1
|
Shigematsu T, Shinoda Y, Takagi R, Ujihara Y, Sugita S, Nakamura M. Interleaflet Translocation of Second-Harmonic-Generation-Active Dye Molecules in Phospholipid Bilayers with Transmembrane Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39875332 DOI: 10.1021/acs.langmuir.4c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals. A decrease in the SHG signals has been experimentally observed in membranes subjected to electrical stimuli. However, the characteristics of the interleaflet translocation of SHG-active dye molecules through pores remain unclear, hindering quantitative estimation of the membrane conditions, such as the pore size and density, based on the SHG signal reduction. In this study, we investigated the interleaflet translocation characteristics of Ap3, an SHG-active dye molecule, using molecular dynamics (MD) simulations and two-dimensional random-walk (RW) simulations. The MD simulations revealed that Ap3 molecules only translocate between the leaflets along the pore sidewalls. We determined the lateral diffusion coefficient of Ap3 within the membrane plane and its propensity for interleaflet movement at the pore wall. Based on these movement characteristics, the RW model successfully reproduced the characteristic time scale of the interleaflet translocation observed in the MD simulations. By varying the pore size and density in the RW simulations, we estimated that the characteristic time scale of interleaflet translocation depends on the -0.31 power of the pore radius and the -1.13 power of the pore density. Using these findings, we estimated the number of pores that probably formed in membranes during previous electroporation experiments. These results indicate the potential of optical measurement of the dye molecule movement for the indirect quantitative estimation of the pore size and number, which are challenging to measure optically.
Collapse
Affiliation(s)
- Taiki Shigematsu
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Yuya Shinoda
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Reiya Takagi
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Shukei Sugita
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
2
|
Chen S, Liu Z, Li B, Hou Y, Peng Y, Li J, Yuan Q, Gan W. Probing the structural evolution on the surface of cardiolipin vesicles with an amphiphilic second harmonic generation and fluorescence probe. J Chem Phys 2024; 161:014705. [PMID: 38949588 DOI: 10.1063/5.0211845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.
Collapse
Affiliation(s)
- Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Zhongcheng Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yi Hou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yingying Peng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
3
|
Liu M, Arias-Aranda LR, Li H, Bouffier L, Kuhn A, Sojic N, Salinas G. Wireless Multimodal Light-Emitting Arrays Operating on the Principles of LEDs and ECL. Chemphyschem 2024; 25:e202400133. [PMID: 38624189 DOI: 10.1002/cphc.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Electrochemistry-based light-emitting devices have gained considerable attention in different applications such as sensing and optical imaging. In particular, such systems are an interesting alternative for the development of multimodal light-emitting platforms. Herein we designed a multicolor light-emitting array, based on the electrochemical switch-on of light-emitting diodes (LEDs) with a different intrinsic threshold voltage. Thermodynamically and kinetically favored coupled redox reactions, i. e. the oxidation of Mg and the reduction of protons on Pt, act as driving force to power the diodes. Moreover, this system enables to trigger an additional light emission based on the interfacial reductive-oxidation electrochemiluminescence (ECL) mechanism of the Ru(bpy)3 2+/S2O8 2- system. The synergy between these light-emission pathways offers a multimodal platform for the straightforward optical readout of physico-chemical information based on composition changes of the solution.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Leslie R Arias-Aranda
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Haidong Li
- College of Chemistry and Chemical Engineering. Yangzhou University, 225002, Yangzhou, China
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| |
Collapse
|
4
|
Li B, Li J, Chen S, Yuan Q, Fang C, Gan W. Monitoring the response of a model protocell to dye and surfactant molecules through second harmonic generation and fluorescence imaging. Phys Chem Chem Phys 2024; 26:8148-8157. [PMID: 38380536 DOI: 10.1039/d4cp00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Probing the interaction between molecules and protocells is crucial for understanding the passive transport of functional molecules in and out of artificial and real cells. Second-harmonic generation (SHG) has been proven to be a powerful method for analyzing the adsorption and cross-membrane transport of molecules on lipid bilayers. In this study, we used SHG and two-photon fluorescence (TPF) imaging to study the interaction of charged dye molecules (D289) with a lipid vesicle. Unexpectedly, it was observed that the transport of D289 at a relatively high concentration is not as efficient as that at a lower dye concentration. Periodic shrinking of the model protocell and discharging of D289 out from the vesicle were revealed by combined analyses of SHG and TPF images. The response of the vesicle to a surfactant was also analyzed with D289 as a probe. This work demonstrates that the combined SHG and TPF imaging method is a unique approach that can provide detailed information on the interaction of molecules and lipids (both morphology and molecular kinetics). Determining these subtle interfacial kinetics in molecules is important for understanding the mechanism of many biophysical processes occurring on lipids.
Collapse
Affiliation(s)
- Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
| | - Chao Fang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
5
|
Wang G, Li L, Liao X, Wang S, Mitchell J, Rabel C, Luo S, Shi J, Sorrells JE, Iyer RR, Aksamitiene E, Renteria CA, Chaney EJ, Milner DJ, Wheeler MB, Gillette MU, Schwing A, Chen J, Tu H. Supercontinuum intrinsic fluorescence imaging heralds free view of living systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577383. [PMID: 38328159 PMCID: PMC10849662 DOI: 10.1101/2024.01.26.577383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Optimal imaging strategies remain underdeveloped to maximize information for fluorescence microscopy while minimizing the harm to fragile living systems. Taking hint from the supercontinuum generation in ultrafast laser physics, we generated supercontinuum fluorescence from untreated unlabeled live samples before nonlinear photodamage onset. Our imaging achieved high-content cell phenotyping and tissue histology, identified bovine embryo polarization, quantified aging-related stress across cell types and species, demystified embryogenesis before and after implantation, sensed drug cytotoxicity in real-time, scanned brain area for targeted patching, optimized machine learning to track small moving organisms, induced two-photon phototropism of leaf chloroplasts under two-photon photosynthesis, unraveled microscopic origin of autumn colors, and interrogated intestinal microbiome. The results enable a facility-type microscope to freely explore vital molecular biology across life sciences.
Collapse
|
6
|
Liu M, Salinas G, Yu J, Cornet A, Li H, Kuhn A, Sojic N. Endogenous and exogenous wireless multimodal light-emitting chemical devices. Chem Sci 2023; 14:10664-10670. [PMID: 37829015 PMCID: PMC10566513 DOI: 10.1039/d3sc03678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Multimodal imaging is a powerful and versatile approach that integrates and correlates multiple optical modalities within a single device. This concept has gained considerable attention due to its potential applications ranging from sensing to medicine. Herein, we develop several wireless multimodal light-emitting chemical systems by coupling two light sources based on different physical principles: electrochemiluminescence (ECL) occurring at the electrode interface and a light-emitting diode (LED) switched on by an electrochemically triggered electron flow. Endogenous (thermodynamically spontaneous redox process) and exogenous (requiring an external power source) bipolar electrochemistry acts as a driving force to trigger both light emissions at different wavelengths. The results presented here interconnect optical imaging and electrochemical reactions, providing a novel and so far unexplored alternative to design autonomous hybrid systems with multimodal and multicolor optical readouts for complex bio-chemical systems.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Gerardo Salinas
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Jing Yu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Antoine Cornet
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Haidong Li
- College of Chemistry and Chemical Engineering, Yangzhou University 225002 Yangzhou China
| | - Alexander Kuhn
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| |
Collapse
|
7
|
Shinotsuka T, Miyazawa T, Karasawa K, Ozeki Y, Yasui M, Nuriya M. Stimulated Raman scattering microscopy reveals a unique and steady nature of brain water dynamics. CELL REPORTS METHODS 2023; 3:100519. [PMID: 37533646 PMCID: PMC10391342 DOI: 10.1016/j.crmeth.2023.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
The biological activities of substances in the brain are shaped by their spatiotemporal dynamics in brain tissues, all of which are regulated by water dynamics. In contrast to solute dynamics, water dynamics have been poorly characterized, owing to the lack of appropriate analytical tools. To overcome this limitation, we apply stimulated Raman scattering multimodal multiphoton microscopy to live brain tissues. The microscopy system allows for the visualization of deuterated water, fluorescence-labeled solutes, and cellular structures at high spatiotemporal resolution, revealing that water moves faster than fluorescent molecules in brain tissues. Detailed analyses demonstrate that water, unlike solutes, diffuses homogeneously in brain tissues without differences between the intra- and the extracellular routes. Furthermore, we find that the water dynamics are steady during development and ischemia, when diffusions of solutes are severely affected. Thus, our approach reveals routes and uniquely robust properties of water diffusion in brain tissues.
