1
|
Mylonakis A, Frountzas M, Lidoriki I, Kozadinos A, Kalfoutzou A, Karanikki E, Tsikrikou I, Kyriakidou M, Theodorou D, Toutouzas KG, Schizas D. The Role of Chemerin in Upper Gastrointestinal Cancer. Metabolites 2024; 14:599. [PMID: 39590835 PMCID: PMC11596733 DOI: 10.3390/metabo14110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Chemerin, which is a multifunctional cytokine and adipokine, has been implicated in inflammatory and metabolic processes and might play a role in upper gastrointestinal (GI) malignancies, particularly gastric and esophageal cancer. The aim of this review is to explore the role of chemerin in the pathophysiology of upper GI cancers, as well as its potential as a biomarker for early detection and as a therapeutic target. Methods: A comprehensive review of recent studies about chemerin's biochemical properties and interaction with its receptors, as well as its effects on inflammatory responses, immune regulation, and metabolic processes, was conducted. The clinical implications of chemerin for gastric and esophageal cancer were analyzed, whereas the potential therapeutic strategies targeting chemerin were discussed. Results: Elevated chemerin levels are associated with poor prognosis in gastric cancer and promote invasiveness and metastasis in esophageal cancer. Chemerin receptor antagonists show promising results in inhibiting cancer cell migration, invasion, and progression. Conclusions: Chemerin could represent a valuable prognostic biomarker and therapeutic target for upper GI cancers. Future observational studies should validate its clinical applications and investigate the efficacy of chemerin inhibitors as potential therapeutic targets.
Collapse
Affiliation(s)
- Adam Mylonakis
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| | - Maximos Frountzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.F.); (D.T.); (K.G.T.)
| | - Irene Lidoriki
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
- Department of Environmental, Occupational Medicine and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02139, USA
- Department of Occupational Medicine, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Alexandros Kozadinos
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| | - Areti Kalfoutzou
- Department of Oncology, 251 Air Force General Hospital, 11525 Athens, Greece
| | - Eva Karanikki
- First Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.F.); (D.T.); (K.G.T.)
| | - Iliana Tsikrikou
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| | - Maria Kyriakidou
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| | - Dimitrios Theodorou
- First Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.F.); (D.T.); (K.G.T.)
| | - Konstantinos G. Toutouzas
- First Propaedeutic Department of Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.F.); (D.T.); (K.G.T.)
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (A.K.); (I.T.); (M.K.); (D.S.)
| |
Collapse
|
2
|
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer cells at the frontline in the fight against cancer. Cell Death Dis 2024; 15:614. [PMID: 39179536 PMCID: PMC11343846 DOI: 10.1038/s41419-024-06976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Natural Killer (NK) cells are innate immune cells that play a pivotal role as first line defenders in the anti-tumor response. To prevent tumor development, NK cells are searching for abnormal cells within the body and appear to be key players in immunosurveillance. Upon recognition of abnormal cells, NK cells will become activated to destroy them. In order to fulfill their anti-tumoral function, they rely on the secretion of lytic granules, expression of death receptors and production of cytokines. Additionally, NK cells interact with other cells in the tumor microenvironment. In this review, we will first focus on NK cells' activation and cytotoxicity mechanisms as well as NK cells behavior during serial killing. Lastly, we will review NK cells' crosstalk with the other immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Mannon Geindreau
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Mélanie Bruchard
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France.
- University of Bourgogne Franche-Comté, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France.
| |
Collapse
|
3
|
Barbosa S, Pedrosa MB, Ferreira R, Moreira-Gonçalves D, Santos LL. The impact of chemotherapy on adipose tissue remodeling: The molecular players involved in this tissue wasting. Biochimie 2024; 223:1-12. [PMID: 38537739 DOI: 10.1016/j.biochi.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The depletion of visceral and subcutaneous adipose tissue (AT) during chemotherapy significantly correlates with diminished overall survival and progression-free survival. Despite its clinical significance, the intricate molecular mechanisms governing this AT loss and its chemotherapy-triggered initiation remain poorly understood. Notably, the evaluation of AT remodeling in most clinical trials has predominantly relied on computerized tomography scans or bioimpedance, with molecular studies often conducted using animal or in vitro models. To address this knowledge gap, a comprehensive narrative review was conducted. The findings underscore that chemotherapy serves as a key factor in inducing AT loss, exacerbating cachexia, a paraneoplastic syndrome that significantly compromises patient quality of life and survival. The mechanism driving AT loss appears intricately linked to alterations in AT metabolic remodeling, marked by heightened lipolysis and fatty acid oxidation, coupled with diminished lipogenesis. However, adipocyte stem cells' lost ability to divide due to chemotherapy also appears to be at the root of the loss of AT. Notably, chemotherapy seems to deactivate the mitochondrial antioxidant system by reducing key regulatory enzymes responsible for neutralizing reactive oxygen species (ROS), thereby impeding lipogenesis. Despite FDG-PET evidence of AT browning, no molecular evidence of thermogenesis was reported. Prospective investigations unraveling the molecular mechanisms modulated in AT by chemotherapy, along with therapeutic strategies aimed at preventing AT loss, promise to refine treatment paradigms and enhance patient outcomes.
