1
|
Wang CWJ, Marshall NJ. Behavioural evidence of spectral opponent processing in the visual system of stomatopod crustaceans. J Exp Biol 2025; 228:jeb247952. [PMID: 39670570 PMCID: PMC11744319 DOI: 10.1242/jeb.247952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Stomatopods, commonly known as mantis shrimps, possess intricate colour vision with up to 12 photoreceptor classes arranged in four specialised ommatidia rows (rows 1-4 in the midband region of the eye) for colour perception. Whereas 2-4 spectral sensitivities suffice for most visual systems, the function and mechanism behind stomatopods' 12-channel colour vision remains unclear. Previous anatomical and behavioural studies have suggested that binning and opponent processing mechanisms may coexist in stomatopod colour vision. However, direct evidence of colour opponency has been lacking. We hypothesised that if colour opponency exists in stomatopod vision, they would be able to distinguish colour from grey under coloured illumination. Conversely, if only the binning system is used, they would not. By examining the colour vision of the stomatopod Haptosquilla trispinosa with modified von Frisch grey card experiments, we found that they can differentiate between colour and grey under various coloured illuminations. Our results provide the first direct behavioural evidence of spectral opponency in stomatopods, suggesting that they use a hybrid colour processing system combining opponent and binning mechanisms for colour vision. This study advances our understanding of the complex visual system in stomatopods and highlights the importance of further research into the processing mechanisms, function and evolution of their unique visual system.
Collapse
Affiliation(s)
- Ching-Wen Judy Wang
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Wu R, Deussen O, Couzin ID, Li L. Non-invasive eye tracking and retinal view reconstruction in free swimming schooling fish. Commun Biol 2024; 7:1636. [PMID: 39668195 PMCID: PMC11638265 DOI: 10.1038/s42003-024-07322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
Eye tracking has emerged as a key method for understanding how animals process visual information, identifying crucial elements of perception and attention. Traditional fish eye tracking often alters animal behavior due to invasive techniques, while non-invasive methods are limited to either 2D tracking or restricting animals after training. Our study introduces a non-invasive technique for tracking and reconstructing the retinal view of free-swimming fish in a large 3D arena without behavioral training. Using 3D fish bodymeshes reconstructed by DeepShapeKit, our method integrates multiple camera angles, deep learning for 3D fish posture reconstruction, perspective transformation, and eye tracking. We evaluated our approach using data from two fish swimming in a flow tank, captured from two perpendicular viewpoints, and validated its accuracy using human-labeled and synthesized ground truth data. Our analysis of eye movements and retinal view reconstruction within leader-follower schooling behavior reveals that fish exhibit negatively synchronised eye movements and focus on neighbors centered in the retinal view. These findings are consistent with previous studies on schooling fish, providing a further, indirect, validation of our method. Our approach offers new insights into animal attention in naturalistic settings and potentially has broader implications for studying collective behavior and advancing swarm robotics.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Computer and Information Science, University of Konstanz, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany
| | - Oliver Deussen
- Department of Computer and Information Science, University of Konstanz, 78464, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany
| | - Iain D Couzin
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Liang Li
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Konstanz, Germany.
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464, Konstanz, Germany.
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
| |
Collapse
|
3
|
Serres JR, Lapray PJ, Viollet S, Kronland-Martinet T, Moutenet A, Morel O, Bigué L. Passive Polarized Vision for Autonomous Vehicles: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3312. [PMID: 38894104 PMCID: PMC11174665 DOI: 10.3390/s24113312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
This review article aims to address common research questions in passive polarized vision for robotics. What kind of polarization sensing can we embed into robots? Can we find our geolocation and true north heading by detecting light scattering from the sky as animals do? How should polarization images be related to the physical properties of reflecting surfaces in the context of scene understanding? This review article is divided into three main sections to address these questions, as well as to assist roboticists in identifying future directions in passive polarized vision for robotics. After an introduction, three key interconnected areas will be covered in the following sections: embedded polarization imaging; polarized vision for robotics navigation; and polarized vision for scene understanding. We will then discuss how polarized vision, a type of vision commonly used in the animal kingdom, should be implemented in robotics; this type of vision has not yet been exploited in robotics service. Passive polarized vision could be a supplemental perceptive modality of localization techniques to complement and reinforce more conventional ones.
Collapse
Affiliation(s)
- Julien R. Serres
- The Institute of Movement Sciences, Aix Marseille University, CNRS, ISM, CEDEX 09, 13284 Marseille, France; (S.V.); (T.K.-M.); (A.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, CEDEX 05, 75231 Paris, France
| | - Pierre-Jean Lapray
- The Institute for Research in Computer Science, Mathematics, Automation and Signal, Université de Haute-Alsace, IRIMAS UR 7499, 68100 Mulhouse, France;
| | - Stéphane Viollet
- The Institute of Movement Sciences, Aix Marseille University, CNRS, ISM, CEDEX 09, 13284 Marseille, France; (S.V.); (T.K.-M.); (A.M.)
| | - Thomas Kronland-Martinet
- The Institute of Movement Sciences, Aix Marseille University, CNRS, ISM, CEDEX 09, 13284 Marseille, France; (S.V.); (T.K.-M.); (A.M.)
- Materials Microelectronics Nanosciences Institute of Provence, Aix Marseille University, Université de Toulon, CNRS, IM2NP, 13013 Marseille, France
| | - Antoine Moutenet
- The Institute of Movement Sciences, Aix Marseille University, CNRS, ISM, CEDEX 09, 13284 Marseille, France; (S.V.); (T.K.-M.); (A.M.)
- Safran Electronics & Defense, 100 Av. de Paris, 91344 Massy, France
| | - Olivier Morel
- ImViA, Laboratory, University of Bourgogne, 71200 Le Creusot, France;
| | - Laurent Bigué
- The Institute for Research in Computer Science, Mathematics, Automation and Signal, Université de Haute-Alsace, IRIMAS UR 7499, 68100 Mulhouse, France;
| |
Collapse
|
4
|
Chang S, Kong DJ, Song YM. Advanced visual components inspired by animal eyes. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:859-879. [PMID: 39634370 PMCID: PMC11501362 DOI: 10.1515/nanoph-2024-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 12/07/2024]
Abstract
Artificial vision systems pervade our daily lives as a foremost sensing apparatus in various digital technologies, from smartphones to autonomous cars and robotics. The broad range of applications for conventional vision systems requires facile adaptation under extreme and dynamic visual environments. However, these current needs have complicated individual visual components for high-quality image acquisition and processing, which indeed leads to a decline in efficiency in the overall system. Here, we review recent advancements in visual components for high-performance visual processing based on strategies of biological eyes that execute diverse imaging functionalities and sophisticated visual processes with simple and concise ocular structures. This review first covers the structures and functions of biological eyes (i.e., single-lens eyes and compound eyes), which contain micro-optic components and nanophotonic structures. After that, we focus on their inspirations in imaging optics/photonics, light-trapping and filtering components, and retinomorphic devices. We discuss the remaining challenges and notable biological structures waiting to be implemented.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Duk-Jo Kong
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| |
Collapse
|
5
|
Xin W, Zhong W, Shi Y, Shi Y, Jing J, Xu T, Guo J, Liu W, Li Y, Liang Z, Xin X, Cheng J, Hu W, Xu H, Liu Y. Low-Dimensional-Materials-Based Photodetectors for Next-Generation Polarized Detection and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306772. [PMID: 37661841 DOI: 10.1002/adma.202306772] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
The vector characteristics of light and the vectorial transformations during its transmission lay a foundation for polarized photodetection of objects, which broadens the applications of related detectors in complex environments. With the breakthrough of low-dimensional materials (LDMs) in optics and electronics over the past few years, the combination of these novel LDMs and traditional working modes is expected to bring new development opportunities in this field. Here, the state-of-the-art progress of LDMs, as polarization-sensitive components in polarized photodetection and even the imaging, is the main focus, with emphasis on the relationship between traditional working principle of polarized photodetectors (PPs) and photoresponse mechanisms of LDMs. Particularly, from the view of constitutive equations, the existing works are reorganized, reclassified, and reviewed. Perspectives on the opportunities and challenges are also discussed. It is hoped that this work can provide a more general overview in the use of LDMs in this field, sorting out the way of related devices for "more than Moore" or even the "beyond Moore" research.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yujie Shi
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yimeng Shi
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiawei Jing
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tengfei Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Jiaxiang Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Weizhen Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuanzheng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongzhu Liang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xing Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinluo Cheng
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
6
|
Feng J, Liang Z, Shi X, Dong Y, Yang F, Zhang X, Dai R, Jia Y, Liu H, Li S. Detector of UV light chirality based on a diamond metasurface. OPTICS EXPRESS 2023; 31:34252-34263. [PMID: 37859186 DOI: 10.1364/oe.497854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023]
Abstract
Circularly polarized light (CPL) finds diverse applications in fields such as quantum communications, quantum computing, circular dichroism (CD) spectroscopy, polarization imaging, and sensing. However, conventional techniques for detecting CPL face challenges related to equipment miniaturization, system integration, and high-speed operation. In this study, we propose a novel design that addresses these limitations by employing a quarter waveplate constructed from a diamond metasurface, in combination with a linear polarizer crafted from metallic aluminum. The diamond array, with specific dimensions (a = 84 nm, b = 52 nm), effectively transforms left-handed and right-handed circularly polarized light into two orthogonally linearly polarized beams who have a polarization degree of approximately 0.9. The aluminum linear polarizer then selectively permits the transmission of these transformed linearly polarized beams.Our proposed design showcases remarkable circular dichroism performance at a wavelength of 280 nm, concurrently maintaining high transmittance and achieving a substantial extinction ratio of 25. Notably, the design attains an ultraviolet wavelength transmission efficiency surpassing 80%. Moreover, our design incorporates a rotation mechanism that enables the differentiation of linearly polarized light and singly circularly polarized light. In essence, this innovative design introduces a fresh paradigm for ultraviolet circularly polarized light detection, offering invaluable insights and references for applications in polarization detection, imaging, biomedical diagnostics, and circular dichroic spectroscopy.
