1
|
Tan X, Zhao R, Chen J, Yan Z, Sui X, Li H, Li Q, Du X, Liu Y, Yao S, Yang Y, Irwin DM, Li B, Zhang S. Integrative transcriptomic, proteomic and metabolomic analyses yields insights into muscle fiber type in cattle. Food Chem 2024; 468:142479. [PMID: 39706111 DOI: 10.1016/j.foodchem.2024.142479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Muscle fiber is an important factor in beef quality. Here, we compared fast-type longissimus dorsi muscle and slow-type psoas major muscle from cattle using transcriptomic, proteomic and metabolomic analyses. A total of 1717 differentially expressed genes (DEGs), 297 differentially abundant proteins (DAPs) and 193 differentially abundant metabolites (DAMs) were identified between LD and PM tissue, respectively. For verification, we selected 10 DEGs for qRT-PCR and 6 DAPs for western blotting, and showed they were consistent between the two approaches. GO and KEGG enrichment analyses revealed that some DEGs, DAPs and DAMs were enriched in muscle fiber type-associated GO terms and pathways. Many of them are involved in glycolysis, TCA and fatty acid metabolism. Integrated multi-omics analysis showed a correlation coefficient of 0.6244 between the transcriptome and proteome. This study provides a new understanding of molecular mechanisms involved in the determination of bovine muscle fiber type and meat quality.
Collapse
Affiliation(s)
- Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruixue Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Yan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Heling Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiao Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuehai Du
- Liaoning Agricultural Development Service Center, Shenyang 110032, China
| | - Yangzhi Liu
- Wellhope Foods Company Limited, Shenyang 110164, China
| | - Siming Yao
- Liaoning Agricultural Development Service Center, Shenyang 110032, China
| | - Ying Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Zhou Y, Liu X, Qi Z, Huang C, Yang L, Lin D. Lactate-induced metabolic remodeling and myofiber type transitions via activation of the Ca 2+-NFATC1 signaling pathway. J Cell Physiol 2024; 239:e31290. [PMID: 38686599 DOI: 10.1002/jcp.31290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Lactate can serve as both an energy substrate and a signaling molecule, exerting diverse effects on skeletal muscle physiology. Due to the apparently positive effects, it would be interesting to consider it as a sports supplement. However, the mechanism behind these effects are yet to be comprehensively understood. In this study, we observed that lactate administration could improve the ability of antifatigue, and we further found that lactate upregulated the expression of myosin heavy chain (MYHC I) and MYHC IIa, while downregulating the expression of MYHC IIb. Besides, transcriptomics and metabolomics revealed significant changes in the metabolic profile of gastrocnemius muscle following lactate administration. Furthermore, lactate enhanced the activities of metabolic enzymes, including HK, LDHB, IDH, SDM, and MDH, and promoted the expression of lactate transport-related proteins MCT1 and CD147, thereby improving the transport and utilization of lactate in both vivo and vitro. More importantly, lactate administration increased cellular Ca2+ concentration and facilitated nuclear translocation of nuclear factor of activated T cells (NFATC1) in myotubes, whereas inhibition of NFATC1 significantly attenuated the effects of lactate treatment on NFATC1 nuclear translocation and MyHC expression. Our results elucidate the ability of lactate to induce metabolic remodeling in skeletal muscle and promote myofiber-type transitions by activating the Ca2+-NFATC1 signaling pathway. This study is useful in exploring the potential of lactate as a nutritional supplement for skeletal muscle adaptation and contributing to a mechanistic understanding of the central role of lactate in exercise physiology.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xi Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhen Qi
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
K. C. R, Patel NR, Shenoy A, Scallan JP, Chiang MY, Galazo MJ, Meadows SM. Zmiz1 is a novel regulator of lymphatic endothelial cell gene expression and function. PLoS One 2024; 19:e0302926. [PMID: 38718095 PMCID: PMC11078365 DOI: 10.1371/journal.pone.0302926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of ZMIZ1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.
Collapse
Affiliation(s)
- Rajan K. C.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Nehal R. Patel
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Anoushka Shenoy
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
| | - Joshua P. Scallan
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Mark Y. Chiang
- Department of Internal Medicine, Division of Hematology-Oncology, Medical School, University of Michigan, Ann Arbor, MI, United States of America
| | - Maria J. Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| | - Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States of America
| |
Collapse
|
4
|
Simkin J, Aloysius A, Adam M, Safaee F, Donahue RR, Biswas S, Lakhani Z, Gensel JC, Thybert D, Potter S, Seifert AW. Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice. Dev Cell 2024; 59:496-516.e6. [PMID: 38228141 PMCID: PMC10922778 DOI: 10.1016/j.devcel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA.
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mike Adam
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Fatemeh Safaee
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Renée R Donahue
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Shishir Biswas
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Zohaib Lakhani
- Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - David Thybert
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Steven Potter
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
5
|
Metti S, Da Ros F, Toniato G, Cescon M, Bonaldo P. Native collagen VI delays early muscle stem cell differentiation. J Cell Sci 2024; 137:jcs261419. [PMID: 38224152 PMCID: PMC10911284 DOI: 10.1242/jcs.261419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Adult muscle stem cells (MuSCs) are critical for muscle homeostasis and regeneration, and their behavior relies on a finely regulated niche made of specific extracellular matrix (ECM) components and soluble factors. Among ECM proteins, collagen VI (Col6) influences the mechanical properties of the niche and, in turn, MuSC self-renewal capabilities. Here, we investigated whether Col6 can exert a direct function as a biochemical signal for regulating the stemness and differentiation of murine MuSCs and myoblasts. Native Col6, but not its pepsin-resistant fragment, counteracts the early differentiation of myogenic cells by reducing the expression of differentiation marker genes and preserving stemness features, with inhibition of the canonical Wnt pathway. Our data indicate that extracellular Col6 acts as a soluble ligand in delaying early myogenic differentiation by regulating intracellular signals involved in adult myogenesis.
Collapse
Affiliation(s)
- Samuele Metti
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Da Ros
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Giorgia Toniato
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Tan X, Liu K, He Y, Yan Z, Chen J, Zhao R, Sui X, Zhang J, Irwin DM, Zhang S, Li B. Succinylation proteomic analysis identified differentially expressed succinylation sites affecting porcine muscle fiber type function. Food Chem X 2023; 20:100962. [PMID: 38144777 PMCID: PMC10740141 DOI: 10.1016/j.fochx.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Muscle fiber type is a major factor in pork meat quality, however, the role of post-translational protein modifications, especially succinylation, in the regulation of muscle fiber type is not fully understood. Here we performed protein succinylation profiles of fast-type biceps femoris (BF) and slow-type soleus (SOL) muscles. A total of 4,221 succinylation sites were identified from these samples, of which 294 sites were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these succinylated proteins were mainly involved in glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Succinylation modification of the CRAT and RAB10 proteins was verified by co-immunoprecipitation. Protein-protein interaction (PPI) network analysis unveiled the interactions of these succinylated proteins that regulate pig myofiber type conversion. This investigation offers fresh perspectives into the molecular roles of protein succinylation in the regulation of pig myofiber type transformation and meat quality.