Collapse
Affiliation(s)
- Samuel Barbosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal.
| | - Mafalda Barbosa Pedrosa
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
| |
Collapse
|
4
|
Gu X, Lu S, Fan M, Xu S, Lin G, Zhao Y, Zhao W, Liu X, Dong X, Zhang X. Compound Z526 alleviates chemotherapy-induced cachectic muscle loss by ameliorating oxidative stress-driven protein metabolic imbalance and apoptosis. Eur J Pharmacol 2024; 974:176538. [PMID: 38552940 DOI: 10.1016/j.ejphar.2024.176538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
Chemotherapy is one of the primary and indispensable intervention against cancers though it is always accompanied by severe side effects especially cachexia. Cachexia is a fatal metabolic disorder syndrome, mainly characterized by muscle loss. Oxidative stress is the key factor that trigger cachectic muscle loss by inducing imbalance in protein metabolism and apoptosis. Here, we showed an oral compound (Z526) exhibited potent alleviating effects on C2C12 myotube atrophy induced by various chemotherapeutic agents in vitro as well as mice muscle loss and impaired grip force induced by oxaliplatin in vivo. Furthermore, Z526 also could ameliorate C2C12 myotube atrophy induced by the combination of chemotherapeutic agents with conditioned medium of various tumor cells in vitro as well as mice muscle atrophy of C26 tumor-bearing mice treated with oxaliplatin. The pharmacological effects of Z526 were based on its potency in reducing oxidative stress in cachectic myocytes and muscle tissues, which inhibited the activation of NF-κB and STAT3 to decrease Atrogin-1-mediated protein degradation, activated the AKT/mTOR signaling pathway to promote protein synthesis, regulated Bcl-2/BAX ratio to reduce Caspase-3-triggered apoptosis. Our work suggested Z526 to be an optional strategy for ameliorating cachexia muscle atrophy in the multimodality treatment of cancers.
Collapse
Affiliation(s)
- Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Shanshan Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guangyu Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Weili Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
Sato S. Adipo-oncology: adipocyte-derived factors govern engraftment, survival, and progression of metastatic cancers. Cell Commun Signal 2024; 22:52. [PMID: 38238841 PMCID: PMC10797898 DOI: 10.1186/s12964-024-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Conventional therapies for metastatic cancers have limited efficacy. Recently, cancer therapies targeting noncancerous cells in tumor microenvironments have shown improved clinical outcomes in patients. However, further advances in our understanding of the metastatic tumor microenvironment are required to improve treatment outcomes. Adipocytes are distributed throughout the body, and as a part of the metastatic tumor microenvironment, they interact with cancer cells in almost all organs. Adipocytes secrete various factors that are reported to exert clinical effects on cancer progression, including engraftment, survival, and expansion at the metastatic sites. However, only a few studies have comprehensively examined their impact on cancer cells. In this review, we examined the impact of adipocytes on cancer by describing the adipocyte-secreted factors that are involved in controlling metastatic cancer, focusing on adipokines, such as adiponectin, leptin, visfatin, chemerin, resistin, apelin, and omentin. Adipocyte-secreted factors promote cancer metastasis and contribute to various biological functions of cancer cells, including migration, invasion, proliferation, immune evasion, and drug resistance at the metastatic sites. We propose the establishment and expansion of "adipo-oncology" as a research field to enhance the comprehensive understanding of the role of adipocytes in metastatic cancers and the development of more robust metastatic cancer treatments.
Collapse
Affiliation(s)
- Shinya Sato
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
- Department of Pathology, Kanagawa Cancer Center Hospital, 2-3-2, Asahi-Ku, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
6
|
Wang D, Li X, Jiao D, Cai Y, Qian L, Shen Y, Lu Y, Zhou Y, Fu B, Sun R, Tian Z, Zheng X, Wei H. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol 2023; 16:30. [PMID: 36973755 PMCID: PMC10044814 DOI: 10.1186/s13045-023-01429-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Cancer cachexia is a deadly wasting syndrome that accompanies various diseases (including ~ 50% of cancers). Clinical studies have established that cachexia is not a nutritional deficiency and is linked to expression of certain proteins (e.g., interleukin-6 and C-reactive protein), but much remains unknown about this often fatal syndrome. METHODS First, cachexia was created in experimental mouse models of lung cancer. Samples of human lung cancer were used to identify the association between the serum lipocalin 2 (LCN2) level and cachexia progression. Then, mouse models with LCN2 blockade or LCN2 overexpression were used to ascertain the role of LCN2 upon ferroptosis and cachexia. Furthermore, antibody depletion of tissue-infiltrating neutrophils (TI-Neu), as well as myeloid-specific-knockout of Lcn2, were undertaken to reveal if LCN2 secreted by TI-Neu caused cachexia. Finally, chemical inhibition of ferroptosis was conducted to illustrate the effect of ferroptosis upon tissue wasting. RESULTS Protein expression of LCN2 was higher in the wasting adipose tissue and muscle tissues of experimental mouse models of lung cancer cachexia. Moreover, evaluation of lung cancer patients revealed an association between the serum LCN2 level and cachexia progression. Inhibition of LCN2 expression reduced cachexia symptoms significantly and inhibited tissue wasting in vivo. Strikingly, we discovered a significant increase in the number of TI-Neu in wasting tissues, and that these innate immune cells secreted high levels of LCN2. Antibody depletion of TI-Neu, as well as myeloid-specific-knockout of Lcn2, prevented ferroptosis and tissue wasting in experimental models of lung cancer cachexia. Chemical inhibition of ferroptosis alleviated tissue wasting significantly and also prolonged the survival of cachectic mice. CONCLUSIONS Our study provides new insights into how LCN2-induced ferroptosis functionally impacts tissue wasting. We identified LCN2 as a potential target in the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Dong Wang
