1
|
Deepak D, Wu J, Corvaglia V, Allmendinger L, Scheckenbach M, Tinnefeld P, Huc I. DNA Mimic Foldamer Recognition of a Chromosomal Protein. Angew Chem Int Ed Engl 2024:e202422958. [PMID: 39714421 DOI: 10.1002/anie.202422958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Helical aromatic oligoamide foldamers bearing anionic side chains that mimic the overall shape and charge surface distribution of DNA were synthesized. Their interactions with chromosomal protein Sac7d, a non-sequence-selective DNA-binder that kinks DNA, were investigated by Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC), Circular Dichroism spectroscopy (CD), melting curve analysis, Atomic Force Microscopy (AFM), and Nuclear Magnetic Resonance (NMR), as well as by single crystal X-ray crystallography. The foldamers were shown to bind to Sac7d better than a DNA duplex of comparable length. The interaction is diastereoselective and takes place at the DNA binding site. Crystallography revealed that the DNA mimic foldamers have a binding mode of their own and that they can bind to Sac7d without being kinked.
Collapse
Affiliation(s)
- Deepak Deepak
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Jiaojiao Wu
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Valentina Corvaglia
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Italy) & Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Michael Scheckenbach
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Philip Tinnefeld
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
2
|
Kwon S, Morozov V, Wang L, Mandal PK, Chaignepain S, Douat C, Huc I. Interrogating the potential of helical aromatic foldamers for protein recognition. Org Biomol Chem 2024; 22:9342-9347. [PMID: 39501876 DOI: 10.1039/d4ob01436g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its P- and M-helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners. Three of these proteins were recombinantly expressed. Biolayer interferometry showed submicromolar binding demonstrating the potential of a given foldamer to have affinity for certain proteins in the absence of design considerations. Yet, binding selectivity was low in all three cases since both P- and M-conformers bound to the proteins with similar affinities.
Collapse
Affiliation(s)
- Sunbum Kwon
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Vasily Morozov
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| | - Lingfei Wang
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| | - Pradeep K Mandal
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| | - Stéphane Chaignepain
- CBMN (UMR5248), Univ. Bordeaux-CNRS-IPB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Céline Douat
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 München, Germany.
| |
Collapse
|
3
|
Babych M, Garelja ML, Nguyen PT, Hay DL, Bourgault S. Converting the Amyloidogenic Islet Amyloid Polypeptide into a Potent Nonaggregating Peptide Ligand by Side Chain-to-Side Chain Macrocyclization. J Am Chem Soc 2024; 146:25513-25526. [PMID: 39225636 DOI: 10.1021/jacs.4c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The islet amyloid polypeptide (IAPP), also known as amylin, is a hormone playing key physiological roles. However, its aggregation and deposition in the pancreatic islets are associated with type 2 diabetes. While this peptide adopts mainly a random coil structure in solution, its secondary conformational conversion into α-helix represents a critical step for receptor activation and contributes to amyloid formation and associated cytotoxicity. Considering the large conformational landscape and high amyloidogenicity of the peptide, as well as the complexity of the self-assembly process, it is challenging to delineate the delicate interplay between helical folding, peptide aggregation, and receptor activation. In the present study, we probed the roles of helical folding on the function-toxicity duality of IAPP by restricting its conformational ensemble through side chain-to-side chain stapling via azide-alkyne cycloaddition. Intramolecular macrocyclization (i; i + 4) constrained IAPP into α-helix and inhibited its aggregation into amyloid fibrils. These helical derivatives slowed down the self-assembly of unmodified IAPP. Site-specific macrocyclization modulated the capacity of IAPP to perturb lipid bilayers and cell plasma membrane and reduced, or even fully inhibited, the cytotoxicity associated with aggregation. Furthermore, the α-helical IAPP analogs showed moderate to high potency toward cognate G protein-coupled receptors. Overall, these results indicate that macrocyclization represents a promising strategy to protect an amyloidogenic peptide hormone from aggregation and associated toxicity, while maintaining high receptor activity.
Collapse
Affiliation(s)
- Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Dunedin 9016, New Zealand
| | - Phuong Trang Nguyen
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, 18 Frederick Street, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 3A Symonds Street, Auckland 92019, New Zealand
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
| |
Collapse
|
4
|
Laxio Arenas J, Lesma J, Ha-Duong T, Ranjan Sahoo B, Ramamoorthy A, Tonali N, Soulier JL, Halgand F, Giraud F, Crousse B, Kaffy J, Ongeri S. Composition and Conformation of Hetero- versus Homo-Fluorinated Triazolamers Influence their Activity on Islet Amyloid Polypeptide Aggregation. Chemistry 2024; 30:e202303887. [PMID: 38478740 DOI: 10.1002/chem.202303887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/11/2024]
Abstract
Novel fluorinated foldamers based on aminomethyl-1,4-triazolyl-difluoroacetic acid (1,4-Tz-CF2) units were synthesized and their conformational behaviour was studied by NMR and molecular dynamics. Their activity on the aggregation of the human islet amyloid polypeptide (hIAPP) amyloid protein was evaluated by fluorescence spectroscopy and mass spectrometry. The fluorine labelling of these foldamers allowed the analysis of their interaction with the target protein. We demonstrated that the preferred extended conformation of homotriazolamers of 1,4-Tz-CF2 unit increases the aggregation of hIAPP, while the hairpin-like conformation of more flexible heterotriazolamers containing two 1,4-Tz-CF2 units mixed with natural amino acids from the hIAPP sequence reduces it, and more efficiently than the parent natural peptide. The longer heterotriazolamers having three 1,4-Tz-CF2 units adopting more folded hairpin-like and ladder-like structures similar to short multi-stranded β-sheets have no effect. This work demonstrates that a good balance between the structuring and flexibility of these foldamers is necessary to allow efficient interaction with the target protein.
Collapse
Affiliation(s)
- José Laxio Arenas
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Jacopo Lesma
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Tap Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Bikash Ranjan Sahoo
- Biophysics, Department of Chemistry, Biomedical Engineering, Michigan Neuroscience Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Michigan Neuroscience Institute, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nicolo Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Jean-Louis Soulier
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Frédéric Halgand
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - François Giraud
- Equipe Biologie et Chimie Structurales, Dept Chimie et Biologie Structurales et Analytiques, ICSN, CNRS, Université Paris Saclay, 1 avenue de la terrasse, 91190, Gif sur Yvette, France
| | - Benoît Crousse
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Julia Kaffy
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| | - Sandrine Ongeri
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17 av. des Sciences, 91400, Orsay, France
| |
Collapse
|
5
|
Yu L, Li D, Ma C, Kauffmann B, Liao S, Gan Q. Redox-Regulated and Guest-Driven Transformations of Aromatic Oligoamide Foldamers in Advanced Structures. J Am Chem Soc 2024; 146:12907-12912. [PMID: 38691420 DOI: 10.1021/jacs.4c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In this study, we demonstrate that an aromatic oligoamide sequence assembles into a trimeric helix-turn-helix architecture with a disulfide linkage, and upon cleavage of this linkage, it reconstructs into an antiparallel double helix. The antiparallel double helix is accessible to encapsulate a diacid guest within its cavity, forming a 2:1 host-guest complex. In contrast, hydrogen-bonding interactions between the trimeric-assembled structure and guests induce a conformational shift in the trimeric helix, resulting in a cross-shaped double-helix complex at a 2:2 host-guest ratio. Interconversions between the trimeric helix and the antiparallel double helix, along with their respective host-guest complexes, can be initiated through thiol/disulfide redox-mediated regulation.
