrate than control and reinoculated ones, although body weight and lipid reserves were similar across treatments. Axenic females produced fewer eggs than control and reinoculated females. Our findings corroborate the far-reaching effects of microbiota in insects found in previous studies and show, for the first time, a sex-specific effect of microbiota on feeding behaviour in flies. Our results underscore the dynamic relationship between the microbiota and the host with the reinoculation of microbes restoring some traits that were affected in axenic individuals.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, United Kingdom
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
29
|
Ramesh P, Dey NS, Kanwal A, Mandal S, Mandal L. Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection. eLife 2021; 10:67158. [PMID: 34292149 PMCID: PMC8363268 DOI: 10.7554/elife.67158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immune challenges demand the gearing up of basal hematopoiesis to combat infection. Little is known about how during development, this switch is achieved to take care of the insult. Here, we show that the hematopoietic niche of the larval lymph gland of Drosophila senses immune challenge and reacts to it quickly through the nuclear factor-κB (NF-κB), Relish, a component of the immune deficiency (Imd) pathway. During development, Relish is triggered by ecdysone signaling in the hematopoietic niche to maintain the blood progenitors. Loss of Relish causes an alteration in the cytoskeletal architecture of the niche cells in a Jun Kinase-dependent manner, resulting in the trapping of Hh implicated in progenitor maintenance. Notably, during infection, downregulation of Relish in the niche tilts the maintenance program toward precocious differentiation, thereby bolstering the cellular arm of the immune response.
Collapse
Affiliation(s)
- Parvathy Ramesh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Nidhi Sharma Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Aditya Kanwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Molecular Cell and Developmental Biology Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
30
|
Shu R, Hahn DA, Jurkevitch E, Liburd OE, Yuval B, Wong ACN. Sex-Dependent Effects of the Microbiome on Foraging and Locomotion in Drosophila suzukii. Front Microbiol 2021; 12:656406. [PMID: 34040592 PMCID: PMC8141744 DOI: 10.3389/fmicb.2021.656406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/13/2021] [Indexed: 01/27/2023] Open
Abstract
There is growing evidence that symbiotic microbes can influence multiple nutrition-related behaviors of their hosts, including locomotion, feeding, and foraging. However, how the microbiome affects nutrition-related behavior is largely unknown. Here, we demonstrate clear sexual dimorphism in how the microbiome affects foraging behavior of a frugivorous fruit fly, Drosophila suzukii. Female flies deprived of their microbiome (axenic) were consistently less active in foraging on fruits than their conventional counterparts, even though they were more susceptible to starvation and starvation-induced locomotion was notably more elevated in axenic than conventional females. Such behavioral change was not observed in male flies. The lag of axenic female flies but not male flies to forage on fruits is associated with lower oviposition by axenic flies, and mirrored by reduced food seeking observed in virgin females when compared to mated, gravid females. In contrast to foraging intensity being highly dependent on the microbiome, conventional and axenic flies of both sexes showed relatively consistent and similar fruit preferences in foraging and oviposition, with raspberries being preferred among the fruits tested. Collectively, this work highlights a clear sex-specific effect of the microbiome on foraging and locomotion behaviors in flies, an important first step toward identifying specific mechanisms that may drive the modulation of insect behavior by interactions between the host, the microbiome, and food.
Collapse
Affiliation(s)
- Runhang Shu
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Daniel A Hahn
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States.,UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oscar E Liburd
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Boaz Yuval
- Department of Entomology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adam Chun-Nin Wong
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States.,UF Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
31
|
Systemic Regulation of Host Energy and Oogenesis by Microbiome-Derived Mitochondrial Coenzymes. Cell Rep 2021; 34:108583. [PMID: 33406416 DOI: 10.1016/j.celrep.2020.108583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
Gut microbiota have been shown to promote oogenesis and fecundity, but the mechanistic basis of remote influence on oogenesis remained unknown. Here, we report a systemic mechanism of influence mediated by bacterial-derived supply of mitochondrial coenzymes. Removal of microbiota decreased mitochondrial activity and ATP levels in the whole-body and ovary, resulting in repressed oogenesis. Similar repression was caused by RNA-based knockdown of mitochondrial function in ovarian follicle cells. Reduced mitochondrial function in germ-free (GF) females was reversed by bacterial recolonization or supplementation of riboflavin, a precursor of FAD and FMN. Metabolomics analysis of GF females revealed a decrease in oxidative phosphorylation and FAD levels and an increase in metabolites that are degraded by FAD-dependent enzymes (e.g., amino and fatty acids). Riboflavin supplementation opposed this effect, elevating mitochondrial function, ATP, and oogenesis. These findings uncover a bacterial-mitochondrial axis of influence, linking gut bacteria with systemic regulation of host energy and reproduction.