Collapse
|
7
|
Sheng J, Pooler DRS, Feringa BL. Enlightening dynamic functions in molecular systems by intrinsically chiral light-driven molecular motors. Chem Soc Rev 2023; 52:5875-5891. [PMID: 37581608 PMCID: PMC10464662 DOI: 10.1039/d3cs00247k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/16/2023]
Abstract
Chirality is a fundamental property which plays a major role in chemistry, physics, biological systems and materials science. Chiroptical artificial molecular motors (AMMs) are a class of molecules which can convert light energy input into mechanical work, and they hold great potential in the transformation from simple molecules to dynamic systems and responsive materials. Taking distinct advantages of the intrinsic chirality in these structures and the unique opportunity to modulate the chirality on demand, chiral AMMs have been designed for the development of light-responsive dynamic processes including switchable asymmetric catalysis, chiral self-assembly, stereoselective recognition, transmission of chirality, control of spin selectivity and biosystems as well as integration of unidirectional motion with specific mechanical functions. This review focuses on the recently developed strategies for chirality-led applications by the class of intrinsically chiral AMMs. Finally, some limitations in current design and challenges associated with recent systems are discussed and perspectives towards promising candidates for responsive and smart molecular systems and future applications are presented.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Daisy R S Pooler
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
8
|
Liu J, Chu J, Zhang R, Liu R, Fu J. Wide field of view and full Stokes polarization imaging using metasurfaces inspired by the stomatopod eye. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1137-1146. [PMID: 39634926 PMCID: PMC11501549 DOI: 10.1515/nanoph-2022-0712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 12/07/2024]
Abstract
Wide field of view and polarization imaging capabilities are crucial for implementation of advanced imaging devices. However, there are still great challenges in the integration of such optical systems. Here, we report a bionic compound eye metasurface that can realize full Stokes polarization imaging in a wide field of view. The bionic compound eye metasurface consists of a bifocal metalens array in which every three bifocal metalenses form a subeye. The phase of the bifocal metalens is composed of gradient phase and hyperbolic phase. Numerical simulations show that the bifocal metalens can not only improve the focusing efficiency in the oblique light but also correct the aberration caused by the oblique incident light. And the field of view of the bionic compound eye metasurface can reach 120° × 120°. We fabricated a bionic compound eye metasurface which consists of three subeyes. Experiments show that the bionic compound eye metasurface can perform near diffraction-limited polarization focusing and imaging in a large field of view. The design method is generic and can be used to design metasurfaces with different materials and wavelengths. It has great potential in the field of robot polarization vision and polarization detection.
Collapse
Affiliation(s)
- Jianying Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jinkui Chu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Rui Liu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jiaxin Fu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| |
Collapse
|
9
|
Kim JW, Cho NH, Kim RM, Han JH, Choi S, Namgung SD, Kim H, Nam KT. Magnetic Control of the Plasmonic Chirality in Gold Helicoids. NANO LETTERS 2022; 22:8181-8188. [PMID: 36200711 DOI: 10.1021/acs.nanolett.2c02661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral plasmonic nanostructures have facilitated a promising method for manipulating the polarization state of light. While a precise structural modification at the nanometer-scale-level could offer chiroptic responses at various wavelength ranges, a system that allows fast response control of a given structure has been required. In this study, we constructed uniformly arranged chiral gold helicoids with cobalt thin-film deposition that exhibited a strong chiroptic response with magnetic controllability. Tunable circular dichroism (CD) values from 0.9° to 1.5° at 550 nm wavelength were achieved by reversing the magnetic field direction. In addition, a magnetic circular dichroism (MCD) study revealed that the gap structure and size-related surface plasmon resonance induced MCD peaks. We demonstrated the transmitted color modulation, where the color dynamically changed from green-to-red, by controlling the field strength and polarizer axis. We believe current work broadens our understanding of magnetoplasmonic nanostructure and expands its potential applicability in optoelectronics or optical-communications.
Collapse
Affiliation(s)
- Jeong Won Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Ohnuki R, Kobayashi Y, Yoshioka S. Polarization-dependent reflection of I-WP minimal-surface-based photonic crystal. Phys Rev E 2022; 106:014123. [PMID: 35974583 DOI: 10.1103/physreve.106.014123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Brilliantly colored butterflies and weevils are known to utilize photonic crystals for their coloration. Interestingly, the morphology of such crystals made of cuticle is based on triply periodic minimal surfaces such as gyroid and diamond surfaces. Recently, a different minimal-surface-based photonic crystal, the I-WP surface, was discovered inside the scale of a longhorn beetle. The letter I is derived from expressing the body center symmetry and WP is derived from a wrapped package. It was reported that the brilliant green color is produced by the photonic band gap existing along the [110] direction of this crystal. In this study, the polarization dependence of the reflection from this photonic crystal was investigated. A peculiar reflectance spectrum with two peaks was observed under the crossed polarizers. This characteristic is theoretically reproduced by calculating the reflectance from a finite-sized photonic crystal, and the spectral shape is explained based on the symmetry of the electromagnetic modes. In addition, inspired by this longhorn beetle, a photonic crystal structure consisting of colloidal particles is proposed, which has a similar polarization effect.
Collapse
Affiliation(s)
- Ryosuke Ohnuki
- Graduate School of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Yuka Kobayashi
- Graduate School of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Shinya Yoshioka
- Graduate School of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| |
Collapse
|
11
|
Zhang S, Wu Q, Liu C, Wang T, Zhang H, Wang J, Ding Y, Chi J, Xu W, Xiang Y, Shi C. Bio-inspired spherical compound eye camera for simultaneous wide-band and large field of view imaging. OPTICS EXPRESS 2022; 30:20952-20962. [PMID: 36224828 DOI: 10.1364/oe.454530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 06/16/2023]
Abstract
Natural compound eyes have excellent optical characteristics, namely large field of view, small size, no aberration, and sensitive to motion. Some arthropods have more powerful vision. For example, the Morpho butterfly's compound eyes can perceive the near-infrared and ultraviolet light that the human eye cannot see. This wide-band imaging with a large field of view has great potential in wide-area surveillance, all-weather panoramic imaging, and medical imaging. Hence, a wide-band spherical compound eye camera inspired by the Morpho butterfly's eye was proposed. The wide-band spherical compound eye camera which can achieve a large field of view (360° × 171°) imaging over a wide range of wavelengths from 400nm to 1000nm, mainly consists of three parts: a wide-band spherical compound eye with 234 sub-eyes for light collection, a wide-band optical relay system for light transmission, and a wide-band CMOS image sensor for photoelectric conversion. Our experimental results show that the wide-band spherical compound eye camera not only captures a large field of view without anomalous blurring or aberrations but also perceives near-infrared light that is not recognized by the human eye. These features make it possible for distortion-free panoramic vision and panoramic medical diagnosis.