Collapse
Affiliation(s)
- Takanori Shinotsuka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Tsuyoshi Miyazawa
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Keiko Karasawa
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
8
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
9
|
Barhum H, McDonnell C, Alon T, Hammad R, Attrash M, Ellenbogen T, Ginzburg P. Organic Kainate Single Crystals for Second-Harmonic and Broadband THz Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8590-8600. [PMID: 36729720 PMCID: PMC9940106 DOI: 10.1021/acsami.2c18454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Organic crystals with unique nonlinear optical properties have been attracting attention owing to their capability to outperform their conventional nonorganic counterparts. Since nonlinear material responses are linked to a crystal's internal microscopic structure, molecular engineering of maximally unharmonic quantum potentials can boost macromolecular susceptibilities. Here, large-scale kainic acid (kainate) single crystals were synthesized, and their linear and nonlinear optical properties were studied in a broad spectral range, spanning the visible to THz spectral regions. The non-centrosymmetric zwitterionic crystallization, molecular structure, and intermolecular arrangement were found to act as additive donor-acceptor domains, enhancing the efficiency of the intrinsic second-order optical nonlinearity of this pure enantiomeric crystal. Molecular simulations and experimental analysis were performed to retrieve the crystals' properties. The crystals were predicted and found to have good transparency in a broad spectral range from the UV to the infrared (0.2-20 μm). Second-harmonic generation was measured for ultrashort pumping wavelengths between 800 and 2400 nm, showing an enhanced response around 600 nm. Broadband THz generation was demonstrated with a detection limited bandwidth of >8 THz along with emission efficiencies comparable to and prevailing those of commercial ZnTe crystals. The broadband nonlinear response and high transparency make kainate crystals extremely attractive for realizing a range of nonlinear optical devices.
Collapse
Affiliation(s)
- Hani Barhum
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
- Triangle
Regional Research and Development Center, Kfar Qara’3007500, Israel
| | - Cormac McDonnell
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
| | - Tmiron Alon
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
| | - Raheel Hammad
- Tata
Institute of Fundamental Research, Sy No 36/P Serilingampally Mandal, Hyderabad, Telangana500046, India
| | - Mohammed Attrash
- Schulich
Faculty of Chemistry, Technion - Israel
Institute of Technology, Haifa32000, Israel
| | - Tal Ellenbogen
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
| | - Pavel Ginzburg
- Department
of Physical Electronics, Tel Aviv University, Ramat Aviv, Tel Aviv69978, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
10
|
Page EF, Blake MJ, Foley GA, Calhoun TR. Monitoring membranes: The exploration of biological bilayers with second harmonic generation. CHEMICAL PHYSICS REVIEWS 2022; 3:041307. [PMID: 36536669 PMCID: PMC9756348 DOI: 10.1063/5.0120888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Nature's seemingly controlled chaos in heterogeneous two-dimensional cell membranes stands in stark contrast to the precise, often homogeneous, environment in an experimentalist's flask or carefully designed material system. Yet cell membranes can play a direct role, or serve as inspiration, in all fields of biology, chemistry, physics, and engineering. Our understanding of these ubiquitous structures continues to evolve despite over a century of study largely driven by the application of new technologies. Here, we review the insight afforded by second harmonic generation (SHG), a nonlinear optical technique. From potential measurements to adsorption and diffusion on both model and living systems, SHG complements existing techniques while presenting a large exploratory space for new discoveries.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Marea J. Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Grant A. Foley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Tessa R. Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
11
|
Mejia E, Song J, Zhao Y, Qian Y, Xiao C, Lezec HJ, Agrawal A, Zhou W. Scalable two-tier protruding micro-/nano-optoelectrode arrays with hybrid optical-electrical modalities by hierarchical modular design. NANOSCALE 2022; 14:15373-15383. [PMID: 36218083 DOI: 10.1039/d2nr03820j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In situ spatiotemporal characterization of correlated bioelectrical and biochemical processes in living multicellular systems remains a formidable challenge but can offer crucial opportunities in biology and medicine. A promising approach is to develop bio-interfaced multifunctional micro-/nano-sensor arrays with complementary biophotonic-bioelectronic modalities and biomimetic topology to achieve combined bioelectrical and biochemical detection and tight device-cell coupling. However, a system-level engineering strategy is still missing to create multifunctional micro-/nano-sensor arrays that meet the multifaceted design requirements for in situ spatiotemporal characterizations of living systems. Here, we demonstrate a hierarchical modular design and fabrication approach to develop scalable two-tier protruding micro-/nano-optoelectrode arrays that extend the design space of biomimetic micro-/nano-pillar topology, plasmonic nanoantenna-based biophotonic function in surface-enhanced Raman spectroscopy (SERS), and micro-/nano-electrode-based bioelectronics function in electrochemical impedance spectroscopy (EIS). Notably, two-tier protruding micro-/nano-optoelectrode arrays composed of nanolaminate nanoantenna arrays on top of micropillar electrode arrays can support plasmonic nanocavity modes with high SERS enhancement factors (≈106) and large surface-to-volume ratio with significantly reduced interfacial impedance in EIS measurements. We envision that scalable two-tier protruding micro-/nano-optoelectrode arrays can potentially serve as bio-interfaced multifunctional micro-/nano-sensor arrays for in situ correlated spatiotemporal bioelectrical-biochemical measurements of living multicellular systems such as neuronal network cultures, cancerous organoids, and microbial biofilms.
Collapse
Affiliation(s)
- Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Junyeob Song
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Yuming Zhao
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yizhou Qian
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Chuan Xiao
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Henri J Lezec
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Amit Agrawal
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
12
|
Shaw PA, Forsyth E, Haseeb F, Yang S, Bradley M, Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window? Front Chem 2022; 10:921354. [PMID: 35815206 PMCID: PMC9263132 DOI: 10.3389/fchem.2022.921354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime Klausen
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Hou Y, Li J, Li B, Yuan Q, Gan W. Combined Second Harmonic Generation and Fluorescence Analyses of the Structures and Dynamics of Molecules on Lipids Using Dual-Probes: A Review. Molecules 2022; 27:molecules27123778. [PMID: 35744902 PMCID: PMC9231091 DOI: 10.3390/molecules27123778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023] Open
Abstract
Revealing the structures and dynamic behaviors of molecules on lipids is crucial for understanding the mechanism behind the biophysical processes, such as the preparation and application of drug delivery vesicles. Second harmonic generation (SHG) has been developed as a powerful tool to investigate the molecules on various lipid membranes, benefiting from its natural property of interface selectivity, which comes from the principle of even order nonlinear optics. Fluorescence emission, which is in principle not interface selective but varies with the chemical environment where the chromophores locate, can reveal the dynamics of molecules on lipids. In this contribution, we review some examples, which are mainly from our recent works focusing on the application of combined spectroscopic methods, i.e., SHG and two-photon fluorescence (TPF), in studying the dynamic behaviors of several dyes or drugs on lipids and surfactants. This review demonstrates that molecules with both SHG and TPF efficiencies may be used as intrinsic dual-probes in plotting a clear physical picture of their own behaviors, as well as the dynamics of other molecules, on lipid membranes.