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaohui Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Defeng Jiao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ying Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Liting Qian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yiqing Shen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yichen Lu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yonggang Zhou
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Binqing Fu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Rui Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhigang Tian
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaohu Zheng
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
7
|
Tran T, Lavillegrand JR, Lereverend C, Esposito B, Cartier L, Montabord M, Tran-Rajau J, Diedisheim M, Gruel N, Ouguerram K, Paolini L, Lenoir O, Pinteaux E, Brabencova E, Tanchot C, Urquia P, Lehmann-Che J, Le Naour R, Merrouche Y, Stockmann C, Mallat Z, Tedgui A, Ait-Oufella H, Tartour E, Potteaux S. Mild dyslipidemia accelerates tumorigenesis through expansion of Ly6C hi monocytes and differentiation to pro-angiogenic myeloid cells. Nat Commun 2022; 13:5399. [PMID: 36104342 PMCID: PMC9475043 DOI: 10.1038/s41467-022-33034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
Cancer and cardiovascular disease (CVD) share common risk factors such as dyslipidemia, obesity and inflammation. However, the role of pro-atherogenic environment and its associated low-grade inflammation in tumor progression remains underexplored. Here we show that feeding C57BL/6J mice with a non-obesogenic high fat high cholesterol diet (HFHCD) for two weeks to induce mild dyslipidemia, increases the pool of circulating Ly6Chi monocytes available for initial melanoma development, in an IL-1β-dependent manner. Descendants of circulating myeloid cells, which accumulate in the tumor microenvironment of mice under HFHCD, heighten pro-angiogenic and immunosuppressive activities locally. Limiting myeloid cell accumulation or targeting VEGF-A production by myeloid cells decrease HFHCD-induced tumor growth acceleration. Reverting the HFHCD to a chow diet at the time of tumor implantation protects against tumor growth. Together, these data shed light on cross-disease communication between cardiovascular pathologies and cancer.
Collapse
Affiliation(s)
- Thi Tran
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Cedric Lereverend
- Université de Reims Champagne Ardenne, IRMAIC EA 7509, 51097, Reims, France
| | - Bruno Esposito
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Lucille Cartier
- Université de Reims Champagne Ardenne, IRMAIC EA 7509, 51097, Reims, France
- Département de Recherche, Institut Godinot, 51100, Reims, France
| | | | | | - Marc Diedisheim
- Service de diabétologie, Hôpital Cochin APHP. GlandOmics, Cheverny, Paris, France
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Institut Curie, 75005, Paris, France
- Department of Translational Research, Institut Curie Research Centre, Institut Curie, 75005, Paris, France
| | | | - Lea Paolini
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Olivia Lenoir
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eva Brabencova
- Département de Recherche, Institut Godinot, 51100, Reims, France
| | - Corinne Tanchot
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Pauline Urquia
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | - Jacqueline Lehmann-Che
- Université Paris Cité, INSERM, U976 HIPI, F-75010, Paris, France
- Molecular Oncology Unit, Saint Louis Hospital, APHP, F-75010, Paris, France
| | - Richard Le Naour
- Université de Reims Champagne Ardenne, IRMAIC EA 7509, 51097, Reims, France
| | - Yacine Merrouche
- Université de Reims Champagne Ardenne, IRMAIC EA 7509, 51097, Reims, France
- Département de Recherche, Institut Godinot, 51100, Reims, France
| | - Christian Stockmann
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- University of Zurich, Institute of Anatomy, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Ziad Mallat
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alain Tedgui
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
| | | | - Eric Tartour
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- AP-HP Hôpital Européen Georges Pompidou. Service d'immunologie, Paris, France
| | - Stephane Potteaux
- Université Paris Cité, Inserm, PARCC, F-75015, Paris, France.
- Université Paris Cité, INSERM, U976 HIPI, F-75010, Paris, France.
| |
Collapse
|
8
|
Natural Killer Cells: the Missing Link in Effective Treatment for High-Grade Serous Ovarian Carcinoma. Curr Treat Options Oncol 2022; 23:210-226. [PMID: 35192139 DOI: 10.1007/s11864-021-00929-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
OPINION STATEMENT Ovarian cancer (OC), especially high-grade serous cancer (HGSC), is a highly heterogeneous malignancy with limited options for curative treatment and a high frequency of relapse. Interactions between OC and the immune system may permit immunoediting and immune escape, and current standard of care therapies can influence immune cell infiltration and function within the tumor microenvironment. Natural killer (NK) cells are involved in cancer immunosurveillance and immunoediting and can be activated by therapy, but deliberate approaches to maximize NK cell reactivity for treatment of HGSC are in their infancy. NK cells may be the ideal target for immunotherapy of HGSC. The diverse functions of NK cells, and their established roles in immunosurveillance, make them attractive candidates for more precise and effective HGSC treatment. NK cells' functional capabilities differ because of variation in receptor expression and genetics, with meaningful impacts on their anticancer activity. Studying HGSC:NK cell interactions will define the features that predict the best outcomes for patients with the disease, but the highly diverse nature of HGSC will likely require combination therapies or approaches to simultaneously target multiple, co-existing features of the tumor to avoid tumor escape and relapse. We expect that the ideal therapy will enable NK cell infiltration and activity, reverse immunosuppression within the tumor microenvironment, and enable effector functions against the diverse subpopulations that comprise HGSC.