Collapse
|
32
|
Interactions between the microbiome and mating influence the female's transcriptional profile in Drosophila melanogaster. Sci Rep 2020; 10:18168. [PMID: 33097776 PMCID: PMC7584617 DOI: 10.1038/s41598-020-75156-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Drosophila melanogaster females undergo a variety of post-mating changes that influence their activity, feeding behavior, metabolism, egg production and gene expression. These changes are induced either by mating itself or by sperm or seminal fluid proteins. In addition, studies have shown that axenic females-those lacking a microbiome-have altered fecundity compared to females with a microbiome, and that the microbiome of the female's mate can influence reproductive success. However, the extent to which post-mating changes in transcript abundance are affected by microbiome state is not well-characterized. Here we investigated fecundity and the post-mating transcript abundance profile of axenic or control females after mating with either axenic or control males. We observed interactions between the female's microbiome and her mating status: transcripts of genes involved in reproduction and genes with neuronal functions were differentially abundant depending on the females' microbiome status, but only in mated females. In addition, immunity genes showed varied responses to either the microbiome, mating, or a combination of those two factors. We further observed that the male's microbiome status influences the fecundity of both control and axenic females, while only influencing the transcriptional profile of axenic females. Our results indicate that the microbiome plays a vital role in the post-mating switch of the female's transcriptome.
Collapse
|
33
|
Lee JH, Lee KA, Lee WJ. Drosophila as a model system for deciphering the 'host physiology-nutrition-microbiome' axis. CURRENT OPINION IN INSECT SCIENCE 2020; 41:112-119. [PMID: 32979529 DOI: 10.1016/j.cois.2020.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
For metazoans, nutritional stressors, such as undernutrition during growth and development, results in serious outcomes, including growth impairments and organ wasting. When undernutrition is accompanied by other complications, including chronic inflammation, a more complex pathophysiology may emerge, such as environmental enteropathy. Although nutrition is one of the most important environmental factors that influences host physiology, the mechanism by which undernutrition induces host pathophysiology is not fully understood. Recently, gut microbiome was found to alleviate undernutrition-induced pathophysiology in an insect model, revealing the importance of nutrition-microbiome interactions. Here, we discussed how nutrition-microbiome interactions influence host physiology, including growth, tissue homeostasis, immunity, and behavior, by regulating the central metabolic signaling pathways with an emphasis on findings made through Drosophila, an insect model.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for Hologenomics, Seoul 151-742, South Korea.
| | - Kyung-Ah Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for Hologenomics, Seoul 151-742, South Korea
| | - Won-Jae Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for Hologenomics, Seoul 151-742, South Korea.
| |
Collapse
|
34
|
Abstract
Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct. Kidney stones affect nearly 10% of the population in North America and are associated with high morbidity and recurrence, yet novel prevention strategies are lacking. Recent evidence suggests that the human gut microbiota can influence the development of nephrolithiasis, although clinical trials have been limited and inconclusive in determining the potential for microbially based interventions. Here, we used an established Drosophila melanogaster model of urolithiasis as a high-throughput screening platform for evaluation of the therapeutic potential of oxalate-degrading bacteria in calcium oxalate (CaOx) nephrolithiasis. The results demonstrated that Bacillus subtilis 168 (BS168) is a promising candidate based on its preferential growth in high oxalate concentrations, its ability to stably colonize the D. melanogaster intestinal tract for as long as 5 days, and its prevention of oxalate-induced microbiota dysbiosis. Single-dose BS168 supplementation exerted beneficial effects on D. melanogaster for as long as 14 days, decreasing stone burden in dissected Malpighian tubules and fecal excreta while increasing survival and behavioral markers of health over those of nonsupplemented lithogenic controls. These findings were complemented by in vitro experiments using the established MDCK renal cell line, which demonstrated that BS168 pretreatment prevented increased CaOx crystal adhesion and aggregation. Taking our results together, this study supports the notion that BS168 can functionally reduce CaOx stone burden in vivo through its capacity for oxalate degradation. Given the favorable safety profile of many B. subtilis strains already used as digestive aids and in fermented foods, these findings suggest that BS168 could represent a novel therapeutic adjunct to reduce the incidence of recurrent CaOx nephrolithiasis in high-risk patients. IMPORTANCE Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct.