Collapse
Affiliation(s)
- Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Kaiqing Liu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518000, China
| | - Yu He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Yan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruixue Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Zhao S, Cao J, Sun Y, Zhou H, Zhu Q, Dai D, Zhan S, Guo J, Zhong T, Wang L, Li L, Zhang H. METTL3 Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating MEF2C mRNA Stability in a m 6A-Dependent Manner. Int J Mol Sci 2023; 24:14115. [PMID: 37762418 PMCID: PMC10531580 DOI: 10.3390/ijms241814115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The development of mammalian skeletal muscle is a highly complex process involving multiple molecular interactions. As a prevalent RNA modification, N6-methyladenosine (m6A) regulates the expression of target genes to affect mammalian development. Nevertheless, it remains unclear how m6A participates in the development of goat muscle. In this study, methyltransferase 3 (METTL3) was significantly enriched in goat longissimus dorsi (LD) tissue. In addition, the global m6A modification level and differentiation of skeletal muscle satellite cells (MuSCs) were regulated by METTL3. By performing mRNA-seq analysis, 8050 candidate genes exhibited significant changes in expression level after the knockdown of METTL3 in MuSCs. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that myocyte enhancer factor 2c (MEF2C) mRNA contained m6A modification. Further experiments demonstrated that METTL3 enhanced the differentiation of MuSCs by upregulating m6A levels and expression of MEF2C. Moreover, the m6A reader YTH N6-methyladenosine RNA binding protein C1 (YTHDC1) was bound and stabilized to MEF2C mRNA. The present study reveals that METTL3 enhances myogenic differentiation in MuSCs by regulating MEF2C and provides evidence of a post-transcriptional mechanism in the development of goat skeletal muscle.
Collapse
Affiliation(s)
- Sen Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Yanjin Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Helin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
O’Donnell A, Gonzalez BA, Mukherjee S, Wilson R, Alfieri CM, Swoboda CO, Millay DP, Zorn AM, Yutzey KE. Localized Prox1 Regulates Aortic Valve Endothelial Cell Diversity and Extracellular Matrix Stratification in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1478-1493. [PMID: 37381982 PMCID: PMC10528305 DOI: 10.1161/atvbaha.123.319424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Specialized valve endothelial cell (VEC) populations are localized oriented to blood flow in developing aortic and mitral valves, but their roles in valve development and disease are unknown. In the aortic valve (AoV), a population of VECs on the fibrosa side expresses the transcription factor Prox1 together with genes found in lymphatic ECs. In this study, we examine Prox1's role in regulating a lymphatic-like gene network and promoting VEC diversity required for the development of the stratified trilaminar extracellular matrix (ECM) of murine AoV leaflets. METHODS To determine whether disruption of Prox1 localization affects heart valve development, we generated mice (NFATc1enCre Prox1 gain-of-function) in which Prox1 is overexpressed on the ventricularis side of the AoV beginning in embryonic development. To identify potential targets of Prox1, we performed cleavage under targets and release using nuclease on wild-type and NFATc1enCre Prox1 gain-of-function AoVs with validation by colocalization in vivo using RNA in situ hybridization in NFATc1enCre Prox1 gain-of-function AoVs. Natural induction of Prox1 and target gene expression was evaluated in myxomatous AoVs in a mouse model of Marfan syndrome (Fbn1C1039G/+). RESULTS The overexpression of Prox1 is sufficient to cause enlargement of AoVs by postnatal day (P)0, as well as a decrease in ventricularis-specific gene expression and disorganized interstitial ECM layers at P7. We identified potential targets of Prox1 known to play roles in lymphatic ECs including Flt1, Efnb2, Egfl7, and Cx37. Ectopic Prox1 colocalized with induced Flt1, Efnb2, and Cx37 expression in NFATc1enCre Prox1 gain-of-function AoVs. Moreover, in Marfan syndrome myxomatous AoVs, endogenous Prox1, and its identified targets, were ectopically induced in ventricularis side VECs. CONCLUSIONS Our results support a role for Prox1 in localized lymphatic-like gene expression on the fibrosa side of the AoV. Furthermore, localized VEC specialization is required for development of the stratified trilaminar ECM critical for AoV function and is dysregulated in congenitally malformed valves.
Collapse
Affiliation(s)
- Anna O’Donnell
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Shreyasi Mukherjee
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ruby Wilson
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Christina M. Alfieri
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O. Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
Rajan KC, Patel NR, Shenoy A, Scallan JP, Chiang MY, Galazo MJ, Meadows SM. Zmiz1 is a novel regulator of lymphatic endothelial cell gene expression and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550165. [PMID: 37503058 PMCID: PMC10370198 DOI: 10.1101/2023.07.22.550165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of Zmiz1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.
Collapse
Affiliation(s)
- K C Rajan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
| | - Nehal R Patel
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
| | - Anoushka Shenoy
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
| | - Joshua P Scallan
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mark Y Chiang
- Division of Hematology-Oncology, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI
| | - Maria J Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
- Tulane Brain Institute, Tulane University, New Orleans, LA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA
- Tulane Brain Institute, Tulane University, New Orleans, LA
| |
Collapse
|
10
|
Gershman A, Hauck Q, Dick M, Jamison JM, Tassia M, Agirrezabala X, Muhammad S, Ali R, Workman RE, Valle M, Wong GW, Welch KC, Timp W. Genomic insights into metabolic flux in hummingbirds. Genome Res 2023; 33:703-714. [PMID: 37156619 PMCID: PMC10317124 DOI: 10.1101/gr.276779.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.
Collapse
Affiliation(s)
- Ariel Gershman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Quinn Hauck
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Morag Dick
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Jerrica M Jamison
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Michael Tassia
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xabier Agirrezabala
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Saad Muhammad
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Raafay Ali
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Mikel Valle
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kenneth C Welch
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
11
|
Li J, Yu J, Huang W, Sang F, Li J, Ren Y, Huang H, Wang M, Li K, Zhang J, Li H, Cui X, Zhang J, Hu M, Yuan F, Guo W, Zhang F, Mu H, Hu Y. Extracellular HSP90 promotes differentiation of lens epithelial cells to fiber cells by activating LRP1-YAP-PROX1 axis. FASEB J 2023; 37:e22783. [PMID: 36705056 DOI: 10.1096/fj.202201187rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Capsular residual lens epithelial cells (CRLEC) undergo differentiation to fiber cells for lens regeneration or tansdifferentiation to myofibroblasts leading to posterior capsular opacification (PCO) after cataract surgery. The underlying regulatory mechanism remains unclear. Using human lens epithelial cell lines and the ex vivo cultured rat lens capsular bag model, we found that the lens epithelial cells secrete HSP90α extracellularly (eHSP90) through an autophagy-associated pathway. Administration of recombinant GST-HSP90α protein or its M-domain induces the elongation of rat CRLEC cells with concomitant upregulation of the crucial fiber cell transcriptional factor PROX1and its downstream targets, β- and γ-crystallins and structure proteins. This regulation is abolished by PROX1 siRNA. GST-HSP90α upregulates PROX1 by binding to LRP1 and activating LRP1-AKT mediated YAP degradation. The upregulation of GST-HSP90α on PROX1 expression and CRLEC cell elongation is inhibited by LRP1 and AKT inhibitors, but activated by YAP-1 inhibitor (VP). These data demonstrated that the capsular residue epithelial cells upregulate and secrete eHSP90α, which in turn drive the differentiation of lens epithelial cell to fiber cells. The recombinant HSP90α protein is a potential novel differentiation regulator during lens regeneration.