Collapse
Affiliation(s)
- Lu Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Dongyao Li
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, 777 Xingye Avenue East, Panyu District, 511442, Guangzhou, China
| | - Chunmiao Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Brice Kauffmann
- Université de Bordeaux, CNRS, INSERM, Institut Européen de Chimie Biologie (UMS3033/US001), 2 Rue Escarpit, 33600, Pessac, France
| | - Sibei Liao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| |
Collapse
|
6
|
Dengler S, Howard RT, Morozov V, Tsiamantas C, Huang WE, Liu Z, Dobrzanski C, Pophristic V, Brameyer S, Douat C, Suga H, Huc I. Display Selection of a Hybrid Foldamer-Peptide Macrocycle. Angew Chem Int Ed Engl 2023; 62:e202308408. [PMID: 37707879 DOI: 10.1002/anie.202308408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Expanding the chemical diversity of peptide macrocycle libraries for display selection is desirable to improve their potential to bind biomolecular targets. We now have implemented a considerable expansion through a large aromatic helical foldamer inclusion. A foldamer was first identified that undergoes flexizyme-mediated tRNA acylation and that is capable of initiating ribosomal translation with yields sufficiently high to perform an mRNA display selection of macrocyclic foldamer-peptide hybrids. A hybrid macrocyclic nanomolar binder to the C-lobe of the E6AP HECT domain was selected that showed a highly converged peptide sequence. A crystal structure and molecular dynamics simulations revealed that both the peptide and foldamer are helical in an intriguing reciprocal stapling fashion. The strong residue convergence could be rationalized based on their involvement in specific interactions with the target protein. The foldamer stabilizes the peptide helix through stapling and through contacts with key residues. These results altogether represent a significant extension of the chemical space amenable to display selection and highlight possible benefits of inserting an aromatic foldamer into a peptide macrocycle for the purpose of protein recognition.
Collapse
Affiliation(s)
- Sebastian Dengler
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Ryan T Howard
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Vasily Morozov
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Christos Tsiamantas
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Wei-En Huang
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Christopher Dobrzanski
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Vojislava Pophristic
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Sophie Brameyer
- Biozentrum, Microbiology, Ludwig-Maximilians-Universität, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
7
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
8
|
Menke FS, Mazzier D, Wicher B, Allmendinger L, Kauffmann B, Maurizot V, Huc I. Molecular torsion springs: alteration of helix curvature in frustrated tertiary folds. Org Biomol Chem 2023; 21:1275-1283. [PMID: 36645374 DOI: 10.1039/d2ob02109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first abiotic foldamer tertiary structures have been recently reported in the form of aromatic helix-turn-helix motifs based on oligo-quinolinecarboxamides held together by intramolecular hydrogen bonds. Tertiary folds were predicted by computational modelling of the hydrogen-bonding interfaces between helices and later verified by X-ray crystallography. However, the prognosis of how the conformational preference inherent to each helix influences the tertiary structure warranted further investigation. Several new helix-turn-helix sequences were synthesised in which some hydrogen bonds have been removed. Contrary to expectations, this change did not strongly destabilise the tertiary folds. On closer inspection, a new crystal structure revealed that helices adopt their natural curvature when some hydrogen bonds are missing and undergo some spring torsion upon forming the said hydrogen bonds, thus potentially giving rise to a conformational frustration. This phenomenon sheds light on the aggregation behaviour of the helices when they are not linked by a turn unit.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Daniela Mazzier
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie (UMS3011/US001), CNRS, Inserm, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
9
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
10
|
Zwillinger M, Fischer L, Sályi G, Szabó S, Csékei M, Huc I, Kotschy A. Isotope Ratio Encoding of Sequence-Defined Oligomers. J Am Chem Soc 2022; 144:19078-19088. [PMID: 36206533 DOI: 10.1021/jacs.2c08135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Information storage at the molecular level commonly entails encoding in the form of ordered sequences of different monomers and subsequent fragmentation and tandem mass spectrometry analysis to read this information. Recent approaches also include the use of mixtures of distinct molecules noncovalently bonded to one another. Here, we present an alternate isotope ratio encoding approach utilizing deuterium-labeled monomers to produce hundreds of oligomers endowed with unique isotope distribution patterns. Mass spectrometric recognition of these patterns then allowed us to directly readout encoded information with high fidelity. Specifically, we show that all 256 tetramers composed of four different monomers of identical constitution can be distinguished by their mass fingerprint using mono-, di-, tri-, and tetradeuterated building blocks. The method is robust to experimental errors and does not require the most sophisticated mass spectrometry instrumentation. Such isotope ratio-encoded oligomers may serve as tags that carry information, but the method mainly opens up the capability to write information, for example, about molecular identity, directly into a pure compound via its isotopologue distribution obviating the need for additional tagging and avoiding the use of mixtures of different molecules.
Collapse
Affiliation(s)
- Márton Zwillinger
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary.,Hevesy György PhD School of Chemistry, Eötvös Loránd University, H-1053 Budapest, Hungary
| | - Lucile Fischer
- CBMN UMR5248, University of Bordeaux-CNRS-IPB, F-33600 Pessac, France
| | - Gergő Sályi
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
| | - Soma Szabó
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
| | - Márton Csékei
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-University, D-81377 Munich, Germany
| | - András Kotschy
- Servier Research Institute of Medicinal Chemistry, H-1031 Budapest, Hungary
| |
Collapse
|
11
|
Maity D, Oh Y, Gremer L, Hoyer W, Magzoub M, Hamilton AD. Cucurbit[7]uril Inhibits Islet Amyloid Polypeptide Aggregation by Targeting N Terminus Hot Segments and Attenuates Cytotoxicity. Chemistry 2022; 28:e202200456. [DOI: 10.1002/chem.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Debabrata Maity
- Department of Chemistry New York University New York NY 10003 USA
- Present Address: Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
| | - Yujeong Oh
- Biology Program New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Lothar Gremer
- Institut für Physikalische Biologie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich 52425 Jülich Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich 52425 Jülich Germany
| | - Mazin Magzoub
- Biology Program New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | | |
Collapse
|
12
|
Silybins inhibit human IAPP amyloid growth and toxicity through stereospecific interactions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140772. [PMID: 35307557 DOI: 10.1016/j.bbapap.2022.140772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 01/29/2023]
Abstract
Type 2 Diabetes is a major public health threat, and its prevalence is increasing worldwide. The abnormal accumulation of islet amyloid polypeptide (IAPP) in pancreatic β-cells is associated with the onset of the disease. Therefore, the design of small molecules able to inhibit IAPP aggregation represents a promising strategy in the development of new therapies. Here we employ in vitro, biophysical, and computational methods to inspect the ability of Silybin A and Silybin B, two natural diastereoisomers extracted from milk thistle, to interfere with the toxic self-assembly of human IAPP (hIAPP). We show that Silybin B inhibits amyloid aggregation and protects INS-1 cells from hIAPP toxicity more than Silybin A. Molecular dynamics simulations revealed that the higher efficiency of Silybin B is ascribable to its interactions with precise hIAPP regions that are notoriously involved in hIAPP self-assembly i.e., the S20-S29 amyloidogenic core, H18, the N-terminal domain, and N35. These results highlight the importance of stereospecific ligand-peptide interactions in regulating amyloid aggregation and provide a blueprint for future studies aimed at designing Silybin derivatives with enhanced drug-like properties.