Collapse
|
35
|
Nguyen B, Than A, Dinh H, Morimoto J, Ponton F. Parental Microbiota Modulates Offspring Development, Body Mass and Fecundity in a Polyphagous Fruit Fly. Microorganisms 2020; 8:E1289. [PMID: 32846933 PMCID: PMC7563405 DOI: 10.3390/microorganisms8091289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The commensal microbiota is a key modulator of animal fitness, but little is known about the extent to which the parental microbiota influences fitness-related traits of future generations. We addressed this gap by manipulating the parental microbiota of a polyphagous fruit fly (Bactrocera tryoni) and measuring offspring developmental traits, body composition, and fecundity. We generated three parental microbiota treatments where parents had a microbiota that was non-manipulated (control), removed (axenic), or removed-and-reintroduced (reinoculation). We found that the percentage of egg hatching, of pupal production, and body weight of larvae and adult females were lower in offspring of axenic parents compared to that of non-axenic parents. The percentage of partially emerged adults was higher, and fecundity of adult females was lower in offspring of axenic parents relative to offspring of control and reinoculated parents. There was no significant effect of parental microbiota manipulation on offspring developmental time or lipid reserve. Our results reveal transgenerational effects of the parental commensal microbiota on different aspects of offspring life-history traits, thereby providing a better understanding of the long-lasting effects of host-microbe interactions.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| | - Anh Than
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
- Department of Entomology, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Hue Dinh
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| | - Juliano Morimoto
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
- School of Biological Sciences, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2113, Australia; (B.N.); (A.T.); (H.D.); (J.M.)
| |
Collapse
|
36
|
Li HH, Cai Y, Li JC, Su MP, Liu WL, Cheng L, Chou SJ, Yu GY, Wang HD, Chen CH. C-Type Lectins Link Immunological and Reproductive Processes in Aedes aegypti. iScience 2020; 23:101486. [PMID: 32891883 PMCID: PMC7481239 DOI: 10.1016/j.isci.2020.101486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/14/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Physiological trade-offs between mosquito immune response and reproductive capability can arise due to insufficient resource availability. C-type lectin family members may be involved in these processes. We established a GCTL-3-/- mutant Aedes aegypti using CRISPR/Cas9 to investigate the role of GCTL-3 in balancing the costs associated with immune responses to arboviral infection and reproduction. GCTL-3-/- mutants showed significantly reduced DENV-2 infection rate and gut commensal microbiota populations, as well as upregulated JAK/STAT, IMD, Toll, and AMPs immunological pathways. Mutants also had significantly shorter lifespans than controls and laid fewer eggs due to defective germ line development. dsRNA knock-down of Attacin and Gambicin, two targets of the AMPs pathway, partially rescued this reduction in reproductive capabilities. Upregulation of immune response following GCTL-3 knock-out therefore comes at a cost to reproductive fitness. Knock-out of other lectins may further improve our knowledge of the molecular and genetic mechanisms underlying reproduction-immunity trade-offs in mosquitoes.