Collapse
|
9
|
Russo E, Laffranchi M, Tomaipitinca L, Del Prete A, Santoni A, Sozzani S, Bernardini G. NK Cell Anti-Tumor Surveillance in a Myeloid Cell-Shaped Environment. Front Immunol 2022; 12:787116. [PMID: 34975880 PMCID: PMC8718597 DOI: 10.3389/fimmu.2021.787116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
NK cells are innate lymphoid cells endowed with cytotoxic capacity that play key roles in the immune surveillance of tumors. Increasing evidence indicates that NK cell anti-tumor response is shaped by bidirectional interactions with myeloid cell subsets such as dendritic cells (DCs) and macrophages. DC-NK cell crosstalk in the tumor microenvironment (TME) strongly impacts on the overall NK cell anti-tumor response as DCs can affect NK cell survival and optimal activation while, in turn, NK cells can stimulate DCs survival, maturation and tumor infiltration through the release of soluble factors. Similarly, macrophages can either shape NK cell differentiation and function by expressing activating receptor ligands and/or cytokines, or they can contribute to the establishment of an immune-suppressive microenvironment through the expression and secretion of molecules that ultimately lead to NK cell inhibition. Consequently, the exploitation of NK cell interaction with DCs or macrophages in the tumor context may result in an improvement of efficacy of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Luana Tomaipitinca
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rozzano, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pozzilli, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Pozzilli, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Reinfeld BI, Rathmell WK, Kim TK, Rathmell JC. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cell Mol Immunol 2022; 19:46-58. [PMID: 34239083 PMCID: PMC8752729 DOI: 10.1038/s41423-021-00727-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
In 2011, Hanahan and Weinberg added "Deregulating Cellular Energetics" and "Avoiding Immune Destruction" to the six previous hallmarks of cancer. Since this seminal paper, there has been a growing consensus that these new hallmarks are not mutually exclusive but rather interdependent. The following review summarizes how founding genetic events for tumorigenesis ultimately increase tumor cell glycolysis, which not only supports the metabolic demands of malignancy but also provides an immunoprotective niche, promoting malignant cell proliferation, maintenance and progression. The mechanisms by which altered metabolism contributes to immune impairment are multifactorial: (1) the metabolic demands of proliferating tumor cells and activated immune cells are similar, thus creating a situation where immune cells may be in competition for key nutrients; (2) the metabolic byproducts of aerobic glycolysis directly inhibit antitumor immunity while promoting a regulatory immune phenotype; and (3) the gene programs associated with the upregulation of glycolysis also result in the generation of immunosuppressive cytokines and metabolites. From this perspective, we shed light on important considerations for the development of new classes of agents targeting cancer metabolism. These types of therapies can impair tumor growth but also pose a significant risk of stifling antitumor immunity.
Collapse
Affiliation(s)
- Bradley I Reinfeld
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tae Kon Kim
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Gaafer OU, Zimmers TA. Nutrition challenges of cancer cachexia. JPEN J Parenter Enteral Nutr 2021; 45:16-25. [PMID: 34897740 DOI: 10.1002/jpen.2287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Cancer cachexia, or progressive weight loss, often despite adequate nutrition contributes greatly to cancer morbidity and mortality. Cachexia is metabolically distinct from starvation or protein malnutrition, although many patients with cancer and cachexia exhibit lowered appetite and food consumption. Tumors affect neural mechanisms that regulate appetite and energy expenditure, while promoting wasting of peripheral tissues via catabolism of cardiac and skeletal muscle, adipose, and bone. These multimodal actions of tumors on the host suggest a need for multimodal interventions. However, multiple recent consensus guidelines for management of cancer cachexia differ in treatment recommendations, highlighting the lack of effective, available therapies. Challenges to defining appropriate nutrition or other interventions for cancer cachexia include lack of consensus on definitions, low strength of evidence from clinical trials, and a scarcity of robust, rigorous, and mechanistic studies. However, efforts to diagnose, stage, and monitor cachexia are increasing along with clinical trial activity. Furthermore, preclinical models for cancer cachexia are growing more sophisticated, encompassing a greater number of tumor types in organ-appropriate contexts and for metastatic disease to model the clinical condition more accurately. It is expected that continued growth, investment, and coordination of research in this topic will ultimately yield robust biomarkers, clinically useful classification and staging algorithms, targetable pathways, pivotal clinical trials, and ultimately, cures. Here, we provide an overview of the clinical and scientific knowledge and its limitations around cancer cachexia.