Collapse
|
13
|
Ahmed J, Fitch TC, Donnelly CM, Joseph JA, Ball TD, Bassil MM, Son A, Zhang C, Ledreux A, Horowitz S, Qin Y, Paredes D, Kumar S. Foldamers reveal and validate therapeutic targets associated with toxic α-synuclein self-assembly. Nat Commun 2022; 13:2273. [PMID: 35477706 PMCID: PMC9046208 DOI: 10.1038/s41467-022-29724-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which there is no successful prevention or intervention. The pathological hallmark for PD involves the self-assembly of functional Alpha-Synuclein (αS) into non-functional amyloid structures. One of the potential therapeutic interventions against PD is the effective inhibition of αS aggregation. However, the bottleneck towards achieving this goal is the identification of αS domains/sequences that are essential for aggregation. Using a protein mimetic approach, we have identified αS sequences-based targets that are essential for aggregation and will have significant therapeutic implications. An extensive array of in vitro, ex vivo, and in vivo assays is utilized to validate αS sequences and their structural characteristics that are essential for aggregation and propagation of PD phenotypes. The study aids in developing significant mechanistic and therapeutic insights into various facets of αS aggregation, which will pave the way for effective treatments for PD.
Collapse
Affiliation(s)
- Jemil Ahmed
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, 80210, USA.,The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA
| | - Tessa C Fitch
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Courtney M Donnelly
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Johnson A Joseph
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Tyler D Ball
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Mikaela M Bassil
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Ahyun Son
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Chen Zhang
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Aurélie Ledreux
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA
| | - Scott Horowitz
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, 80210, USA.,The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA.,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Daniel Paredes
- The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA
| | - Sunil Kumar
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, 80210, USA. .,The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80210, USA. .,Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
14
|
Multifunctional building elements for the construction of peptide drug conjugates. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
15
|
Natesh SR, Hummels AR, Sachleben JR, Sosnick TR, Freed KF, Douglas JF, Meredith SC, Haddadian EJ. Molecular dynamics study of water channels in natural and synthetic amyloid-β fibrils. J Chem Phys 2021; 154:235102. [PMID: 34241272 PMCID: PMC8214467 DOI: 10.1063/5.0049250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
We compared all-atom explicit solvent molecular dynamics simulations of three types of Aβ(1-40) fibrils: brain-seeded fibrils (2M4J, with a threefold axial symmetry) and the other two, all-synthetic fibril polymorphs (2LMN and 2LMP, made under different fibrillization conditions). Fibril models were constructed using either a finite or an infinite number of layers made using periodic images. These studies yielded four conclusions. First, finite fibrils tend to unravel in a manner reminiscent of fibril dissolution, while infinite fibrils were more stable during simulations. Second, salt bridges in these fibrils remained stable in those fibrils that contained them initially, and those without salt bridges did not develop them over the time course of the simulations. Third, all fibrils tended to develop a "stagger" or register shift of β-strands along the fibril axis. Fourth and most importantly, the brain-seeded, 2M4J, infinite fibrils allowed bidirectional transport of water in and out of the central longitudinal core of the fibril by rapidly developing gaps at the fibril vertices. 2LMP fibrils also showed this behavior, although to a lesser extent. The diffusion of water molecules in the fibril core region involved two dynamical states: a localized state and directed diffusion in the presence of obstacles. These observations provided support for the hypothesis that Aβ fibrils could act as nanotubes. At least some Aβ oligomers resembled fibrils structurally in having parallel, in-register β-sheets and a sheet-turn-sheet motif. Thus, our findings could have implications for Aβ cytotoxicity, which may occur through the ability of oligomers to form abnormal water and ion channels in cell membranes.
Collapse
Affiliation(s)
- S. R. Natesh
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| | - A. R. Hummels
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| | - J. R. Sachleben
- Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | - T. R. Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - K. F. Freed
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - J. F. Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - S. C. Meredith
- Departments of Pathology, Biochemistry, and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - E. J. Haddadian
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Seedorf T, Kirschning A, Solga D. Natural and Synthetic Oligoarylamides: Privileged Structures for Medical Applications. Chemistry 2021; 27:7321-7339. [PMID: 33481284 PMCID: PMC8251530 DOI: 10.1002/chem.202005086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
The term "privileged structure" refers to a single molecular substructure or scaffold that can serve as a starting point for high-affinity ligands for more than one receptor type. In this report, a hitherto overlooked group of privileged substructures is addressed, namely aromatic oligoamides, for which there are natural models in the form of cystobactamids, albicidin, distamycin A, netropsin, and others. The aromatic and heteroaromatic core, together with a flexible selection of substituents, form conformationally well-defined scaffolds capable of specifically binding to conformationally well-defined regions of biomacromolecules such as helices in proteins or DNA often by acting as helices mimics themselves. As such, these aromatic oligoamides have already been employed to inhibit protein-protein and nucleic acid-protein interactions. This article is the first to bring together the scattered knowledge about aromatic oligoamides in connection with biomedical applications.
Collapse
Affiliation(s)
- Tim Seedorf
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Danny Solga
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum, (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
17
|
Legrand B, Maillard LT. α,β-Unsaturated γ-Peptide Foldamers. Chempluschem 2021; 86:629-645. [PMID: 33856125 DOI: 10.1002/cplu.202100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Indexed: 01/01/2023]
Abstract
Despite their concomitant emergence in the 1990s, γ-peptide foldamers have not developed as fast as β-peptide foldamers and to date, only a few γ-oligomer structures have been reported, and with sparse applications. Among these examples, sequences containing α,β-unsaturated γ-amino acids have recently drawn attention since the Z/E configurations of the double bond provide opposite planar restrictions leading to divergent conformational behaviors, from helix to extended structures. In this Review, we give a comprehensive overview of the developments of γ-peptide foldamers containing α,β-unsaturated γ-amino acids with examples of applications for health and catalysis, as well as materials science.
Collapse
Affiliation(s)
- Baptiste Legrand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| |
Collapse
|
18
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
19
|
Mbianda J, Bakail M, André C, Moal G, Perrin ME, Pinna G, Guerois R, Becher F, Legrand P, Traoré S, Douat C, Guichard G, Ochsenbein F. Optimal anchoring of a foldamer inhibitor of ASF1 histone chaperone through backbone plasticity. SCIENCE ADVANCES 2021; 7:7/12/eabd9153. [PMID: 33741589 PMCID: PMC7978421 DOI: 10.1126/sciadv.abd9153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 05/08/2023]
Abstract
Sequence-specific oligomers with predictable folding patterns, i.e., foldamers, provide new opportunities to mimic α-helical peptides and design inhibitors of protein-protein interactions. One major hurdle of this strategy is to retain the correct orientation of key side chains involved in protein surface recognition. Here, we show that the structural plasticity of a foldamer backbone may notably contribute to the required spatial adjustment for optimal interaction with the protein surface. By using oligoureas as α helix mimics, we designed a foldamer/peptide hybrid inhibitor of histone chaperone ASF1, a key regulator of chromatin dynamics. The crystal structure of its complex with ASF1 reveals a notable plasticity of the urea backbone, which adapts to the ASF1 surface to maintain the same binding interface. One additional benefit of generating ASF1 ligands with nonpeptide oligourea segments is the resistance to proteolysis in human plasma, which was highly improved compared to the cognate α-helical peptide.
Collapse
Affiliation(s)
- Johanne Mbianda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - May Bakail
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Christophe André
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Gwenaëlle Moal
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie E Perrin
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Guillaume Pinna
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Raphaël Guerois
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Francois Becher
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, F91190 Gif-sur-Yvette, France
| | - Seydou Traoré
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Céline Douat
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France.
| | - Françoise Ochsenbein
- Institute Joliot, Commissariat à l'énergie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), CEA Saclay, F91191 Gif-sur-Yvette, France.