Collapse
Affiliation(s)
- Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jingjing Yu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Weikang Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fan Sang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Junmin Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Yanzhu Ren
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Huili Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Kejia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Mengyue Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fengling Yuan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Weikai Guo
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fengyan Zhang
- Department of ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmei Mu
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.,Department of ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Cai R, Kolabas ZI, Pan C, Mai H, Zhao S, Kaltenecker D, Voigt FF, Molbay M, Ohn TL, Vincke C, Todorov MI, Helmchen F, Van Ginderachter JA, Ertürk A. Whole-mouse clearing and imaging at the cellular level with vDISCO. Nat Protoc 2023; 18:1197-1242. [PMID: 36697871 DOI: 10.1038/s41596-022-00788-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/20/2022] [Indexed: 01/26/2023]
Abstract
Homeostatic and pathological phenomena often affect multiple organs across the whole organism. Tissue clearing methods, together with recent advances in microscopy, have made holistic examinations of biological samples feasible. Here, we report the detailed protocol for nanobody(VHH)-boosted 3D imaging of solvent-cleared organs (vDISCO), a pressure-driven, nanobody-based whole-body immunolabeling and clearing method that renders whole mice transparent in 3 weeks, consistently enhancing the signal of fluorescent proteins, stabilizing them for years. This allows the reliable detection and quantification of fluorescent signal in intact rodents enabling the analysis of an entire body at cellular resolution. Here, we show the high versatility of vDISCO applied to boost the fluorescence signal of genetically expressed reporters and clear multiple dissected organs and tissues, as well as how to image processed samples using multiple fluorescence microscopy systems. The entire protocol is accessible to laboratories with limited expertise in tissue clearing. In addition to its applications in obtaining a whole-mouse neuronal projection map, detecting single-cell metastases in whole mice and identifying previously undescribed anatomical structures, we further show the visualization of the entire mouse lymphatic system, the application for virus tracing and the visualization of all pericytes in the brain. Taken together, our vDISCO pipeline allows systematic and comprehensive studies of cellular phenomena and connectivity in whole bodies.
Collapse
Affiliation(s)
- Ruiyao Cai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Chenchen Pan
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Doris Kaltenecker
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Diabetes and Cancer, Helmholtz Munich, Munich, Germany
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Muge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tzu-Lun Ohn
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Mihail I Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Munich, Germany. .,Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
13
|
He Y, Tan X, Li H, Yan Z, Chen J, Zhao R, Irwin DM, Wu W, Zhang S, Li B. Phosphoproteomic analysis identifies differentially expressed phosphorylation sites that affect muscle fiber type in pigs. Front Nutr 2022; 9:1006739. [PMID: 36618708 PMCID: PMC9815177 DOI: 10.3389/fnut.2022.1006739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle of livestock is composed of both fast- and slow-twitch muscle fibers, which are key factors in their meat quality. However, the role of protein phosphorylation in muscle fiber type is not completely understood. Here, a fast-twitch (biceps femoris, BF) and slow-twitch (soleus, SOL) muscle tissue sample was collected from three male offspring of Duroc and Meishan pigs. We demonstrate that the meat quality of SOL muscle is significantly better than that of BF muscle. We further used phosphoproteomic profiling of BF and SOL muscles to identify differences between these muscle types. A total of 2,327 phosphorylation sites from 770 phosphoproteins were identified. Among these sites, 287 differentially expressed phosphorylation sites (DEPSs) were identified between BF and SOL. GO and KEGG enrichment analysis of proteins containing DEPSs showed that these phosphorylated proteins were enriched in the glycolytic process GO term and the AMPK signaling pathway. A protein-protein interaction (PPI) analysis reveals that these phosphorylated proteins interact with each other to regulate the transformation of muscle fiber type. These analyses reveal that protein phosphorylation modifications are involved in porcine skeletal muscle fiber type transformation. This study provides new insights into the molecular mechanisms by which protein phosphorylation regulates muscle fiber type transformation and meat quality in pigs.
Collapse
Affiliation(s)
- Yu He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaofan Tan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hongqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhiwei Yan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jing Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruixue Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shuyi Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,*Correspondence: Bojiang Li,
| |
Collapse
|
14
|
PROX1 transcription factor controls rhabdomyosarcoma growth, stemness, myogenic properties and therapeutic targets. Proc Natl Acad Sci U S A 2022; 119:e2116220119. [PMID: 36459642 PMCID: PMC9894179 DOI: 10.1073/pnas.2116220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft-tissue cancer with features of skeletal muscle. Because of poor survival of RMS patients and severe long-term side effects of RMS therapies, alternative RMS therapies are urgently needed. Here we show that the prospero-related homeobox 1 (PROX1) transcription factor is highly expressed in RMS tumors regardless of their cell type of origin. We demonstrate that PROX1 is needed for RMS cell clonogenicity, growth and tumor formation. PROX1 gene silencing repressed several myogenic and tumorigenic transcripts and transformed the RD cell transcriptome to resemble that of benign mesenchymal stem cells. Importantly, we found that fibroblast growth factor receptors (FGFR) mediated the growth effects of PROX1 in RMS. Because of receptor cross-compensation, paralog-specific FGFR inhibition did not mimic the effects of PROX1 silencing, whereas a pan-FGFR inhibitor ablated RMS cell proliferation and induced apoptosis. Our findings uncover the critical role of PROX1 in RMS and offer insights into the mechanisms that regulate RMS development and growth. As FGFR inhibitors have already been tested in clinical phase I/II trials in other cancer types, our findings provide an alternative option for RMS treatment.
Collapse
|
15
|
Coordinated transcriptional and post-transcriptional epigenetic regulation during skeletal muscle development and growth in pigs. J Anim Sci Biotechnol 2022; 13:146. [PMID: 36457054 PMCID: PMC9714148 DOI: 10.1186/s40104-022-00791-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) and DNA 5-methylcytosine (5mC) methylation plays crucial roles in diverse biological processes, including skeletal muscle development and growth. Recent studies unveiled a potential link between these two systems, implicating the potential mechanism of coordinated transcriptional and post-transcriptional regulation in porcine prenatal myogenesis and postnatal skeletal muscle growth. METHODS Immunofluorescence and co-IP assays were carried out between the 5mC writers and m6A writers to investigate the molecular basis underneath. Large-scale in-house transcriptomic data were compiled for applying weighted correlation network analysis (WGCNA) to identify the co-expression patterns of m6A and 5mC regulators and their potential role in pig myogenesis. Whole-genome bisulfite sequencing (WGBS) and methylated RNA immunoprecipitation sequencing (MeRIP-seq) were performed on the skeletal muscle samples from Landrace pigs at four postnatal growth stages (days 30, 60, 120 and 180). RESULTS Significantly correlated expression between 5mC writers and m6A writers and co-occurrence of 5mC and m6A modification were revealed from public datasets of C2C12 myoblasts. The protein-protein interactions between the DNA methylase and the m6A methylase were observed in mouse myoblast cells. Further, by analyzing transcriptome data comprising 81 pig skeletal muscle samples across 27 developmental stages, we identified a 5mC/m6A epigenetic module eigengene and decoded its potential functions in pre- or post-transcriptional regulation in postnatal skeletal muscle development and growth of pigs. Following integrative multi-omics analyses on the WGBS methylome data and MeRIP-seq data for both m6A and gene expression profiles revealed a genome/transcriptome-wide correlated dynamics and co-occurrence of 5mC and m6A modifications as a consequence of 5mC/m6A crosstalk in the postnatal myogenesis progress of pigs. Last, we identified a group of myogenesis-related genes collaboratively regulated by both 5mC and m6A modifications in postnatal skeletal muscle growth in pigs. CONCLUSIONS Our study discloses a potential epigenetic mechanism in skeletal muscle development and provides a novel direction for animal breeding and drug development of related human muscle-related diseases.
