1
|
Scepanovic G, Balaghi N, Rothenberg KE, Fernandez-Gonzalez R. mTor limits autophagy to facilitate cell volume expansion and rapid wound repair in Drosophila embryos. Dev Cell 2025:S1534-5807(24)00778-0. [PMID: 39824179 DOI: 10.1016/j.devcel.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/16/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
Embryonic wounds repair rapidly, with no inflammation or scarring. Embryonic wound healing is driven by collective cell movements facilitated by the increase in the volume of the cells adjacent to the wound. The mechanistic target of rapamycin (mTor) complex 1 (TORC1) is associated with cell growth. We found that disrupting TORC1 signaling in Drosophila embryos prevented cell volume increases and slowed down wound repair. Catabolic processes, such as autophagy, can inhibit cell growth. Five-dimensional microscopy demonstrated that the number of autophagosomes decreased during wound repair, suggesting that autophagy must be tightly regulated for rapid wound healing. mTor inhibition increased autophagy, and activating autophagy prevented cell volume expansion and slowed down wound closure. Finally, reducing autophagy in embryos with disrupted TORC1 signaling rescued cell volume changes and rapid wound repair. Together, our results show that TORC1 activation upon wounding negatively regulates autophagy, allowing cells to increase their volumes to facilitate rapid wound healing.
Collapse
Affiliation(s)
- Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Negar Balaghi
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Katheryn E Rothenberg
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
2
|
Qi F, Xu Y, Zheng B, Li Y, Zhang J, Liu Z, Wang X, Zhou Z, Zeng D, Lu F, Zhang C, Gan Y, Hu Z, Wang G. The Core-Shell Microneedle with Probiotic Extracellular Vesicles for Infected Wound Healing and Microbial Homeostasis Restoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401551. [PMID: 39109958 DOI: 10.1002/smll.202401551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/04/2024] [Indexed: 11/21/2024]
Abstract
Wound healing is a dynamic process involving the timely transition of organized phases. However, infected wounds often experience prolonged inflammation due to microbial overload. Thus, addressing the viable treatment needs across different healing stages is a critical challenge in wound management. Herein, a novel core-shell microneedle (CSMN) patch is designed for the sequential delivery of tannic acid-magnesium (TA-Mg) complexes and extracellular vesicles from Lactobacillus druckerii (LDEVs). Upon application to infected sites, CSMN@TA-Mg/LDEV releases TA-Mg first to counteract pathogenic overload and reduce reactive oxygen species (ROS), aiding the transition to proliferative phase. Subsequently, the sustained release of LDEVs enhances the activities of keratinocytes and fibroblasts, promotes vascularization, and modulates the collagen deposition. Notably, dynamic track of microbial composition demonstrates that CSMN@TA-Mg/LDEV can both inhibit the aggressive pathogen and increase the microbial diversity at wound sites. Functional analysis further highlights the potential of CSMN@TA-Mg/LDEV in facilitating wound healing and skin barrier restoration. Moreover, it is confirmed that CSMN@TA-Mg/LDEV can accelerate wound closure and improve post-recovery skin quality in the murine infected wound. Conclusively, this innovative CSMN patch offers a rapid and high-quality alternative treatment for infected wounds and emphasizes the significance of microbial homeostasis.
Collapse
Affiliation(s)
- Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yujie Xu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Bowen Zheng
- Center of Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, 314408, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhiyang Zhou
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Chunhua Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21210, USA
| |
Collapse
|
3
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhang Z, Zhao M, Wang Q, Wang X, Wang Y, Ge Y, Wu Z, Wang W, Shan L. Forkhead box protein FOXK1 disrupts the circadian rhythm to promote breast tumorigenesis in response to insulin resistance. Cancer Lett 2024; 599:217147. [PMID: 39094826 DOI: 10.1016/j.canlet.2024.217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.
Collapse
Affiliation(s)
- Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xilin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zicheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Seo H, Yoon JW, Kwon Y, Yeom E. Banana Peel Extracts Enhance Climbing Ability and Extend Lifespan in Drosophila melanogaster. Dev Reprod 2024; 28:87-94. [PMID: 39444642 PMCID: PMC11495883 DOI: 10.12717/dr.2024.28.3.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 10/25/2024]
Abstract
Banana peels, often discarded as waste, represent one of the most abundant food by-products, highlighting the need for effective waste management and resource recycling strategies. Due to their rich nutritional content, banana peels have been investigated for various health benefits, including anti-obesity effects. In this study, we examined the potential anti-aging properties of banana peel extracts (BPEs) in Drosophila melanogaster. Our findings demonstrated that flies fed with BPEs exhibited an extended lifespan and a significant improvement in age-related decline in climbing ability. Additionally, Dilp2 mRNA expression level is markedly decreased in aged flies fed with BPEs. These results suggest that BPEs may serve as a potential anti-aging agent by enhancing locomotor function and extending lifespan, potentially through the modulation of insulin signaling in D. melanogaster.
Collapse
Affiliation(s)
- Hyejin Seo
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
| | - Jong-Won Yoon
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| | - Younghwi Kwon
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| | - Eunbyul Yeom
- School of Life Science and Biotechnology,
College of Natural Sciences, Kyungpook National University,
Daegu 41566, Korea
- School of Life Sciences, BK21 FOUR KNU
Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Korea
- KNU-G LAMP Research Center, KNU-Institute
of Basic Sciences, School of Life Sciences, College of Natural Sciences,
Kyungpook National University, Daegu 41556,
Korea
| |
Collapse
|
6
|
Rigato A, Meng H, Chardes C, Runions A, Abouakil F, Smith RS, LeGoff L. A mechanical transition from tension to buckling underlies the jigsaw puzzle shape morphogenesis of histoblasts in the Drosophila epidermis. PLoS Biol 2024; 22:e3002662. [PMID: 38870210 PMCID: PMC11175506 DOI: 10.1371/journal.pbio.3002662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
The polygonal shape of cells in proliferating epithelia is a result of the tensile forces of the cytoskeletal cortex and packing geometry set by the cell cycle. In the larval Drosophila epidermis, two cell populations, histoblasts and larval epithelial cells, compete for space as they grow on a limited body surface. They do so in the absence of cell divisions. We report a striking morphological transition of histoblasts during larval development, where they change from a tensed network configuration with straight cell outlines at the level of adherens junctions to a highly folded morphology. The apical surface of histoblasts shrinks while their growing adherens junctions fold, forming deep lobules. Volume increase of growing histoblasts is accommodated basally, compensating for the shrinking apical area. The folded geometry of apical junctions resembles elastic buckling, and we show that the imbalance between the shrinkage of the apical domain of histoblasts and the continuous growth of junctions triggers buckling. Our model is supported by laser dissections and optical tweezer experiments together with computer simulations. Our analysis pinpoints the ability of histoblasts to store mechanical energy to a much greater extent than most other epithelial cell types investigated so far, while retaining the ability to dissipate stress on the hours time scale. Finally, we propose a possible mechanism for size regulation of histoblast apical size through the lateral pressure of the epidermis, driven by the growth of cells on a limited surface. Buckling effectively compacts histoblasts at their apical plane and may serve to avoid physical harm to these adult epidermis precursors during larval life. Our work indicates that in growing nondividing cells, compressive forces, instead of tension, may drive cell morphology.
Collapse
Affiliation(s)
- Annafrancesca Rigato
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
- Aix Marseille Univ, CNRS, IBDM UMR7288, Turing Center for Living Systems, Marseille, France
| | - Huicheng Meng
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Claire Chardes
- Aix Marseille Univ, CNRS, IBDM UMR7288, Turing Center for Living Systems, Marseille, France
| | - Adam Runions
- Department of Computer Science, University of Calgary, Calgary, Canada
| | - Faris Abouakil
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Richard S. Smith
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Loïc LeGoff
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
7
|
Cid-Bertomeu P, Vilaltella M, Martínez M, Mir M, Huerva V. Topical Insulin for Ocular Surface Disease. J Ocul Pharmacol Ther 2024; 40:204-214. [PMID: 38527183 DOI: 10.1089/jop.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Background: Insulin and insulin-like growth factor (IGF)-1 receptors are present in ocular tissues such as corneal epithelium, keratocytes, and conjunctival cells. Insulin plays a crucial role in the growth, differentiation, and proliferation of corneal epithelial cells, as well as in wound healing processes in various tissues. Purpose: This review explores the potential role of topical insulin in the treatment of ocular surface diseases. Specifically, it examines its impact on corneal nerve regeneration, sub-basal plexus corneal nerves, and its application in conditions like corneal epithelial defects, dry eye disease, and diabetic keratopathy. Methods: The review analyzes studies conducted over the past decade that have investigated the use of topical insulin in ocular surface diseases. It focuses on indications, drug preparation methods, side effects, efficacy outcomes, and variations in insulin concentrations and dosages used. Results: While off-label use of topical insulin has shown promising results in refractory corneal epithelial defects, its efficacy in dry eye disease is yet to be demonstrated. Variations in concentrations, dilutions, and dosing guidelines have been reported. However, limited data on ocular penetration, ocular toxicity, and systemic side effects pose challenges to its widespread utility. Conclusion: This review synthesizes findings from ocular investigations on topical insulin to assess its potential applicability in treating ocular surface and corneal diseases. By highlighting indications, preparation methods, side effects, and efficacy outcomes, it aims to provide insights into the current status and future prospects of using topical insulin in ophthalmic practice.