Collapse
Affiliation(s)
- Hsing-Han Li
- Institution of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Jian-Chiuan Li
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Matthew P Su
- Department of Biological Science, Nagoya University, Nagoya 464-8602, Japan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Lie Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan
| | - Horng-Dar Wang
- Institution of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350401, Taiwan; National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli 350401, Taiwan.
| |
Collapse
|
37
|
Paniagua Voirol LR, Weinhold A, Johnston PR, Fatouros NE, Hilker M. Legacy of a Butterfly's Parental Microbiome in Offspring Performance. Appl Environ Microbiol 2020; 86:e00596-20. [PMID: 32276976 PMCID: PMC7267186 DOI: 10.1128/aem.00596-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
An insect's phenotype can be influenced by the experiences of the parental generation. However, the effects of the parental symbiotic microbiome and host plant use on the offspring are unclear. We addressed this gap of knowledge by studying Pieris brassicae, a multivoltine butterfly species feeding on different brassicaceous plants across generations. We investigated how disturbance of the parental bacterial community by antibiotic treatment affects F1 larval traits. We tested the effects depending on whether F1 larvae are feeding on the same plant species as their parents or on a different one. The parental treatment alone had no impact on the biomass of F1 larvae feeding on the parental plant species. However, the parental treatment had a detrimental effect on F1 larval biomass when F1 larvae had a different host plant than their parents. This effect was linked to higher larval prophenoloxidase activity and greater downregulation of the major allergen gene (MA), a glucosinolate detoxification gene of P. brassicae Bacterial abundance in untreated adult parents was high, while it was very low in F1 larvae from either parental type, and thus unlikely to directly influence larval traits. Our results suggest that transgenerational effects of the parental microbiome on the offspring's phenotype become evident when the offspring is exposed to a transgenerational host plant shift.IMPORTANCE Resident bacterial communities are almost absent in larvae of butterflies and thus are unlikely to affect their host. In contrast, adult butterflies contain conspicuous amounts of bacteria. While the host plant and immune state of adult parental butterflies are known to affect offspring traits, it has been unclear whether also the parental microbiome imposes direct effects on the offspring. Here, we show that disturbance of the bacterial community in parental butterflies by an antibiotic treatment has a detrimental effect on those offspring larvae feeding on a different host plant than their parents. Hence, the study indicates that disturbance of an insect's parental microbiome by an antibiotic treatment shapes how the offspring individuals can adjust themselves to a novel host plant.
Collapse
Affiliation(s)
- Luis R Paniagua Voirol
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Arne Weinhold
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Nina E Fatouros
- Department of Plant Sciences, Biosystematics Group, Wageningen University, Wageningen, The Netherlands
| | - Monika Hilker
- Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
38
|
Lesperance DN, Broderick NA. Microbiomes as modulators of Drosophila melanogaster homeostasis and disease. CURRENT OPINION IN INSECT SCIENCE 2020; 39:84-90. [PMID: 32339931 PMCID: PMC7302976 DOI: 10.1016/j.cois.2020.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 05/26/2023]
Abstract
Drosophila melanogaster harbors a simple gut microbial community, or microbiome, that regulates several facets of its physiology. As a result, the host employs multiple mechanisms of maintaining control over its microbiome in an effort to promote overall organismal homeostasis. Perturbations to the balance between microbiome and host can result in states of instability or disease, making maintenance of microbial homeostasis a fundamental physiologic aspect of D. melanogaster biology. While the interactions between microbes and their hosts can be direct, particularly in the context of immunity and gut renewal, effects resulting from indirect interactions, such as those between microbiota members, can be equally as important. This review highlights the major ways, in which D. melanogaster regulates microbial homeostasis, the consequences of disruptions to homeostasis, and the different mechanisms, by which the microbiome interacts with its host.
Collapse
Affiliation(s)
- Danielle Na Lesperance
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Nichole A Broderick
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06296, USA.