Collapse
|
16
|
Chen X, Chen L, Qin Y, Mao Z, Jia G, Zhao H, Liu G, Huang Z. Effect of dietary L-theanine supplementation on skeletal muscle fiber type transformation in weaning piglets. Anim Biotechnol 2022; 33:1389-1397. [PMID: 35635297 DOI: 10.1080/10495398.2022.2078725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to explore the effect of dietary L-theanine (LT) supplementation on skeletal muscle fiber type transformation in weaning piglets. Our data showed that LT significantly increased the slow-twitch fiber-related genes expression and the percentage of slow oxidative fiber, and decreased the MyHC IIb mRNA expression and the percentage of fast glycolytic fiber. In addition, LT significantly increased the succinic dehydrogenase (SDH) and malate dehydrogenase (MDH) activities and increased the LDH activities. In addition, LT significantly affected mitochondrial biogenesis and function and antioxidative related genes expression, and increased the protein expression of p-adenosine monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear factor E2-related factor 2 (Nrf2), NADPH quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1) and decreased the Keap1 protein levels. Furthermore, our data indicated that LT significantly increased the mRNA and protein expression of prospero-related homeobox 1 (Prox1), calcineurin A (CnA), and NFATc1, suggesting that dietary LT supplementation promoted skeletal muscle fiber transition from types II to I might be via activation of calcineurin signaling pathway. Taken together, these findings suggested that LT promoted the transformation of muscle fiber types from slow oxidative to fast glycolytic by increasing antioxidant capacity and improving mitochondrial biogenesis and function and activation of calcineurin signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Lili Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Yaning Qin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, PR China
| |
Collapse
|
17
|
Katti P, Ajayi PT, Aponte A, Bleck CKE, Glancy B. Identification of evolutionarily conserved regulators of muscle mitochondrial network organization. Nat Commun 2022; 13:6622. [PMID: 36333356 PMCID: PMC9636386 DOI: 10.1038/s41467-022-34445-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial networks provide coordinated energy distribution throughout muscle cells. However, pathways specifying mitochondrial networks are incompletely understood and it is unclear how they might affect contractile fiber-type. Here, we show that natural energetic demands placed on Drosophila melanogaster muscles yield native cell-types among which contractile and mitochondrial network-types are regulated differentially. Proteomic analyses of indirect flight, jump, and leg muscles, together with muscles misexpressing known fiber-type specification factor salm, identified transcription factors H15 and cut as potential mitochondrial network regulators. We demonstrate H15 operates downstream of salm regulating flight muscle contractile and mitochondrial network-type. Conversely, H15 regulates mitochondrial network configuration but not contractile type in jump and leg muscles. Further, we find that cut regulates salm expression in flight muscles and mitochondrial network configuration in leg muscles. These data indicate cell type-specific regulation of muscle mitochondrial network organization through evolutionarily conserved transcription factors cut, salm, and H15.
Collapse
Affiliation(s)
- Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter T Ajayi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angel Aponte
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
L-theanine induces skeletal muscle fiber type transformation by activation of prox1/CaN signaling pathway in C2C12 myotubes. Biol Chem 2022; 403:959-967. [DOI: 10.1515/hsz-2022-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this study was to investigate the effect and mechanism of L-theanine (LT) on muscle fiber type transformation in C2C12 myotubes. Our data showed that LT exhibited significantly higher slow oxidative muscle fiber expression and lower glycolytic fibers expression. In addition, LT significantly increased the activities of malate dehydrogenase (MDH) and succinic dehydrogenase (SDH), and decreased lactate dehydrogenase (LDH) activity, the calcineurin (CaN) activity and the protein expressions of nuclear factor of activated T cell 1 (NFATc1), prospero-related homeobox1 (prox1), and calcineurin A (CnA) were significantly increased. However, inhibition of CaN activity by cyclosporine A (CsA) abolished LT-induced increase of slow oxidative muscle fiber expression and decrease of glycolytic fibers expression. Moreover, inhibition of prox1 expression by prox1-siRNA disrupted LT-induced activation of CaN signaling pathway and muscle fiber type transformation. Taken together, these results indicated that LT could promote skeletal muscle fiber type transformation from type II to type I via activation of prox1/CaN signaling pathway.
Collapse
|
19
|
The beneficial effect of chronic muscular exercise on muscle fragility is increased by Prox1 gene transfer in dystrophic mdx muscle. PLoS One 2022; 17:e0254274. [PMID: 35436319 PMCID: PMC9015141 DOI: 10.1371/journal.pone.0254274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Greater muscle fragility is thought to cause the exhaustion of the muscle stem cells during successive degeneration/repair cycles, leading to muscle wasting and weakness in Duchenne muscular dystrophy. Chronic voluntary exercise can partially reduce the susceptibility to contraction induced-muscle damage, i.e., muscle fragility, as shown by a reduced immediate maximal force drop following lengthening contractions, in the dystrophic mdx mice. Here, we studied the effect of Prospero-related homeobox factor 1 gene (Prox1) transfer (overexpression) using an AAV on fragility in chronically exercised mdx mice, because Prox1 promotes slower type fibres in healthy mice and slower fibres are less fragile in mdx muscle. Methods Both tibialis anterior muscles of the same mdx mouse received the transfer of Prox1 and PBS and the mice performed voluntary running into a wheel during 1 month. We also performed Prox1 transfer in sedentary mdx mice. In situ maximal force production of the muscle in response to nerve stimulation was assessed before, during and after 10 lengthening contractions. Molecular muscle parameters were also evaluated. Results Interestingly, Prox1 transfer reduced the isometric force drop following lengthening contractions in exercised mdx mice (p < 0.05 to 0.01), but not in sedentary mdx mice. It also increased the muscle expression of Myh7 (p < 0.001), MHC-2x (p < 0.01) and Trpc1 (p < 0.01), whereas it reduced that one of Myh4 (p < 0.001) and MHC-2b (p < 0.01) in exercised mdx mice. Moreover, Prox1 transfer decreased the absolute maximal isometric force (p < 0.01), but not the specific maximal isometric force, before lengthening contraction in exercised (p < 0.01) and sedentary mdx mice. Conclusion Our results indicate that Prox1 transfer increased the beneficial effect of chronic exercise on muscle fragility in mdx mice, but reduced absolute maximal force. Thus, the potential clinical benefit of the transfer of Prox1 into exercised dystrophic muscle can merit further investigation.
Collapse
|
20
|
Collado-Diaz V, Medina-Sanchez JD, Gkountidi AO, Halin C. Imaging leukocyte migration through afferent lymphatics. Immunol Rev 2021; 306:43-57. [PMID: 34708414 PMCID: PMC9298274 DOI: 10.1111/imr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Afferent lymphatics mediate the transport of antigen and leukocytes, especially of dendritic cells (DCs) and T cells, from peripheral tissues to draining lymph nodes (dLNs). As such they play important roles in the induction and regulation of adaptive immunity. Over the past 15 years, great advances in our understanding of leukocyte trafficking through afferent lymphatics have been made through time‐lapse imaging studies performed in tissue explants and in vivo, allowing to visualize this process with cellular resolution. Intravital imaging has revealed that intralymphatic leukocytes continue to actively migrate once they have entered into lymphatic capillaries, as a consequence of the low flow conditions present in this compartment. In fact, leukocytes spend considerable time migrating, patrolling and interacting with the lymphatic endothelium or with other intralymphatic leukocytes within lymphatic capillaries. Cells typically only start to detach once they arrive in downstream‐located collecting vessels, where vessel contractions contribute to enhanced lymph flow. In this review, we will introduce the biology of afferent lymphatic vessels and report on the presumed significance of DC and T cell migration via this route. We will specifically highlight how time‐lapse imaging has contributed to the current model of lymphatic trafficking and the emerging notion that ‐ besides transport – lymphatic capillaries exert additional roles in immune modulation.