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
20
|
Aksakal R, Mertens C, Soete M, Badi N, Du Prez F. Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004038. [PMID: 33747749 PMCID: PMC7967060 DOI: 10.1002/advs.202004038] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/22/2020] [Indexed: 05/19/2023]
Abstract
In the last decade, the field of sequence-defined polymers and related ultraprecise, monodisperse synthetic macromolecules has grown exponentially. In the early stage, mainly articles or reviews dedicated to the development of synthetic routes toward their preparation have been published. Nowadays, those synthetic methodologies, combined with the elucidation of the structure-property relationships, allow envisioning many promising applications. Consequently, in the past 3 years, application-oriented papers based on discrete synthetic macromolecules emerged. Hence, material science applications such as macromolecular data storage and encryption, self-assembly of discrete structures and foldamers have been the object of many fascinating studies. Moreover, in the area of life sciences, such structures have also been the focus of numerous research studies. Here, it is aimed to highlight these recent applications and to give the reader a critical overview of the future trends in this area of research.
Collapse
Affiliation(s)
- Resat Aksakal
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Chiel Mertens
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Matthieu Soete
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Nezha Badi
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| | - Filip Du Prez
- Polymer Chemistry Research GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaan 281 S4‐bisGhentB‐9000Belgium
| |
Collapse
|
21
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
22
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
23
|
Umerani MJ, Yang H, Pratakshya P, Nowick JS, Gorodetsky AA. An aza-Diels–Alder route to quinoline-based unnatural amino acids and polypeptide surrogates. RSC Adv 2021. [DOI: 10.1039/d0ra04783j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of quinoline-based unnatural amino acids and the subsequent preparation of polypeptide surrogates from these building blocks on solid support.
Collapse
Affiliation(s)
- M. J. Umerani
- Department of Materials Science and Engineering
- University of California, Irvine
- Irvine
- USA
| | - H. Yang
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - P. Pratakshya
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - J. S. Nowick
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| | - A. A. Gorodetsky
- Department of Materials Science and Engineering
- University of California, Irvine
- Irvine
- USA
- Department of Chemistry
| |
Collapse
|
24
|
Zwillinger M, Reddy PS, Wicher B, Mandal PK, Csékei M, Fischer L, Kotschy A, Huc I. Aromatic Foldamer Helices as α-Helix Extended Surface Mimetics. Chemistry 2020; 26:17366-17370. [PMID: 32910480 PMCID: PMC7839445 DOI: 10.1002/chem.202004064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Helically folded aromatic oligoamide foldamers have a size and geometrical parameters very distinct from those of α-helices and are not obvious candidates for α-helix mimicry. Nevertheless, they offer multiple sites for attaching side chains. It was found that some arrays of side chains at the surface of an aromatic helix make it possible to mimic extended α-helical surfaces. Synthetic methods were developed to produce quinoline monomers suitably functionalized for solid phase synthesis. A dodecamer was prepared. Its crystal structure validated the initial design and showed helix bundling involving the α-helix-like interface. These results open up new uses of aromatic helices to recognize protein surfaces and to program helix bundling in water.
Collapse
Affiliation(s)
- Márton Zwillinger
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
- Hevesy György PhD School of ChemistryEötvös Loránd UniversityBudapestHungary
| | - Post Sai Reddy
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Barbara Wicher
- Department of Chemical Technology of DrugsPoznan University of Medical SciencesGrunwaldzka 660780PoznanPoland
| | - Pradeep K. Mandal
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Márton Csékei
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Lucile Fischer
- CNRS, Bordeaux Institut National PolytechniqueCBMN (UMR 5248)IECBUniversité de Bordeaux2 rue Robert Escarpit33600PessacFrance
| | - András Kotschy
- Servier Research Institute of Medicinal ChemistryZáhony utca 7.Budapest1031Hungary
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
25
|
Kaffy J, Berardet C, Mathieu L, Legrand B, Taverna M, Halgand F, Van Der Rest G, Maillard LT, Ongeri S. Helical γ‐Peptide Foldamers as Dual Inhibitors of Amyloid‐β Peptide and Islet Amyloid Polypeptide Oligomerization and Fibrillization. Chemistry 2020; 26:14612-14622. [DOI: 10.1002/chem.202001716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Julia Kaffy
- Université Paris-Saclay CNRS BioCIS 92290 Châtenay-Malabry France
| | - Corentin Berardet
- Université Paris-Saclay CNRS BioCIS 92290 Châtenay-Malabry France
- Université Paris Saclay CNRS Institut Galien de Paris Sud 92290 Châtenay-Malabry France
| | - Loïc Mathieu
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS Université de Montpellier-CNRS-ENSCM, UMR 5247 UFR des Sciences Pharmaceutiques et Biologiques 15 Avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS Université de Montpellier-CNRS-ENSCM, UMR 5247 UFR des Sciences Pharmaceutiques et Biologiques 15 Avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Myriam Taverna
- Université Paris Saclay CNRS Institut Galien de Paris Sud 92290 Châtenay-Malabry France
- Institut Universitaire de France 1, rue Descartes 75231 Paris Cedex 05 France
| | - Frédéric Halgand
- Université Paris-Saclay CNRS Institut de Chimie Physique 91405 Orsay France
| | | | - Ludovic T. Maillard
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS Université de Montpellier-CNRS-ENSCM, UMR 5247 UFR des Sciences Pharmaceutiques et Biologiques 15 Avenue Charles Flahault 34093 Montpellier Cedex 5 France
| | - Sandrine Ongeri
- Université Paris-Saclay CNRS BioCIS 92290 Châtenay-Malabry France
| |
Collapse
|
26
|
Maity D, Kumar S, AlHussein R, Gremer L, Howarth M, Karpauskaite L, Hoyer W, Magzoub M, Hamilton AD. Sub-stoichiometric inhibition of IAPP aggregation: a peptidomimetic approach to anti-amyloid agents. RSC Chem Biol 2020; 1:225-232. [PMID: 34458762 PMCID: PMC8341728 DOI: 10.1039/d0cb00086h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Membrane-catalysed misfolding of islet amyloid polypeptide is associated with the death of β-cells in type II diabetes (T2D). Most active compounds so far reported require high doses for inhibition of membrane bound IAPP fibrillation. Here, we describe a naphthalimide-appended oligopyridylamide-based α-helical mimetic, DM 1, for targeting membrane bound IAPP. DM 1 completely inhibits the aggregation of IAPP at doses of 0.2 equivalents. DM 1 is also effective at similarly low doses for inhibition of seed-catalyzed secondary nucleation. An NMR based study demonstrates that DM 1 modulates IAPP self-assembly by stabilizing and/or perturbing the N-terminus helix conformation. DM 1 at substoichiometric doses rescues rat insulinoma cells from IAPP-mediated cytotoxicity. Most importantly, 0.2 equivalents of DM 1 disaggregate preformed oligomers and fibrils and can reverse cytotoxicity by modulating toxic preformed oligomers and fibrils of IAPP into non-toxic conformations.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Chemistry, New York University New York New York 10003 USA
| | - Sunil Kumar
- Department of Chemistry, New York University New York New York 10003 USA
| | - Ruyof AlHussein
- Department of Chemistry, New York University New York New York 10003 USA
| | - Lothar Gremer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany.,Institute of Complex Systems, Structural Biochemistry (ICS-6) Forschungszentrum Jülich 52425 Jülich Germany
| | - Madeline Howarth
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Laura Karpauskaite
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany.,Institute of Complex Systems, Structural Biochemistry (ICS-6) Forschungszentrum Jülich 52425 Jülich Germany
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Andrew D Hamilton
- Department of Chemistry, New York University New York New York 10003 USA
| |
Collapse
|
27
|
Laxio Arenas J, Kaffy J, Ongeri S. Peptides and peptidomimetics as inhibitors of protein–protein interactions involving β-sheet secondary structures. Curr Opin Chem Biol 2019; 52:157-167. [DOI: 10.1016/j.cbpa.2019.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 02/02/2023]
|
28
|
Reddy PS, Langlois d'Estaintot B, Granier T, Mackereth CD, Fischer L, Huc I. Structure Elucidation of Helical Aromatic Foldamer-Protein Complexes with Large Contact Surface Areas. Chemistry 2019; 25:11042-11047. [PMID: 31257622 DOI: 10.1002/chem.201902942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 01/12/2023]
Abstract
The development of large synthetic ligands could be useful to target the sizeable surface areas involved in protein-protein interactions. Herein, we present long helical aromatic oligoamide foldamers bearing proteinogenic side chains that cover up to 450 Å2 of the human carbonic anhydrase II (HCA) surface. The foldamers are composed of aminoquinolinecarboxylic acids bearing proteinogenic side chains and of more flexible aminomethyl-pyridinecarboxylic acids that enhance helix handedness dynamics. Crystal structures of HCA-foldamer complexes were obtained with a 9- and a 14-mer both showing extensive protein-foldamer hydrophobic contacts. In addition, foldamer-foldamer interactions seem to be prevalent in the crystal packing, leading to the peculiar formation of an HCA superhelix wound around a rod of stacked foldamers. Solution studies confirm the positioning of the foldamer at the protein surface as well as a dimerization of the complexes.