Collapse
Affiliation(s)
- Omnia U Gaafer
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresa A Zimmers
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
12
|
Neutralization of the induced VEGF-A potentiates the therapeutic effect of an anti-VEGFR2 antibody on gastric cancer in vivo. Sci Rep 2021; 11:15125. [PMID: 34302038 PMCID: PMC8302577 DOI: 10.1038/s41598-021-94584-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis is an essential regulator of angiogenesis and important therapeutic target in cancer. Ramucirumab is an anti-VEGFR2 monoclonal antibody used for the treatment of several cancers. Increased circulating VEGF-A levels after ramucirumab administration are associated with a worse prognosis, suggesting that excess VEGF-A induced by ramucirumab negatively affects treatment efficacy and that neutralizing VEGF-A may improve treatment outcomes. Here, we evaluated the effect of combination treatment with an anti-VEGFR2 antibody and anti-VEGF-A antibody on gastric tumor progression and normal tissues using a preclinical BALB/c-nu/nu mouse xenograft model. After anti-VEGFR2 antibody treatment in mice, a significant increase in plasma VEGF-A levels was observed, mirroring the clinical response. The elevated VEGF-A was host-derived. Anti-VEGF-A antibody co-administration enhanced the anti-tumor effect of the anti-VEGFR2-antibody without exacerbating the toxicity. Mechanistically, the combination treatment induced intra-tumor molecular changes closely related to angiogenesis inhibition and abolished the gene expression changes specifically induced by anti-VEGFR2 antibody treatment alone. We particularly identified the dual treatment-selective downregulation of ZEB1 expression, which was critical for gastric cancer cell proliferation. These data indicate that the dual blockade of VEGF-A and VEGFR2 is a rational strategy to ensure the anti-tumor effect of angiogenesis-targeting therapy.
Collapse
|
13
|
Kaweme NM, Zhou F. Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immunosuppressive Microenvironment. Front Immunol 2021; 12:683381. [PMID: 34220833 PMCID: PMC8247591 DOI: 10.3389/fimmu.2021.683381] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are prominent cytotoxic and cytokine-producing components of the innate immune system representing crucial effector cells in cancer immunotherapy. Presently, various NK cell-based immunotherapies have contributed to the substantial improvement in the reconstitution of NK cells against advanced-staged and high-risk AML. Various NK cell sources, including haploidentical NK cells, adaptive NK cells, umbilical cord blood NK cells, stem cell-derived NK cells, chimeric antigen receptor NK cells, cytokine-induced memory-like NK cells, and NK cell lines have been identified. Devising innovative approaches to improve the generation of therapeutic NK cells from the aforementioned sources is likely to enhance NK cell expansion and activation, stimulate ex vivo and in vivo persistence of NK cells and improve conventional treatment response of myeloid leukemia. The tumor-promoting properties of the tumor microenvironment and downmodulation of NK cellular metabolic activity in solid tumors and hematological malignancies constitute a significant impediment in enhancing the anti-tumor effects of NK cells. In this review, we discuss the current NK cell sources, highlight ongoing interventions in enhancing NK cell function, and outline novel strategies to circumvent immunosuppressive factors in the tumor microenvironment to improve the efficacy of NK cell-based immunotherapy and expand their future success in treating myeloid leukemia.
Collapse
Affiliation(s)
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
15
|
Carnevalli LS, Ghadially H, Barry ST. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Front Immunol 2021; 12:633685. [PMID: 33953710 PMCID: PMC8092119 DOI: 10.3389/fimmu.2021.633685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Immunotherapy has transformed cancer treatment by promoting durable clinical responses in a proportion of patients; however, treatment still fails in many patients. Innate immune cells play a key role in the response to immunotherapy. Crosstalk between innate and adaptive immune systems drives T-cell activation but also limits immunotherapy response, as myeloid cells are commonly associated with resistance. Hence, innate cells have both negative and positive effects within the tumor microenvironment (TME), and despite investment in early clinical trials targeting innate cells, they have seen limited success. Suppressive myeloid cells facilitate metastasis and immunotherapy resistance through TME remodeling and inhibition of adaptive immune cells. Natural killer (NK) cells, in contrast, secrete inflammatory cytokines and directly kill transformed cells, playing a key immunosurveillance role in early tumor development. Myeloid and NK cells show reciprocal crosstalk, influencing myeloid cell functional status or antigen presentation and NK effector function, respectively. Crosstalk between myeloid cells and the NK immune network in the TME is especially important in the context of therapeutic intervention. Here we discuss how myeloid and NK cell interactions shape anti-tumor responses by influencing an immunosuppressive TME and how this may influence outcomes of treatment strategies involving drugs that target myeloid and NK cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Communication/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunotherapy
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | | | - Simon T. Barry
- Early Oncology, Research and Development, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
16
|
Gao X, Wang Y, Lu F, Chen X, Yang D, Cao Y, Zhang W, Chen J, Zheng L, Wang G, Fu M, Ma L, Song Y, Zhan Q. Extracellular vesicles derived from oesophageal cancer containing P4HB promote muscle wasting via regulating PHGDH/Bcl-2/caspase-3 pathway. J Extracell Vesicles 2021; 10:e12060. [PMID: 33732415 PMCID: PMC7944388 DOI: 10.1002/jev2.12060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Cachexia, characterized by loss of skeletal muscle mass and function, is estimated to inflict the majority of patients with oesophageal squamous cell carcinoma (ESCC) and associated with their poor prognosis. However, its underlying mechanisms remain elusive. Here, we developed an ESCC‐induced cachexia mouse model using human xenograft ESCC cell lines and found that ESCC‐derived extracellular vesicles (EVs) containing prolyl 4‐hydroxylase subunit beta (P4HB) induced apoptosis of skeletal muscle cells. We further identified that P4HB promoted apoptotic response through activating ubiquitin‐dependent proteolytic pathway and regulated the stability of phosphoglycerate dehydrogenase (PHGDH) and subsequent antiapoptotic protein Bcl‐2. Additionally, we proved that the P4HB inhibitor, CCF642, not only rescued apoptosis of muscle cells in vitro, but also prevented body weight loss and muscle wasting in ESCC‐induced cachexia mouse model. Overall, these findings demonstrate a novel pathway for ESCC‐induced muscle wasting and advocate for the development of P4HB as a potential intervention target for cachexia in patients with ESCC.