| |
Collapse
|
39
|
Colombani J, Andersen DS. The
Drosophila
gut: A gatekeeper and coordinator of organism fitness and physiology. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e378. [DOI: 10.1002/wdev.378] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Julien Colombani
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| | - Ditte S. Andersen
- Department of Biology, Faculty of Science University of Copenhagen Copenhagen O Denmark
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science University of Copenhagen Copenhagen N Denmark
| |
Collapse
|
40
|
Phalnikar K, Kunte K, Agashe D. Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc Biol Sci 2019; 286:20192438. [PMID: 31847770 PMCID: PMC6939933 DOI: 10.1098/rspb.2019.2438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Associations with gut microbes are believed to play crucial roles in the physiology, immune function, development and behaviour of insects. However, microbiome sequencing has recently suggested that butterflies are an anomaly, because their microbiomes do not show strong host- and developmental stage-specific associations. We experimentally manipulated butterfly larval gut microbiota and found that disrupting gut microbes had little influence on larval survival and development. Larvae of the butterflies Danaus chrysippus and Ariadne merione that fed on chemically sterilized or antibiotic-treated host plant leaves had significantly reduced bacterial loads, and their gut bacterial communities were disrupted substantially. However, neither host species treated this way suffered a significant fitness cost: across multiple experimental blocks, treated and control larvae had similar survival, growth and development. Furthermore, re-introducing microbes from the excreta of control larvae did not improve larval growth and survival. Thus, these butterfly larvae did not appear to rely on specialized gut bacteria for digestion, detoxification, biomass accumulation and metamorphosis. Our experiments thus show that dependence on gut bacteria for growth and survival is not a universal phenomenon across insects. Our findings also caution that strategies which target gut microbiomes may not always succeed in controlling Lepidopteran pests.
Collapse
Affiliation(s)
| | | | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, India
| |
Collapse
|
41
|
Levin M. The Computational Boundary of a "Self": Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Front Psychol 2019; 10:2688. [PMID: 31920779 PMCID: PMC6923654 DOI: 10.3389/fpsyg.2019.02688] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
All epistemic agents physically consist of parts that must somehow comprise an integrated cognitive self. Biological individuals consist of subunits (organs, cells, and molecular networks) that are themselves complex and competent in their own native contexts. How do coherent biological Individuals result from the activity of smaller sub-agents? To understand the evolution and function of metazoan creatures' bodies and minds, it is essential to conceptually explore the origin of multicellularity and the scaling of the basal cognition of individual cells into a coherent larger organism. In this article, I synthesize ideas in cognitive science, evolutionary biology, and developmental physiology toward a hypothesis about the origin of Individuality: "Scale-Free Cognition." I propose a fundamental definition of an Individual based on the ability to pursue goals at an appropriate level of scale and organization and suggest a formalism for defining and comparing the cognitive capacities of highly diverse types of agents. Any Self is demarcated by a computational surface - the spatio-temporal boundary of events that it can measure, model, and try to affect. This surface sets a functional boundary - a cognitive "light cone" which defines the scale and limits of its cognition. I hypothesize that higher level goal-directed activity and agency, resulting in larger cognitive boundaries, evolve from the primal homeostatic drive of living things to reduce stress - the difference between current conditions and life-optimal conditions. The mechanisms of developmental bioelectricity - the ability of all cells to form electrical networks that process information - suggest a plausible set of gradual evolutionary steps that naturally lead from physiological homeostasis in single cells to memory, prediction, and ultimately complex cognitive agents, via scale-up of the basic drive of infotaxis. Recent data on the molecular mechanisms of pre-neural bioelectricity suggest a model of how increasingly sophisticated cognitive functions emerge smoothly from cell-cell communication used to guide embryogenesis and regeneration. This set of hypotheses provides a novel perspective on numerous phenomena, such as cancer, and makes several unique, testable predictions for interdisciplinary research that have implications not only for evolutionary developmental biology but also for biomedicine and perhaps artificial intelligence and exobiology.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
42
|
Khamis FM, Mireji PO, Ombura FLO, Malacrida AR, Awuoche EO, Rono M, Mohamed SA, Tanga CM, Ekesi S. Species-specific transcriptional profiles of the gut and gut microbiome of Ceratitis quilicii and Ceratitis rosa sensu stricto. Sci Rep 2019; 9:18355. [PMID: 31798006 PMCID: PMC6892911 DOI: 10.1038/s41598-019-54989-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
The fruit fly species, Ceratitis rosa sensu stricto and Ceratitis quilicii, are sibling species restricted to the lowland and highland regions, respectively. Until recently, these sibling species were considered as allopatric populations of C. rosa with distinct bionomics. We used deep Next Generation Sequencing (NGS) technology on intact guts of individuals from the two sibling species to compare their transcriptional profiles and simultaneously understand gut microbiome and host molecular processes and identify distinguishing genetic differences between the two species. Since the genomes of both species had not been published previously, the transcriptomes were assembled de novo into transcripts. Microbe-specific transcript orthologs were separated from the assembly by filtering searches of the transcripts against microbe databases using OrthoMCL. We then used differential expression analysis of host-specific transcripts (i.e. those remaining after the microbe-specific transcripts had been removed) and microbe-specific transcripts from the two-sibling species to identify defining species-specific transcripts that were present in only one fruit fly species or the other, but not in both. In C. quilicii females, bacterial transcripts of Pectobacterium spp., Enterobacterium buttiauxella, Enterobacter cloacae and Klebsiella variicola were upregulated compared to the C. rosa s.s. females. Comparison of expression levels of the host transcripts revealed a heavier investment by C. quilicii (compared with C. rosa s.s.) in: immunity; energy production; cell proliferation; insecticide resistance; reproduction and proliferation; and redox reactions that are usually associated with responses to stress and degradation of fruit metabolites.