Collapse
Affiliation(s)
- Post Sai Reddy
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Béatrice Langlois d'Estaintot
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Thierry Granier
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Cameron D Mackereth
- ARNA (U1212), Univ. Bordeaux-INSERM-CNRS, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Lucile Fischer
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France
| | - Ivan Huc
- CBMN (UMR5248), Univ. Bordeaux-CNRS-INP, Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,Department Pharmazie and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
29
|
Abstract
Highly efficient drug-delivery tools for membrane-impermeable compounds, proteins, and nucleic acids in living cells are useful in the fields of chemical biology and drug discovery, and such tools have been widely studied. One strategy in the development of novel drug-delivery tools is to utilize cell-penetrating peptide (CPP) foldamers. CPP foldamers are folded oligopeptides that possess cell membrane permeability. In recent decades, a wide variety of CPP foldamers have been reported by many groups. Herein, CPP foldamers are introduced and discussed from the viewpoints of component monomers (amino acids) and their application as drug-delivery tools.
Collapse
Affiliation(s)
- Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
30
|
Sun H, Lv F, Liu L, Wang S. Reactive Conjugated Polymers for the Modulation of Islet Amyloid Polypeptide Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22973-22978. [PMID: 31252497 DOI: 10.1021/acsami.9b05247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Misfolding and abnormal assembly of proteins cause many intractable diseases. The modulation of the assembly process of these proteins could contribute to understanding and controlling amyloid protein aggregation. Previous works focused mainly on the inhibition of the assembly process. To broaden the interaction modality of modulators with proteins for developing new modulators, in this work, we designed and synthesized two reactive poly ( p-phenylene vinylene) polymers, respectively, functionalized with N-hydroxysuccinimide ester (PPV-NHS) and pentafluorophenol ester (PPV-PFP), which exhibited the prevention or co-assembly effect on the aggregation process of islet amyloid polypeptide (IAPP). Cell assays demonstrated that both of the two polymers could effectively eliminate the cytotoxicity of IAPP. Moreover, PPV-NHS also could irreversibly disrupt preformed IAPP fibrils. We envision that PPV-NHS and PPV-PFP might offer a new design method for the modulation of protein assembly.
Collapse
Affiliation(s)
- Han Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100910 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100910 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100910 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100910 , P. R. China
- College of Chemistry , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
31
|
Oba M, Ito Y, Umeno T, Kato T, Tanaka M. Plasmid DNA Delivery Using Cell-Penetrating Peptide Foldamers Composed of Arg–Arg–Aib Repeating Sequences. ACS Biomater Sci Eng 2019; 5:5660-5668. [DOI: 10.1021/acsbiomaterials.8b01451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yurika Ito
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tomohiro Umeno
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takuma Kato
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Osaka University of Pharmaceutical Sciences, 40-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
32
|
Abstract
α,α-Disubstituted α-amino acids (dAAs), in which the α-hydrogen of the α-amino acid is replaced with an alkyl substituent, stabilize peptide secondary structures and have been utilized as a tool for building blocks of peptide foldamers. Peptides composed of acyclic dAAs with two bulky substituents equal to or larger than ethyl groups are more likely to form an extended planar conformation, whereas peptides with cyclic dAAs are more likely to adopt a helical structure. Based on these conformational properties of dAA-containing peptides, we developed a novel methodology using cyclic dAAs with an acetal side chain for conformational changes in peptides from a helical to a random structure with acidic treatment. Furthermore, peptide foldamers containing dAAs are useful for the design of functional peptides. In addition to the stabilization properties of peptide secondary structures, peptides foldamers exhibit resistance to degradation by proteases and thus are expected to be useful for development into bioactive peptides. In this presentation, I introduce cell-penetrating peptide foldamers as an application for dAAs in functional peptides. Peptide foldamers with appropriate functional groups at target positions show excellent, continuous cell membrane permeability and the ability to deliver biomacromolecules, such as plasmid DNA, into cells efficiently.
Collapse
Affiliation(s)
- Makoto Oba
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
33
|
Oba M, Nagano Y, Kato T, Tanaka M. Secondary structures and cell-penetrating abilities of arginine-rich peptide foldamers. Sci Rep 2019; 9:1349. [PMID: 30718681 PMCID: PMC6362038 DOI: 10.1038/s41598-018-38063-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022] Open
Abstract
Foldamers, which are folded oligomers with well-defined conformations, have been recently reported to have a good cell-penetrating ability. α,α-Disubstituted α-amino acids are one such promising tool for the design of peptide foldamers. Here, we prepared four types of L-arginine-rich nonapeptides containing L-leucine or α,α-disubstituted α-amino acids, and evaluated their secondary structures and cell-penetrating abilities in order to elucidate a correlation between them. Peptides containing α,α-disubstituted α-amino acids had similar resistance to protease digestion but showed different secondary structures. Intracellular uptake assays revealed that the helicity of peptides was important for their cell-penetrating abilities. These findings suggested that a peptide foldamer with a stable helical structure could be promising for the design of cell-penetrating peptides.