Collapse
Affiliation(s)
| | | | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Rebboah E, Reese F, Williams K, Balderrama-Gutierrez G, McGill C, Trout D, Rodriguez I, Liang H, Wold BJ, Mortazavi A. Mapping and modeling the genomic basis of differential RNA isoform expression at single-cell resolution with LR-Split-seq. Genome Biol 2021; 22:286. [PMID: 34620214 PMCID: PMC8495978 DOI: 10.1186/s13059-021-02505-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
The rise in throughput and quality of long-read sequencing should allow unambiguous identification of full-length transcript isoforms. However, its application to single-cell RNA-seq has been limited by throughput and expense. Here we develop and characterize long-read Split-seq (LR-Split-seq), which uses combinatorial barcoding to sequence single cells with long reads. Applied to the C2C12 myogenic system, LR-split-seq associates isoforms to cell types with relative economy and design flexibility. We find widespread evidence of changing isoform expression during differentiation including alternative transcription start sites (TSS) and/or alternative internal exon usage. LR-Split-seq provides an affordable method for identifying cluster-specific isoforms in single cells.
Collapse
Affiliation(s)
- Elisabeth Rebboah
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Fairlie Reese
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Gabriela Balderrama-Gutierrez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Cassandra McGill
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Diane Trout
- Division of Biology, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Isaryhia Rodriguez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Heidi Liang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Barbara J Wold
- Division of Biology, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
22
|
Effect of dietary L-theanine supplementation on skeletal muscle fiber type transformation in vivo. J Nutr Biochem 2021; 99:108859. [PMID: 34517095 DOI: 10.1016/j.jnutbio.2021.108859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
The aim of this study was to investigate the effect of dietary L-theanine supplementation on skeletal muscle fiber type transition in mice. Our data indicated that dietary 0.15% L-theanine supplementation significantly increased the mRNA expression levels of muscle fiber type related genes (MyHC I, MyHC IIa, PGC-1α, Sirt1, Tnnt1, Tnnc1, Tnni1, MEF2C) and the protein expression levels of MyHC IIa, myoglobin, PGC-1α, Sirt1 and Troponin I-SS, but significantly decreased the mRNA and protein expression levels of MyHC IIb. Dietary 0.15% L-theanine supplementation significantly increased the activities of SDH and MDH and decreased the activity of LDH. Furthermore, immunofluorescence demonstrated that dietary 0.15% L-theanine supplementation significantly increased the percentage of type I fibers, and significantly decreased the percentage of type II fibers. In addition, we found that dietary 0.15% L-theanine supplementation increased the fatigue-resistant, antioxidant capacity, mitochondrial biogenesis, and function in skeletal muscle of mice. Furthermore, dietary 0.15% L-theanine supplementation significantly increased the mRNA levels of prox1, CaN and NFATc1, the protein levels of prox1, CNA and NFATc1 and the activity of CaN in GAS muscle when compared with the control group. These results indicated that dietary L-theanine supplementation promoted skeletal muscle fiber transition from type II-type I, which might be via activation of CaN and/or NFATc1 signaling pathway.
Collapse
|
23
|
Olmeda D, Cerezo-Wallis D, Castellano-Sanz E, García-Silva S, Peinado H, Soengas MS. Physiological models for in vivo imaging and targeting the lymphatic system: Nanoparticles and extracellular vesicles. Adv Drug Deliv Rev 2021; 175:113833. [PMID: 34147531 DOI: 10.1016/j.addr.2021.113833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Imaging of the lymphatic vasculature has gained great attention in various fields, not only because lymphatic vessels act as a key draining system in the body, but also for their implication in autoimmune diseases, organ transplant, inflammation and cancer. Thus, neolymphangiogenesis, or the generation of new lymphatics, is typically an early event in the development of multiple tumor types, particularly in aggressive ones such as malignant melanoma. Still, the understanding of how lymphatic endothelial cells get activated at distal (pre)metastatic niches and their impact on therapy is still unclear. Addressing these questions is of particular interest in the case of immune modulators, because endothelial cells may favor or halt inflammatory processes depending on the cellular context. Therefore, there is great interest in visualizing the lymphatic vasculature in vivo. Here, we review imaging tools and mouse models used to analyze the lymphatic vasculature during tumor progression. We also discuss therapeutic approaches based on nanomedicines to target the lymphatic system and the potential use of extracellular vesicles to track and target sentinel lymph nodes. Finally, we summarize main pre-clinical models developed to visualize the lymphatic vasculature in vivo, discussing their applications with a particular focus in metastatic melanoma.
Collapse
Affiliation(s)
- David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain; Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029, Spain
| | - Elena Castellano-Sanz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
24
|
Yang BG, Yuan Y, Zhou DK, Ma YH, Mahrous KF, Wang SZ, He YM, Duan XH, Zhang WY, E G. Genome-wide selection signal analysis of Australian Boer goat reveals artificial selection imprinting on candidate genes related to muscle development. Anim Genet 2021; 52:550-555. [PMID: 34029388 DOI: 10.1111/age.13092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
As one of the best-known commercial goat breeds in the world, Boer goat has undergone long-term artificial selection for nearly 100 years, and its excellent growth rate and meat production performance have attracted considerable worldwide attention. Herein, we used single nucleotide polymorphisms (SNPs) called from the whole-genome sequencing data of 46 Australian Boer goats to detect polymorphisms and identify genomic regions related to muscle development in comparison with those of 81 non-specialized meat goat individuals from Europe, Africa, and Asia. A total of 13 795 202 SNPs were identified, and the whole-genome selective signal screen with a π ratio of nucleotide diversity (πcase /πcontrol ) and pairwise fixation index (FST ) was analyzed. Finally, we identified 1741 candidate selective windows based on the top 5% threshold of both parameters; here, 449 candidate genes were only found in 727 of these regions. A total of 433 genes out of the 449 genes obtained were annotated to 2729 gene ontology terms, of which 51 were directly linked to muscle development (e.g., muscle organ development, muscle cell differentiation) by 30 candidate genes (e.g., JAK2, KCNQ1, PDE5A, PDLIM5, TBX5). In addition, 246 signaling pathways were annotated by 178 genes, and two pathways related to muscle contraction, including vascular smooth muscle contraction (ADCY7, PRKCB, PLA2G4E, ROCK2) and cardiac muscle contraction (CACNA2D3, CASQ2, COX6B1), were identified. The results could improve the current understanding of the genetic effects of artificial selection on the muscle development of goat. More importantly, this study provides valuable candidate genes for future breeding of goats.