Collapse
|
12
|
Xia G, Wang L, Xia H, Wu Y, Wang Y, Hu H, Lin S. Circularly polarized luminescence of talarolactones (+)/(−)-A and (+)/(−)-C: The application of CPL-calculation in stereochemical assignment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Bhattacharjee S, Ceri Davies D, Holland JC, Holmes JM, Kilroy D, McGonnell IM, Reynolds AL. On the importance of integrating comparative anatomy and One Health perspectives in anatomy education. J Anat 2022; 240:429-446. [PMID: 34693516 PMCID: PMC8819042 DOI: 10.1111/joa.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
As a result of many factors, including climate change, unrestricted population growth, widespread deforestation and intensive agriculture, a new pattern of diseases in humans is emerging. With increasing encroachment by human societies into wild domains, the interfaces between human and animal ecosystems are gradually eroding. Such changes have led to zoonoses, vector-borne diseases, infectious diseases and, most importantly, the emergence of antimicrobial-resistant microbial strains as challenges for human health. Now would seem to be an opportune time to revisit old concepts of health and redefine some of these in the light of emerging challenges. The One Health concept addresses some of the demands of modern medical education by providing a holistic approach to explaining diseases that result from a complex set of interactions between humans, environment and animals, rather than just an amalgamation of isolated signs and symptoms. An added advantage is that the scope of One Health concepts has now expanded to include genetic diseases due to advancements in omics technology. Inspired by such ideas, a symposium was organised as part of the 19th International Federation of Associations of Anatomists (IFAA) Congress (August 2019) to investigate the scope of One Health concepts and comparative anatomy in contemporary medical education. Speakers with expertise in both human and veterinary anatomy participated in the symposium and provided examples where these two disciplines, which have so far evolved largely independent of each other, can collaborate for mutual benefit. Finally, the speakers identified some key concepts of One Health that should be prioritised and discussed the diverse opportunities available to integrate these priorities into a broader perspective that would attempt to explain and manage diseases within the scopes of human and veterinary medicine.
Collapse
Affiliation(s)
| | - D. Ceri Davies
- Human Anatomy UnitDepartment of Surgery and CancerImperial College LondonLondonUK
| | - Jane C. Holland
- Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland University of Medicine and Health SciencesDublinIreland
| | | | - David Kilroy
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Imelda M. McGonnell
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Alison L. Reynolds
- School of Veterinary MedicineUniversity College DublinDublinIreland
- Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| |
Collapse
|
14
|
Kim H, Kim RM, Namgung SD, Cho NH, Son JB, Bang K, Choi M, Kim SK, Nam KT, Lee JW, Oh JH. Ultrasensitive Near-Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104598. [PMID: 34978155 PMCID: PMC8844506 DOI: 10.1002/advs.202104598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Indexed: 05/05/2023]
Abstract
Chiral organic ligand-incorporated low-dimensional metal-halide perovskites have received increasing attention for next-generation photodetectors because of the direct detection capability of circularly polarized light (CPL), which overcomes the requirement for subsidiary optical components in conventional CPL photodetectors. However, most chiral perovskites have been based on low-dimensional structures that confine chiroptical responses to the ultraviolet (UV) or short-wavelength visible region and limit photocurrent due to their wide bandgap and poor charge transport. Here, chiroptical properties of 3D Cs0.05 FA0.5 MA0.45 Pb0.5 Sn0.5 I3 polycrystalline films are achieved by incorporating chiral plasmonic gold nanoparticles (AuNPs) into the mixed PbSn perovskite, without sacrificing its original optoelectronic properties. CPL detectors fabricated using chiral AuNP-embedded perovskite films can operate without external power input; they exhibit remarkable chirality in the near-infrared (NIR) region with a high anisotropy factor of responsivity (gres ) of 0.55, via giant plasmon resonance shift of chiral plasmonic AuNPs. In addition, a CPL detector array fabricated on a plastic substrate demonstrates highly sensitive self-powered NIR detection with superior flexibility and durability.
Collapse
Affiliation(s)
- Hongki Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jung Bae Son
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Kijoon Bang
- Department of Mechanical and Aerospace EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Global Frontier Center for Multiscale Energy SystemsSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Mansoo Choi
- Department of Mechanical and Aerospace EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Global Frontier Center for Multiscale Energy SystemsSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seong Keun Kim
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jong Woo Lee
- Department of ChemistryMyongji University116 Myongji‐roYonginGyeonggi‐do17058Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
15
|
GU I, ISHIDA T, TATSUMA T. One-Step Electrodeposition of Chiral Plasmonic Gold Nanostructures for Enantioselective Sensing. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Igseon GU
- Institute of Industrial Science, The University of Tokyo
| | - Takuya ISHIDA
- Institute of Industrial Science, The University of Tokyo
| | - Tetsu TATSUMA
- Institute of Industrial Science, The University of Tokyo
| |
Collapse
|
16
|
Stavenga DG. The wing scales of the mother-of-pearl butterfly, Protogoniomorpha parhassus, are thin film reflectors causing strong iridescence and polarization. J Exp Biol 2021; 224:271006. [PMID: 34291802 PMCID: PMC8353264 DOI: 10.1242/jeb.242983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
The dorsal wings of the mother-of-pearl butterfly, Protogoniomorpha parhassus, display an angle-dependent pink, structural color. This effect is created by light interference in the lower lamina of the wing scales, which acts as an optical thin film. The scales feature extremely large windows that enhance the scale reflectance, because the upper lamina of ridges and cross-ribs is very sparse. Characteristic for thin film reflectors, the spectral shape of the reflected light strongly depends on the angle of light incidence, shifting from pink to yellow when changing the angles of illumination and observation from normal to skew, and also the degree of polarization strongly varies. The simultaneous spectral and polarization changes serve a possibly widespread, highly effective system among butterflies for intraspecific communication during flight. Summary: The dorsal wings of the mother-of-pearl butterfly, Protogoniomorpha parhassus, show characteristics of thin film reflectors, allowing simultaneous spectral and polarization changes, which may be important in intraspecific communication.
Collapse
Affiliation(s)
- Doekele G Stavenga
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
17
|
Wang Y, Wan K, Pan F, Zhu X, Jiang Y, Wang H, Chen Y, Shi X, Liu M. Bamboo-like π-Nanotubes with Tunable Helicity and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:16615-16621. [PMID: 33960094 DOI: 10.1002/anie.202104843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 01/02/2023]
Abstract
We report the fabrication of an exotic bamboo-like π-nanotube via the hierarchical self-assembly of a dipeptide-substituted naphthalenediimide gelator with tunable helicity and circularly polarized luminescence (CPL). It was found that in the presence of trifluoroacetic acid (TFA) the gelator molecules self-assembled into a bamboo-like π-nanotube, which is composed of truncated nanocones and CPL active. When defining the diameter ratio of the lower to upper edge of each nanocone as a parameter to express the helicity of different nanotubes, it was found that both the helicity and CPL of these nanotubes can be adjusted by the amount of TFA. Moreover, the helicity of the nanotube can be conveyed to the achiral quantum dots (QDs) and produce a hybrid nanotube/QDs CPL active materials with adjustable dissymmetry factor. This work finds a new type self-assembled bamboo-like π-nanotube and unveils their helicity and CPL control.