Collapse
Affiliation(s)
- Makoto Oba
- Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yu Nagano
- Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Takuma Kato
- Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
- Osaka University of Pharmaceutical Sciences, 40-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Masakazu Tanaka
- Graduate School Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
34
|
Vallade M, Jewginski M, Fischer L, Buratto J, Bathany K, Schmitter JM, Stupfel M, Godde F, Mackereth CD, Huc I. Assessing Interactions between Helical Aromatic Oligoamide Foldamers and Protein Surfaces: A Tethering Approach. Bioconjug Chem 2019; 30:54-62. [PMID: 30395443 DOI: 10.1021/acs.bioconjchem.8b00710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Helically folded aromatic foldamers may constitute suitable candidates for the ab initio design of ligands for protein surfaces. As preliminary steps toward the exploration of this hypothesis, a tethering approach was developed to detect interactions between a protein and a foldamer by confining the former at the surface of the latter. Cysteine mutants of two therapeutically relevant enzymes, CypA and IL4, were produced. Two series of ten foldamers were synthesized bearing different proteinogenic side chains and either a long or a short linker functionalized with an activated disulfide. Disulfide exchange between the mutated cysteines and the activated disulfides yielded 20 foldamer-IL4 and 20 foldamer-CypA adducts. Effectiveness of the reaction was demonstrated by LC-MS, by MS analysis after proteolytic digestion, and by 2D NMR. Circular dichroism then revealed diastereoselective interactions between the proteins and the foldamers confined at their surface which resulted in a preferred handedness of the foldamer helix. Helix sense bias occurred sometimes with both the short and the long linkers and sometimes with only one of them. In a few cases, helix handedness preference is found to be close to quantitative. These cases constitute valid candidates for structural elucidation of the interactions involved.
Collapse
Affiliation(s)
- Maëlle Vallade
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Michal Jewginski
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department of Bioorganic Chemistry, Faculty of Chemistry , Wrocław University of Technology , 50-370 Wrocław , Poland
| | - Lucile Fischer
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jérémie Buratto
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Katell Bathany
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Jean-Marie Schmitter
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Marine Stupfel
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Frédéric Godde
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Cameron D Mackereth
- Université Bordeaux, INSERM, CNRS, ARNA (U 1212 and UMR 5320), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France
| | - Ivan Huc
- Université Bordeaux, CNRS, IPB, CBMN (UMR 5248), Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , 33600 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 München , Germany
| |
Collapse
|
35
|
Alex JM, Corvaglia V, Hu X, Engilberge S, Huc I, Crowley PB. Crystal structure of a protein–aromatic foldamer composite: macromolecular chiral resolution. Chem Commun (Camb) 2019; 55:11087-11090. [DOI: 10.1039/c9cc05330a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A protein–foldamer crystal structure illustrates protein assembly by a sulfonated aromatic oligoamide, and chiral resolution of the foldamer helix handedness.
Collapse
Affiliation(s)
- Jimi M. Alex
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Valentina Corvaglia
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | - Xiaobo Hu
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | | | - Ivan Huc
- Universite de Bordeaux
- CNRS
- Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
- Institut Europeen de Chimie et Biologie
- Pessac 33600
| | | |
Collapse
|
36
|
Xin Y, Wang X, Luo L, Meng F. Conformation-Dependent Manipulation of Human Islet Amyloid Polypeptide Fibrillation by Shiitake-Derived Lentinan. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31069-31079. [PMID: 30148596 DOI: 10.1021/acsami.8b11078] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Misfolding and aggregation of human islet amyloid polypeptide (hIAPP) into fibrils are important contributions to the pathology of type 2 diabetes. Developing effective inhibitors of protein aggregation and fibrillation has been considered a promising therapeutic approach to preventing and treating type 2 diabetes. Herein, we report that Shiitake-derived polysaccharide lentinan manipulates in vitro hIAPP fibrillation and modulates IAPP-induced cytotoxicity in a conformation-dependent manner. In its triple-helical conformation, lentinan effectively inhibits hIAPP fibrillation, either in bulk solution or in the presence of lipid membrane, suppresses reactive oxygen species (ROS) generation, and attenuates hIAPP-induced cell toxicity. In contrast, lentinan accelerates hIAPP aggregation when it exists in a random-coil conformation and shows no suppression on hIAPP-mediated ROS production. Further investigation shows that the interaction between triple-helical lentinan and monomeric hIAPP is more favorable than the intermolecular binding of hIAPP, which redirects hIAPP aggregates to discrete nontoxic nanocomposites. To the best of our knowledge, this is the first time to report a conformation-dependent inhibition of hIAPP aggregation, which will provide new insights for our understanding of the manipulation mechanisms on hIAPP by natural polysaccharides and open a new avenue for designing and screening potential amyloid inhibitors against type 2 diabetes.
Collapse
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiuxia Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Wuhan Institute of Biotechnology , Wuhan 430075 , China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Wuhan Institute of Biotechnology , Wuhan 430075 , China
| |
Collapse
|
37
|
IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Kiriyama Y, Nochi H. Role and Cytotoxicity of Amylin and Protection of Pancreatic Islet β-Cells from Amylin Cytotoxicity. Cells 2018; 7:cells7080095. [PMID: 30082607 PMCID: PMC6115925 DOI: 10.3390/cells7080095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
Amylin, (or islet amyloid polypeptide; IAPP), a 37-amino acid peptide hormone, is released in response to nutrients, including glucose, lipids or amino acids. Amylin is co-stored and co-secreted with insulin by pancreatic islet β-cells. Amylin inhibits food intake, delays gastric emptying, and decreases blood glucose levels, leading to the reduction of body weight. Therefore, amylin as well as insulin play important roles in controlling the level of blood glucose. However, human amylin aggregates and human amylin oligomers cause membrane disruption, endoplasmic reticulum (ER) stress and mitochondrial damage. Since cytotoxicity of human amylin oligomers to pancreatic islet β-cells can lead to diabetes, the protection of pancreatic islet β cells from cytotoxic amylin is crucial. Human amylin oligomers also inhibit autophagy, although autophagy can function to remove amylin aggregates and damaged organelles. Small molecules, including β-sheet breaker peptides, chemical chaperones, and foldamers, inhibit and disaggregate amyloid formed by human amylin, suggesting the possible use of these small molecules in the treatment of diabetes. In this review, we summarize recent findings regarding the role and cytotoxicity of amylin and the protection of pancreatic islet β-cells from cytotoxicity of amylin.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Kagawa, Sanuki 769-2193, Japan.
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Kagawa, Sanuki 769-2193, Japan.
| |
Collapse
|
39
|
Birol M, Kumar S, Rhoades E, Miranker AD. Conformational switching within dynamic oligomers underpins toxic gain-of-function by diabetes-associated amyloid. Nat Commun 2018; 9:1312. [PMID: 29615609 PMCID: PMC5882805 DOI: 10.1038/s41467-018-03651-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/28/2018] [Indexed: 12/22/2022] Open
Abstract
Peptide mediated gain-of-toxic function is central to pathology in Alzheimer’s, Parkinson’s and diabetes. In each system, self-assembly into oligomers is observed and can also result in poration of artificial membranes. Structural requirements for poration and the relationship of structure to cytotoxicity is unaddressed. Here we focus on islet amyloid polypeptide (IAPP) mediated loss-of-insulin secreting cells in patients with diabetes. Newly developed methods enable structure-function enquiry to focus on intracellular oligomers composed of hundreds of IAPP. The key insights are that porating oligomers are internally dynamic, grow in discrete steps and are not canonical amyloid. Moreover, two classes of poration occur; an IAPP-specific ligand establishes that only one is cytotoxic. Toxic rescue occurs by stabilising non-toxic poration without displacing IAPP from mitochondria. These insights illuminate cytotoxic mechanism in diabetes and also provide a generalisable approach for enquiry applicable to other partially ordered protein assemblies. Toxic gain-of-function by islet amyloid polypeptide (IAPP) is thought to be mediated by membrane poration. Here the authors develop diluted-FRET to show that changes in pore structure correlate with onset of toxicity inside insulin secreting cells.