Collapse
Affiliation(s)
- Yi Hou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.H.); (J.L.); (B.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.H.); (J.L.); (B.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.H.); (J.L.); (B.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China;
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.H.); (J.L.); (B.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Correspondence:
| |
Collapse
|
14
|
Khadria A. Tools to measure membrane potential of neurons. Biomed J 2022; 45:749-762. [DOI: 10.1016/j.bj.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/08/2022] [Accepted: 05/29/2022] [Indexed: 12/31/2022] Open
|
15
|
Bu Y, Rong M, Wang J, Zhu X, Zhang J, Wang L, Yu Z, Tian Y, Zhou H, Xie Y. Cancer Cell Membrane Labeling Fluorescent Doppelganger Enables In Situ Photoactivated Membrane Dynamics Tracking via Two-Photon Fluorescence Imaging Microscopy. Anal Chem 2022; 94:8373-8381. [PMID: 35647787 DOI: 10.1021/acs.analchem.2c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various suborganelles are delimited by lipid bilayers, in which high spatial and temporal morphological changes are essential to many physiological and pathological processes of cells. However, almost all the amphiphilic fluorescent molecules reported until now are not available for in situ precise tracking of membrane dynamics in cell apoptosis. Here, the MO (coumarin pyridine derivatives) was devised by engineering lipophilic coumarin and cationic pyridine salt, which not only lastingly anchored onto the plasma membrane in dark due to appropriate amphipathicity and electrostatic interactions but also in situ reflected the membrane damage and heterogeneity with secretion of extracellular vesicles (EVs) under reactive oxygen species regulation and was investigated by two-photon fluorescence lifetime imaging microscopy. This work opens up a new avenue for the development of plasma membrane staining and EV-based medicines for the early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Yingcui Bu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Mengtao Rong
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Junjun Wang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Xiaojiao Zhu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Jie Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Lianke Wang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Zhipeng Yu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Yupeng Tian
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Hongping Zhou
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Hefei230601,P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Science at Microscale, iChem, University of Science and Technology of China, Hefei230051, P. R. China
| |
Collapse
|
16
|
A Second Harmonic Wave Angle Sensor with a Collimated Beam of Femtosecond Laser. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An optical angle sensor based on the collimated mode-locked femtosecond laser (Fs) beam, in which the angle measurement is carried out by observing the second harmonic wave generated by irradiating the Fs beam towards MgO:LiNbO3 crystal, is proposed. The angle detection is demonstrated by identifying the second harmonic generation (SHG) spectrum peaks against the angular position of the rotating stage-mounted MgO:LiNbO3 crystal that represents the measurement object. The MgO:LiNbO3 with a length of 2 mm, a cut-off angle of 47°, a diameter of 5 mm, and 5% of MgO:LN, is rotated within the phase-matching angle over a wavelength range from 1480 nm to 1640 nm. Angle measurement is also carried out by placing the crystal at different positions along the laser beam propagation direction to confirm the feasibility of the angle sensor where the measurement range, measurement sensitivity, and resolution of the proposed method are also evaluated. The result shows that the proposed angle sensor can overcome the working distance limitation of conventional angle sensors and has no specific material target requirement. Since the configuration of the proposed angle sensor is not limited by the specification of the measurement target, it is expected to have wide potential applications, especially in the manufacturing process and inspection process.
Collapse
|
17
|
Perkins ML, Schuetz M, Unda F, Chen KT, Bally MB, Kulkarni JA, Yan Y, Pico J, Castellarin SD, Mansfield SD, Samuels AL. Monolignol export by diffusion down a polymerization-induced concentration gradient. THE PLANT CELL 2022; 34:2080-2095. [PMID: 35167693 PMCID: PMC9048961 DOI: 10.1093/plcell/koac051] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/06/2022] [Indexed: 05/25/2023]
Abstract
Lignin, the second most abundant biopolymer, is a promising renewable energy source and chemical feedstock. A key element of lignin biosynthesis is unknown: how do lignin precursors (monolignols) get from inside the cell out to the cell wall where they are polymerized? Modeling indicates that monolignols can passively diffuse through lipid bilayers, but this has not been tested experimentally. We demonstrate significant monolignol diffusion occurs when laccases, which consume monolignols, are present on one side of the membrane. We hypothesize that lignin polymerization could deplete monomers in the wall, creating a concentration gradient driving monolignol diffusion. We developed a two-photon microscopy approach to visualize lignifying Arabidopsis thaliana root cells. Laccase mutants with reduced ability to form lignin polymer in the wall accumulated monolignols inside cells. In contrast, active transport inhibitors did not decrease lignin in the wall and scant intracellular phenolics were observed. Synthetic liposomes were engineered to encapsulate laccases, and monolignols crossed these pure lipid bilayers to form polymer within. A sink-driven diffusion mechanism explains why it has been difficult to identify genes encoding monolignol transporters and why the export of varied phenylpropanoids occurs without specificity. It also highlights an important role for cell wall oxidative enzymes in monolignol export.
Collapse
Affiliation(s)
- Mendel L Perkins
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Faride Unda
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
| | - Kent T Chen
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marcel B Bally
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Yifan Yan
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Joana Pico
- Wine Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
18
|
Separating Non-linear Optical Signals of a Sample from High Harmonic Radiation in a Soft X-ray Free Electron Laser. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2022. [DOI: 10.1380/ejssnt.2022-002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Li B, Li J, Gan W, Tan Y, Yuan Q. Unveiling the Molecular Dynamics in a Living Cell to the Subcellular Organelle Level Using Second-Harmonic Generation Spectroscopy and Microscopy. Anal Chem 2021; 93:14146-14152. [PMID: 34648265 DOI: 10.1021/acs.analchem.1c02604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Second-harmonic generation (SHG) microscopy has been proved to be a powerful method for investigating the structures of biomaterials. SHG spectra were also generally used to probe the adsorption and cross-membrane transport of molecules on lipid bilayers in situ and in real time. In this work, we applied SHG and two-photon fluorescence (TPF) spectra to investigate the dynamics of an amphiphilic ion with an SHG and TPF chromophore, D289 (4-(4-diethylaminostyry)-1-methyl-pyridinium iodide), on the surface of human chronic myelogenous leukemia (K562) cells and the subcellular structures inside the cells. The adsorption and cross-membrane transport of D289 into the cells and then into the organelles such as mitochondria were revealed. SHG images were also recorded and used to demonstrate their capability of probing molecular dynamics in organelles in K562 cells. This work demonstrated the first SHG investigation of the cross-membrane transport dynamics on the surface of subcellular organelles. It may also shed light on the differentiation of different types of subcellular structures in cells.
Collapse
Affiliation(s)
- Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Also School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| |
Collapse
|
20
|
Two-dimensional electronic-vibrational sum frequency spectroscopy for interactions of electronic and nuclear motions at interfaces. Proc Natl Acad Sci U S A 2021; 118:2100608118. [PMID: 34417312 DOI: 10.1073/pnas.2100608118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic-vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic-vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active (E)-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air-water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S 2, is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm-1 Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S 2 state to the lower excited state S 1 We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces.