Collapse
Affiliation(s)
- Pau Cid-Bertomeu
- Department of Ophthalmology, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Magí Vilaltella
- Department of Ophthalmology, University Hospital Arnau de Vilanova, Lleida, Spain
- School of Medicine, University of Lleida, Lleida, Spain
| | - Mireia Martínez
- Department of Hospital Pharmacy, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Marta Mir
- Department of Hospital Pharmacy, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Valentín Huerva
- Department of Ophthalmology, University Hospital Arnau de Vilanova, Lleida, Spain
- School of Medicine, University of Lleida, Lleida, Spain
| |
Collapse
|
8
|
Zheng C, Wong MH, Man YB, Cheng Z. Effects of sodium selenite, yeast selenium, and nano-selenium on toxicity, growth, and selenium bioaccumulation in Lucilia sericata maggots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20510-20520. [PMID: 38374507 DOI: 10.1007/s11356-024-32505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
In this study, we investigated the effects of different types of selenium (Se) (sodium selenite [SS], yeast selenium [YS], and nano-selenium [NS]) on the toxicity, growth, Se accumulation, and transformation of Lucilia sericata maggots (LSMs). We found that the 50% lethal concentration of LSMs exposed to SS was 2.18 and 1.96 times that of YS and NS, respectively. LSM growth was significantly promoted at exposure concentrations of 10-50 mg kg-1 in group SS and 10-30 mg kg-1 in group YS, whereas NS inhibited LSMs growth at all concentrations (p < 0.05). Total Se content in LSMs, conversion efficiency to organic and other forms of Se, and bioaccumulation factor of Se were the highest in the SS group when exposed to 50 mg kg-1 (81.6 mg kg-1, 94.6%, and 1.63, respectively). Transcriptomic results revealed that LSMs significantly upregulated the amino acid (alanine, aspartate, glutamic, and tyrosine) and tricarboxylic acid cycle signaling pathways (p < 0.05) on exposure to Se, resulting in a significant increase in LSMs biomass and quality. In conclusion, our study indicates that LSMs exhibit good tolerance to SS and can convert it into bioorganic or other forms of Se.
Collapse
Affiliation(s)
- Chao Zheng
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Yu Bon Man
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environment Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
9
|
Shan F, Zhang N, Yao X, Li Y, Wang Z, Zhang C, Wang Y. Mechanosensitive channel of large conductance enhances the mechanical stretching-induced upregulation of glycolysis and oxidative metabolism in Schwann cells. Cell Commun Signal 2024; 22:93. [PMID: 38302971 PMCID: PMC10835878 DOI: 10.1186/s12964-024-01497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Physical exercise directly stretching the peripheral nerve promotes nerve regeneration; however, its action mechanism remains elusive. Our present study aimed to investigate the effects of mechanosensitive channel of large conductance (MscL) activated by mechanical stretching on the cultured Schwann cells (SCs) and explore the possible mechanism. METHODS Primary SCs from neonatal mice at 3-5 days of age were derived and transfected with the lentivirus vector expressing a mutant version of MscL, MscL-G22S. We first detected the cell viability and calcium ion (Ca2+) influx in the MscL-G22S-expressing SCs with low-intensity mechanical stretching and the controls. Proteomic and energy metabolomics analyses were performed to investigate the comprehensive effects of MscL-G22S activation on SCs. Measurement of glycolysis- and oxidative phosphorylation-related molecules and ATP production were respectively performed to further validate the effects of MscL-G22S activation on SCs. Finally, the roles of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in the mechanism of energy metabolism modulation of SCs by MscL-G22S activation was investigated. RESULTS Mechanical stretching-induced MscL-G22S activation significantly increased the cell viability and Ca2+ influx into the SCs. Both the proteomic and targeted energy metabolomics analysis indicated the upregulation of energy metabolism as the main action mechanism of MscL-G22S-activation on SCs. MscL-G22S-activated SCs showed significant upregulation of glycolysis and oxidative phosphorylation when SCs with stretching alone had only mild upregulation of energy metabolism than those without stimuli. MscL-G22S activation caused significant phosphorylation of the PI3K/AKT/mTOR signaling pathway and upregulation of HIF-1α/c-Myc. Inhibition of PI3K abolished the MscL-G22S activation-induced upregulation of HIF-1α/c-Myc signaling in SCs and reduced the levels of glycolysis- and oxidative phosphorylation-related substrates and mitochondrial activity. CONCLUSION Mechanical stretching activates MscL-G22S to significantly promote the energy metabolism of SCs and the production of energic substrates, which may be applied to enhance nerve regeneration via the glia-axonal metabolic coupling.
Collapse
Affiliation(s)
- Fangzhen Shan
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Nannan Zhang
- Department of Respiratory and Critical Care, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Xiaoying Yao
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Yi Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining City, Shandong Province, 272029, China
| | - Zihao Wang
- Cheeloo Medical College, Shandong University, Jinan, Shandong Province, China
| | - Chuanji Zhang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuzhong Wang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining City, Shandong Province, 272029, China.
| |
Collapse
|
10
|
Hou J, Guo J, Yan T, Liu S, Zang M, Wang L, Xu J, Luo Q, Wang T, Liu J. Light-controlled artificial transmembrane signal transduction for 'ON/OFF'-switchable transphosphorylation of an RNA model substrate. Chem Sci 2023; 14:6039-6044. [PMID: 37293632 PMCID: PMC10246681 DOI: 10.1039/d2sc06701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Inspired by nature, it is of significant importance to design and construct biomimetic signaling systems to mimic natural signal transduction. Herein, we report an azobenzene/α-cyclodextrin (α-CD)-based signal transduction system with three functional modules: a light-responsive headgroup, lipid-anchored group, pro-catalyst tailgroup. The transducer can be inserted into the vesicular membrane to trigger the transmembrane translocation of molecules under the activation of light, forming a ribonuclease-like effector site and leading to the transphosphorylation of the RNA model substrate inside the vesicles. Moreover, the transphosphorylation process can be reversibly turned 'ON/OFF' over multiple cycles by the activation and deactivation of the pro-catalyst. This artificial photo-controlled signal transduction successfully constructs a signal responsive catalysis system across the membrane to utilize light to reversibly control the internal transphosphorylation process of an RNA model substrate, which might provide a new strategy for future design to utilize exogenous signals for implementing endogenous enzyme manipulation and gene regulation.
Collapse
Affiliation(s)
- Jinxing Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Road Changchun 130012 China
| | - Jiale Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Road Changchun 130012 China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| | - Shengda Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| | - Mingsong Zang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Road Changchun 130012 China
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Road Changchun 130012 China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Road Changchun 130012 China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130012 China
| | - Tingting Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Road Changchun 130012 China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
11
|
Haroon, Li YX, Ye CX, Su J, Nabi G, Su XH, Xing LX. De Novo Transcriptome Assembly and Analysis of Longevity Genes Using Subterranean Termite ( Reticulitermes chinensis) Castes. Int J Mol Sci 2022; 23:13660. [PMID: 36362447 PMCID: PMC9657995 DOI: 10.3390/ijms232113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The longevity phenomenon is entirely controlled by the insulin signaling pathway (IIS-pathway). Both vertebrates and invertebrates have IIS-pathways that are comparable to one another, though no one has previously described de novo transcriptome assembly of IIS-pathway-associated genes in termites. In this research, we analyzed the transcriptomes of both reproductive (primary kings “PK” and queens “PQ”, secondary worker reproductive kings “SWRK” and queens “SWRQ”) and non-reproductive (male “WM” and female “WF” workers) castes of the subterranean termite Reticulitermes chinensis. The goal was to identify the genes responsible for longevity in the reproductive and non-reproductive castes. Through transcriptome analysis, we annotated 103,589,264 sequence reads and 184,436 (7G) unigenes were assembled, GC performance was measured at 43.02%, and 64,046 sequences were reported as CDs sequences. Of which 35 IIS-pathway-associated genes were identified, among 35 genes, we focused on the phosphoinositide-dependent kinase-1 (Pdk1), protein kinase B2 (akt2-a), tuberous sclerosis-2 (Tsc2), mammalian target of rapamycin (mTOR), eukaryotic translation initiation factor 4E (EIF4E) and ribosomal protein S6 (RPS6) genes. Previously these genes (Pdk1, akt2-a, mTOR, EIF4E, and RPS6) were investigated in various organisms, that regulate physiological effects, growth factors, protein translation, cell survival, proliferation, protein synthesis, cell metabolism and survival, autophagy, fecundity rate, egg size, and follicle number, although the critical reason for longevity is still unclear in the termite castes. However, based on transcriptome profiling, the IIS-pathway-associated genes could prolong the reproductive caste lifespan and health span. Therefore, the transcriptomic shreds of evidence related to IIS-pathway genes provide new insights into the maintenance and relationships between biomolecular homeostasis and remarkable longevity. Finally, we propose a strategy for future research to decrypt the hidden costs associated with termite aging in reproductive and non-reproductive castes.