Collapse
Affiliation(s)
- Melissa Birol
- Department of Chemistry, University of Pennsylvania, 231S. 34th St, Philadelphia, PA, 19104, USA.,Department of Molecular Biophysics and Biochemistry, Department of Chemical and Environmental Engineering, Yale University, 260 Whitney Avenue, New Haven, CT, 06520-8114, USA
| | - Sunil Kumar
- Department of Chemistry, New York University, Silver Center for Arts and Science, 100 Washington Square East, 10th Floor, New York, NY, 10003, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, 231S. 34th St, Philadelphia, PA, 19104, USA.
| | - Andrew D Miranker
- Department of Molecular Biophysics and Biochemistry, Department of Chemical and Environmental Engineering, Yale University, 260 Whitney Avenue, New Haven, CT, 06520-8114, USA.
| |
Collapse
|
40
|
IAPP/amylin and β-cell failure: implication of the risk factors of type 2 diabetes. Diabetol Int 2018; 9:143-157. [PMID: 30603362 DOI: 10.1007/s13340-018-0347-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/21/2018] [Indexed: 12/12/2022]
Abstract
In type 2 diabetes (T2D), the most significant pathological change in pancreatic islets is amyloid deposits, of which a major component is islet amyloid polypeptide (IAPP), also called amylin. IAPP is expressed in β-cells and co-secreted with insulin. Together with the inhibitory effects of synthetic human IAPP (hIAPP) on insulin secretion, our studies, using hIAPP transgenic mice, in which glucose-stimulated insulin secretion was moderately reduced without amyloid deposit, and hIAPP gene-transfected β-cell lines, in which insulin secretion was markedly impaired without amyloid, predicted that soluble hIAPP-related molecules would exert cytotoxicity on β-cells. Human IAPP is one of the most aggregation-prone peptides that interact with cell membranes. While it is widely reported that soluble hIAPP oligomers promote cytotoxicity, this is still a hypothesis since the mechanisms are not yet fully defined. Several hIAPP transgenic mouse models did not develop diabetes; however, in models with backgrounds characterized for diabetic phenotypes, β-cell function and glucose tolerance did worsen, compared to those in non-transgenic models with similar backgrounds. Together with these findings, many studies on metabolic and molecular disorders induced by risk factors of T2D suggest that in T2D subjects, toxic IAPP oligomers accumulate in β-cells, impair their function, and reduce mass through disruption of cell membranes, resulting in β-cell failure. IAPP might be central to β-cell failure in T2D. Anti-amyloid aggregation therapeutics will be developed to create treatments with more durable and beneficial effects on β-cell function.
Collapse
|
41
|
Jha A, Kumar MG, Gopi HN, Paknikar KM. Inhibition of β-Amyloid Aggregation through a Designed β-Hairpin Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1591-1600. [PMID: 29284085 DOI: 10.1021/acs.langmuir.7b03617] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Designing peptide-based drugs to target the β-sheet-rich toxic intermediates during the aggregation of amyloid-β 1-42 (Aβ1-42) has been a major challenge. In general, β-sheet breaker peptides (BSBPs) are designed to complement the enthalpic interactions with the aggregating protein, and entropic effects are usually ignored. Here, we have developed a conformationally constrained cyclic BSBP by the use of an unnatural amino acid and a disulfide bond. We show that our peptide strongly inhibits the aggregation of Aβ1-42 in a concentration-dependent manner. It stabilizes the random coil conformation of Aβ1-42 monomers and inhibits the secondary structural transition to a β-sheet-rich conformation which allows Aβ1-42 to oligomerize in an ordered assembly during its aggregation. Our cyclic peptide also rescues the toxicity of soluble aggregates of Aβ1-42 toward neuronal cells. However, it significantly loses its potency in the conformationally relaxed acyclic form. It appears that limiting the loss of conformational entropy of the BSBP ligand can play a very important role in the attainment of conformations for precise and tight binding, making them a potent inhibitor for Aβ1-42 amyloidosis.
Collapse
Affiliation(s)
- Anjali Jha
- Nanobioscience Group, Agharkar Research Institute , G. G. Agarkar Road, Pune 411004, India
| | - Mothukuri Ganesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute , G. G. Agarkar Road, Pune 411004, India
| |
Collapse
|
42
|
Kumar S, Vogel MC, Hamilton AD. Teaching an old scaffold new recognition tricks: oligopyrrolamide antagonists of IAPP aggregation. Org Biomol Chem 2018; 16:733-741. [DOI: 10.1039/c7ob02910a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An oligopyrrolamide was identified as a potent antagonist of the aggregation of IAPP, a process associated with type 2 diabetes.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry
- New York University
- New York
- USA
| | - Maria C. Vogel
- Division of Science
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | | |
Collapse
|
43
|
Wójcik S, Birol M, Rhoades E, Miranker AD, Levine ZA. Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods Enzymol 2018; 611:703-734. [DOI: 10.1016/bs.mie.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Su D, Huang X, Dong C, Ren J. Quantitative Determination of Telomerase Activity by Combining Fluorescence Correlation Spectroscopy with Telomerase Repeat Amplification Protocol. Anal Chem 2017; 90:1006-1013. [PMID: 29211436 DOI: 10.1021/acs.analchem.7b04256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Telomerase is a key enzyme for maintaining the telomere length and is regarded as a versatile cancer biomarker and a potential drug target due to its important role in cancer and aging. It is necessary to develop a sensitive and reliable method for detection of telomerase activity due to its very low level in cells. In this Article, we propose an ultrasensitive and robust method for quantitative determination of telomerase activity by combining single molecule fluorescence correlation spectroscopy (FCS) with telomerase repeat amplification protocol (TRAP). The principle of this new method (FCS-TRAP) is based on measurement of the change in characteristic diffusion time and molecule number of TRAP products by FCS. The characteristic diffusion time is related to the length of TRAP products, and the molecule number represents the concentration of TRAP products. We optimized the conditions of TRAP procedure and FCS measurements. We observed that the telomerase activities are positively correlated to characteristic diffusion time and molecule number of TRAP products at optimal conditions. This method was successfully used for determination of telomerase activity of different cells, and detection of a single cell was realized. Meanwhile, this method was used to evaluate the inhibition efficiency of inhibitors, and the IC50 values obtained were in good agreement with the references. Compared to current TRAP methods, this method shows reliable quantification, ultrahigh sensitivity, and short detection time and is without separation. We believe that the FCS-TRAP method has a potential application in clinical diagnosis and screening of telomerase inhibitors.