Collapse
|
21
|
Xu H, Xie F, Lu Y, Wei P, Cai J. Fluorescent Amphiphilic Quaternized β-Chitin: Antibacterial Mechanism and Cell Imaging. ACS APPLIED BIO MATERIALS 2021; 4:5461-5470. [PMID: 35006718 DOI: 10.1021/acsabm.1c00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent materials span multiple applications from biological probes and chemical sensing to optoelectronic systems. Although great efforts have been made toward developing classes of fluorescent materials, 100,000+ traditional fluorescent dyes still suffer from the obstacle of aggregation-caused quenching (ACQ). Thus, designing fluorescent materials with excellent optical performance from ACQ luminogens remains challenging. In this work, we prepared fluorescent amphiphilic quaternized β-chitin (QC-F) via nucleophilic addition between the amino groups of QC and isothiocyanate groups of fluorescein isothiocyanate (FITC). Due to the covalent anchoring of the QC backbone, steric hindrance of the bulky acetamido groups, electrostatic repulsion of the quaternary ammonium groups, and homogeneous distribution of FITC units, the FITC units were spatially and electronically isolated, and the QC-F series exhibited unique fluorescent behaviors. The QC-F series could be used to observe their interactions with microbial cells through fluorescence imaging to gain insights into the QC antibacterial mechanism. Moreover, with their favorable cytocompatibility, the QC-F series are also suitable for cell imaging. Thus, the present work will broaden the applications of chitin and conventional ACQ luminogens.
Collapse
Affiliation(s)
- Huan Xu
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China.,Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Fang Xie
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yiwen Lu
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Pingdong Wei
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China.,Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, China
| |
Collapse
|
22
|
Nuriya M, Ashikari Y, Iino T, Asai T, Shou J, Karasawa K, Nakamura K, Ozeki Y, Fujimoto Y, Yasui M. Alkyne-Tagged Dopamines as Versatile Analogue Probes for Dopaminergic System Analysis. Anal Chem 2021; 93:9345-9355. [PMID: 34210142 DOI: 10.1021/acs.analchem.0c05403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dopaminergic system is essential for the function of the brain in health and disease. Therefore, detailed studies focused on unraveling the mechanisms involved in dopaminergic signaling are required. However, the lack of probes that mimic dopamine in living tissues, owing to the neurotransmitter's small size, has hampered analysis of the dopaminergic system. The current study aimed to overcome this limitation by developing alkyne-tagged dopamine compounds (ATDAs) that have a minimally invasive and uniquely identifiable alkyne group as a tag. ATDAs were established as chemically and functionally similar to dopamine and readily detectable by methods such as specific click chemistry and Raman scattering. The ATDAs developed here were verified as analogue probes that mimic dopamine in neurons and brain tissues, allowing the detailed characterization of dopamine dynamics. Therefore, ATDAs can act as safe and versatile tools with wide applicability in detailed studies of the dopaminergic system. Furthermore, our results suggest that the alkyne-tagging approach can also be applied to other small-sized neurotransmitters to facilitate characterization of their dynamics in the brain.
Collapse
Affiliation(s)
- Mutsuo Nuriya
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Kanagawa 240-8501, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato, Tokyo 108-8345, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.,Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yosuke Ashikari
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takanori Iino
- Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takuya Asai
- Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Jingwen Shou
- Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Keiko Karasawa
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kaho Nakamura
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Kanagawa 240-8501, Japan
| | - Yasuyuki Ozeki
- Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato, Tokyo 108-8345, Japan.,Core Research for Evolution and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
23
|
Ali RF, Guo I, Kang H, Radford MJ, Yapp DT, Gates BD. Tuning the Surface Chemistry of Second-Harmonic-Active Lithium Niobate Nanoprobes Using a Silanol-Alcohol Condensation Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7689-7700. [PMID: 34128677 DOI: 10.1021/acs.langmuir.1c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The surface functionalization of nanoparticles (NPs) is of great interest for improving the use of NPs in, for example, therapeutic and diagnostic applications. The conjugation of specific molecules with NPs through the formation of covalent linkages is often sought to provide a high degree of colloidal stability and biocompatibility, as well as to provide functional groups for further surface modification. NPs of lithium niobate (LiNbO3) have been explored for use in second-harmonic-generation (SHG)-based bioimaging, expanding the applications of SHG-based microscopy techniques. The efficient use of SHG-active LiNbO3 NPs as probes will, however, require the functionalization of their surfaces with molecular reagents such as polyethylene glycol and fluorescent molecules to enhance their colloidal and chemical stability and to enable a correlative imaging platform. Herein, we demonstrate the surface functionalization of LiNbO3 NPs through the covalent attachment of alcohol-based reagents through a silanol-alcohol condensation reaction. Alcohol-based reagents are widely available and can have a range of terminal functional groups such as carboxylic acids, amines, and aldehydes. Attaching these molecules to NPs through the silanol-alcohol condensation reaction could diversify the reagents available to modify NPs, but this reaction pathway must first be established as a viable route to modifying NPs. This study focuses on the attachment of a linear alcohol functionalized with carboxylic acid and its use as a reactive group to further tune the surface chemistry of LiNbO3 NPs. These carboxylic acid groups were reacted to covalently attach other molecules to the NPs using copper-free click chemistry. This derivatization of the NPs provided a means to covalently attach polyethylene glycols and fluorescent probes to the NPs, reducing NP aggregation and enabling multimodal tracking of SHG nanoprobes, respectively. This extension of the silanol-alcohol condensation reaction to functionalize the surfaces of LiNbO3 NPs can be extended to other types of nanoprobes for use in bioimaging, biosensing, and photodynamic therapies.
Collapse
Affiliation(s)
- Rana Faryad Ali
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Iris Guo
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Henry Kang
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Melissa J Radford
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Donald T Yapp
- British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver BC V5Z 1L3, Canada
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
24
|
Zhang L, Li H, He H, Yang Y, Cui Y, Qian G. Structural Variation and Switchable Nonlinear Optical Behavior of Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006649. [PMID: 33470526 DOI: 10.1002/smll.202006649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Two europium metal-organic frameworks (MOFs) based on the same ligand, named as ZJU-23-Eu and ZJU-24-Eu, are selectively synthesized by fine-tuning solvent contents to tailor the coordination modes. Eu atoms are eight-coordinated and nine-coordinated in ZJU-23-Eu and ZJU-24-Eu respectively, and their frameworks vary in both spatial connectivity and symmetry. The ligand not only has multiphoton response but also suitable triplet energy level (19 998 cm-1 ) to sensitize Eu3+ . Thus ZJU-23-Eu exhibits characteristic emission of Eu3+ peaking at 614 nm via the energy transfer from the two-/three-photon excited ligand to Eu3+ , with its bidimensional layered structure benefiting this process. In contrast, the changed spatial connectivity in tridimensional ZJU-24-Eu narrows the distances between adjacent Eu3+ ions and reduces the density, resulting in poor two-photon excited fluorescence. Besides, noncentrosymmetric ZJU-24-Eu shows second harmonic generation (SHG) response with an intensity of ≈6.2 times relative to KH2 PO4 (KDP) microcrystalline powder while centrosymmetric ZJU-23-Eu cannot. These results have established two nonlinear optical (NLO) models based on MOFs to synchronously analyze the effects of two structural variables on different NLO behaviors, and provide ingenious ways to design MOF-based NLO devices with function on demand.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongjun Li
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huajun He
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
25
|
Shen J, Chen W, Liu X. Facile synthesis of graphene quantum dots from glucan and their application as a deoxidizer and in cell imaging. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820973934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A facile and effective route to synthesize graphene quantum dots for cell imaging and as a deoxidizer by using glucan as a precursor is developed. AuNPs are successfully synthesized by mixing of graphene quantum dots and Au(III) salts without any additional reductants. The reducing driving force of these graphene quantum dots is much weaker than that of strong reducing agents such as NaBH4. The sizes of the as-synthesized AuNPs are much larger, with an average size of 15 nm. Notably, this size range is specifically useful and optimal for the application of AuNPs in biomedical applications. In addition, the as-synthesized graphene quantum dots are also successfully applied in cell imaging.