Collapse
Affiliation(s)
- B-G Yang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Y Yuan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - D-K Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Y-H Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - K-F Mahrous
- Division of Genetic Engineering and Biotechnology Research Cell, Biology Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - S-Z Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Y-M He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - X-H Duan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - W-Y Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
25
|
Structure and Immune Function of Afferent Lymphatics and Their Mechanistic Contribution to Dendritic Cell and T Cell Trafficking. Cells 2021; 10:cells10051269. [PMID: 34065513 PMCID: PMC8161367 DOI: 10.3390/cells10051269] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Afferent lymphatic vessels (LVs) mediate the transport of antigen and leukocytes to draining lymph nodes (dLNs), thereby serving as immunologic communication highways between peripheral tissues and LNs. The main cell types migrating via this route are antigen-presenting dendritic cells (DCs) and antigen-experienced T cells. While DC migration is important for maintenance of tolerance and for induction of protective immunity, T cell migration through afferent LVs contributes to immune surveillance. In recent years, great progress has been made in elucidating the mechanisms of lymphatic migration. Specifically, time-lapse imaging has revealed that, upon entry into capillaries, both DCs and T cells are not simply flushed away with the lymph flow, but actively crawl and patrol and even interact with each other in this compartment. Detachment and passive transport to the dLN only takes place once the cells have reached the downstream, contracting collecting vessel segments. In this review, we describe how the anatomy of the lymphatic network supports leukocyte trafficking and provide updated knowledge regarding the cellular and molecular mechanisms responsible for lymphatic migration of DCs and T cells. In addition, we discuss the relevance of DC and T cell migration through afferent LVs and its presumed implications on immunity.
Collapse
|
26
|
Laitano O, Robinson GP, Garcia CK, Mattingly AJ, Sheikh LH, Murray KO, Iwaniec JD, Alzahrani J, Morse D, Hidalgo J, Clanton TL. Skeletal Muscle Interleukin-6 Contributes to the Innate Immune Response in Septic Mice. Shock 2021; 55:676-685. [PMID: 32826815 PMCID: PMC8607997 DOI: 10.1097/shk.0000000000001641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Interleukin-6 (IL-6) is a major cytokine released by skeletal muscle. Although IL-6 plays complex but well-known roles in host defense, the specific contribution of skeletal muscle IL-6 to innate immunity remains unknown. We tested its functional relevance by exposing inducible skeletal muscle IL-6 knockdown (skmIL-6KD) mice to a cecal slurry model of polymicrobial peritonitis and compared responses to strain-matched controls and skeletal muscle Cre-matched controls at 3, 6, and 12 h postinfection. In both sexes, skmIL-6KD mice at 6 h of infection exhibited marked changes to leukocyte trafficking in the peritoneum, characterized by ∼1.75-fold elevation in %neutrophils, a ∼3-fold reduction in %lymphocytes and a ∼2 to 3-fold reduction in %basophils. A similar pattern was seen at 12 h. No changes were observed in plasma leukocyte counts. Circulating cytokines in female skmIL-6KD mice at 6 h consistently showed modest reductions in IL-6, but marked reductions in a broad range of both pro- and anti-inflammatory cytokines, e.g., TNFα and IL-10. In both sexes at 12 h, a generalized suppression of plasma cytokines was also seen after the effects of Cre-induction with raloxifene were addressed. There were no significant effects of skmIL-6KD on mortality in either sex. Collectively, our results are consistent with skmIL-6 playing an important and previously unrecognized role in immune cell trafficking and cytokine regulation during septic shock.
Collapse
Affiliation(s)
- Orlando Laitano
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Gerard P. Robinson
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Christian K. Garcia
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Alex J. Mattingly
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Laila H. Sheikh
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Kevin O. Murray
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - John D. Iwaniec
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Jamal Alzahrani
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Deborah Morse
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Thomas L. Clanton
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, Gainesville, Florida
| |
Collapse
|
27
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
28
|
Hurtado E, Núñez-Álvarez Y, Muñoz M, Gutiérrez-Caballero C, Casas J, Pendás AM, Peinado MA, Suelves M. HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle. FEBS J 2021; 288:902-919. [PMID: 32563202 DOI: 10.1111/febs.15456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle is the largest tissue in mammalian organisms and is a key determinant of basal metabolic rate and whole-body energy metabolism. Histone deacetylase 11 (HDAC11) is the only member of the class IV subfamily of HDACs, and it is highly expressed in skeletal muscle, but its role in skeletal muscle physiology has never been investigated. Here, we describe for the first time the consequences of HDAC11 genetic deficiency in skeletal muscle, which results in the improvement of muscle function enhancing fatigue resistance and muscle strength. Loss of HDAC11 had no obvious impact on skeletal muscle structure but increased the number of oxidative myofibers by promoting a glycolytic-to-oxidative muscle fiber switch. Unexpectedly, HDAC11 was localized in muscle mitochondria and its deficiency enhanced mitochondrial content. In particular, we showed that HDAC11 depletion increased mitochondrial fatty acid β-oxidation through activating the AMP-activated protein kinase-acetyl-CoA carboxylase pathway and reducing acylcarnitine levels in vivo, thus providing a mechanistic explanation for the improved muscle strength and fatigue resistance. Overall, our data reveal a unique role of HDAC11 in the maintenance of muscle fiber-type balance and the mitochondrial lipid oxidation. These findings shed light on the mechanisms governing muscle metabolism and may have implications for chronic muscle metabolic disease management.
Collapse
Affiliation(s)
- Erica Hurtado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Yaiza Núñez-Álvarez
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Mar Muñoz
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | | | - Josefina Casas
- Institute of Advanced Chemistry of Catalonia, Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre, Madrid, Spain
| | - Alberto M Pendás
- Institute of Cellular and Molecular Biology of Cancer, Salamanca, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | - Mònica Suelves
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| |
Collapse
|
29
|
Deletion of the transcription factor Prox-1 specifically in the renal distal convoluted tubule causes hypomagnesemia via reduced expression of TRPM6 and NCC. Pflugers Arch 2020; 473:79-93. [PMID: 33200256 PMCID: PMC7782375 DOI: 10.1007/s00424-020-02491-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.
Collapse
|
30
|
Hu LR, Pan J. Adipose-derived stem cell therapy shows promising results for secondary lymphedema. World J Stem Cells 2020; 12:612-620. [PMID: 32843917 PMCID: PMC7415246 DOI: 10.4252/wjsc.v12.i7.612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/29/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Lymphedema is mainly identified by progressive soft tissue swelling in impaired lymphatic system. Secondary lymphedema attributed to cancer therapy, parasite infection, and trauma remains a serious global disease. Patients with lymphedema suffer swelling, pain, and fatigue, with the dysfunction of the deformed extremities reducing the quality of life and increasing the risk of infection and lymphangiosarcoma. Adipose-derived stem cells (ADSCs) possess prominent regenerative potential to differentiate into multilineage cells, and produce various lymphangiogenic factors, making ADSC therapy a promising approach for lymphedema. The development of lymphedema consists of local inflammation, the fibrosis of lymphatic vessels, and the deposition of adipose fat. Existing animal models do not mimic the chronic inflammation environment, therefore suitable models are required in further studies. Some signal pathways and molecular mechanisms in physiological and pathological lymphagiogenesis remain unclear. In previous animal and human trials, ADSC therapy reduced edema in varying degrees. A larger number of trials with larger samples and longer follow-up periods are required to verify the efficiency and feasibility of ADSC therapy. ADSCs are of easy availability and immune exemption, making them a candidate for lymphedema treatment. Whether ADSCs enhance malignant characteristics or trigger the malignant change deserves further exploration and study before ADSC therapy can be made widely available.