Collapse
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaiwei Wan
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Fei Pan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China.,Institute of Solid Mechanics, Beihang University, Beijing, 100191, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yuli Chen
- Institute of Solid Mechanics, Beihang University, Beijing, 100191, China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing, 100049, China.,Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Wang Y, Wan K, Pan F, Zhu X, Jiang Y, Wang H, Chen Y, Shi X, Liu M. Bamboo‐like π‐Nanotubes with Tunable Helicity and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuan Wang
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kaiwei Wan
- University of Chinese Academy of Sciences Beijing 100049 China
- Laboratory of Theoretical and Computational Nanoscience CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
| | - Fei Pan
- Laboratory of Theoretical and Computational Nanoscience CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
- Institute of Solid Mechanics Beihang University Beijing 100191 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuqian Jiang
- Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
| | - Yuli Chen
- Institute of Solid Mechanics Beihang University Beijing 100191 China
| | - Xinghua Shi
- University of Chinese Academy of Sciences Beijing 100049 China
- Laboratory of Theoretical and Computational Nanoscience CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Zhong B, Wang X, Wang D, Yang T, Gan X, Qi Z, Gao J. Target-background contrast enhancement based on a multi-channel polarization distance model. BIOINSPIRATION & BIOMIMETICS 2021; 16:046009. [PMID: 33527914 DOI: 10.1088/1748-3190/abe227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Stomatopods are creatures that have a unique ability to manipulate their environment by detecting polarized light for finding prey, choosing habitat, and navigation. In this study, based on the concept of polarization distance proposed by Martin Jet al2014 [Proc. R. Soc. B281, 20131632], we have analyzed several multi-channel polarization distance models. The simulation and experimental results revealed that compared to other models, a four-channel polarization distance model can significantly enhance the contrast between the target and the background, and it exhibits excellent performance in terms of scene discrimination capability and robustness to noise. The structure and signal processing method of this model are inspired by biological polarization vision such as that of mantis shrimps. According to this method, a polarization-vision neural network is simulated with four-orientation receptor information as the input, and the network connections are realized in a cascaded order. The target-background contrast enhancement method based on this model has wide application prospects in the field of camouflage removal and target detection.
Collapse
Affiliation(s)
- Binbin Zhong
- School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, People's Republic of China
| | - Xin Wang
- School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, People's Republic of China
- Intelligent Interconnected Systems Laboratory of Anhui Province, (Hefei University of Technology), Hefei, Anhui 230601, People's Republic of China
| | - Daqian Wang
- School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, People's Republic of China
| | - Tian Yang
- School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, People's Republic of China
| | - Xin Gan
- School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, People's Republic of China
| | - Zhongjian Qi
- School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, People's Republic of China
| | - Jun Gao
- School of Computer and Information, Hefei University of Technology, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
20
|
Haug C, Haug JT. A new fossil mantis shrimp and the convergent evolution of a lobster-like morphotype. PeerJ 2021; 9:e11124. [PMID: 33959413 PMCID: PMC8054755 DOI: 10.7717/peerj.11124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/26/2021] [Indexed: 12/04/2022] Open
Abstract
Eumalacostracan crustaceans all have a more or less stereotypic body organisation in the sense of tagmosis. Originally, this included a head with six segments (ocular segment plus five appendage-bearing segments), a thorax region with eight segments, and a pleon with six segments. Interestingly, despite these restrictions in variability in terms of tagmosis, the morphological diversity within Eumalacostraca is rather high. A group providing representative examples that are commonly known is Decapoda. Decapodan crustaceans include shrimp-like forms, lobster-like forms and crab-like forms. The stem species of Eucarida, the group including Decapoda and Euphausiacea, presumably possessed a rather shrimp-like morphology, quite similar to the stem species of Eumalacostraca. Also two other lineages within Eumalacostraca, namely Hoplocarida (with the mantis shrimps as modern representatives) and Neocarida (with the sister groups Thermosbaenacea and Peracarida) evolved from the shrimp-like body organisation to include a lobster-like one. In this study, we demonstrate that the stepwise evolution towards a lobster morphotype occurred to a certain extent in similar order in these three lineages, Hoplocarida, Eucarida and Peracarida, leading to similar types of derived body organisation. This evolutionary reconstruction is based not only on observations of modern fauna, but especially on exceptionally preserved Mesozoic fossils, including the description of a new species of mantis shrimps bridging the morphological gap between the more ancestral-appearing Carboniferous forms and the more modern-appearing Jurassic forms. With this, Mesozoic eumalacostracans represent an important (if not unique) ‘experimental set-up’ for research on factors leading to convergent evolution, the understanding of which is still one of the puzzling challenges of modern evolutionary theory.
Collapse
Affiliation(s)
- Carolin Haug
- Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim T Haug
- Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
21
|
Drerup C, How MJ. Polarization contrasts and their effect on the gaze stabilization of crustaceans. J Exp Biol 2021; 224:237796. [PMID: 33692078 PMCID: PMC8077661 DOI: 10.1242/jeb.229898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Many animals go to great lengths to stabilize their eyes relative to the visual scene and do so to enhance the localization of moving objects and to functionally partition the visual system relative to the outside world. An important cue that is used to control these stabilization movements is contrast within the visual surround. Previous studies on insects, spiders and fish have shown that gaze stabilization is achromatic (‘colour blind’), meaning that chromatic contrast alone (in the absence of apparent intensity contrasts) does not contribute to gaze stabilization. Following the assumption that polarization vision is analogous in many ways to colour vision, the present study shows that five different crustacean species do not use the polarization of light alone for gaze stabilization, despite being able to use this modality for detecting predator-like objects. This work therefore suggests that the gaze stabilization in many crustaceans cannot be elicited by the polarization of light alone. Summary: Five different crustacean species do not use the polarization of light alone for gaze stabilization, despite being able to use this modality for detecting predator-like objects.
Collapse
Affiliation(s)
- Christian Drerup
- CCMAR (Centro de Ciências do Mar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Marine Behavioural Ecology Group, Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
22
|
Altaqui A, Sen P, Schrickx H, Rech J, Lee JW, Escuti M, You W, Kim BJ, Kolbas R, O'Connor BT, Kudenov M. Mantis shrimp-inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging. SCIENCE ADVANCES 2021; 7:eabe3196. [PMID: 33658196 PMCID: PMC7929508 DOI: 10.1126/sciadv.abe3196] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
Combining hyperspectral and polarimetric imaging provides a powerful sensing modality with broad applications from astronomy to biology. Existing methods rely on temporal data acquisition or snapshot imaging of spatially separated detectors. These approaches incur fundamental artifacts that degrade imaging performance. To overcome these limitations, we present a stomatopod-inspired sensor capable of snapshot hyperspectral and polarization sensing in a single pixel. The design consists of stacking polarization-sensitive organic photovoltaics (P-OPVs) and polymer retarders. Multiple spectral and polarization channels are obtained by exploiting the P-OPVs' anisotropic response and the retarders' dispersion. We show that the design can sense 15 spectral channels over a 350-nanometer bandwidth. A detector is also experimentally demonstrated, which simultaneously registers four spectral channels and three polarization channels. The sensor showcases the myriad degrees of freedom offered by organic semiconductors that are not available in inorganics and heralds a fundamentally unexplored route for simultaneous spectral and polarimetric imaging.
Collapse
Affiliation(s)
- Ali Altaqui
- Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA
| | - Pratik Sen
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Harry Schrickx
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Jeromy Rech
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Michael Escuti
- Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Robert Kolbas
- Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, 911 Oval Drive, Raleigh, NC 27695, USA.
| | - Michael Kudenov
- Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA.
| |
Collapse
|
23
|
Meece M, Rathore S, Buschbeck EK. Stark trade-offs and elegant solutions in arthropod visual systems. J Exp Biol 2021; 224:224/4/jeb215541. [PMID: 33632851 DOI: 10.1242/jeb.215541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision. For example, to achieve high spatial resolution, fine sampling in different directions is necessary, as demonstrated by the well-studied large eyes of dragonflies. However, it has recently been shown that a comparatively tiny robber fly (Holcocephala) has similarly high visual resolution in the frontal visual field, despite their eyes being a fraction of the size of those of dragonflies. Other visual specializations in arthropods include the ability to discern colors, which relies on parallel inputs that are tuned to spectral content. Color vision is important for detection of objects such as mates, flowers and oviposition sites, and is particularly well developed in butterflies, stomatopods and jumping spiders. Analogous to color vision, the visual systems of many arthropods are specialized for the detection of polarized light, which in addition to communication with conspecifics, can be used for orientation and navigation. For vision in low light, optical superposition compound eyes perform particularly well. Other modifications to maximize photon capture involve large lenses, stout photoreceptors and, as has been suggested for nocturnal bees, the neural pooling of information. Extreme adaptations even allow insects to see colors at very low light levels or to navigate using the Milky Way.