Collapse
Affiliation(s)
- Jialu Shen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Analysis and Testing Center, China Three Gorges University, Yichang 443002, Hubei, P.R. China
| | - Weifeng Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Analysis and Testing Center, China Three Gorges University, Yichang 443002, Hubei, P.R. China
| | - Xiang Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Analysis and Testing Center, China Three Gorges University, Yichang 443002, Hubei, P.R. China
| |
Collapse
|
26
|
Mizuguchi T, Nuriya M. Applications of second harmonic generation (SHG)/sum-frequency generation (SFG) imaging for biophysical characterization of the plasma membrane. Biophys Rev 2020; 12:10.1007/s12551-020-00768-4. [PMID: 33108561 PMCID: PMC7755958 DOI: 10.1007/s12551-020-00768-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane is a lipid bilayer of < 10 nm width that separates intra- and extra-cellular environments and serves as the site of cell-cell communication, as well as communication between cells and the extracellular environment. As such, biophysical phenomena at and around the plasma membrane play key roles in determining cellular physiology and pathophysiology. Thus, the selective visualization and characterization of the plasma membrane are crucial aspects of research in wide areas of biology and medicine. However, the specific characterization of the plasma membrane has been a challenge using conventional imaging techniques, which are unable to effectively distinguish between signals arising from the plasma membrane and those from intracellular lipid structures. In this regard, interface-specific second harmonic generation (SHG) and sum-frequency generation (SFG) imaging demonstrate great potential. When combined with exogenous SHG/SFG active dyes, SHG/SFG can specifically highlight the plasma membrane as the most prominent interface associated with cells. Furthermore, SHG/SFG imaging can be readily extended to multimodal multiphoton microscopy with simultaneous occurrence of other multiphoton phenomena, including multiphoton excitation and coherent Raman scattering, which shed light on the biophysical properties of the plasma membrane from different perspectives. Here, we review traditional and current applications, as well as the prospects of long-known but unexplored SHG/SFG imaging techniques in biophysics, with special focus on their use in the biophysical characterization of the plasma membrane.
Collapse
Affiliation(s)
- Takaha Mizuguchi
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.
- Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, 108-8345, Japan.
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.
| |
Collapse
|
27
|
Shi L, Liu Y, Li K, Sharma A, Yu K, Ji MS, Li L, Zhou Q, Zhang H, Kim JS, Yu X. An AIE‐Based Probe for Rapid and Ultrasensitive Imaging of Plasma Membranes in Biosystems. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Shi
- College of ChemistrySichuan University Chengdu 610064 China
| | - Yan‐Hong Liu
- College of ChemistrySichuan University Chengdu 610064 China
| | - Kun Li
- College of ChemistrySichuan University Chengdu 610064 China
| | - Amit Sharma
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Kang‐Kang Yu
- College of ChemistrySichuan University Chengdu 610064 China
| | - Myung Sun Ji
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Ling‐Ling Li
- College of ChemistrySichuan University Chengdu 610064 China
| | - Qian Zhou
- College of ChemistrySichuan University Chengdu 610064 China
| | - Hong Zhang
- College of ChemistrySichuan University Chengdu 610064 China
| | - Jong Seung Kim
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Xiao‐Qi Yu
- College of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
28
|
Mizuguchi T, Momotake A, Hishida M, Yasui M, Yamamoto Y, Saiki T, Nuriya M. Multimodal Multiphoton Imaging of the Lipid Bilayer by Dye-Based Sum-Frequency Generation and Coherent Anti-Stokes Raman Scattering. Anal Chem 2020; 92:5656-5660. [PMID: 32202108 DOI: 10.1021/acs.analchem.0c00673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS) imaging is widely used for imaging molecular vibrations inside cells and tissues. Lipid bilayers are potential analytes for CARS imaging due to their abundant CH2 vibrational bonds. However, identifying the plasma membrane is challenging since it possesses a thin structure and is closely apposed to lipid structures inside the cells. Since the plasma membrane provides the most prominent asymmetric location within cells, orientation sensitive sum-frequency generation (SFG) imaging is a promising technique for selective visualization of the plasma membrane labeled by a nonfluorescent and SFG-specific dye, Ap3, when using a CARS microscope system. In this study, we closely compare the characteristics of lipid bilayer imaging by dye-based SFG and CARS using giant vesicles (GVs) and N27 rat dopaminergic neural cells. As a result, we show that CARS imaging can be exploited for the visualization of whole lipid structures inside GVs and cells but is insufficient for identification of the plasma membrane, which instead can be achieved using dye-based SFG imaging. In addition, we demonstrate that these unique properties can be combined and applied to the live-cell tracking of intracellular lipid structures such as lipid droplets beneath the plasma membrane. Thus, multimodal multiphoton imaging through a combination of dye-based SFG and CARS can serve as a powerful chemical imaging tool to investigate lipid bilayers in GVs and living cells.
Collapse
Affiliation(s)
- Takaha Mizuguchi
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Atsuya Momotake
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Masato Yasui
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Toshiharu Saiki
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.,Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.,Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
29
|
Prévot G, Bsaibess T, Daniel J, Genevois C, Clermont G, Sasaki I, Marais S, Couillaud F, Crauste-Manciet S, Blanchard-Desce M. Multimodal optical contrast agents as new tools for monitoring and tuning nanoemulsion internalisation into cancer cells. From live cell imaging to in vivo imaging of tumours. NANOSCALE ADVANCES 2020; 2:1590-1602. [PMID: 36132308 PMCID: PMC9416932 DOI: 10.1039/c9na00710e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/19/2020] [Indexed: 05/28/2023]
Abstract
Tailor-made NIR emitting dyes were designed as multimodal optical probes. These asymmetric amphiphilic compounds show combined intense absorption in the visible region, NIR fluorescence emission, high two-photon absorption in the NIR (with the maximum located around 1000 nm) as well as large Stokes' shift values and second-harmonic generation ability. Thanks to their structure, high loading into nanoemulsions (NEs) could be achieved leading to very high one- and two-photon brightness. These dyes were demonstrated to act as multimodal contrast agents able to generate different optical modalities of interest for bioimaging. Indeed, the uptake and carrier behaviour of the dye-loaded NEs into cancer cells could be monitored by simultaneous two-photon fluorescence and second-harmonic generation optical imaging. Multimodal imaging provided deep insight into the mechanism and kinetics of dye internalisation. Quite interestingly, the nature of the dyes was also found to influence both the kinetics of endocytosis and the internalisation pathways in glioblastoma cancer cells. By modulating the charge distribution within the dyes, the NEs can be tuned to escape lysosomes and enter the mitochondria. Moreover, surface functionalization with PEG macromolecules was realized to yield stealth NIRF-NEs which could be used for in vivo NIRF imaging of subcutaneous tumours in mice.