Collapse
Affiliation(s)
- Li-Ru Hu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian Pan
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
31
|
Xi H, Langerman J, Sabri S, Chien P, Young CS, Younesi S, Hicks M, Gonzalez K, Fujiwara W, Marzi J, Liebscher S, Spencer M, Van Handel B, Evseenko D, Schenke-Layland K, Plath K, Pyle AD. A Human Skeletal Muscle Atlas Identifies the Trajectories of Stem and Progenitor Cells across Development and from Human Pluripotent Stem Cells. Cell Stem Cell 2020; 27:158-176.e10. [PMID: 32396864 PMCID: PMC7367475 DOI: 10.1016/j.stem.2020.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
The developmental trajectory of human skeletal myogenesis and the transition between progenitor and stem cell states are unclear. We used single-cell RNA sequencing to profile human skeletal muscle tissues from embryonic, fetal, and postnatal stages. In silico, we identified myogenic as well as other cell types and constructed a "roadmap" of human skeletal muscle ontogeny across development. In a similar fashion, we also profiled the heterogeneous cell cultures generated from multiple human pluripotent stem cell (hPSC) myogenic differentiation protocols and mapped hPSC-derived myogenic progenitors to an embryonic-to-fetal transition period. We found differentially enriched biological processes and discovered co-regulated gene networks and transcription factors present at distinct myogenic stages. This work serves as a resource for advancing our knowledge of human myogenesis. It also provides a tool for a better understanding of hPSC-derived myogenic progenitors for translational applications in skeletal muscle-based regenerative medicine.
Collapse
Affiliation(s)
- Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Langerman
- Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shan Sabri
- Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peggie Chien
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Courtney S Young
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shahab Younesi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Gonzalez
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wakana Fujiwara
- Department of Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Marzi
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Simone Liebscher
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melissa Spencer
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kathrin Plath
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Deparment of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Fernandez‐Gonzalo R, Tesch PA, Lundberg TR, Alkner BA, Rullman E, Gustafsson T. Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures. FASEB J 2020; 34:7958-7969. [DOI: 10.1096/fj.201902976r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Rodrigo Fernandez‐Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Per A. Tesch
- Department of Physiology & Pharmacology Karolinska Institutet Stockholm Sweden
| | - Tommy R. Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Björn A. Alkner
- Department of Orthopaedics Region Jönköping County Eksjö Sweden
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
33
|
Ho YC, Srinivasan RS. Lymphatic Vasculature in Energy Homeostasis and Obesity. Front Physiol 2020; 11:3. [PMID: 32038308 PMCID: PMC6987243 DOI: 10.3389/fphys.2020.00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is a leading cause of cardiovascular diseases and cancer. Body mass is regulated by the balance between energy uptake and energy expenditure. The etiology of obesity is determined by multiple factors including genetics, nutrient absorption, and inflammation. Lymphatic vasculature is starting to be appreciated as a critical modulator of metabolism and obesity. The primary function of lymphatic vasculature is to maintain interstitial fluid homeostasis. Lymphatic vessels absorb fluids that extravasate from blood vessels and return them to blood circulation. In addition, lymphatic vessels absorb digested lipids from the intestine and regulate inflammation. Hence, lymphatic vessels could be an exciting target for treating obesity. In this article, we will review our current understanding regarding the relationship between lymphatic vasculature and obesity, and highlight some open questions.
Collapse
Affiliation(s)
- Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
34
|
Li L, Cheng X, Chen L, Li J, Luo W, Li C. Long Noncoding Ribonucleic Acid MSTRG.59589 Promotes Porcine Skeletal Muscle Satellite Cells Differentiation by Enhancing the Function of PALLD. Front Genet 2019; 10:1220. [PMID: 31850071 PMCID: PMC6887656 DOI: 10.3389/fgene.2019.01220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle satellite cells are a class of undifferentiated mononuclear myogenic stem cells distributed between the myofibroblast and membrane basement. Since their development determines the development of skeletal muscles, knowledge of their proliferation, differentiation, and fate is vital for understanding skeletal muscle development. Increasing evidence have shown that long noncoding RNA (lncRNA) plays an important role in regulating the development process of satellite cells. Based on the results of our previous studies, we screened lncRNA MSTRG.59589, which is highly expressed in skeletal muscle tissue. In the present study, knockdown of MSTRG.59589 significantly inhibited satellite cell differentiation at various time points, whereas overexpression of MSTRG.59589 demonstrated opposite effects. An MSTRG.59589 knockdown cell model was constructed for transcriptome sequencing, and RNA sequencing analysis screened out a large number of differentially expressed genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of these differentially expressed genes revealed that they are mainly enriched in actin cytoskeleton, muscle contraction, and other pathways related to muscle development. Mechanistic analyses showed that MSTRG.59589 could promote the differentiation process of skeletal muscle satellite cells by positively regulating the expression level of the target gene PALLD. This experiment lays a theoretical foundation for deeper studies on the mechanism of MSTRG.59589 in the differentiation of porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Long Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiaofang Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Ling Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jingxuan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wenzhe Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Abstract
The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Normandy University, UniRouen, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
Dong C, Zhang X, Liu K, Li B, Chao Z, Jiang A, Li R, Li P, Liu H, Wu W. Comprehensive Analysis of Porcine Prox1 Gene and Its Relationship with Meat Quality Traits. Animals (Basel) 2019; 9:ani9100744. [PMID: 31569476 PMCID: PMC6826434 DOI: 10.3390/ani9100744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
Prox1 is involved in muscle fiber conversion, adult-onset obesity, and type 2 diabetes. However, information regarding porcine Prox1 and its relationship with meat quality traits is still unknown. In this study, we characterized the full-length cDNA and proximal promoter of two transcript variants of porcine Prox1. Moreover, Prox1 was expressed abundantly in the skeletal muscle and its expression was higher in the soleus muscle than that in the biceps femoris muscle. Its expression pattern in the high and low meat color (redness) value a* groups was similar to that of myoglobin and MyHC I, but opposed to that of MyHC IIB. Importantly, there was a significant positive correlation between Prox1 expression and meat color (redness) value a* (r = 0.3845, p = 0.0394), and a significant negative correlation between Prox1 expression and drip loss (r = -0.4204, p = 0.0232), as well as the ratio of MyHC IIB to MyHC I expression (r = -0.3871, p = 0.0380). In addition, we found that the polymorphisms of three closely linked SNPs in Prox1 promoter 1 were significantly associated with pH24h in a pig population. Taken together, our data provide valuable insights into the characteristics of porcine Prox1 and indicate that Prox1 is a promising candidate gene affecting meat quality traits.