Collapse
Affiliation(s)
- Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya.,Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, P.O. Box 428, Kilifi, Kenya
| | - Fidelis L O Ombura
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, Universita degli Studi di Pavia, Corso Strada Nuova, 65, 27100, Pavia, Italy
| | - Erick O Awuoche
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya.,Department of Agriculture, School of Agriculture and Food Science, Meru University of Science and Technology, P.O. Box 972, Meru, Kenya
| | - Martin Rono
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, P.O. Box 428, Kilifi, Kenya
| | - Samira A Mohamed
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
43
|
Akami M, Ren XM, Qi X, Mansour A, Gao B, Cao S, Niu CY. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae). BMC Microbiol 2019; 19:229. [PMID: 31640545 PMCID: PMC6805663 DOI: 10.1186/s12866-019-1607-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023] Open
Abstract
Background The gut bacteria of tephritid fruit flies play prominent roles in nutrition, reproduction, maintenance and ecological adaptations of the host. Here, we adopted an approach based on direct observation of symbiotic or axenic flies feeding on dishes seeded with drops of full diet (containing all amino acids) or full diet supplemented with bacteria at similar concentrations to explore the effects of intestinal bacteria on foraging decision and fitness of Bactrocera dorsalis. Results The results show that intestinal probiotics elicit beneficial foraging decision and enhance the female reproduction fitness and survival of B. dorsalis (symbiotic and axenic), yet preferences for probiotic diets were significantly higher in axenic flies to which they responded faster compared to full diet. Moreover, females fed diet supplemented with Pantoea dispersa and Enterobacter cloacae laid more eggs but had shorter lifespan while female fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity compared to the positive control. Conversely, flies fed sugar diet (negative control) were not able to produce eggs, but lived longer than those from the positive control. Conclusions These results suggest that intestinal bacteria can drive the foraging decision in a way which promotes the reproduction and survival of B. dorsalis. Our data highlight the potentials of gut bacterial isolates to control the foraging behavior of the fly and empower the sterile insect technique (SIT) program through the mass rearing.