Collapse
Affiliation(s)
- Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
24
|
Chiou TH, Wang CW. Neural processing of linearly and circularly polarized light signal in a mantis shrimp Haptosquilla pulchella. J Exp Biol 2020; 223:jeb219832. [PMID: 33097570 DOI: 10.1242/jeb.219832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
Stomatopods, or mantis shrimp, are the only animal group known to possess circular polarization vision along with linear polarization vision. By using the rhabdomere of a distally located photoreceptor as a wave retarder, the eyes of mantis shrimp are able to convert circularly polarized light into linearly polarized light. As a result, their circular polarization vision is based on the linearly polarized light-sensitive photoreceptors commonly found in many arthropods. To investigate how linearly and circularly polarized light signals might be processed, we presented a dynamic polarized light stimulus while recording from photoreceptors or lamina neurons in intact mantis shrimp Haptosquilla pulchella The results indicate that all the circularly polarized light-sensitive photoreceptors also showed differential responses to the changing e-vector angle of linearly polarized light. When stimulated with linearly polarized light of varying e-vector angle, most photoreceptors produced a concordant sinusoidal response. In contrast, some lamina neurons doubled the response frequency in reacting to linearly polarized light. These responses resembled a rectified sum of two-channel linear polarization-sensitive photoreceptors, indicating that polarization visual signals are processed at or before the first optic lobe. Noticeably, within the lamina, there was one type of neuron that showed a steady depolarization response to all stimuli except right-handed circularly polarized light. Together, our findings suggest that, between the photoreceptors and lamina neurons, linearly and circularly polarized light may be processed in parallel and differently from one another.
Collapse
Affiliation(s)
- Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Wen Wang
- Department of Life Sciences, National Cheng Kung University, Tainan 70101, Taiwan
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
25
|
Sang Y, Han J, Zhao T, Duan P, Liu M. Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1900110. [PMID: 31394014 DOI: 10.1002/adma.201900110] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/13/2019] [Indexed: 05/22/2023]
Abstract
Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the "self-assembly" concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Tonghan Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| |
Collapse
|
26
|
Zhong B, Wang X, Gan X, Yang T, Gao J. A Biomimetic Model of Adaptive Contrast Vision Enhancement from Mantis Shrimp. SENSORS 2020; 20:s20164588. [PMID: 32824224 PMCID: PMC7472206 DOI: 10.3390/s20164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Mantis shrimp have complex visual sensors, and thus, they have both color vision and polarization vision, and are adept at using polarization information for visual tasks, such as finding prey. In addition, mantis shrimp, almost unique among animals, can perform three-axis eye movements, such as pitch, yaw, and roll. With this behavior, polarization contrast in their field of view can be adjusted in real time. Inspired by this, we propose a bionic model that can adaptively enhance contrast vision. In this model, a pixel array is used to simulate a compound eye array, and the angle of polarization (AoP) is used as an adjustment mechanism. The polarization information is pre-processed by adjusting the direction of the photosensitive axis point-to-point. Experiments were performed around scenes where the color of the target and the background were similar, or the visibility of the target was low. The influence of the pre-processing model on traditional feature components of polarized light was analyzed. The results show that the model can effectively improve the contrast between the object and the background in the AoP image, enhance the significance of the object, and have important research significance for applications, such as contrast-based object detection.
Collapse
Affiliation(s)
- Binbin Zhong
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Xin Wang
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
- Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei 230009, China
- Correspondence:
| | - Xin Gan
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Tian Yang
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Jun Gao
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| |
Collapse
|
27
|
Palecanda S, Feller KD, Porter ML. Using larval barcoding to estimate stomatopod species richness at Lizard Island, Australia for conservation monitoring. Sci Rep 2020; 10:10990. [PMID: 32620832 PMCID: PMC7335096 DOI: 10.1038/s41598-020-67696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/12/2020] [Indexed: 11/08/2022] Open
Abstract
Stomatopods (Crustacea, Stomatopoda) are well studied for their aggressive behavior and unique visual system as well as their commercial importance in Asian and European countries. Like many crustaceans, stomatopods undergo indirect development, passing though several larval stages before reaching maturity. Adult stomatopods can be difficult to catch due to their inaccessible habitats and cryptic coloration. By sampling larvae from the planktonic community, less effort is required to obtain accurate measures of species richness within a region. Stomatopod larvae were collected between 2006 and 2015 from the waters around the Lizard Island reef platform in Eastern Australia. Cytochrome oxidase I (COI) mitochondrial DNA sequences were generated from each larval sample and compared to a database of COI sequences tied to adult specimens. Of the 20 species collected from Lizard Island as adults which have COI data available, 18 species were identified from larval sampling. One additional species identified from larval samples, Busquilla plantei, was previously unknown from Lizard Island. Nine larval OTUs were found not to match any published adult sequences. Sampling larval stomatopod populations provides a comparable picture of the adult population to benthic sampling methods and may include species richness beyond what is measurable by sampling adult populations.
Collapse
Affiliation(s)
- Sitara Palecanda
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Kathryn D Feller
- Department of Biological Sciences, University of Bristol, Bristol, UK
- Department of Biological Sciences, Union College, Schenectady, NY, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
28
|
Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 2020; 49:983-1031. [PMID: 31960001 DOI: 10.1039/c8cs01007b] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.
Collapse
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Chu G, Qu D, Camposeo A, Pisignano D, Zussman E. When nanocellulose meets diffraction grating: freestanding photonic paper with programmable optical coupling. MATERIALS HORIZONS 2020; 7:511-519. [PMID: 32774862 PMCID: PMC7362743 DOI: 10.1039/c9mh01485c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 05/31/2023]
Abstract
Photonic crystals based on plasmonic or dielectric periodic structures have attracted considerable interest owing to their capabilities to control light-matter interactions with tailored precision. By using a nanocellulose derived chiral liquid crystal as a building block, here we demonstrate a bio-inspired dual photonic structure that contains the combination of microscopic periodic 1D surface grating and nanoscopic helical organization, giving rise to programmable colour mixing and polarization rotation. We show that a variation in the photonic band-gap in the bulk matrix leads to simultaneous control over the reflection and diffraction of light with controllable iridescence.
Collapse
Affiliation(s)
- Guang Chu
- NanoEngineering Group , Faculty of Mechanical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel .
- Bio-based Colloids and Materials , Department of Bioproducts and Biosystems , School of Chemical Engineering , Aalto University , P.O. Box 16300 , FI-00076 Aalto , Espoo , Finland
| | - Dan Qu
- NanoEngineering Group , Faculty of Mechanical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel .
| | - Andrea Camposeo
- NEST , Istituto Nanoscienze-CNR , Piazza S. Silvestro 12 , I-56127 Pisa , Italy .
| | - Dario Pisignano
- NEST , Istituto Nanoscienze-CNR , Piazza S. Silvestro 12 , I-56127 Pisa , Italy .