Collapse
Affiliation(s)
- Haroon
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Yu-Xin Li
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Chen-Xu Ye
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Jian Su
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, 31120 Krakow, Poland
| | - Xiao-Hong Su
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Lian-Xi Xing
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| |
Collapse
|
12
|
Serras F. The sooner, the better: ROS, kinases and nutrients at the onset of the damage response in Drosophila. Front Cell Dev Biol 2022; 10:1047823. [PMID: 36353511 PMCID: PMC9637634 DOI: 10.3389/fcell.2022.1047823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
One of the main topics in regeneration biology is the nature of the early signals that trigger the damage response. Recent advances in Drosophila point to the MAP3 kinase Ask1 as a molecular hub that integrates several signals at the onset of regeneration. It has been discovered that reactive oxygen species (ROS) produced in damaged imaginal discs and gut epithelia will activate the MAP3 kinase Ask1. Severely damaged and apoptotic cells produce an enormous amount of ROS, which ensures their elimination by activating Ask1 and in turn the pro-apoptotic function of JNK. However, this creates an oxidative stress environment with beneficial effects that is sensed by neighboring healthy cells. This environment, in addition to the Pi3K/Akt nutrient sensing pathway, can be integrated into Ask1 to launch regeneration. Ultimately the activity of Ask1 depends on these and other inputs and modulates its signaling to achieve moderate levels of p38 and low JNK signaling and thus promote survival and regeneration. This model based on the dual function of Ask1 for early response to damage is discussed here.
Collapse
Affiliation(s)
- Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Wang C, Chang Y, Zhu J, Ma R, Li G. Dual Role of Inositol-requiring Enzyme 1α–X-box Binding protein 1 Signaling in Neurodegenerative Diseases. Neuroscience 2022; 505:157-170. [DOI: 10.1016/j.neuroscience.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
14
|
Wang J, Cui B, Chen Z, Ding X. The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol 2022; 10:950973. [PMID: 35938153 PMCID: PMC9355246 DOI: 10.3389/fcell.2022.950973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermis, the outmost layer of the skin, is a stratified squamous epithelium that protects the body from the external world. The epidermis and its appendages need constantly renew themselves and replace the damaged tissues caused by environmental assaults. The mechanistic target of rapamycin (mTOR) signaling is a central controller of cell growth and metabolism that plays a critical role in development, homeostasis and diseases. Recent findings suggest that mTOR signaling is activated in a spatiotemporal and context-dependent manner in the epidermis, coordinating diverse skin homeostatic processes. Dysregulation of mTOR signaling underlies the pathogenesis of skin diseases, including psoriasis and skin cancer. In this review, we discuss the role of epidermal mTOR signaling activity and function in skin, with a focus on skin barrier formation, hair regeneration, wound repair, as well as skin pathological disorders. We propose that fine-tuned control of mTOR signaling is essential for epidermal structural and functional integrity.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiaolei Ding,
| |
Collapse
|
15
|
Khezri R, Rusten TE. Autophagy power expands: fuse those cells! EMBO J 2022; 41:e111424. [PMID: 35561082 PMCID: PMC9194791 DOI: 10.15252/embj.2022111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
The lysosomal degradation pathway of autophagy depends on a set of evolutionarily conserved autophagy-related molecules (ATGs) bestowed with the power to direct membrane trafficking and biology. In this issue of EMBO Journal, Kakanj P et al reveal a surprising role for the autophagy machinery in cell fusion (Kakanj et al, 2022). Autophagy is physiologically required for cell syncytium formation through dismantling the lateral plasma membrane during wound healing, and unchecked autophagy can drive cell fusion in epithelial tissues without compromising epithelial integrity.
Collapse
Affiliation(s)
- Rojyar Khezri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Ghosh S, Leng W, Wilsch-Bräuninger M, Barrera-Velázquez M, Léopold P, Eaton S. A local insulin reservoir in Drosophila alpha cell homologs ensures developmental progression under nutrient shortage. Curr Biol 2022; 32:1788-1797.e5. [PMID: 35316653 DOI: 10.1016/j.cub.2022.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Insulin/insulin-like growth factor (IGF) signaling (IIS) controls many aspects of development and physiology. In Drosophila, a conserved family of insulin-like peptides called Dilps is produced by brain neurosecretory cells, and it regulates organismal growth and developmental timing. To accomplish these systemic functions, the Dilps are secreted into the general circulation, and they signal to peripheral tissues in an endocrine fashion. Here, we describe the local uptake and storage of Dilps in the corpora cardiaca (CC), an endocrine organ composed of alpha cell homologs known to produce the glucagon-like adipokinetic hormone (AKH). We show that Dilp uptake by the CC relies on the expression of an IGF-binding protein called ImpL2. Following their uptake, immunogold staining demonstrates that Dilps are co-packaged with AKH in dense-core vesicles for secretion. In response to nutrient shortage, this specific Dilp reservoir is released and activates IIS in a paracrine manner in the prothoracic gland. This stimulates the production of the steroid hormone ecdysone and initiates entry into pupal development. We therefore uncover a sparing mechanism whereby insulin stores in CC serve to locally activate IIS and the production of ecdysone in the PG, accelerating developmental progression in adverse food conditions.
Collapse
Affiliation(s)
- Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mariana Barrera-Velázquez
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, Inserm U934, 26 Rue d'Ulm, 75005 Paris, France.
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
17
|
Kakanj P, Bhide S, Moussian B, Leptin M. Autophagy-mediated plasma membrane removal promotes the formation of epithelial syncytia. EMBO J 2022; 41:e109992. [PMID: 35262206 PMCID: PMC9194749 DOI: 10.15252/embj.2021109992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Epithelial wound healing in Drosophila involves the formation of multinucleate cells surrounding the wound. We show that autophagy, a cellular degradation process often deployed in stress responses, is required for the formation of a multinucleated syncytium during wound healing, and that autophagosomes that appear near the wound edge acquire plasma membrane markers. In addition, uncontrolled autophagy in the unwounded epidermis leads to the degradation of endo‐membranes and the lateral plasma membrane, while apical and basal membranes and epithelial barrier function remain intact. Proper functioning of TORC1 is needed to prevent destruction of the larval epidermis by autophagy, in a process that depends on phagophore initiation and expansion but does not require autophagosomes fusion with lysosomes. Autophagy induction can also affect other sub‐cellular membranes, as shown by its suppression of experimentally induced laminopathy‐like nuclear defects. Our findings reveal a function for TORC1‐mediated regulation of autophagy in maintaining membrane integrity and homeostasis in the epidermis and during wound healing.
Collapse
Affiliation(s)
- Parisa Kakanj
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sourabh Bhide
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Faculty of Biosciences, Collaboration for Joint PhD degree between EMBL and Heidelberg University, Heidelberg, Germany
| | | | - Maria Leptin
- Institute for Genetics, University of Cologne, Cologne, Germany.,Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Sun S, Zhang L, Liu J, Li H. Insulin Topical Application for Wound Healing in Nondiabetic Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9785466. [PMID: 34840600 PMCID: PMC8616663 DOI: 10.1155/2021/9785466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Low-cost and safe strategies to improve wound healing will be of great social and economic value. The goal of this pilot clinical trial is aimed at analyzing how effective insulin therapy is at healing wounds in nondiabetic people. METHODS In this protocol research, 346 individuals were included. Patients were divided as 2 groups at random: experimental patients were given a ten-unit answer. For each 10 cm2 of wound, insulin was injected in solution with 1 mL 0.9 percent saline, whereas the control group got a standard dressing with normal saline. RESULTS During the therapy period, no adverse effects were reported. After insulin therapy, no substantial insulin-related side effects were reduced. After 10 days of therapy, the experimental group's granulation tissue coverage rate and thickness were considerably improved as compared to control. Furthermore, a momentous difference in the occurrence of wound bleeding and suppurative wounds between the two groups (P = 0.05). CONCLUSION The results of this pilot research suggest that insulin injections could harmless and effective alternative therapy for wound healing in nondiabetic individuals and that larger, placebo-controlled trials are needed to evaluate effectiveness and safety of insulin treatment in wound healing patients.