Collapse
Affiliation(s)
- Xiaohan Gao
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Fang Lu
- Department of Ophthalmology West China Hospital Sichuan University Chengdu China
| | - Xu Chen
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Yiren Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Leilei Zheng
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| |
Collapse
|
17
|
VEGF165b augments NK92 cytolytic activity against human K562 leukemia cells by upregulating the levels of perforin and granzyme B via the VEGR1-PLC pathway. Mol Immunol 2020; 128:41-46. [PMID: 33068832 DOI: 10.1016/j.molimm.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022]
Abstract
Pro-angiogenic Vascular endothelial growth factors (VEGFs) exert immunosuppressive functions on some immune cells by interacting with VEGF receptors. Blocking the VEGF/VEGFR pathway could reverse the tumor immunosuppressive microenvironment to some degree. We recently demonstrated that the anti-angiogenic VEGF isoform VEGF165b, similar to other anti-angiogenic agents, inhibit the accumulation immunosuppressive cells such as Tregs and MDSCs. However, whether VEGF165b affects the functions of immune effector cells remain unclear. Here, NK92 cell line was utilized as an immune effector cell model. Our results verified that NK92 cells endogenously express VEGF165 and VEGFR1. Further investigation showed that NK92 treatment with VEGF165b augments its killing ability against human K562 leukemia cells by upregulating perforin and granzyme B through the VEGFR1-PLC pathway, whereas VEGF165b had no impact on the proliferation of NK92 cells in vitro. The results of this study improve our understanding of the immunomodulatory function of VEGF165b, which may help in enhancing the efficacy of NK92-based cancer immunotherapy.
Collapse
|
18
|
Zhou Q, Zhang H, Wang Z, Zeng H, Liu Z, Huang Q, Lin Z, Qu Y, Xiong Y, Wang J, Chang Y, Bai Q, Xia Y, Wang Y, Liu L, Dai B, Guo J, Zhu Y, Xu L, Xu J. Poor clinical outcomes and immunoevasive contexture in interleukin-9 abundant muscle-invasive bladder cancer. Int J Cancer 2020; 147:3539-3549. [PMID: 32734613 DOI: 10.1002/ijc.33237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Chemotherapy and immunotherapy yield survival benefits for muscle-invasive bladder cancer (MIBC) patients, in which tumor microenvironment has been found to exert crucial roles through tipping the balance between antitumor immunity and immune evasion. Our study aims to explore the clinical significance and therapeutic role of intratumoral interleukin-9-producing cells (IL-9+ cells) in MIBC. Two hundred fifty-nine MIBC patients from two independent clinic centers were utilized for retrospective analysis in the study. Sixty-five fresh MIBC tumor tissues were used to evaluate the infiltration and function of immune cells via flow cytometry and ex vivo intervention experiments. Three hundred ninety-one MIBC patients of The Cancer Genome Atlas were applied for bioinformatics analysis. It was found that patients with high IL-9+ cells infiltration had worse overall survival and relapse-free survival. pT2 patients with low IL-9+ cells infiltration could benefit more from adjuvant chemotherapy (ACT). IL-9+ cells infiltration was correlated with decreased expression of granzyme B from CD8+ T cells and natural killer (NK) cells and perforin from CD8+ T cells, while blockade of IL-9 reactivated the antitumor capacity of both cells leading to tumor regression. Furthermore, IL-9+ cells infiltration could be a biomarker for predicting anti-PD-1 efficacy. In conclusion, IL-9+ cells infiltration could be applied as an independent prognosticator for clinical outcome and ACT/anti-PD-1 effectiveness. IL-9+ cells infiltration diminished the cytotoxicity of CD8+ T cells and NK cells resulting in tumor immune evasion, and thus targeting IL-9 could be a potential therapeutic strategy for MIBC.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiuren Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhiyuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol 2020. [PMID: 32508809 DOI: 10.3389/fimmu.2020.00783.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.