- Dipartimento di Fisica , Università di Pisa , Largo B. Pontecorvo 3 , I-56127 Pisa , Italy .
| | - Eyal Zussman
- NanoEngineering Group , Faculty of Mechanical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel .
| |
Collapse
|
30
|
Ma LL, Wu SB, Hu W, Liu C, Chen P, Qian H, Wang Y, Chi L, Lu YQ. Self-Assembled Asymmetric Microlenses for Four-Dimensional Visual Imaging. ACS NANO 2019; 13:13709-13715. [PMID: 31746201 DOI: 10.1021/acsnano.9b07104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Visual imaging that can extract three-dimensional (3D) space or polarization information on the target is essential in broad sciences and technologies. The simultaneous acquisition of them usually demands expensive equipment and sophisticated operations. Therefore, it is of great significance to exploit convenient approaches for four-dimensional (3D and polarization) visual imaging. Here, we present an efficient solution based on self-assembled asymmetric liquid crystal microlenses, with freely manipulated phase profiles and symmetry-breaking properties. Accordingly, characteristics of multifocal functionality and polarization selectivity are exhibited, along with the underlying mechanisms. Moreover, with a specific sample featured by radially increased unit sizes and azimuthally varied domain orientations, the discriminability of four-dimensional information is extracted in a single snapshot, via referring to the coordinates of the clearest images. Demultiplexing of depth/polarization information is also demonstrated. This work will unlock a variety of revolutionary apparatuses and lighten extensive applications.
Collapse
Affiliation(s)
- Ling-Ling Ma
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Sai-Bo Wu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
- Institute for Smart Liquid Crystals , JITRI , Changshu 215500 , China
| | - Wei Hu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
- Institute for Smart Liquid Crystals , JITRI , Changshu 215500 , China
| | - Chao Liu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Peng Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
- Institute for Smart Liquid Crystals , JITRI , Changshu 215500 , China
| | - Hao Qian
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Materials Science and Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yandong Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
31
|
Tzabari M, Lin W, Lerner A, Iluz D, Haspel C. Sensitivity study on the contribution of scattering by randomly oriented nonspherical hydrosols to linear polarization in clear to semi-turbid shallow waters. APPLIED OPTICS 2019; 58:7258-7279. [PMID: 31504002 DOI: 10.1364/ao.58.007258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The influence of hydrosol nonsphericity on the polarization characteristics of light under water is investigated by combining accurate single-scattering models for randomly oriented spheroidal scatterers with a radiative transfer model that employs Stokes formalism and considers refraction of direct unpolarized solar radiation and 100% linearly polarized radiation at the air-water interface followed by single scattering. Variations in what we call the "linear polarization phase function" (the degree of linear polarization as a function of scattering angle and the angle of linear polarization as a function of scattering angle) are examined for a wide range of spheroid aspect ratios and complex refractive indices of hydrosols. Implications for polarization-sensitive marine organisms and for remote sensing of the marine environment are discussed.
Collapse
|
32
|
Wang Y, Chu J, Zhang R, Li J, Guo X, Lin M. A Bio-Inspired Polarization Sensor with High Outdoor Accuracy and Central-Symmetry Calibration Method with Integrating Sphere. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3448. [PMID: 31394764 PMCID: PMC6721297 DOI: 10.3390/s19163448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 11/28/2022]
Abstract
A bio-inspired polarization sensor with lenses for navigation was evaluated in this study. Two new calibration methods are introduced, referred to as "central-symmetry calibration" (with an integrating sphere) and "noncontinuous calibration". A comparison between the indoor calibration results obtained from different calibration methods shows that the two proposed calibration methods are more effective. The central-symmetry calibration method optimized the nonconstant calibration voltage deviations, caused by the off-axis feature of the integrating sphere, to be constant values which can be calibrated easily. The section algorithm proposed previously showed no experimental advantages until the central-symmetry calibration method was proposed. The outdoor experimental results indicated that the indoor calibration parameters did not perform very well in practice outdoor conditions. To establish the reason, four types of calibration parameters were analyzed using the replacement method. It can be concluded that three types can be easily calibrated or affect the sensor accuracy slightly. However, before the sensor is used outdoors every time, the last type must be replaced with the corresponding outdoor parameter, and the calculation needs a precise rotary table. This parameter, which is mainly affected by the spectrum of incident light, is the main factor determining the sensor accuracy. After calibration, the sensor reaches an indoor accuracy of ±0.009° and a static outdoor accuracy of ±0.05° under clear sky conditions. The dynamic outdoor experiment shows a ±0.5° heading deviation between the polarization sensor and the inertial navigation system with a ±0.06° angular accuracy.
Collapse
Affiliation(s)
- Yinlong Wang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jinkui Chu
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China.
| | - Ran Zhang
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Jinshan Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xiaoqing Guo
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Muyin Lin
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
33
|
Daly IM, How MJ, Partridge JC, Roberts NW. Gaze stabilization in mantis shrimp in response to angled stimuli. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:515-527. [PMID: 31093738 PMCID: PMC6647723 DOI: 10.1007/s00359-019-01341-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 11/24/2022]
Abstract
Gaze stabilization is a fundamental aspect of vision and almost all animals shift their eyes to compensate for any self-movement relative to the external environment. When it comes to mantis shrimp, however, the situation becomes complicated due to the complexity of their visual system and their range of eye movements. The stalked eyes of mantis shrimp can independently move left and right, and up and down, whilst simultaneously rotating about the axis of the eye stalks. Despite the large range of rotational freedom, mantis shrimp nevertheless show a stereotypical gaze stabilization response to horizontal motion of a wide-field, high-contrast stimulus. This response is often accompanied by pitch (up-down) and torsion (about the eye stalk) rotations which, surprisingly, have no effect on the performance of yaw (side-to-side) gaze stabilization. This unusual feature of mantis shrimp vision suggests that their neural circuitry for detecting motion is radially symmetric and immune to the confounding effects of torsional self-motion. In this work, we reinforce this finding, demonstrating that the yaw gaze stabilization response of the mantis shrimp is robust to the ambiguous motion cues arising from the motion of striped visual gratings in which the angle of a grating is offset from its direction of travel.
Collapse
Affiliation(s)
- Ilse M Daly
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Julian C Partridge
- Oceans Institute, University of Western Australia, 35 Stirling Highway, (M470), Crawley, WA, 6009, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
34
|
Marshall NJ, Powell SB, Cronin TW, Caldwell RL, Johnsen S, Gruev V, Chiou THS, Roberts NW, How MJ. Polarisation signals: a new currency for communication. ACTA ACUST UNITED AC 2019; 222:222/3/jeb134213. [PMID: 30733259 DOI: 10.1242/jeb.134213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most polarisation vision studies reveal elegant examples of how animals, mainly the invertebrates, use polarised light cues for navigation, course-control or habitat selection. Within the past two decades it has been recognised that polarised light, reflected, blocked or transmitted by some animal and plant tissues, may also provide signals that are received or sent between or within species. Much as animals use colour and colour signalling in behaviour and survival, other species additionally make use of polarisation signalling, or indeed may rely on polarisation-based signals instead. It is possible that the degree (or percentage) of polarisation provides a more reliable currency of information than the angle or orientation of the polarised light electric vector (e-vector). Alternatively, signals with specific e-vector angles may be important for some behaviours. Mixed messages, making use of polarisation and colour signals, also exist. While our knowledge of the physics of polarised reflections and sensory systems has increased, the observational and behavioural biology side of the story needs more (and more careful) attention. This Review aims to critically examine recent ideas and findings, and suggests ways forward to reveal the use of light that we cannot see.
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Samuel B Powell
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, MD 21250, USA
| | - Roy L Caldwell
- University of California Berkeley, Department of Integrative Biology, Berkeley, CA 94720-3140, USA
| | - Sonke Johnsen
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Viktor Gruev
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - T-H Short Chiou
- Department of Life Sciences, National Cheng-Kung University, Tainan City 701, Taiwan
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
35
|
Swimming behaviour tunes fish polarization vision to double prey sighting distance. Sci Rep 2019; 9:944. [PMID: 30700806 PMCID: PMC6353921 DOI: 10.1038/s41598-018-37632-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/07/2018] [Indexed: 11/17/2022] Open
Abstract
The analysis of the polarization of light expands vision beyond the realm of colour and intensity and is used for multiple ecological purposes among invertebrates including orientation, object recognition, and communication. How vertebrates use polarization vision as part of natural behaviours is widely unknown. In this study, I tested the hypothesis that polarization vision improves the detection of zooplankton prey by the northern anchovy, Engraulis mordax, the only vertebrate with a demonstrated photoreceptor basis explaining its polarization sensitivity. Juvenile anchovies were recorded free foraging on zooplankton under downwelling light fields of varying percent polarization (98%, 67%, 19%, and 0% - unpolarized light). Analyses of prey attack sequences showed that anchovies swam in the horizontal plane perpendicular, on average, to the polarization direction of downwelling light and attacked prey at pitch angles that maximized polarization contrast perception of prey by the ventro-temporal retina, the area devoted to polarization vision in this animal. Consequently, the mean prey location distance under polarized light was up to 2.1 times that under unpolarized conditions. All indicators of polarization vision mediated foraging were present under 19% polarization, which is within the polarization range commonly found in nature during daylight hours. These results demonstrate: (i) the first use of oriented swimming for enhancing polarization contrast detection of prey, (ii) its relevance to improved foraging under available light cues in nature, and (iii) an increase in target detection distance that is only matched by polarization based artificial systems.