Collapse
Affiliation(s)
- Shudong Sun
- Department of Burn and Wound Repair, Weifang People's Hospital, Weifang, Shandong, China
| | - Lei Zhang
- Department of Burns and Plastic Surgery, Binzhou People's Hospital Binzhou, Shandong, China
| | - Jun Liu
- Department of Dermatology, Sunshine Union Hospital, Weifang, Shandong, China
| | - Huiling Li
- Department of Burn and Wound Repair Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
19
|
Tsai CR, Wang Y, Jacobson A, Sankoorikkal N, Chirinos JD, Burra S, Makthal N, Kumaraswami M, Galko MJ. Pvr and distinct downstream signaling factors are required for hemocyte spreading and epidermal wound closure at Drosophila larval wound sites. G3-GENES GENOMES GENETICS 2021; 12:6423993. [PMID: 34751396 PMCID: PMC8728012 DOI: 10.1093/g3journal/jkab388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022]
Abstract
Tissue injury is typically accompanied by inflammation. In Drosophila melanogaster larvae, wound-induced inflammation involves adhesive capture of hemocytes at the wound surface followed by hemocyte spreading to assume a flat, lamellar morphology. The factors that mediate this cell spreading at the wound site are not known. Here, we discover a role for the platelet-derived growth factor/vascular endothelial growth factor-related receptor (Pvr) and its ligand, Pvf1, in blood cell spreading at the wound site. Pvr and Pvf1 are required for spreading in vivo and in an in vitro spreading assay where spreading can be directly induced by Pvf1 application or by constitutive Pvr activation. In an effort to identify factors that act downstream of Pvr, we performed a genetic screen in which select candidates were tested to determine if they could suppress the lethality of Pvr overexpression in the larval epidermis. Some of the suppressors identified are required for epidermal wound closure (WC), another Pvr-mediated wound response, some are required for hemocyte spreading in vitro, and some are required for both. One of the downstream factors, Mask, is also required for efficient wound-induced hemocyte spreading in vivo. Our data reveal that Pvr signaling is required for wound responses in hemocytes (cell spreading) and defines distinct downstream signaling factors that are required for either epidermal WC or hemocyte spreading.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yan Wang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Alec Jacobson
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Niki Sankoorikkal
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Josue D Chirinos
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Sirisha Burra
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Nishanth Makthal
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Muthiah Kumaraswami
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Michael J Galko
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States.,Genetics & Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
20
|
From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control. PLoS Comput Biol 2021; 17:e1009543. [PMID: 34723960 PMCID: PMC8601605 DOI: 10.1371/journal.pcbi.1009543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Information flow within and between cells depends significantly on calcium (Ca2+) signaling dynamics. However, the biophysical mechanisms that govern emergent patterns of Ca2+ signaling dynamics at the organ level remain elusive. Recent experimental studies in developing Drosophila wing imaginal discs demonstrate the emergence of four distinct patterns of Ca2+ activity: Ca2+ spikes, intercellular Ca2+ transients, tissue-level Ca2+ waves, and a global “fluttering” state. Here, we used a combination of computational modeling and experimental approaches to identify two different populations of cells within tissues that are connected by gap junction proteins. We term these two subpopulations “initiator cells,” defined by elevated levels of Phospholipase C (PLC) activity, and “standby cells,” which exhibit baseline activity. We found that the type and strength of hormonal stimulation and extent of gap junctional communication jointly determine the predominate class of Ca2+ signaling activity. Further, single-cell Ca2+ spikes are stimulated by insulin, while intercellular Ca2+ waves depend on Gαq activity. Our computational model successfully reproduces how the dynamics of Ca2+ transients varies during organ growth. Phenotypic analysis of perturbations to Gαq and insulin signaling support an integrated model of cytoplasmic Ca2+ as a dynamic reporter of overall tissue growth. Further, we show that perturbations to Ca2+ signaling tune the final size of organs. This work provides a platform to further study how organ size regulation emerges from the crosstalk between biochemical growth signals and heterogeneous cell signaling states. Calcium (Ca2+) is a universal second messenger that regulates a myriad of cellular processes such as cell division, cell proliferation and apoptosis. Multiple patterns of Ca2+ signaling including single-cell spikes, multicellular Ca2+ transients, large-scale Ca2+ waves, and global “fluttering” have been observed in epithelial systems during organ development. Key molecular players and biophysical mechanisms involved in formation of these patterns during organ development are not well understood. In this work, we developed a generalized multicellular model of Ca2+ that captures all the key categories of Ca2+ activity as a function of key hormonal signals. Integration of model predictions and experiments reveals two subclasses of cell populations and demonstrates that Ca2+ signaling activity at the organ scale is defined by a general decrease in gap junction communication as an organ grows. Our experiments also reveal that a “goldilocks zone” of optimal Ca2+ activity is required to achieve optimal growth at the organ level.
Collapse
|
21
|
Ding X, Kakanj P, Leptin M, Eming SA. Regulation of the Wound Healing Response during Aging. J Invest Dermatol 2021; 141:1063-1070. [DOI: 10.1016/j.jid.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
|
22
|
Wagner C, Uliczka K, Bossen J, Niu X, Fink C, Thiedmann M, Knop M, Vock C, Abdelsadik A, Zissler UM, Isermann K, Garn H, Pieper M, Wegmann M, Koczulla AR, Vogelmeier CF, Schmidt-Weber CB, Fehrenbach H, König P, Silverman N, Renz H, Pfefferle P, Heine H, Roeder T. Constitutive immune activity promotes JNK- and FoxO-dependent remodeling of Drosophila airways. Cell Rep 2021; 35:108956. [PMID: 33826881 DOI: 10.1016/j.celrep.2021.108956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 01/07/2023] Open
Abstract
Extensive remodeling of the airways is a major characteristic of chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). To elucidate the importance of a deregulated immune response in the airways for remodeling processes, we established a matching Drosophila model. Here, triggering the Imd (immune deficiency) pathway in tracheal cells induced organ-wide remodeling. This structural remodeling comprises disorganization of epithelial structures and comprehensive epithelial thickening. We show that these structural changes do not depend on the Imd pathway's canonical branch terminating on nuclear factor κB (NF-κB) activation. Instead, activation of a different segment of the Imd pathway that branches off downstream of Tak1 and comprises activation of c-Jun N-terminal kinase (JNK) and forkhead transcription factor of the O subgroup (FoxO) signaling is necessary and sufficient to mediate the observed structural changes of the airways. Our findings imply that targeting JNK and FoxO signaling in the airways could be a promising strategy to interfere with disease-associated airway remodeling processes.
Collapse
Affiliation(s)
- Christina Wagner
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Karin Uliczka
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Division of Innate Immunity, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Judith Bossen
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Xiao Niu
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Christine Fink
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Marcus Thiedmann
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Mirjam Knop
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Christina Vock
- Division of Experimental Pneumology, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Ahmed Abdelsadik
- Zoology, Aswan University, Aswan 81528, Egypt; Molecular Biotechnology Program, Faculty of Advanced Basic Sciences, Galala University, 43552 New Galala, Egypt
| | - Ulrich M Zissler
- Center of Allergy and Environment (ZAUM), Technical University Munich and Helmholtz Center Munich, German Research Center for Environmental Health, 80802 Munich, Germany; CPC-M, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kerstin Isermann
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Mario Pieper
- University Lübeck, Anatomical Institute, 23538 Lübeck, Germany
| | - Michael Wegmann
- Division of Asthma Exacerbation & Regulation, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Andreas R Koczulla
- Pulmonary and Critical Care Medicine, Department of Medicine, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Claus F Vogelmeier
- Pulmonary and Critical Care Medicine, Department of Medicine, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University Munich and Helmholtz Center Munich, German Research Center for Environmental Health, 80802 Munich, Germany; CPC-M, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Peter König
- University Lübeck, Anatomical Institute, 23538 Lübeck, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Neil Silverman
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Harald Renz
- Molecular Diagnostics, Institute of Laboratory Medicine and Pathobiochemistry, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Petra Pfefferle
- Comprehensive Biobank Marburg, University Medical Center Giessen and Marburg, Medical Faculty, Philipps University Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Holger Heine
- Division of Innate Immunity, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Thomas Roeder
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.