Collapse
Affiliation(s)
- Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon
| | - Xue-Ming Ren
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewei Qi
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdelaziz Mansour
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Bingli Gao
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Cao
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Abstract
Sublethal exposure to certain pesticides (e.g., neonicotinoid insecticides) is suspected to contribute to honey bee (Apis mellifera) population decline in North America. Neonicotinoids are known to interfere with immune pathways in the gut of insects, but the underlying mechanisms remain elusive. We used a Drosophila melanogaster model to understand how imidacloprid (a common neonicotinoid) interferes with two innate immune pathways—Duox and Imd. We found that imidacloprid dysregulates these pathways to reduce hydrogen peroxide production, ultimately leading to a dysbiotic shift in the gut microbiota. Intriguingly, we found that presupplementation with probiotic bacteria could mitigate the harmful effects of imidacloprid. Thus, these observations uncover a novel mechanism of pesticide-induced immunosuppression that exploits the interconnectedness of two important insect immune pathways. Neonicotinoid insecticides are common agrochemicals that are used to kill pest insects and improve crop yield. However, sublethal exposure can exert unintentional toxicity to honey bees and other beneficial pollinators by dysregulating innate immunity. Generation of hydrogen peroxide (H2O2) by the dual oxidase (Duox) pathway is a critical component of the innate immune response, which functions to impede infection and maintain homeostatic regulation of the gut microbiota. Despite the importance of this pathway in gut immunity, the consequences of neonicotinoid exposure on Duox signaling have yet to be studied. Here, we use a Drosophila melanogaster model to investigate the hypothesis that imidacloprid (a common neonicotinoid) can affect the Duox pathway. The results demonstrated that exposure to sublethal imidacloprid reduced H2O2 production by inhibiting transcription of the Duox gene. Furthermore, the reduction in Duox expression was found to be a result of imidacloprid interacting with the midgut portion of the immune deficiency pathway. This impairment led to a loss of microbial regulation, as exemplified by a compositional shift and increased total abundance of Lactobacillus and Acetobacter spp. (dominant microbiota members) found in the gut. In addition, we demonstrated that certain probiotic lactobacilli could ameliorate Duox pathway impairment caused by imidacloprid, but this effect was not directly dependent on the Duox pathway itself. This study is the first to demonstrate the deleterious effects that neonicotinoids can have on Duox-mediated generation of H2O2 and highlights a novel coordination between two important innate immune pathways present in insects.
Collapse
|
45
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
46
|
Ma D, Bou-Sleiman M, Joncour P, Indelicato CE, Frochaux M, Braman V, Litovchenko M, Storelli G, Deplancke B, Leulier F. Commensal Gut Bacteria Buffer the Impact of Host Genetic Variants on Drosophila Developmental Traits under Nutritional Stress. iScience 2019; 19:436-447. [PMID: 31422284 PMCID: PMC6704380 DOI: 10.1016/j.isci.2019.07.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic genomes encode several buffering mechanisms that robustly maintain invariant phenotypic outcome despite fluctuating environmental conditions. Here we show that the Drosophila gut-associated commensals, represented by a single facultative symbiont, Lactobacillus plantarum (LpWJL), constitutes a so far unexpected buffer that masks the contribution of the host's cryptic genetic variation (CGV) to developmental traits while the host is under nutritional stress. During chronic under-nutrition, LpWJL consistently reduces variation in different host phenotypic traits and ensures robust organ patterning during development; LpWJL also decreases genotype-dependent expression variation, particularly for development-associated genes. We further provide evidence that LpWJL buffers via reactive oxygen species (ROS) signaling whose inhibition impairs microbiota-mediated phenotypic robustness. We thus identified a hitherto unappreciated contribution of the gut facultative symbionts to host fitness that, beyond supporting growth rates and maturation timing, confers developmental robustness and phenotypic homogeneity in times of nutritional stress. Upon nutritional stress, fly commensals buffer the effects of cryptic genetic variants Fly gut commensals buffer transcriptional variation in developmental genes Fly commensals buffer phenotypic heterogeneity and mediate developmental canalization Compromising ROS activities impair microbial buffering capacity
Collapse
Affiliation(s)
- Dali Ma
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Cedex 07, Lyon, France
| | - Maroun Bou-Sleiman
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering and Swiss Institute of Bioinformatics, School of Life Sciences Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pauline Joncour
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Cedex 07, Lyon, France
| | - Claire-Emmanuelle Indelicato
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Cedex 07, Lyon, France
| | - Michael Frochaux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering and Swiss Institute of Bioinformatics, School of Life Sciences Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Virginie Braman
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering and Swiss Institute of Bioinformatics, School of Life Sciences Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Maria Litovchenko
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering and Swiss Institute of Bioinformatics, School of Life Sciences Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Gilles Storelli
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Cedex 07, Lyon, France
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering and Swiss Institute of Bioinformatics, School of Life Sciences Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, 69364 Cedex 07, Lyon, France.