Collapse
Affiliation(s)
- Geoffrey Prévot
- Univ. Bordeaux, ARNA Laboratory, Team ChemBioPharm, U1212 INSERM - UMR 5320 CNRS 146 Rue Léo Saignat 33076 Bordeaux Cedex France
| | - Talia Bsaibess
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255) 33405 Talence France
| | - Jonathan Daniel
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255) 33405 Talence France
| | - Coralie Genevois
- Univ. Bordeaux, Molecular Imaging and Innovative Therapies (IMOTION), EA7435 Bordeaux 33000 France
| | - Guillaume Clermont
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255) 33405 Talence France
| | - Isabelle Sasaki
- Univ. Bordeaux, Institut des Sciences Moléculaires (CNRS UMR 5255) 33405 Talence France
| | - Sebastien Marais
- Bordeaux Imaging Center, UMS 3420 CNRS - Univ. Bordeaux, US4 Inserm 33000 Bordeaux France
| | - Franck Couillaud
- Univ. Bordeaux, Molecular Imaging and Innovative Therapies (IMOTION), EA7435 Bordeaux 33000 France
| | - Sylvie Crauste-Manciet
- Univ. Bordeaux, ARNA Laboratory, Team ChemBioPharm, U1212 INSERM - UMR 5320 CNRS 146 Rue Léo Saignat 33076 Bordeaux Cedex France
- Pharmaceutical Technology Department, Bordeaux University Hospital Bordeaux France
| | | |
Collapse
|
30
|
Shi L, Li K, Liu YH, Liu X, Zhou Q, Xu Q, Chen SY, Yu XQ. Bio-inspired assembly in a phospholipid bilayer: effective regulation of electrostatic and hydrophobic interactions for plasma membrane specific probes. Chem Commun (Camb) 2020; 56:3661-3664. [DOI: 10.1039/d0cc00679c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A simple assembly system of phospholipid bilayer and probes via electrostatic and hydrophobic interactions was constructed.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xin Liu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Qian Zhou
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Qi Xu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
31
|
Momotake A, Mizuguchi T, Hishida M, Yamamoto Y, Yasui M, Nuriya M. Monitoring the morphological evolution of giant vesicles by azo dye-based sum-frequency generation (SFG) microscopy. Colloids Surf B Biointerfaces 2019; 186:110716. [PMID: 31865122 DOI: 10.1016/j.colsurfb.2019.110716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/29/2019] [Accepted: 12/07/2019] [Indexed: 11/20/2022]
Abstract
In the present work, dye-based sum-frequency generation (SFG) imaging using sodium 4-[4-(dibutylamino)phenylazo]benzenesulfonate (butyl orange, BO) as a new non-fluorescent specific azo dye is employed to monitor the morphological evolution of giant vesicles (GVs). After loading BO to the membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) single-component GVs, the outermost membranes were clearly visualized using SFG microscopy, which provided images of the distinct outer and inner faces of the lipid bilayers. In addition, SFG-active vesicles were detected also inside the GVs, depending on the dye concentrations. The dye-based SFG imaging technique provided experimental evidence that these oligolamellar vesicles containing an SFG-active interior had been formed after BO loading. The formation process of the oligolamellar vesicles with inner SFG-active vesicles was successfully monitored, and their formation mechanism was discussed.
Collapse
Affiliation(s)
- Atsuya Momotake
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Takaha Mizuguchi
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Yasuhiko Yamamoto
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Masato Yasui
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| | - Mutsuo Nuriya
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| |
Collapse
|
32
|
Wilhelm MJ, Dai HL. Molecule-Membrane Interactions in Biological Cells Studied with Second Harmonic Light Scattering. Chem Asian J 2019; 15:200-213. [PMID: 31721448 DOI: 10.1002/asia.201901406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Indexed: 12/13/2022]
Abstract
The nonlinear optical phenomenon second harmonic light scattering (SHS) can be used for detecting molecules at the membrane surfaces of living biological cells. Over the last decade, SHS has been developed for quantitatively monitoring the adsorption and transport of small and medium size molecules (both neutral and ionic) across membranes in living cells. SHS can be operated with both time and spatial resolution and is even capable of isolating molecule-membrane interactions at specific membrane surfaces in multi-membrane cells, such as bacteria. In this review, we discuss select examples from our lab employing time-resolved SHS to study real-time molecular interactions at the plasma membranes of biological cells. We first demonstrate the utility of this method for determining the transport rates at each membrane/interface in a Gram-negative bacterial cell. Next, we show how SHS can be used to characterize the molecular mechanism of the century old Gram stain protocol for classifying bacteria. Additionally, we examine how membrane structures and molecular charge and polarity affect adsorption and transport, as well as how antimicrobial compounds alter bacteria membrane permeability. Finally, we discuss adaptation of SHS as an imaging modality to quantify molecular adsorption and transport in sub-cellular regions of individual living cells.
Collapse
Affiliation(s)
- Michael J Wilhelm
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
33
|
Lim H. Harmonic Generation Microscopy 2.0: New Tricks Empowering Intravital Imaging for Neuroscience. Front Mol Biosci 2019; 6:99. [PMID: 31649934 PMCID: PMC6794408 DOI: 10.3389/fmolb.2019.00099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Optical harmonic generation, e.g., second- (SHG) and third-harmonic generation (THG), provides intrinsic contrasts for three-dimensional intravital microscopy. Contrary to two-photon excited fluorescence (TPEF), however, they have found relatively specialized applications, such as imaging collagenous and non-specific tissues, respectively. Here we review recent advances that broaden the capacity of SHG and THG for imaging the central nervous system in particular. The fundamental contrast mechanisms are reviewed as they encode novel information including molecular origin, spectroscopy, functional probes, and image analysis, which lay foundations for promising future applications in neuroscience.
Collapse
Affiliation(s)
- Hyungsik Lim
- Department of Physics and Astronomy, Hunter College and the Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
34
|
Shi L, Liu Y, Li K, Sharma A, Yu K, Ji MS, Li L, Zhou Q, Zhang H, Kim JS, Yu X. An AIE‐Based Probe for Rapid and Ultrasensitive Imaging of Plasma Membranes in Biosystems. Angew Chem Int Ed Engl 2019; 59:9962-9966. [DOI: 10.1002/anie.201909498] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/23/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Shi
- College of ChemistrySichuan University Chengdu 610064 China
| | - Yan‐Hong Liu
- College of ChemistrySichuan University Chengdu 610064 China
| | - Kun Li
- College of ChemistrySichuan University Chengdu 610064 China
| | - Amit Sharma
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Kang‐Kang Yu
- College of ChemistrySichuan University Chengdu 610064 China
| | - Myung Sun Ji
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Ling‐Ling Li
- College of ChemistrySichuan University Chengdu 610064 China
| | - Qian Zhou
- College of ChemistrySichuan University Chengdu 610064 China
| | - Hong Zhang
- College of ChemistrySichuan University Chengdu 610064 China
| | - Jong Seung Kim
- Department of ChemistryKorea University Seoul 02841 Korea
| | - Xiao‐Qi Yu
- College of ChemistrySichuan University Chengdu 610064 China
| |
Collapse
|
35
|
Miller LN, Brewer WT, Williams JD, Fozo EM, Calhoun TR. Second Harmonic Generation Spectroscopy of Membrane Probe Dynamics in Gram-Positive Bacteria. Biophys J 2019; 117:1419-1428. [PMID: 31586521 DOI: 10.1016/j.bpj.2019.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 11/17/2022] Open
Abstract
Bacterial membranes are complex mixtures with dispersity that is dynamic over scales of both space and time. To capture adsorption onto and transport within these mixtures, we conduct simultaneous second harmonic generation (SHG) and two-photon fluorescence measurements on two different gram-positive bacterial species as the cells uptake membrane-specific probe molecules. Our results show that SHG not only can monitor the movement of small molecules across membrane leaflets but also is sensitive to higher-level ordering of the molecules within the membrane. Further, we show that the membranes of Staphylococcus aureus remain more dynamic after longer times at room temperature in comparison to Enterococcus faecalis. Our findings provide insight into the variability of activities seen between structurally similar molecules in gram-positive bacteria while also demonstrating the power of SHG to examine these dynamics.