| |
Collapse
|
23
|
Williams MC, Patel JH, Kakebeen AD, Wills AE. Nutrient availability contributes to a graded refractory period for regeneration in Xenopus tropicalis. Dev Biol 2021; 473:59-70. [PMID: 33484704 DOI: 10.1016/j.ydbio.2021.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/17/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
Xenopus tadpoles are a unique model for regeneration in that they exhibit two distinct phases of age-specific regenerative competence. In Xenopus laevis, young tadpoles fully regenerate following major injuries such as tail transection, then transiently lose regenerative competence during the "refractory period" from stages 45-47. Regenerative competence is then regained in older tadpoles before being permanently lost during metamorphosis. Here we show that a similar refractory period exists in X. tropicalis. Notably, tadpoles lose regenerative competence gradually in X. tropicalis, with full regenerative competence lost at stage 47. We find that the refractory period coincides closely with depletion of maternal yolk stores and the onset of independent feeding, and so we hypothesized that it might be caused in part by nutrient stress. In support of this hypothesis, we find that cell proliferation declines throughout the tail as the refractory period approaches. When we block nutrient mobilization by inhibiting mTOR signaling, we find that tadpole growth and regeneration are reduced, while yolk stores persist. Finally, we are able to restore regenerative competence and cell proliferation during the refractory period by abundantly feeding tadpoles. Our study argues that nutrient stress contributes to lack of regenerative competence and introduces the X. tropicalis refractory period as a valuable new model for interrogating how metabolic constraints inform regeneration.
Collapse
Affiliation(s)
| | - Jeet H Patel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Anneke D Kakebeen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Mieczkowski M, Mrozikiewicz-Rakowska B, Siwko T, Bujalska-Zadrozny M, de Corde-Skurska A, Wolinska R, Gasinska E, Grzela T, Foltynski P, Kowara M, Mieczkowska Z, Czupryniak L. Insulin, but Not Metformin, Supports Wound Healing Process in Rats with Streptozotocin-Induced Diabetes. Diabetes Metab Syndr Obes 2021; 14:1505-1517. [PMID: 33854349 PMCID: PMC8039538 DOI: 10.2147/dmso.s296287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Optimal glycemic control is crucial for proper wound healing in patients with diabetes. However, it is not clear whether other antidiabetic drugs support wound healing in mechanisms different from the normalization of blood glucose control. We assessed the effect of insulin and metformin administration on the wound healing process in rats with streptozotocin-induced diabetes. METHODS The study was conducted on 200 male Wistar rats with streptozotocin-induced diabetes. In the last phase of the study, 45 rats, with the most stable glucose levels in the range of 350-500 mg/dL, were divided into three groups: group I received human non-protamine insulin subcutaneously (5 IU/kg body mass) once a day, group II received metformin intragastrically (500 mg/kg b.m.), and group III (control) was given saline subcutaneously. After 14 days of antidiabetic treatment, a 2 cm × 2 cm thin layer of skin was cut from each rat's dorsum and a 4 cm disk with a hole in its center was sewn in to stabilize the skin and standardize the healing process. The wound healing process was followed up for 9 days, with assessment every 3 days. Biopsy samples were subjected to hematoxylin and eosin staining and immunohistochemical assays. RESULTS Analysis of variance revealed significant influence of treatment type (insulin, control, or metformin) on the relative change in wound surface area. The wound healing process in rats treated with insulin was more effective than in the metformin and control groups. Wound tissue samples taken from the insulin-treated animals presented significantly lower levels of inflammatory infiltration. Immunohistochemical assessment showed the greatest density of centers of proliferation Ki-67 in insulin-treated animals. CONCLUSION These results suggest that an insulin-based treatment is more beneficial than metformin, in terms of accelerating the wound healing process in an animal model of streptozocin-induced diabetes.
Collapse
Affiliation(s)
- Mateusz Mieczkowski
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Beata Mrozikiewicz-Rakowska
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
- Correspondence: Beata Mrozikiewicz-Rakowska Department of Diabetology and Internal Medicine, Medical University of Warsaw, Poland ul. Banacha 1A, Warsaw, 02-097, PolandTel +48 600 311 399Fax +48225992832 Email
| | - Tomasz Siwko
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Renata Wolinska
- Department of Pharmacodynamics, Medical University of Warsaw, Warsaw, Poland
| | - Emilia Gasinska
- Department of Pharmacodynamics, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Grzela
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Foltynski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Michal Kowara
- Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Mieczkowska
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Czupryniak
- Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Nakamura M, Verboon JM, Allen TE, Abreu-Blanco MT, Liu R, Dominguez ANM, Delrow JJ, Parkhurst SM. Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. PLoS Genet 2020; 16:e1009186. [PMID: 33306674 PMCID: PMC7758051 DOI: 10.1371/journal.pgen.1009186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/23/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023] Open
Abstract
Cells are exposed to frequent mechanical and/or chemical stressors that can compromise the integrity of the plasma membrane and underlying cortical cytoskeleton. The molecular mechanisms driving the immediate repair response launched to restore the cell cortex and circumvent cell death are largely unknown. Using microarrays and drug-inhibition studies to assess gene expression, we find that initiation of cell wound repair in the Drosophila model is dependent on translation, whereas transcription is required for subsequent steps. We identified 253 genes whose expression is up-regulated (80) or down-regulated (173) in response to laser wounding. A subset of these genes were validated using RNAi knockdowns and exhibit aberrant actomyosin ring assembly and/or actin remodeling defects. Strikingly, we find that the canonical insulin signaling pathway controls actin dynamics through the actin regulators Girdin and Chickadee (profilin), and its disruption leads to abnormal wound repair. Our results provide new insight for understanding how cell wound repair proceeds in healthy individuals and those with diseases involving wound healing deficiencies.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey M. Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Tessa E. Allen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Maria Teresa Abreu-Blanco
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Raymond Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Andrew N. M. Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jeffrey J. Delrow
- Genomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| |
Collapse
|
26
|
Woodling NS, Rajasingam A, Minkley LJ, Rizzo A, Partridge L. Independent glial subtypes delay development and extend healthy lifespan upon reduced insulin-PI3K signalling. BMC Biol 2020; 18:124. [PMID: 32928209 PMCID: PMC7490873 DOI: 10.1186/s12915-020-00854-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The increasing age of global populations highlights the urgent need to understand the biological underpinnings of ageing. To this end, inhibition of the insulin/insulin-like signalling (IIS) pathway can extend healthy lifespan in diverse animal species, but with trade-offs including delayed development. It is possible that distinct cell types underlie effects on development and ageing; cell-type-specific strategies could therefore potentially avoid negative trade-offs when targeting diseases of ageing, including prevalent neurodegenerative diseases. The highly conserved diversity of neuronal and non-neuronal (glial) cell types in the Drosophila nervous system makes it an attractive system to address this possibility. We have thus investigated whether IIS in distinct glial cell populations differentially modulates development and lifespan in Drosophila. RESULTS We report here that glia-specific IIS inhibition, using several genetic means, delays development while extending healthy lifespan. The effects on lifespan can be recapitulated by adult-onset IIS inhibition, whereas developmental IIS inhibition is dispensable for modulation of lifespan. Notably, the effects we observe on both lifespan and development act through the PI3K branch of the IIS pathway and are dependent on the transcription factor FOXO. Finally, IIS inhibition in several glial subtypes can delay development without extending lifespan, whereas the same manipulations in astrocyte-like glia alone are sufficient to extend lifespan without altering developmental timing. CONCLUSIONS These findings reveal a role for distinct glial subpopulations in the organism-wide modulation of development and lifespan, with IIS in astrocyte-like glia contributing to lifespan modulation but not to developmental timing. Our results enable a more complete picture of the cell-type-specific effects of the IIS network, a pathway whose evolutionary conservation in humans make it tractable for therapeutic interventions. Our findings therefore underscore the necessity for cell-type-specific strategies to optimise interventions for the diseases of ageing.