Collapse
|
36
|
Basiri A, Chen X, Bai J, Amrollahi P, Carpenter J, Holman Z, Wang C, Yao Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. LIGHT, SCIENCE & APPLICATIONS 2019; 8:78. [PMID: 31645924 PMCID: PMC6804686 DOI: 10.1038/s41377-019-0184-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/01/2019] [Accepted: 07/24/2019] [Indexed: 05/22/2023]
Abstract
The manipulation and characterization of light polarization states are essential for many applications in quantum communication and computing, spectroscopy, bioinspired navigation, and imaging. Chiral metamaterials and metasurfaces facilitate ultracompact devices for circularly polarized light generation, manipulation, and detection. Herein, we report bioinspired chiral metasurfaces with both strong chiral optical effects and low insertion loss. We experimentally demonstrated submicron-thick circularly polarized light filters with peak extinction ratios up to 35 and maximum transmission efficiencies close to 80% at near-infrared wavelengths (the best operational wavelengths can be engineered in the range of 1.3-1.6 µm). We also monolithically integrated the microscale circular polarization filters with linear polarization filters to perform full-Stokes polarimetric measurements of light with arbitrary polarization states. With the advantages of easy on-chip integration, ultracompact footprints, scalability, and broad wavelength coverage, our designs hold great promise for facilitating chip-integrated polarimeters and polarimetric imaging systems for quantum-based optical computing and information processing, circular dichroism spectroscopy, biomedical diagnosis, and remote sensing applications.
Collapse
Affiliation(s)
- Ali Basiri
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85281 USA
| | - Xiahui Chen
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85281 USA
| | - Jing Bai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85281 USA
| | - Pouya Amrollahi
- Biodesign Centre for Molecular Design & Biomimetics, Arizona State University, Tempe, AZ 85281 USA
| | - Joe Carpenter
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85281 USA
| | - Zachary Holman
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85281 USA
| | - Chao Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85281 USA
- Biodesign Centre for Molecular Design & Biomimetics, Arizona State University, Tempe, AZ 85281 USA
| | - Yu Yao
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85281 USA
- Centre for Photonic Innovation, Arizona State University, Tempe, AZ 85281 USA
| |
Collapse
|
37
|
Serres JR, Viollet S. Insect-inspired vision for autonomous vehicles. CURRENT OPINION IN INSECT SCIENCE 2018; 30:46-51. [PMID: 30553484 DOI: 10.1016/j.cois.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
Flying insects are being studied these days as if they were agile micro air vehicles fitted with smart sensors, requiring very few brain resources. The findings obtained on these natural fliers have proved to be extremely valuable when it comes to designing compact low-weight artificial optical sensors capable of performing visual processing tasks robustly under various environmental conditions (light, clouds, contrast). Here, we review some outstanding bio-inspired visual sensors, which can be used for either detecting motion in the visible spectrum or controlling celestial navigation in the ultraviolet spectrum and for attitude stabilisation purposes. Biologically inspired visual sensors do not have to comprise a very large number of pixels: they are able to perform both short and long range navigation tasks surprisingly well with just a few pixels and a weak resolution.
Collapse
|
38
|
Zhang Z, Shi Y, Xiang L, Xing D. Polarized photoacoustic microscopy for vectorial-absorption-based anisotropy detection. OPTICS LETTERS 2018; 43:5267-5270. [PMID: 30382984 DOI: 10.1364/ol.43.005267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
We proposed polarized photoacoustic microscopy (PPAM) for quantitative detection of a target's microscopic anisotropy based on the vectorial optical absorption by applying four linearly polarized laser beams as excitation sources. Compared to conventional photoacoustic microscopy that treats targets as isotropic absorbers, PPAM allows us to quantitatively detect the target's anisotropic features beyond optical absorption with a newly proposed parameter valued between 0 and 1. The feasibility of the method was validated by dichroic phantoms. The dichroic compound eyes of mantis shrimps were imaged in situ to demonstrate the method's capability for quantitative three-dimensional biological imaging. The PPAM method provides an effective and straightforward strategy for tissue polarimetry, prefiguring great potential for biological imaging and material inspection.
Collapse
|
39
|
Affiliation(s)
- Rebecca C Fuller
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - John A Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn, Ponds, VIC, Australia
| |
Collapse
|
40
|
Living Light 2018: Conference Report. Biomimetics (Basel) 2018; 3:biomimetics3020011. [PMID: 31105233 PMCID: PMC6352687 DOI: 10.3390/biomimetics3020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Living Light is a biennial conference focused on all aspects of light–matter interaction in biological organisms with a broad, interdisciplinary outlook. The 2018 edition was held at the Møller Centre in Cambridge, UK, from April 11th to April 14th, 2018. Living Light’s main goal is to bring together researchers from different backgrounds (e.g., biologists, physicists and engineers) in order to discuss the current state of the field and sparkle new collaborations and new interdisciplinary projects. With over 90 national and international attendees, the 2018 edition of the conference was strongly multidisciplinary: oral and poster presentations encompassed a wide range of topics ranging from the evolution and development of structural colors in living organisms and their genetic manipulation to the study of fossil photonic structures.
Collapse
|
41
|
Basnak MA, Pérez-Schuster V, Hermitte G, Berón de Astrada M. Polarized object detection in crabs: a two-channel system. ACTA ACUST UNITED AC 2018; 221:jeb.173369. [PMID: 29650753 DOI: 10.1242/jeb.173369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/10/2018] [Indexed: 11/20/2022]
Abstract
Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab. We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection.
Collapse
Affiliation(s)
- Melanie Ailín Basnak
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina.,Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Verónica Pérez-Schuster
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina.,Departamento de Física, FCEyN, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - Gabriela Hermitte
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina
| | - Martín Berón de Astrada
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, FCEyN, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, 1428, Argentina
| |
Collapse
|
42
|
Daly IM, How MJ, Partridge JC, Roberts NW. Complex gaze stabilization in mantis shrimp. Proc Biol Sci 2018; 285:20180594. [PMID: 29720419 PMCID: PMC5966611 DOI: 10.1098/rspb.2018.0594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 11/12/2022] Open
Abstract
Almost all animals, regardless of the anatomy of the eyes, require some level of gaze stabilization in order to see the world clearly and without blur. For the mantis shrimp, achieving gaze stabilization is unusually challenging as their eyes have an unprecedented scope for movement in all three rotational degrees of freedom: yaw, pitch and torsion. We demonstrate that the species Odontodactylus scyllarus performs stereotypical gaze stabilization in the yaw degree of rotational freedom, which is accompanied by simultaneous changes in the pitch and torsion rotation of the eye. Surprisingly, yaw gaze stabilization performance is unaffected by both the torsional pose and the rate of torsional rotation of the eye. Further to this, we show, for the first time, a lack of a torsional gaze stabilization response in the stomatopod visual system. In the light of these findings, we suggest that the neural wide-field motion detection network in the stomatopod visual system may follow a radially symmetric organization to compensate for the potentially disorientating effects of torsional eye movements, a system likely to be unique to stomatopods.