Collapse
Affiliation(s)
- Aohan Hou
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaiyu Hou
- Department of Bone and Trauma, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| |
Collapse
|
20
|
Hou A, Hou K, Huang Q, Lei Y, Chen W. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol 2020; 11:783. [PMID: 32508809 PMCID: PMC7249937 DOI: 10.3389/fimmu.2020.00783] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are starting to transform the treatment for patients with advanced cancer. The extensive application of these antibodies for various cancer obtains exciting anti-tumor immune response by activating T cells. Although the encouraging clinical benefit in patients receiving these immunostimulatory agents are observed, numbers of patients still derive limited response or even none for reasons unknown, sometimes at the cost of adverse reactions. Myeloid-derived suppressor cells (MDSCs) is a heterogeneous immature population of myeloid cells partly influencing the efficacy of immunotherapies. These cells not only directly suppress T cell but mediate a potently immunosuppressive network within tumor microenvironment to attenuate the anti-tumor response. The crosstalk between MDSCs and immune cells/non-immune cells generates several positive feedbacks to negatively modulate the tumor microenvironment. As such, the recruitment of immunosuppressive cells, upregulation of immune checkpoints, angiogenesis and hypoxia are induced and contributing to the acquired resistance to ICIs. Targeting MDSCs could be a potential therapy to overcome the limitation. In this review, we focus on the role of MDSCs in resistance to ICIs and summarize the therapeutic strategies targeting them to enhance ICIs efficiency in cancer patients.
Collapse
Affiliation(s)
- Aohan Hou
- Faculty of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaiyu Hou
- Department of Bone and Trauma, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| | - Wanling Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, China
| |
Collapse
|
21
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
22
|
Li Y, Dang J, Liang Q, Yin L. Carbon monoxide (CO)-Strengthened cooperative bioreductive anti-tumor therapy via mitochondrial exhaustion and hypoxia induction. Biomaterials 2019; 209:138-151. [DOI: 10.1016/j.biomaterials.2019.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 02/09/2023]
|
23
|
Delineating Pro-Angiogenic Myeloid Cells in Cancer Therapy. Int J Mol Sci 2018; 19:ijms19092565. [PMID: 30158456 PMCID: PMC6165286 DOI: 10.3390/ijms19092565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
Recent evidence suggests that myeloid cells are critical in cancer development and therapy resistance processes. Pharmacological targeting of tumor-associated myeloid cells is an emerging approach among upcoming immune therapies. Surprisingly, myeloid cells are heterogeneous, including a subset of the myeloid cell displaying angiogenic properties in solid tumors. There is an urgent need to delineate angiogenic myeloid cell populations in order to facilitate specific targeting of protumor myeloid cells among heterogeneous pool. This review article is intended to compile all the relevant information in the literature for improved understanding of angiogenic myeloid cells and their role in tumor refractoriness to cancer therapy.
Collapse
|
24
|
Nebu J, Sony G. Understanding Plasmonic Heat-triggered drug release from gold based nanostructure. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Abstract
PURPOSE OF REVIEW Cancer-associated weight loss is a common comorbid condition best described among patients with advanced malignancy receiving systemic therapy, but its relationship to patients undergoing radiation treatment is less well described. We review the interaction between cancer-associated weight loss and radiation treatment as well as its prognostic significance. RECENT FINDINGS Multiple studies demonstrate a consistent detrimental effect of cancer-associated weight loss either existing prior to treatment or developing during radiotherapy. Emerging data suggest cancer-associated weight loss independently contributes to an aggressive malignant phenotype rather than simply reflecting a consequence of disease. Novel therapies are urgently needed to address the unmet burden of cancer-associated weight loss. SUMMARY Consideration of cancer-associated weight loss is important among patients receiving radiotherapy. Further study will further characterize the relationship and identify targetable biologic mechanisms of cancer cachexia.
Collapse
|
26
|
Barriers to cancer nutrition therapy: excess catabolism of muscle and adipose tissues induced by tumour products and chemotherapy. Proc Nutr Soc 2018; 77:394-402. [PMID: 29708079 DOI: 10.1017/s0029665118000186] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancer-associated malnutrition is driven by reduced dietary intake and by underlying metabolic changes (such as inflammation, anabolic resistance, proteolysis, lipolysis and futile cycling) induced by the tumour and activated immune cells. Cytotoxic and targeted chemotherapies also elicit proteolysis and lipolysis at the tissue level. In this review, we summarise specific mediators and chemotherapy effects that provoke excess proteolysis in muscle and excess lipolysis in adipose tissue. A nutritionally relevant question is whether and to what degree these catabolic changes can be reversed by nutritional therapy. In skeletal muscle, tumour factors and chemotherapy drugs activate intracellular signals that result in the suppression of protein synthesis and activation of a transcriptional programme leading to autophagy and degradation of myofibrillar proteins. Cancer nutrition therapy is intended to ensure adequate provision of energy fuels and a complete repertoire of biosynthetic building blocks. There is some promising evidence that cancer- and chemotherapy-associated metabolic alterations may also be corrected by certain individual nutrients. The amino acids leucine and arginine provided in the diet at least partially reverse anabolic suppression in muscle, while n-3 PUFA inhibit the transcriptional activation of muscle catabolism. Optimal conditions for exploiting these anabolic and anti-catabolic effects are currently under study, with the overall aim of net improvements in muscle mass, functionality, performance status and treatment tolerance.