Collapse
Affiliation(s)
- Lindsey N Miller
- Department of Chemistry, University of Tennesseee, Knoxville, Tennessee
| | - William T Brewer
- Department of Microbiology, University of Tennesseee, Knoxville, Tennessee
| | - Julia D Williams
- Department of Microbiology, University of Tennesseee, Knoxville, Tennessee
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennesseee, Knoxville, Tennessee
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennesseee, Knoxville, Tennessee.
| |
Collapse
|
36
|
Optical second harmonic generation microscopy: application to the sensitive detection of cell membrane damage. Biophys Rev 2019; 11:399-408. [PMID: 31073956 DOI: 10.1007/s12551-019-00546-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022] Open
Abstract
Optical second harmonic generation (SHG) is a nonlinear optical process which is sensitive to the symmetry of media. SHG microscopy allows for selective probing of a non-centrosymmetric area of sample. This type of nonlinear optical microscope was first used to observe ferroelectric domains and has been applied to various specimens including the biological samples to date. Imaging of the endogenous SHG of biological tissue has been utilized for the selective observation of filament systems in tissues such as collagen, myosin, and microtubules, which exhibit a polar structure. The cellular membrane can be selectively observed by the SHG microscope through membrane staining with amphiphilic polar dye molecules. It has been reported that, by imaging exogenous SHG of the membrane, sensitive detection of membrane damage could be realized using the SHG microscope. Because the staining dye is fluorescent, both SHG and two-photon excited fluorescence (TPF) images can be obtained simultaneously. How the SHG intensity depends on the molecular alignment of the polar dye molecules that reflects the ordering of lipid molecules in the plasma membrane and the necessity of the normalization of the SHG intensity by the TPF intensity is discussed. Furthermore, the assessment of the membrane damage induced by exposing polycation to HeLa cells has been compared with the conventional cytotoxicity and cell viability tests to demonstrate the higher sensitivity of the present SHG-based assay.
Collapse
|
37
|
Nuriya M, Yoneyama H, Takahashi K, Leproux P, Couderc V, Yasui M, Kano H. Characterization of Intra/Extracellular Water States Probed by Ultrabroadband Multiplex Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopic Imaging. J Phys Chem A 2019; 123:3928-3934. [DOI: 10.1021/acs.jpca.9b03018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mutsuo Nuriya
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45, Mita, Minato, Tokyo 108-8345, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
| | | | | | - Philippe Leproux
- Institut de Recherche XLIM, UMR CNRS No. 7252, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
- LEUKOS, 37 Rue Henri Giffard, 87280 Limoges, France
| | - Vincent Couderc
- Institut de Recherche XLIM, UMR CNRS No. 7252, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45, Mita, Minato, Tokyo 108-8345, Japan
| | - Hideaki Kano
- Keio Advanced Research Center for Water Biology and Medicine, Keio University, 2-15-45, Mita, Minato, Tokyo 108-8345, Japan
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
38
|
Mizuguchi T, Yasui M, Nuriya M. High-Resolution Plasma Membrane-Selective Imaging by Second Harmonic Generation. iScience 2018; 9:359-366. [PMID: 30466062 PMCID: PMC6249386 DOI: 10.1016/j.isci.2018.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
The plasma membrane is the site of intercellular communication and subsequent intracellular signal transduction. The specific visualization of the plasma membrane in living cells, however, is difficult using fluorescence-based techniques owing to the high background signals from intracellular organelles. In this study, we show that second harmonic generation (SHG) is a high-resolution plasma membrane-selective imaging technique that enables multifaceted investigations of the plasma membrane. In contrast to fluorescence imaging, SHG specifically visualizes the plasma membrane at locations that are not attached to artificial substrates and allows high-resolution imaging because of its subresolution nature. These properties were exploited to measure the distances from the plasma membrane to subcortical actin and tubulin fibers, revealing the precise cytoskeletal organization beneath the plasma membrane. Thus, SHG imaging enables the specific visualization of phenomena at the plasma membrane with unprecedented precision and versatility and should facilitate cell biology research focused on the plasma membrane. Dye-based SHG imaging can specifically visualize the plasma membrane SHG imaging can identify the location of the plasma membrane with high precision Multimodal imaging reveals the precise organization of subcortical cytoskeletons
Collapse
Affiliation(s)
- Takaha Mizuguchi
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mutsuo Nuriya
- Department of Pharmacology School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
39
|
Abstract
The principles, strengths and limitations of several nonlinear optical (NLO) methods for characterizing biological systems are reviewed. NLO methods encompass a wide range of approaches that can be used for real-time, in-situ characterization of biological systems, typically in a label-free mode. Multiphoton excitation fluorescence (MPEF) is widely used for high-quality imaging based on electronic transitions, but lacks interface specificity. Second harmonic generation (SHG) is a parametric process that has all the virtues of the two-photon version of MPEF, yielding a signal at twice the frequency of the excitation light, which provides interface specificity. Both SHG and MPEF can provide images with high structural contrast, but they typically lack molecular or chemical specificity. Other NLO methods such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) can provide high-sensitivity imaging with chemical information since Raman active vibrations are probed. However, CARS and SRS lack interface and surface specificity. A NLO method that provides both interface/surface specificity as well as molecular specificity is vibrational sum frequency generation (SFG) spectroscopy. Vibration modes that are both Raman and IR active are probed in the SFG process, providing the molecular specificity. SFG, like SHG, is a parametric process, which provides the interface and surface specificity. SFG is typically done in the reflection mode from planar samples. This has yielded rich and detailed information about the molecular structure of biomaterial interfaces and biomolecules interacting with their surfaces. However, 2-D systems have limitations for understanding the interactions of biomolecules and interfaces in the 3-D biological environment. The recent advances made in instrumentation and analysis methods for sum frequency scattering (SFS) now present the opportunity for SFS to be used to directly study biological solutions. By detecting the scattering at angles away from the phase-matched direction even centrosymmetric structures that are isotropic (e.g., spherical nanoparticles functionalized with self-assembled monolayers or biomolecules) can be probed. Often a combination of multiple NLO methods or a combination of a NLO method with other spectroscopic methods is required to obtain a full understanding of the molecular structure and surface chemistry of biomaterials and the biomolecules that interact with them. Using the right combination methods provides a powerful approach for characterizing biological materials.
Collapse
|
40
|
Khadria A, Fleischhauer J, Boczarow I, Wilkinson JD, Kohl MM, Anderson HL. Porphyrin Dyes for Nonlinear Optical Imaging of Live Cells. iScience 2018; 4:153-163. [PMID: 30240737 PMCID: PMC6147020 DOI: 10.1016/j.isci.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 11/28/2022] Open
Abstract
Second harmonic generation (SHG)-based probes are useful for nonlinear optical imaging of biological structures, such as the plasma membrane. Several amphiphilic porphyrin-based dyes with high SHG coefficients have been synthesized with different hydrophilic head groups, and their cellular targeting has been studied. The probes with cationic head groups localize better at the plasma membrane than the neutral probes with zwitterionic or non-charged ethylene glycol-based head groups. Porphyrin dyes with only dications as hydrophilic head groups localize inside HEK293T cells to give SHG, whereas tricationic dyes localize robustly at the plasma membrane of cells, including neurons, in vitro and ex vivo. The copper(II) complex of the tricationic dye with negligible fluorescence quantum yield works as an SHG-only dye. The free-base tricationic dye has been demonstrated for two-photon fluorescence and SHG-based multimodal imaging. This study demonstrates the importance of a balance between the hydrophobicity and hydrophilicity of amphiphilic dyes for effective plasma membrane localization.