Collapse
Affiliation(s)
- Ilse M Daly
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julian C Partridge
- School of Biological Sciences and the Oceans Institute, Faculty of Science, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
43
|
Foster JJ, Temple SE, How MJ, Daly IM, Sharkey CR, Wilby D, Roberts NW. Polarisation vision: overcoming challenges of working with a property of light we barely see. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2018; 105:27. [PMID: 29589169 PMCID: PMC5871655 DOI: 10.1007/s00114-018-1551-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/01/2022]
Abstract
In recent years, the study of polarisation vision in animals has seen numerous breakthroughs, not just in terms of what is known about the function of this sensory ability, but also in the experimental methods by which polarisation can be controlled, presented and measured. Once thought to be limited to only a few animal species, polarisation sensitivity is now known to be widespread across many taxonomic groups, and advances in experimental techniques are, in part, responsible for these discoveries. Nevertheless, its study remains challenging, perhaps because of our own poor sensitivity to the polarisation of light, but equally as a result of the slow spread of new practices and methodological innovations within the field. In this review, we introduce the most important steps in designing and calibrating polarised stimuli, within the broader context of areas of current research and the applications of new techniques to key questions. Our aim is to provide a constructive guide to help researchers, particularly those with no background in the physics of polarisation, to design robust experiments that are free from confounding factors.
Collapse
Affiliation(s)
- James J Foster
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Shelby E Temple
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
- Azul Optics Ltd., 7 Bishop Manor Road, Westbury-On-Trym, Bristol, BS10 5BD, UK
| | - Martin J How
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ilse M Daly
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Camilla R Sharkey
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EG, UK
| | - David Wilby
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Nicholas W Roberts
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
44
|
Cronin TW, Garcia M, Gruev V. Multichannel spectrometers in animals. BIOINSPIRATION & BIOMIMETICS 2018; 13:021001. [PMID: 29313524 DOI: 10.1088/1748-3190/aaa61b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multispectral, hyperspectral, polarimetric, and other types of multichannel imaging spectrometers are coming into common use for a variety of applications, including remote sensing, material identification, forensics, and medical diagnosis. These instruments are often bulky and intolerant of field abuse, so designing compact, reliable, portable, and robust devices is a priority. In contrast to most engineering designs, animals have been building compact and robust multichannel imaging systems for millennia-their eyes. Biological sensors arise by evolution, of course, and are not designed 'for' a particular use; they exist because the creatures that were blessed with useful mutations were better able to survive and reproduce than their competitors. While this is an inefficient process for perfecting a sensor, it brings unexpected innovations and novel concepts into visual system design-concepts that may be useful in the inspiration of new engineered solutions to problematic challenges, like the ones mentioned above. Here, we review a diversity of multichannel visual systems from both vertebrate and invertebrate animals, considering the receptor molecules and cells, spectral sensitivity and its tuning, and some aspects of the higher-level processing systems used to shape spectral (and polarizational) channels in vision. The eyes of mantis shrimps are presented as potential models for biomimetic multichannel imaging systems. We end with a description of a bioinspired, newly developed multichannel spectral/polarimetric imaging system based on mantis shrimp vision that is highly adaptable to field application.
Collapse
Affiliation(s)
- Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States of America
| | | | | |
Collapse
|
45
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
46
|
Daly IM, How MJ, Partridge JC, Roberts NW. The independence of eye movements in a stomatopod crustacean is task dependent. ACTA ACUST UNITED AC 2017; 220:1360-1368. [PMID: 28356369 PMCID: PMC5399772 DOI: 10.1242/jeb.153692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 11/20/2022]
Abstract
Stomatopods have an extraordinary visual system, incorporating independent movement of their eyes in all three degrees of rotational freedom. In this work, we demonstrate that in the peacock mantis shrimp, Odontodactylus scyllarus, the level of ocular independence is task dependent. During gaze stabilization in the context of optokinesis, there is weak but significant correlation between the left and right eyes in the yaw degree of rotational freedom, but not in pitch and torsion. When one eye is completely occluded, the uncovered eye does not drive the covered eye during gaze stabilization. However, occluding one eye does significantly affect the uncovered eye, lowering its gaze stabilization performance. There is a lateral asymmetry, with the magnitude of the effect depending on the eye (left or right) combined with the direction of motion of the visual field. In contrast, during a startle saccade, the uncovered eye does drive a covered eye. Such disparate levels of independence between the two eyes suggest that responses to individual visual tasks are likely to follow different neural pathways. Summary: The level of independence between the eyes of mantis shrimps (stomatopods) is task dependent, suggesting variability in neural processing of visual information.
Collapse
Affiliation(s)
- Ilse M Daly
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Julian C Partridge
- School of Animal Biology and the Oceans Institute, Faculty of Science, University of Western Australia, 35 Stirling Highway (M317), Crawley, WA 6009, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
47
|
McDonald LT, Finlayson ED, Wilts BD, Vukusic P. Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure. Interface Focus 2017; 7:20160129. [PMID: 28630672 PMCID: PMC5474034 DOI: 10.1098/rsfs.2016.0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat.
Collapse
Affiliation(s)
- Luke T. McDonald
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall Campus, Cork, Republic of Ireland
| | - Ewan D. Finlayson
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Bodo D. Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| |
Collapse
|
48
|
Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T. The biology of color. Science 2017; 357:357/6350/eaan0221. [DOI: 10.1126/science.aan0221] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Templin RM, How MJ, Roberts NW, Chiou TH, Marshall J. Circularly polarized light detection in stomatopod crustaceans: a comparison of photoreceptors and possible function in six species. ACTA ACUST UNITED AC 2017; 220:3222-3230. [PMID: 28667244 DOI: 10.1242/jeb.162941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022]
Abstract
A combination of behavioural and electrophysiological experiments have previously shown that two species of stomatopod, Odontodactylus scyllarus and Gonodactylaceus falcatus, can differentiate between left- and right-handed circularly polarized light (CPL), and between CPL and linearly polarized light (LPL). It remains unknown if these visual abilities are common across all stomatopod species, and if so, how circular polarization sensitivity may vary between and within species. A subsection of the midband, a specialized region of stomatopod eyes, contains distally placed photoreceptor cells, termed R8 (retinular cell number 8). These cells are specifically built with unidirectional microvilli and appear to be angled precisely to convert CPL into LPL. They are mostly quarter-wave retarders for human visible light (400-700 nm), as well as being ultraviolet-sensitive linear polarization detectors. The effectiveness of the R8 cells in this role is determined by their geometric and optical properties. In particular, the length and birefringence of the R8 cells are crucial for retardation efficiency. Here, our comparative studies show that most species investigated have the theoretical ability to convert CPL into LPL, such that the handedness of an incoming circular reflection or signal could be discriminated. One species, Haptosquilla trispinosa, shows less than quarter-wave retardance. Whilst some species are known to produce circularly polarized reflections (some Odontodactylus species and G. falcatus, for example), others do not, so a variety of functions for this ability are worth considering.
Collapse
Affiliation(s)
- Rachel M Templin
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Martin J How
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Tsyr-Huei Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
50
|
Yang Y, Chen Z, Song X, Zhang Z, Zhang J, Shung KK, Zhou Q, Chen Y. Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201605750. [PMID: 28185341 PMCID: PMC7032659 DOI: 10.1002/adma.201605750] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/09/2016] [Indexed: 05/23/2023]
Abstract
Biomimetic architectures with Bouligand-type carbon nanotubes are fabricated by an electrically assisted 3D-printing method. The enhanced impact resistance is attributed to the energy dissipation by the rotating anisotropic layers. This approach is used to mimic the collagen-fiber alignment in the human meniscus to create a reinforced artificial meniscus with circumferentially and radially aligned carbon nanotubes.
Collapse
Affiliation(s)
- Yang Yang
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-01932
| | - Zeyu Chen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California. 3650 McClintock Ave, Los Angeles, CA 90089
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xuan Song
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-01932
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, Iowa, 52242
| | - Zhuofeng Zhang
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-01932
| | - Jun Zhang
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California. 3650 McClintock Ave, Los Angeles, CA 90089
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072
| | - K. Kirk Shung
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California. 3650 McClintock Ave, Los Angeles, CA 90089
| | - Qifa Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California. 3650 McClintock Ave, Los Angeles, CA 90089
| | - Yong Chen
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-01932
| |
Collapse
|