Collapse
|
27
|
Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun 2017; 8:1597. [PMID: 29150606 PMCID: PMC5694012 DOI: 10.1038/s41467-017-01599-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Productive angiogenesis, a prerequisite for tumour growth, depends on the balanced release of angiogenic and angiostatic factors by different cell types within hypoxic tumours. Natural killer (NK) cells kill cancer cells and infiltrate hypoxic tumour areas. Cellular adaptation to low oxygen is mediated by Hypoxia-inducible factors (HIFs). We found that deletion of HIF-1α in NK cells inhibited tumour growth despite impaired tumour cell killing. Tumours developing in these conditions were characterised by a high-density network of immature vessels, severe haemorrhage, increased hypoxia, and facilitated metastasis due to non-productive angiogenesis. Loss of HIF-1α in NK cells increased the bioavailability of the major angiogenic cytokine vascular endothelial growth factor (VEGF) by decreasing the infiltration of NK cells that express angiostatic soluble VEGFR-1. In summary, this identifies the hypoxic response in NK cells as an inhibitor of VEGF-driven angiogenesis, yet, this promotes tumour growth by allowing the formation of functionally improved vessels. Tumour hypoxia influences both the immune responses and angiogenesis. Here, the authors show that HIF-1α deletion in NK cells impairs NK cytotoxic activity but inhibit tumour growth by decreasing the infiltration of NK cells that express angiostatic soluble VEGFR-1, thus resulting in non-functional angiogenesis.
Collapse
|
28
|
Xie F, Ding RL, He WF, Liu ZJL, Fu SZ, Wu JB, Yang LL, Lin S, Wen QL. In vivo antitumor effect of endostatin-loaded chitosan nanoparticles combined with paclitaxel on Lewis lung carcinoma. Drug Deliv 2017; 24:1410-1418. [PMID: 28933203 PMCID: PMC8241112 DOI: 10.1080/10717544.2017.1378938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/11/2022] Open
Abstract
The purpose of this study was to prepare endostatin-loaded chitosan nanoparticles (ES-NPs) and evaluate their antitumor effect when combined with paclitaxel (PTX) on Lewis lung carcinoma (LLC) mouse xenografts. ES-NPs were prepared by ionic cross-linking. Characterization of the ES-NPs included size distribution, drug-loading efficiency (DL), and encapsulation efficiency (EE). An in vitro release test was also used to determine the release behavior of the ES-NPs. A subcutaneous LC xenograft model of C57BL/6J mice was established. The mice were randomly divided into six groups: control (0.9% NaCl), ES, PTX, ES-NPs, ES + PTX, and ES-NPs + PTX. The tumor volume was dynamically measured for the duration of the experiment. Immunohistochemistry was performed to determine the Ki-67 and microvascular density (MVD) in each group. Serum vascular endothelial growth factor (VEGF) and ES levels were determined by enzyme-linked immunosorbent assay (ELISA). ES-NPs were successfully synthesized and had suitable size distribution and high EE. The NPs were homogenously spherical and exhibited an ideal release profile in vitro. In vivo, tumor growth was significantly inhibited in the ES-NPs + PTX group. The tumor inhibitory rate was significantly higher in the ES-NPs + PTX group than in the other groups (p < .05). The results of the immunohistochemical assay and ELISA confirmed that ES-NPs combined with PTX had a strong antiangiogenic effect. ES-NPs can overcome the shortcomings of free ES, such as short retention time in circulation, which enhances the antitumor effect of ES. The antitumor effect was more pronounced when treatment included PTX and ES-loaded NPs.
Collapse
Affiliation(s)
- Fang Xie
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui-Lin Ding
- Experiment and Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Wen-Feng He
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zong-Jun-Lin Liu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shao-Zhi Fu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing-Bo Wu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ling-Lin Yang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Lin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing-Lian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
29
|
Sica A, Strauss L. Energy metabolism drives myeloid-derived suppressor cell differentiation and functions in pathology. J Leukoc Biol 2017; 102:325-334. [PMID: 28223316 DOI: 10.1189/jlb.4mr1116-476r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/29/2016] [Accepted: 01/24/2017] [Indexed: 11/24/2022] Open
Abstract
Over the last decade, a heterogeneous population of immature myeloid cells with major regulatory functions has been described in cancer and other pathologic conditions and ultimately defined as MDSCs. Most of the early work on the origins and functions of MDSCs has been in murine and human tumor bearers in which MDSCs are known to be immunosuppressive and to result in both reduced immune surveillance and antitumor cytotoxicity. More recent studies, however, suggest that expansion of these immature myeloid cells may be linked to most, if not all, chronic and acute inflammatory processes. The universal expansion to inflammatory stimuli of MDSCs suggests that these cells may be more of a normal component of the inflammatory response (emergency myelopoiesis) than simply a pathologic response to a growing tumor. Instead of an adverse immunosuppressive response, expansion of these immature myeloid cell populations may result from a complex balance between increased immune surveillance and dampened adaptive immune responses that are common to many inflammatory responses. Within this scenario, new pathways of metabolic reprogramming are emerging as drivers of MDSC differentiation and functions in cancer and inflammatory disorders, crucially linking metabolic syndrome to inflammatory processes.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro," Novara, Italy; .,Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Laura Strauss
- Division of Hematology-Oncology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|