Collapse
Affiliation(s)
- Anjul Khadria
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Jan Fleischhauer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Igor Boczarow
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - James D Wilkinson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Michael M Kohl
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Harry L Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
41
|
Kang M, Kwok RTK, Wang J, Zhang H, Lam JWY, Li Y, Zhang P, Zou H, Gu X, Li F, Tang BZ. A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. J Mater Chem B 2018; 6:3894-3903. [PMID: 32254317 DOI: 10.1039/c8tb00572a] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increasing impact of bacteria on cancer progression and treatments has been witnessed in recent years. Insufficient attention to cancer-related bacteria may lead to distant metastasis, poor therapeutic efficiency and low survival rates for cancers. Exploiting new approaches that enable selective imaging and effective killing of cancer cells and bacteria are thus of great value for the battle against cancers. Herein, we report an aggregation-induced emission (AIE) luminogen, namely TPPCN, with intense emission and efficient reactive oxygen species production for fluorescence imaging and killing cancer cells and Gram-positive bacteria. This work not only demonstrates the potential of AIE luminogens in comprehensive cancer treatments but also stimulates the enthusiasm of scientists to design more multifunctional AIE systems for both cancer and bacteria theranostics.
Collapse
Affiliation(s)
- Miaomiao Kang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang D, Su H, Kwok RTK, Hu X, Zou H, Luo Q, Lee MMS, Xu W, Lam JWY, Tang BZ. Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chem Sci 2018; 9:3685-3693. [PMID: 29780499 PMCID: PMC5935061 DOI: 10.1039/c7sc04963c] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/12/2018] [Indexed: 12/23/2022] Open
Abstract
The synthesis of water-soluble near-infrared (NIR)-emissive fluorescent molecules with aggregation-induced emission (AIE) characteristics and theranostic functions is highly desirable but remains challenging. In this work, we designed and readily prepared for the first time such a molecule with AIE features, good water-solubility and intense emission in the NIR region. This AIE luminogen (AIEgen) is able to specifically "light up" the cell membrane without the involvement of a washing procedure. Interestingly, the staining process can be performed by simply shaking the culture with cells at room temperature for only a few seconds after the addition of the AIEgen, indicating an ultrafast and easy-to-operate staining protocol. This is the first fluorescent "light-up" probe for cell-imaging that allows the combination of a short staining period (at the second-level) with a wash-free process. Additionally, the presented AIEgen has also been developed to serve as an excellent phototherapeutic agent for high efficiency generation of reactive oxygen species (ROS) upon visible light irradiation, which allows its effective application in the photodynamic ablation of cancer cells, demonstrating its dual role as an imaging and phototherapeutic agent.
Collapse
Affiliation(s)
- Dong Wang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
- Center for AIE Research , College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Huifang Su
- Department of Osteology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou University , Zhengzhou 450000 , PR China
| | - Ryan T K Kwok
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Xianglong Hu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science , College of Biophotonics , South China Normal University , Guangzhou , 510631 , China . ;
| | - Hang Zou
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Qianxin Luo
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Michelle M S Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Wenhan Xu
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Department of Chemistry , Institute of Molecular Functional Materials , State Key Laboratory of Neuroscience , Division of Biomedical Engineering , Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| |
Collapse
|
43
|
Khadria A, de Coene Y, Gawel P, Roche C, Clays K, Anderson HL. Push-pull pyropheophorbides for nonlinear optical imaging. Org Biomol Chem 2018; 15:947-956. [PMID: 28054076 DOI: 10.1039/c6ob02319c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyropheophorbide-a methyl ester (PPa-OMe) has been modified by attaching electron-donor and -acceptor groups to alter its linear and nonlinear optical properties. Regioselective bromination of the terminal vinyl position and Suzuki coupling were used to attach a 4-(N,N-diethylaminophenyl) electron-donor group. The electron-acceptor dicyanomethylene was attached at the cyclic ketone position through a Knoevenagel condensation. Four different derivatives of PPa-OMe, containing either electron-donor or electron-acceptor groups, or both, were converted to hydrophilic bis-TEG amides to generate a series of amphiphilic dyes. The absorption and emission properties of all the dyes were compared to a previously reported push-pull type porphyrin-based dye and a commercial push-pull styryl dye, FM4-64. Electrochemical measurements reveal that the electron donor group causes a greater decrease in HOMO-LUMO gap than the electron-acceptor. TD-DFT calculations on optimized geometries (DFT) of all four dyes show that the HOMO is mostly localized on the donor, 4-(N,N-diethylaminophenyl), while the LUMO is distributed around the chlorin ring and the electron-acceptor. Hyper-Rayleigh scattering experiments show that the first-order hyperpolarizabilities of the dyes increase on attaching either electron-donor or -acceptor groups, having the highest value when both the donor and acceptor groups are attached. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) images of the bis-TEG amide attached dyes in lipid monolayer-coated droplets of water-in-oil reveal that the TPEF and SHG involve transition dipole moments in different orientations.
Collapse
Affiliation(s)
- Anjul Khadria
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Yovan de Coene
- Department of Chemistry, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Przemyslaw Gawel
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Cécile Roche
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Koen Clays
- Department of Chemistry, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium.
| | - Harry L Anderson
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
44
|
Su J, Zhang J, Tian X, Zhao M, Song T, Yu J, Cui Y, Qian G, Zhong H, Luo L, Zhang Y, Wang C, Li S, Yang J, Zhou H, Wu J, Tian Y. A series of multifunctional coordination polymers based on terpyridine and zinc halide: second-harmonic generation and two-photon absorption properties and intracellular imaging. J Mater Chem B 2017; 5:5458-5463. [PMID: 32264085 DOI: 10.1039/c6tb03321k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
How can imaging be improved? Coordination polymers (CPs) show fascinating potential in optoelectronic optics but limited potential in bioimaging. Without doubt, it was very meaningful when CPs were first used in second-harmonic generation (SHG) imaging. Herein, through reasonable design and synthesis, a series of nonlinear optical CPs bearing very good one-photon excited fluorescence (OPEF), two-photon excited fluorescence (TPEF) and very strong SHG properties has been presented. Further study demonstrated that the nanoscale CPs show very strong SHG signals which have been applied in the three-dimensional imaging of thick block tissue with higher spatial resolution through simultaneous multichannel nonlinear optical (NLO) imaging technology. After simple encapsulation by polymeric micelles, the nanoscale CPs were successfully applied in SHG bio-imaging within the living cells. This finding throws light on the design of nanoscale NLO CPs and offers a simple avenue to develop novel effective exogenous SHG imaging agents.
Collapse
Affiliation(s)
- Jian Su
- Department of Chemistry, Anhui University, Hefei 230039, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gui C, Zhao E, Kwok RTK, Leung ACS, Lam JWY, Jiang M, Deng H, Cai Y, Zhang W, Su H, Tang BZ. AIE-active theranostic system: selective staining and killing of cancer cells. Chem Sci 2017; 8:1822-1830. [PMID: 30155198 PMCID: PMC6092713 DOI: 10.1039/c6sc04947h] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer is the leading cause of death worldwide. With the advantages of low cost, high sensitivity and ease of accessibility, fluorescence imaging has been widely used for cancer detection in the scientific field. Aggregation-induced emission luminogens (AIEgens) are a class of synthesized fluorescent probes with high brightness and photostability in the aggregate state. Herein, a new positively-charged AIEgen, abbreviated as TPE-IQ-2O, is designed and characterized. TPE-IQ-2O not only can distinguish cancer cells from normal cells with high contrast with the aid of the difference in mitochondrial membrane potential as well as the quantity of mitochondria, but it also works as a promising photosensitizer to kill cancer cells through generation of reactive oxygen species upon white light irradiation, thus making it a promising AIE theranostic system.
Collapse
Affiliation(s)
- Chen Gui
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Engui Zhao
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ryan T K Kwok
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Anakin C S Leung
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Jacky W Y Lam
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Meijuan Jiang
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Haiqin Deng
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Yuanjing Cai
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Weijie Zhang
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Huifang Su
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ben Zhong Tang
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|