Collapse
Affiliation(s)
- Di Su
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
45
|
Kumar S, Henning-Knechtel A, Chehade I, Magzoub M, Hamilton AD. Foldamer-Mediated Structural Rearrangement Attenuates Aβ Oligomerization and Cytotoxicity. J Am Chem Soc 2017; 139:17098-17108. [PMID: 29058422 DOI: 10.1021/jacs.7b08259] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of the native random coil amyloid beta (Aβ) into amyloid fibers is thought to be a key event in the progression of Alzheimer's disease (AD). A significant body of evidence suggests that the highly dynamic Aβ oligomers are the main causal agent associated with the onset of AD. Among many potential therapeutic approaches, one is the modulation of Aβ conformation into off-pathway structures to avoid the formation of the putative neurotoxic Aβ oligomers. A library of oligoquinolines was screened to identify antagonists of Aβ oligomerization, amyloid formation, and cytotoxicity. A dianionic tetraquinoline, denoted as 5, was one of the most potent antagonists of Aβ fibrillation. Biophysical assays including amyloid kinetics, dot blot, ELISA, and TEM show that 5 effectively inhibits both Aβ oligomerization and fibrillation. The antagonist activity of 5 toward Aβ aggregation diminishes with sequence and positional changes in the surface functionalities. 5 binds to the central discordant α-helical region and induces a unique α-helical conformation in Aβ. Interestingly, 5 adjusts its conformation to optimize the antagonist activity against Aβ. 5 effectively rescues neuroblastoma cells from Aβ-mediated cytotoxicity and antagonizes fibrillation and cytotoxicity pathways of secondary nucleation induced by seeding. 5 is also equally effective in inhibiting preformed oligomer-mediated processes. Collectively, 5 induces strong secondary structure in Aβ and inhibits its functions including oligomerization, fibrillation, and cytotoxicity.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Anja Henning-Knechtel
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi , Abu Dhabi, United Arab Emirates
| | - Andrew D Hamilton
- Department of Chemistry, New York University , New York, New York 10003, United States
| |
Collapse
|
46
|
Su D, Hu X, Dong C, Ren J. Determination of Caspase-3 Activity and Its Inhibition Constant by Combination of Fluorescence Correlation Spectroscopy with a Microwell Chip. Anal Chem 2017; 89:9788-9796. [DOI: 10.1021/acs.analchem.7b01735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Di Su
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaocai Hu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
47
|
|
48
|
Hu X, Dawson SJ, Mandal PK, de Hatten X, Baptiste B, Huc I. Optimizing side chains for crystal growth from water: a case study of aromatic amide foldamers. Chem Sci 2017; 8:3741-3749. [PMID: 28553532 PMCID: PMC5428020 DOI: 10.1039/c7sc00430c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/08/2017] [Indexed: 01/16/2023] Open
Abstract
The growth of crystals of aromatic compounds from water much depends on the nature of the water solubilizing functions that they carry. Rationalizing crystallization from water, and structure elucidation, of aromatic molecular and supramolecular systems is of general value across various fields of chemistry. Taking helical aromatic foldamers as a test case, we have validated several short polar side chains as efficient substituents to provide both solubility in, and crystal growth ability from, water. New 8-amino-2-quinolinecarboxylic acids bearing charged or neutral aminomethyl, carboxymethyl, sulfonic acid, or bis(hydroxymethyl)-methoxy side chains in position 4 or 5, were prepared on a multi gram scale. Fmoc protection of the main chain amine and suitable protections of the side chains ensured compatibility with solid phase synthesis. One tetrameric and five octameric oligoamides displaying these side chains were synthesized and shown to be soluble in water. In all cases but one, crystals were obtained using the hanging drop method, thus validating the initial design principle to combine polarity and rigidity. The only case that resisted crystallization appeared to be due to exceedingly high water solubility endowed by eight sulfonic acid functions. The neutral side chain did provide crystal growth ability from water but contributed poorly to solubility.
Collapse
Affiliation(s)
- Xiaobo Hu
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Simon J Dawson
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Pradeep K Mandal
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Xavier de Hatten
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Benoit Baptiste
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Ivan Huc
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| |
Collapse
|
49
|
Wang ST, Lin Y, Todorova N, Xu Y, Mazo M, Rana S, Leonardo V, Amdursky N, Spicer CD, Alexander BD, Edwards AA, Matthews SJ, Yarovsky I, Stevens MM. Facet-Dependent Interactions of Islet Amyloid Polypeptide with Gold Nanoparticles: Implications for Fibril Formation and Peptide-Induced Lipid Membrane Disruption. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:1550-1560. [PMID: 28260837 PMCID: PMC5333186 DOI: 10.1021/acs.chemmater.6b04144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/25/2017] [Indexed: 05/03/2023]
Abstract
A comprehensive understanding of the mechanisms of interaction between proteins or peptides and nanomaterials is crucial for the development of nanomaterial-based diagnostics and therapeutics. In this work, we systematically explored the interactions between citrate-capped gold nanoparticles (AuNPs) and islet amyloid polypeptide (IAPP), a 37-amino acid peptide hormone co-secreted with insulin from the pancreatic islet. We utilized diffusion-ordered spectroscopy, isothermal titration calorimetry, localized surface plasmon resonance spectroscopy, gel electrophoresis, atomic force microscopy, transmission electron microscopy (TEM), and molecular dynamics (MD) simulations to systematically elucidate the underlying mechanism of the IAPP-AuNP interactions. Because of the presence of a metal-binding sequence motif in the hydrophilic peptide domain, IAPP strongly interacts with the Au surface in both the monomeric and fibrillar states. Circular dichroism showed that AuNPs triggered the IAPP conformational transition from random coil to ordered structures (α-helix and β-sheet), and TEM imaging suggested the acceleration of IAPP fibrillation in the presence of AuNPs. MD simulations revealed that the IAPP-AuNP interactions were initiated by the N-terminal domain (IAPP residues 1-19), which subsequently induced a facet-dependent conformational change in IAPP. On a Au(111) surface, IAPP was unfolded and adsorbed directly onto the Au surface, while for the Au(100) surface, it interacted predominantly with the citrate adlayer and retained some helical conformation. The observed affinity of AuNPs for IAPP was further applied to reduce the level of peptide-induced lipid membrane disruption.
Collapse
Affiliation(s)
- Shih-Ting Wang
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Yiyang Lin
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Nevena Todorova
- School
of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Yingqi Xu
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Manuel Mazo
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Subinoy Rana
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Vincent Leonardo
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Nadav Amdursky
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Christopher D. Spicer
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Bruce D. Alexander
- Department
of Pharmaceutical, Chemical and Environmental Science, University of Greenwich, Central Avenue, Chatham, Kent ME4 4TB, U.K.
| | - Alison A. Edwards
- Medway School
of Pharmacy, Universities of Kent and Greenwich
at Medway, Central Avenue, Chatham, Kent ME4 4TB, U.K.
| | - Steve J. Matthews
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, U.K.
| | - Irene Yarovsky
- School
of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Molly M. Stevens
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
- Department
of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K.
- E-mail:
| |
Collapse
|
50
|
Jewginski M, Granier T, Langlois d'Estaintot B, Fischer L, Mackereth CD, Huc I. Self-Assembled Protein-Aromatic Foldamer Complexes with 2:3 and 2:2:1 Stoichiometries. J Am Chem Soc 2017; 139:2928-2931. [PMID: 28170240 DOI: 10.1021/jacs.7b00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The promotion of protein dimerization using the aggregation properties of a protein ligand was explored and shown to produce complexes with unusual stoichiometries. Helical foldamer 2 was synthesized and bound to human carbonic anhydrase (HCA) using a nanomolar active site ligand. Crystal structures show that the hydrophobicity of 2 and interactions of its side chains lead to the formation of an HCA2-23 complex in which three helices of 2 are stacked, two of them being linked to an HCA molecule. The middle foldamer in the stack can be replaced by alternate sequences 3 or 5. Solution studies by CD and NMR confirm left-handedness of the helical foldamers as well as HCA dimerization.
Collapse
Affiliation(s)
- Michal Jewginski
- CBMN (UMR5248), Univ. Bordeaux, CNRS, IPB , Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France.,Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology , 50-370 Wrocław, Poland
| | - Thierry Granier
- CBMN (UMR5248), Univ. Bordeaux, CNRS, IPB , Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Béatrice Langlois d'Estaintot
- CBMN (UMR5248), Univ. Bordeaux, CNRS, IPB , Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Lucile Fischer
- CBMN (UMR5248), Univ. Bordeaux, CNRS, IPB , Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Cameron D Mackereth
- ARNA (U 1212), Univ. Bordeaux, INSERM , Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ivan Huc
- CBMN (UMR5248), Univ. Bordeaux, CNRS, IPB , Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33600 Pessac, France
| |
Collapse
|