| |
Collapse
|
47
|
Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ. The honey bee gut microbiota: strategies for study and characterization. INSECT MOLECULAR BIOLOGY 2019; 28:455-472. [PMID: 30652367 DOI: 10.1111/imb.12567] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut microbiota research is an emerging field that improves our understanding of the ecological and functional dynamics of gut environments. The honey bee gut microbiota is a highly rewarding community to study, as honey bees are critical pollinators of many crops for human consumption and produce valuable commodities such as honey and wax. Most significantly, unique characteristics of the Apis mellifera gut habitat make it a valuable model system. This review discusses methods and pipelines used in the study of the gut microbiota of Ap. mellifera and closely related species for four main purposes: identifying microbiota taxonomy, characterizing microbiota genomes (microbiome), characterizing microbiota-microbiota interactions and identifying functions of the microbial community in the gut. The purpose of this contribution is to increase understanding of honey bee gut microbiota, to facilitate bee microbiota and microbiome research in general and to aid design of future experiments in this growing field.
Collapse
Affiliation(s)
- S Romero
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Nastasa
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Chapman
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - W K Kwong
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - L J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
Osmanovic D, Kessler DA, Rabin Y, Soen Y. Darwinian selection of host and bacteria supports emergence of Lamarckian-like adaptation of the system as a whole. Biol Direct 2018; 13:24. [PMID: 30621755 PMCID: PMC6889200 DOI: 10.1186/s13062-018-0224-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Background The relatively fast selection of symbiotic bacteria within hosts and the potential transmission of these bacteria across generations of hosts raise the question of whether interactions between host and bacteria support emergent adaptive capabilities beyond those of germ-free hosts. Results To investigate possibilities for emergent adaptations that may distinguish composite host-microbiome systems from germ-free hosts, we introduce a population genetics model of a host-microbiome system with vertical transmission of bacteria. The host and its bacteria are jointly exposed to a toxic agent, creating a toxic stress that can be alleviated by selection of resistant individuals and by secretion of a detoxification agent (“detox”). We show that toxic exposure in one generation of hosts leads to selection of resistant bacteria, which in turn, increases the toxic tolerance of the host’s offspring. Prolonged exposure to toxin over many host generations promotes anadditional form of emergent adaptation due to selection of hosts based on detox produced by their bacterial community as a whole (as opposed to properties of individual bacteria). Conclusions These findings show that interactions between pure Darwinian selections of host and its bacteria can give rise to emergent adaptive capabilities, including Lamarckian-like adaptation of the host-microbiome system. Reviewers This article was reviewed by Eugene Koonin, Yuri Wolf and Philippe Huneman. Electronic supplementary material The online version of this article (10.1186/s13062-018-0224-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dino Osmanovic
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - David A Kessler
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Yitzhak Rabin
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel.,NYU-ECNU Institute of Physics at NYU, Shanghai, 200062, China
| | - Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel. .,Department of Physics, Massachusetts Institute of Technology (MIT), MA, 02139, Cambridge, USA.
| |
Collapse
|
49
|
Correa MA, Matusovsky B, Brackney DE, Steven B. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat Commun 2018; 9:4464. [PMID: 30367055 PMCID: PMC6203775 DOI: 10.1038/s41467-018-07014-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
The mosquito gut microbiome plays an important role in mosquito development and fitness, providing a promising avenue for novel mosquito control strategies. Here we present a method for rearing axenic (bacteria free) Aedes aegypti mosquitoes, consisting of feeding sterilized larvae on agar plugs containing a high concentration of liver and yeast extract. This approach allows for the complete development to adulthood while maintaining sterility; however, axenic mosquito's exhibit delayed development time and stunted growth in comparison to their bacterially colonized cohorts. These data challenge the notion that live microorganisms are required for mosquito development, and suggest that the microbiota's main role is nutritional. Furthermore, we colonize axenic mosquitoes with simplified microbial communities ranging from a single bacterial species to a three-member community, demonstrating the ability to control the composition of the microbiota. This axenic system will allow the systematic manipulation of the mosquito microbiome for a deeper understanding of microbiota-host interactions.
Collapse
Affiliation(s)
- Maria A Correa
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, 06511, CT, USA
| | - Brian Matusovsky
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 06511, CT, USA
| | - Doug E Brackney
- Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, 06511, CT, USA.
| | - Blaire Steven
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, 06511, CT, USA.
| |
Collapse
|
50
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|