Collapse
Affiliation(s)
- Nathaniel S Woodling
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Arjunan Rajasingam
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Lucy J Minkley
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Alberto Rizzo
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany.
| |
Collapse
|
27
|
Shao J, Wang L, Shao X, Liu M. Dietary Different Replacement Levels of Fishmeal by Fish Silage Could Influence Growth of Litopenaeus vannamei by Regulating mTOR at Transcriptional Level. Front Physiol 2020; 11:359. [PMID: 32477153 PMCID: PMC7232572 DOI: 10.3389/fphys.2020.00359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Fish silage (FS) has been confirmed as a high-quality feed ingredient because of its balanced nutrition, low cost, and environmental friendliness. In the present study, we evaluated the performance of replacing fishmeal by FS in the diet of white shrimp, Litopenaeus vannamei. Five isonitrogenous (410 g kg-1) and isolipidic (75 g kg-1) diets were formulated with replacement of fishmeal by 0% (FM), 25% (FS25%), 50% (FS50%), 75% (FS75%), and 100% (FS100%) FS. After an 8-week trial, shrimps fed low FS diets (FM and FS25%) had significantly higher final weight (FW), weight gain (WG), and specific growth ratio (SGR) (P < 0.05). No significant differences were found in body composition and most antioxidant enzyme activities of all groups (P > 0.05). Compared to high FS groups (FS75% and FS100%), low FS replacement levels (0 and 25%) had enhanced trypsin activity. And trypsin transcriptional level presented a similar trend with trypsin activity. In terms of intestinal histopathology, no obvious histological damage was observed in the intestine of all groups. tor and s6k of low replacement level groups (FM and FS25%) were significantly upregulated (P < 0.05), which indicated activation of mammalian target of rapamycin (mTOR) signaling pathway in low FS groups at transcriptional level. The enhanced performances of growth and mTOR signaling pathway in low FS groups (FM and FS25%) provided us some insights into the regulation mechanism of nutrient signal on growth. Based on the above, dietary FS could influence the growth of shrimp by regulating mTOR at the transcriptional level, and FS is a potential substitute of fishmeal in shrimp feed.
Collapse
Affiliation(s)
- Jianchun Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lei Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuqing Shao
- Shandong Cigna Detection Technology Co., Ltd., Qingdao, China
| | - Mei Liu
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
28
|
Lund-Ricard Y, Cormier P, Morales J, Boutet A. mTOR Signaling at the Crossroad between Metazoan Regeneration and Human Diseases. Int J Mol Sci 2020; 21:E2718. [PMID: 32295297 PMCID: PMC7216262 DOI: 10.3390/ijms21082718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.
Collapse
Affiliation(s)
| | | | | | - Agnès Boutet
- Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), 29680 Roscoff, France; (Y.L.-R.); (P.C.); (J.M.)
| |
Collapse
|
29
|
Perez-Gomez R, Magnin V, Mihajlovic Z, Slaninova V, Krejci A. Downregulation of respiratory complex I mediates major signalling changes triggered by TOR activation. Sci Rep 2020; 10:4401. [PMID: 32157127 PMCID: PMC7064613 DOI: 10.1038/s41598-020-61244-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunctions belong amongst the most common metabolic diseases but the signalling networks that lead to the manifestation of a disease phenotype are often not well understood. We identified the subunits of respiratory complex I, III and IV as mediators of major signalling changes during Drosophila wing disc development. Their downregulation in larval wing disc leads to robust stimulation of TOR activity, which in turn orchestrates a complex downstream signalling network. Specifically, after downregulation of the complex I subunit ND-49 (mammalian NDUFS2), TOR activates JNK to induce cell death and ROS production essential for the stimulation of compensatory apoptosis-induced proliferation within the tissue. Additionally, TOR upregulates Notch and JAK/STAT signalling and it directs glycolytic switch of the target tissue. Our results highlight the central role of TOR signalling in mediating the complex response to mitochondrial respiratory dysfunction and they provide a rationale why the disease symptoms associated with respiratory dysfunctions are often alleviated by mTOR inhibitors.
Collapse
Affiliation(s)
- Raquel Perez-Gomez
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Valentina Magnin
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Zorana Mihajlovic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Vera Slaninova
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Alena Krejci
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic. .,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| |
Collapse
|
30
|
Kakanj P, Eming SA, Partridge L, Leptin M. Long-term in vivo imaging of Drosophila larvae. Nat Protoc 2020; 15:1158-1187. [DOI: 10.1038/s41596-019-0282-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
|
31
|
Kwon SY, Massey K, Watson MA, Hussain T, Volpe G, Buckley CD, Nicolaou A, Badenhorst P. Oxidised metabolites of the omega-6 fatty acid linoleic acid activate dFOXO. Life Sci Alliance 2020; 3:3/2/e201900356. [PMID: 31992650 PMCID: PMC6988086 DOI: 10.26508/lsa.201900356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023] Open
Abstract
Obesity-induced inflammation, or meta-inflammation, plays key roles in metabolic syndrome and is a significant risk factor in diabetes and cardiovascular disease. To investigate causal links between obesity, meta-inflammation, and insulin signaling we established a Drosophila model to determine how elevated dietary fat and changes in the levels and balance of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) influence inflammation. We observe negligible effect of saturated fatty acid on inflammation but marked enhancement or suppression by omega-6 and omega-3 PUFAs, respectively. Using combined lipidomic and genetic analysis, we show omega-6 PUFA enhances meta-inflammation by producing linoleic acid-derived lipid mediator 9-hydroxy-octadecadienoic acid (9-HODE). Transcriptome analysis reveals 9-HODE functions by regulating FOXO family transcription factors. We show 9-HODE activates JNK, triggering FOXO nuclear localisation and chromatin binding. FOXO TFs are important transducers of the insulin signaling pathway that are normally down-regulated by insulin. By activating FOXO, 9-HODE could antagonise insulin signaling providing a molecular conduit linking changes in dietary fatty acid balance, meta-inflammation, and insulin resistance.
Collapse
Affiliation(s)
- So Yeon Kwon
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Karen Massey
- Bradford School of Pharmacy, University of Bradford, Bradford, UK
| | - Mark A Watson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Tayab Hussain
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Giacomo Volpe
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, Centre for Translational Inflammation Research, Queen Elizabeth Hospital, Edgbaston, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anna Nicolaou
- Bradford School of Pharmacy, University of Bradford, Bradford, UK.,Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester, UK
| | - Paul Badenhorst
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|
32
|
Wang J, Xu J. Effects of Topical Insulin on Wound Healing: A Review of Animal and Human Evidences. Diabetes Metab Syndr Obes 2020; 13:719-727. [PMID: 32214835 PMCID: PMC7078652 DOI: 10.2147/dmso.s237294] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex biological process that repairs damaged tissues and restores skin integrity. Insulin, a potent factor of wound healing, has been reported for nearly a century to induce rapid recovery of various wounds, as shown by numerous human and animal studies. Although many studies have addressed the healing effect of systemic insulin on burn wound, only few have investigated the efficacy of topical insulin. Thus, this study aimed to review evidence of the effects of topical insulin on wound healing, including on diabetic and non-diabetic wounds. The presented animal and clinical studies support that topical insulin improves wound healing through several mechanisms without causing side effects. Additionally, various wound dressings accelerate the wound healing with controlled and sustained delivery of bioactive insulin. Therefore, topical insulin has been appreciated in field of wound healing, and further studies are needed to improve our understanding of the role of insulin in the healing of various wounds.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Jixiong Xu Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng St., Nanchang, Jiangxi Province330006, People’s Republic of ChinaTel +86 13307086069 Email
| |
Collapse
|
33
|
Tsai CR, Galko MJ. Casein kinase 1α decreases β-catenin levels at adherens junctions to facilitate wound closure in Drosophila larvae. Development 2019; 146:dev175133. [PMID: 31511254 PMCID: PMC6826034 DOI: 10.1242/dev.175133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Skin wound repair is essential to restore barrier function and prevent infection after tissue damage. Wound-edge epidermal cells migrate as a sheet to close the wound. However, it is still unclear how cell-cell junctions are regulated during wound closure (WC). To study this, we examined adherens junctions during WC in Drosophila larvae. β-Catenin is reduced at the lateral cell-cell junctions of wound-edge epidermal cells in the early healing stages. Destruction complex components, including Ck1α, GSK3β and β-TrCP, suppress β-catenin levels in the larval epidermis. Tissue-specific RNAi targeting these genes also caused severe WC defects. The Ck1αRNAi -induced WC defect is related to adherens junctions because loss of either β-catenin or E-cadherin significantly rescued this WC defect. In contrast, TCFRNAi does not rescue the Ck1αRNAi -induced WC defect, suggesting that Wnt signaling is not related to this defect. Direct overexpression of β-catenin recapitulates most of the features of Ck1α reduction during wounding. Finally, loss of Ck1α also blocked junctional E-cadherin reduction around the wound. Our results suggest that Ck1α and the destruction complex locally regulate cell adhesion to facilitate efficient wound repair.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael J Galko
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics & Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
34
|
Ding X, Willenborg S, Bloch W, Wickström SA, Wagle P, Brodesser S, Roers A, Jais A, Brüning JC, Hall MN, Rüegg MA, Eming SA. Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. J Allergy Clin Immunol 2019; 145:283-300.e8. [PMID: 31401286 DOI: 10.1016/j.jaci.2019.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. OBJECTIVE Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. METHODS Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [RicEKO] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in RicEKO and control mice. RESULTS RicEKO newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in RicEKO mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. CONCLUSION Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.
Collapse
Affiliation(s)
- Xiaolei Ding
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany; Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Prerana Wagle
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alexander Jais
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | | | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:344-365. [PMID: 29981800 DOI: 10.1016/j.addr.2018.06.019] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/28/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Cutaneous wound healing in adult mammals is a complex multi-step process involving overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodelling. Re-epithelialization describes the resurfacing of a wound with new epithelium. The cellular and molecular processes involved in the initiation, maintenance, and completion of epithelialization are essential for successful wound closure. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here, we focus on cellular mechanisms underlying keratinocyte migration and proliferation during epidermal closure. Inability to re-epithelialize is a clear indicator of chronic non-healing wounds, which fail to proceed through the normal phases of wound healing in an orderly and timely manner. This review summarizes the current knowledge regarding the management and treatment of acute and chronic wounds, with a focus on re-epithelialization, offering some insights into novel future therapies.
Collapse
|
36
|
Reuter H, Vogg MC, Serras F. Repair, regenerate and reconstruct: meeting the state-of-the-art. Development 2019; 146:146/9/dev176974. [PMID: 31068375 DOI: 10.1242/dev.176974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023]
Abstract
The seventh EMBO meeting on the Molecular and Cellular Basis of Regeneration and Tissue Repair took place in Valletta, Malta, in September 2018. Researchers from all over the world gathered together with the aim of sharing the latest advances in wound healing, repair and regeneration. The meeting covered a wide range of regeneration models and tissues, identification of regulatory genes and signals, and striking advances toward regenerative therapies. Here, we report some of the exciting topics discussed during this conference, highlighting important discoveries in regeneration and the perspectives for regenerative medicine.
Collapse
Affiliation(s)
- Hanna Reuter
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena 07745, Germany
| | | | - Florenci Serras
- Department of Genetics, Microbiology, and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
37
|
Tsai CR, Wang Y, Galko MJ. Crawling wounded: molecular genetic insights into wound healing from Drosophila larvae. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:479-489. [PMID: 29938760 PMCID: PMC6352908 DOI: 10.1387/ijdb.180085mg] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For animals, injury is inevitable. Because of this, organisms possess efficient wound healing mechanisms that can repair damaged tissues. However, the molecular and genetic mechanisms by which epidermal repair is accomplished remain poorly defined. Drosophila has become a valuable model to study epidermal wound healing because of the comprehensive genetic toolkit available in this organism and the similarities of wound healing processes between Drosophila and vertebrates. Other reviews in this Special Issue cover wound healing assays and pathways in Drosophila embryos, pupae and adults, as well as regenerative processes that occur in tissues such as imaginal discs and the gut. In this review, we will focus on the molecular/genetic control of wound-induced cellular processes such as inflammation, cell migration and epithelial cell-cell fusion in Drosophila larvae. We will give a brief overview of the three wounding assays, pinch, puncture, and laser ablation, and the cellular responses that ensue following wounding. We will highlight the actin regulators, signaling pathways and transcriptional mediators found so far to be involved in larval epidermal wound closure and what is known about how they act. We will also discuss wound-induced epidermal cell-cell fusion and possible directions for future research in this exciting system.
Collapse
Affiliation(s)
- Chang-Ru Tsai
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
38
|
Miao C, Li Y, Zhang X. The functions of FoxO transcription factors in epithelial wound healing. Australas J Dermatol 2018; 60:105-109. [PMID: 30450624 DOI: 10.1111/ajd.12952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chaoyang Miao
- Peking University China–Japan Friendship School of Clinical Medicine Beijing China
| | - Yunpeng Li
- Trinity‐Pawling School Pawling New York USA
| | | |
Collapse
|
39
|
Ghiglione C, Jouandin P, Cérézo D, Noselli S. The Drosophila insulin pathway controls Profilin expression and dynamic actin-rich protrusions during collective cell migration. Development 2018; 145:dev.161117. [PMID: 29980565 DOI: 10.1242/dev.161117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/26/2018] [Indexed: 01/20/2023]
Abstract
Understanding how different cell types acquire their motile behaviour is central to many normal and pathological processes. Drosophila border cells represent a powerful model for addressing this issue and to specifically decipher the mechanisms controlling collective cell migration. Here, we identify the Drosophila Insulin/Insulin-like growth factor signalling (IIS) pathway as a key regulator in controlling actin dynamics in border cells, independently of its function in growth control. Loss of IIS activity blocks the formation of actin-rich long cellular extensions that are important for the delamination and the migration of the invasive cluster. We show that IIS specifically activates the expression of the actin regulator chickadee, the Drosophila homolog of Profilin, which is essential for promoting the formation of actin extensions and migration through the egg chamber. In this process, the transcription factor FoxO acts as a repressor of chickadee expression. Altogether, these results show that local activation of IIS controls collective cell migration through regulation of actin homeostasis and protrusion dynamics.
Collapse
Affiliation(s)
- Christian Ghiglione
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice 06108, France
| | - Patrick Jouandin
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice 06108, France
| | - Delphine Cérézo
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice 06108, France
| | - Stéphane Noselli
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice 06108, France
| |
Collapse
|
40
|
Muñoz-Soriano V, Belacortu Y, Sanz FJ, Solana-Manrique C, Dillon L, Suay-Corredera C, Ruiz-Romero M, Corominas M, Paricio N. Cbt modulates Foxo activation by positively regulating insulin signaling in Drosophila embryos. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30034-8. [PMID: 30055320 DOI: 10.1016/j.bbagrm.2018.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Abstract
In late Drosophila embryos, the epidermis exhibits a dorsal hole as a consequence of germ band retraction. It is sealed during dorsal closure (DC), a morphogenetic process in which the two lateral epidermal layers converge towards the dorsal midline and fuse. We previously demonstrated the involvement of the Cbt transcription factor in Drosophila DC. However its molecular role in the process remained obscure. In this study, we used genomic approaches to identify genes regulated by Cbt as well as its direct targets during late embryogenesis. Our results reveal a complex transcriptional circuit downstream of Cbt and evidence that it is functionally related with the Insulin/insulin-like growth factor signaling pathway. In this context, Cbt may act as a positive regulator of the pathway, leading to the repression of Foxo activity. Our results also suggest that the DC defects observed in cbt embryos could be partially due to Foxo overactivation and that a regulatory feedback loop between Foxo and Cbt may be operating in the DC context.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Yaiza Belacortu
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Luke Dillon
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Carmen Suay-Corredera
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain
| | - Marina Ruiz-Romero
- Departament de Genètica, Facultat de Biologia, and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica, Facultat de Biologia, and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universitat de València, 46100 Burjasot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
41
|
Weavers H, Franz A, Wood W, Martin P. Long-term In Vivo Tracking of Inflammatory Cell Dynamics Within Drosophila Pupae. J Vis Exp 2018:57871. [PMID: 29985351 PMCID: PMC6101747 DOI: 10.3791/57871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During the rapid inflammatory response to tissue damage, cells of the innate immune system are quickly recruited to the injury site. Once at the wound, innate immune cells perform a number of essential functions, such as fighting infection, clearing necrotic debris, and stimulating matrix deposition. In order to fully understand the diverse signaling events that regulate this immune response, it is crucial to observe the complex behaviors of (and interactions that occur between) multiple cell lineages in vivo, and in real-time, with the high spatio-temporal resolution. The optical translucency and the genetic tractability of Drosophila embryos have established Drosophila as an invaluable model to live-image and dissect fundamental aspects of inflammatory cell behavior, including mechanisms of developmental dispersal, clearance of apoptotic corpses and/or microbial pathogens, and recruitment to wounds. However, more recent work has now demonstrated that employing a much later stage in the Drosophila lifecycle - the Drosophila pupa - offers a number of distinct advantages, including improved RNAi efficiency, longer imaging periods, and significantly greater immune cell numbers. Here we describe a protocol for imaging wound repair and the associated inflammatory response at the high spatio-temporal resolution in live Drosophila pupae. To follow the dynamics of both re-epithelialization and inflammation, we use a number of specific in vivo fluorescent markers for both the epithelium and innate immune cells. We also demonstrate the effectiveness of photo-convertible fluorophores, such as Kaede, for following the specific immune cell subsets, to track their behavior as they migrate to, and resolve from, the injury site.
Collapse
Affiliation(s)
- Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol; School of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol;
| | - Anna Franz
- School of Biochemistry, Biomedical Sciences, University of Bristol
| | - Will Wood
- MRC Centre for Inflammation Research, University of Edinburgh, Queens Medical Research Institute
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences, University of Bristol; School of Physiology, Pharmacology, and Neuroscience, Biomedical Sciences, University of Bristol
| |
Collapse
|
42
|
Hellmann J, Sansbury BE, Wong B, Li X, Singh M, Nuutila K, Chiang N, Eriksson E, Serhan CN, Spite M. Biosynthesis of D-Series Resolvins in Skin Provides Insights into their Role in Tissue Repair. J Invest Dermatol 2018; 138:2051-2060. [PMID: 29559341 DOI: 10.1016/j.jid.2018.03.1498] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/16/2018] [Accepted: 03/09/2018] [Indexed: 12/23/2022]
Abstract
Cutaneous injury causes underlying tissue damage that must be quickly repaired to minimize exposure to pathogens and to restore barrier function. While the role of growth factors in tissue repair is established, the role of lipid mediators in skin repair has not been investigated extensively. Using a mass spectrometry-based lipid mediator metabolomics approach, we identified D-series resolvins and related pro-resolving lipid mediators during skin injury in mice and pigs. Differentiation of human epidermal keratinocytes increased expression of 15-lipoxygenase and stereospecific production of 17S-hydroxydocosahexaenoic acid, the common upstream biosynthetic marker and precursor of D-series resolvins. In human and pig skin, specific receptors for D-series resolvins were expressed in the epidermal layer and mice deficient in RvD1 receptor Alx/Fpr2 showed an endogenous defect in re-epithelialization. Topical application of D-series resolvins expedited re-epithelialization during skin injury and they enhanced migration of human epidermal keratinocytes in a receptor-dependent manner. The enhancement of re-epithelialization by RvD2 was lost in mice genetically deficient in its receptor and migration of keratinocytes stimulated with RvD2 was associated with activation of the PI3K-AKT-mTOR-S6 pathway, blockade of which prevented its pro-migratory actions. Collectively, these results demonstrate that resolvins have direct roles in the tissue repair program.
Collapse
Affiliation(s)
- Jason Hellmann
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian E Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Blenda Wong
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Li
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mansher Singh
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristo Nuutila
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elof Eriksson
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
43
|
Beati H, Peek I, Hordowska P, Honemann-Capito M, Glashauser J, Renschler FA, Kakanj P, Ramrath A, Leptin M, Luschnig S, Wiesner S, Wodarz A. The adherens junction-associated LIM domain protein Smallish regulates epithelial morphogenesis. J Cell Biol 2018; 217:1079-1095. [PMID: 29358210 PMCID: PMC5839775 DOI: 10.1083/jcb.201610098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 10/25/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cell–cell adhesion and cell shape are regulated at adherens junctions during embryonic morphogenesis. Beati et al. show that the Drosophila LIM domain protein Smallish interacts with Bazooka, Canoe, and Src42A at adherens junctions. Loss-of-function and gain-of-function phenotypes reveal a function for Smallish in regulation of actomyosin contractility and cell shape. In epithelia, cells adhere to each other in a dynamic fashion, allowing the cells to change their shape and move along each other during morphogenesis. The regulation of adhesion occurs at the belt-shaped adherens junction, the zonula adherens (ZA). Formation of the ZA depends on components of the Par–atypical PKC (Par-aPKC) complex of polarity regulators. We have identified the Lin11, Isl-1, Mec-3 (LIM) protein Smallish (Smash), the orthologue of vertebrate LMO7, as a binding partner of Bazooka/Par-3 (Baz), a core component of the Par-aPKC complex. Smash also binds to Canoe/Afadin and the tyrosine kinase Src42A and localizes to the ZA in a planar polarized fashion. Animals lacking Smash show loss of planar cell polarity (PCP) in the embryonic epidermis and reduced cell bond tension, leading to severe defects during embryonic morphogenesis of epithelial tissues and organs. Overexpression of Smash causes apical constriction of epithelial cells. We propose that Smash is a key regulator of morphogenesis coordinating PCP and actomyosin contractility at the ZA.
Collapse
Affiliation(s)
- Hamze Beati
- Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August-University Göttingen, Göttingen, Germany.,Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Irina Peek
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence - Cellular Stress Response in Aging-Associated Diseases, Cologne, Germany
| | - Paulina Hordowska
- Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Mona Honemann-Capito
- Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Jade Glashauser
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Parisa Kakanj
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Andreas Ramrath
- Institute for Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Leptin
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Luschnig
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Institute of Neurobiology, Cells-in-Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andreas Wodarz
- Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August-University Göttingen, Göttingen, Germany .,Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence - Cellular Stress Response in Aging-Associated Diseases, Cologne, Germany.,Institute for Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
44
|
A Complex Relationship between Immunity and Metabolism in Drosophila Diet-Induced Insulin Resistance. Mol Cell Biol 2017; 38:MCB.00259-17. [PMID: 29084810 DOI: 10.1128/mcb.00259-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022] Open
Abstract
Both systemic insulin resistance and tissue-specific insulin resistance have been described in Drosophila and are accompanied by many indicators of metabolic disease. The downstream mediators of insulin-resistant pathophysiology remain unclear. We analyzed insulin signaling in the fat body studying loss and gain of function. When expression of the sole Drosophila insulin receptor (InR) was reduced in larval fat bodies, animals exhibited developmental delay and reduced size in a diet-dependent manner. Fat body InR knockdown also led to reduced survival on high-sugar diets. To look downstream of InR at potential mediators of insulin resistance, transcriptome sequencing (RNA-seq) studies in insulin-resistant fat bodies revealed differential expression of genes, including those involved in innate immunity. Obesity-associated insulin resistance led to increased susceptibility of flies to infection, as in humans. Reduced innate immunity was dependent on fat body InR expression. The peptidoglycan recognition proteins (PGRPs) PGRP-SB2 and PGRP-SC2 were selected for further study based on differential expression studies. Downregulating PGRP-SB2 selectively in the fat body protected animals from the deleterious effects of overnutrition, whereas downregulating PGRP-SC2 produced InR-like phenotypes. These studies extend earlier work linking the immune and insulin signaling pathways and identify new targets of insulin signaling that could serve as potential drug targets to treat type 2 diabetes.
Collapse
|
45
|
Dye NA, Popović M, Spannl S, Etournay R, Kainmüller D, Ghosh S, Myers EW, Jülicher F, Eaton S. Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc. Development 2017; 144:4406-4421. [PMID: 29038308 DOI: 10.1242/dev.155069] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.
Collapse
Affiliation(s)
- Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Unité de Génétique et Physiologie de l'Audition UMRS 1120, Département de Neurosciences, Institut Pasteur, 75015 Paris, France
| | - Dagmar Kainmüller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Janelia Farm Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| | - Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany .,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany .,Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01309 Dresden, Germany
| |
Collapse
|
46
|
Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, Buchon N, Knaden M, Hansson BS. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun 2017; 8:265. [PMID: 28814724 PMCID: PMC5559524 DOI: 10.1038/s41467-017-00334-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/21/2017] [Indexed: 11/23/2022] Open
Abstract
Pathogens and parasites can manipulate their hosts to optimize their own fitness. For instance, bacterial pathogens have been shown to affect their host plants' volatile and non-volatile metabolites, which results in increased attraction of insect vectors to the plant, and, hence, to increased pathogen dispersal. Behavioral manipulation by parasites has also been shown for mice, snails and zebrafish as well as for insects. Here we show that infection by pathogenic bacteria alters the social communication system of Drosophila melanogaster. More specifically, infected flies and their frass emit dramatically increased amounts of fly odors, including the aggregation pheromones methyl laurate, methyl myristate, and methyl palmitate, attracting healthy flies, which in turn become infected and further enhance pathogen dispersal. Thus, olfactory cues for attraction and aggregation are vulnerable to pathogenic manipulation, and we show that the alteration of social pheromones can be beneficial to the microbe while detrimental to the insect host.Behavioral manipulation of host by pathogens has been observed in vertebrates, invertebrates, and plants. Here the authors show that in Drosophila, infection with pathogenic bacteria leads to increased pheromone release, which attracts healthy flies. This process benefits the pathogen since it enhances bacterial dispersal, but is detrimental to the host.
Collapse
Affiliation(s)
- Ian W Keesey
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Sarah Koerte
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Tom Retzke
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Aurélien Guillou
- Department of Entomology, Cornell University, 5124 Comstock Hall, Ithaca, NY, 14853, USA
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Nicolas Buchon
- Department of Entomology, Cornell University, 5124 Comstock Hall, Ithaca, NY, 14853, USA
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|