Collapse
Affiliation(s)
- Chao Dong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiying Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kaiqing Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhe Chao
- Institute of Animal Sciences & Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China.
| | - Aiwen Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pinghua Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
37
|
Chen M, Yao YL, Yang Y, Zhu M, Tang Y, Liu S, Li K, Tang Z. Comprehensive Profiles of mRNAs and miRNAs Reveal Molecular Characteristics of Multiple Organ Physiologies and Development in Pigs. Front Genet 2019; 10:756. [PMID: 31552085 PMCID: PMC6737989 DOI: 10.3389/fgene.2019.00756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
The pig (Sus scrofa) is not only an important livestock animal but also widely used as a biomedical model. However, the understanding of the molecular characteristics of organs and of the developmental skeletal muscle of the pig is severely limited. Here, we performed a comprehensive transcriptome profiling of mRNAs and miRNAs across nine tissues and three skeletal muscle developmental stages in the Guizhou miniature pig. The reproductive organs (ovary and testis) had greater transcriptome complexity and activity than other tissues, and the highest transcriptome similarity was between skeletal muscle and heart (R = 0.79). We identified 1,819 mRNAs and 96 miRNAs to be tissue-specific in nine organs. Testis had the largest number of tissue-specific mRNAs (992) and miRNAs (40). Only 15 genes and two miRNAs were specifically expressed in skeletal muscle and fat, respectively. During postnatal skeletal muscle development, the mRNAs associated with focal adhesion, Notch signaling, protein digestion, and absorption pathways were up-regulated from D0 to D30 and then down-regulated from D30 and D240, while genes with opposing expression patterns were significantly enriched in the oxidative phosphorylation and proteasome pathways. The miRNAs mainly regulated genes associated with insulin, Wnt, fatty acid biosynthesis, Notch, MAPK, TGF-beta, insulin secretion, ECM-receptor interaction, focal adhesion, and calcium signaling pathways. We also identified 37 new miRNA-mRNA interaction pairs involved in skeletal muscle development. Overall, our data not only provide a rich resource for understanding pig organ physiology and development but also aid the study of the molecular functions of mRNA and miRNA in mammals.
Collapse
Affiliation(s)
- Muya Chen
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Long Yao
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yalan Yang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Min Zhu
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siyuan Liu
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Tang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019; 7:E12. [PMID: 31159511 PMCID: PMC6632013 DOI: 10.3390/jdb7020012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
The development and growth of vertebrate axial muscle have been studied for decades at both the descriptive and molecular level. The zebrafish has provided an attractive model system for investigating both muscle patterning and growth due to its simple axial musculature with spatially separated fibre types, which contrasts to complex muscle groups often deployed in amniotes. In recent years, new findings have reshaped previous concepts that define how final teleost muscle form is established and maintained. Here, we summarise recent findings in zebrafish embryonic myogenesis with a focus on fibre type specification, followed by an examination of the molecular mechanisms that control muscle growth with emphasis on the role of the dermomyotome-like external cell layer. We also consider these data sets in a comparative context to gain insight into the evolution of axial myogenic patterning systems within the vertebrate lineage.
Collapse
Affiliation(s)
- Samuel R Keenan
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
39
|
Cho H, Kim J, Ahn JH, Hong YK, Mäkinen T, Lim DS, Koh GY. YAP and TAZ Negatively Regulate Prox1 During Developmental and Pathologic Lymphangiogenesis. Circ Res 2019; 124:225-242. [DOI: 10.1161/circresaha.118.313707] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hyunsoo Cho
- From the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon (H.C., J.H.A., D.-S.L., G.Y.K.)
| | - Jaeryung Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea (J.K., G.Y.K.)
| | - Ji Hoon Ahn
- From the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon (H.C., J.H.A., D.-S.L., G.Y.K.)
| | - Young-Kwon Hong
- Department of Surgery (Y.-K.H.), Keck School of Medicine, University of Southern California, Los Angeles
- Department of Biochemistry and Molecular Biology (Y.-K.H.), Keck School of Medicine, University of Southern California, Los Angeles
| | - Taija Mäkinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (T.M.)
| | - Dae-Sik Lim
- From the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon (H.C., J.H.A., D.-S.L., G.Y.K.)
| | - Gou Young Koh
- From the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon (H.C., J.H.A., D.-S.L., G.Y.K.)
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea (J.K., G.Y.K.)
| |
Collapse
|
40
|
Högström J, Heino S, Kallio P, Lähde M, Leppänen VM, Balboa D, Wiener Z, Alitalo K. Transcription Factor PROX1 Suppresses Notch Pathway Activation via the Nucleosome Remodeling and Deacetylase Complex in Colorectal Cancer Stem-like Cells. Cancer Res 2018; 78:5820-5832. [PMID: 30154153 DOI: 10.1158/0008-5472.can-18-0451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/25/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
Abstract
The homeobox transcription factor PROX1 is induced by high Wnt/β-catenin activity in intestinal adenomas and colorectal cancer, where it promotes tumor progression. Here we report that in LGR5+ colorectal cancer cells, PROX1 suppresses the Notch pathway, which is essential for cell fate in intestinal stem cells. Pharmacologic inhibition of Notch in ex vivo 3D organoid cultures from transgenic mouse intestinal adenoma models increased Prox1 expression and the number of PROX1-positive cells. Notch inhibition led to increased proliferation of the PROX1-positive colorectal cancer cells, but did not affect their ability to give rise to PROX1-negative secretory cells. Conversely, PROX1 deletion increased Notch target gene expression and NOTCH1 promoter activity, indicating reciprocal regulation between PROX1 and the Notch pathway in colorectal cancer. PROX1 interacted with the nucleosome remodeling and deacetylase (NuRD) complex to suppress the Notch pathway. Thus, our data suggests that PROX1 and Notch suppress each other and that PROX1-mediated suppression of Notch mediates its stem cell function in colorectal cancer.Significance: These findings address the role of the PROX1 homeobox factor as a downstream effector of Wnt/β-catenin singling in colorectal cancer stem cells and show that PROX1 inhibits the Notch pathway and helps to enforce the stem cell phenotype and inhibit differentiation. Cancer Res; 78(20); 5820-32. ©2018 AACR.
Collapse
Affiliation(s)
- Jenny Högström
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Sarika Heino
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Pauliina Kallio
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Marianne Lähde
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Molecular Neurology Program and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Zoltán Wiener
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
41
|
Delacroix C, Hyzewicz J, Lemaitre M, Friguet B, Li Z, Klein A, Furling D, Agbulut O, Ferry A. Improvement of Dystrophic Muscle Fragility by Short-Term Voluntary Exercise through Activation of Calcineurin Pathway in mdx Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2662-2673. [PMID: 30142334 DOI: 10.1016/j.ajpath.2018.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Dystrophin deficiency in mdx mice, a model for Duchenne muscular dystrophy, leads to muscle weakness revealed by a reduced specific maximal force as well as fragility (ie, higher susceptibility to contraction-induced injury, as shown by a greater force decrease after lengthening contractions). Both symptoms could be improved with dystrophin restoration-based therapies and long-term (months) voluntary exercise. Herein, we evaluated the effect of short-term (1-week) voluntary wheel running. We found that running improved fragility of tibialis anterior muscle (TA), but not plantaris muscle, independently of utrophin up-regulation, without affecting weakness. Moreover, TA muscle excitability was also preserved by running, as shown by compound muscle action potential measurements after lengthening contractions. Of interest, the calcineurin inhibitor cyclosporin A prevented the effect of running on both muscle fragility and excitability. Cyclosporin also prevented the running-induced changes in expression of genes involved in excitability (Scn4a and Cacna1s) and slower contractile phenotype (Myh2 and Tnni1) in TA muscle. In conclusion, short-term voluntary exercise improves TA muscle fragility in mdx mice, without worsening weakness. Its effect was related to preserved excitability, calcineurin pathway activation, and changes in the program of genes involved in excitability and slower contractile phenotype. Thus, remediation of muscle fragility of Duchenne muscular dystrophy patients through appropriate exercise training deserves to be explored in more detail.
Collapse
Affiliation(s)
- Clement Delacroix
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Janek Hyzewicz
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Megane Lemaitre
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Bertrand Friguet
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Arnaud Klein
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Denis Furling
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Arnaud Ferry
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
42
|
Shamim B, Hawley JA, Camera DM. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle. Sports Med 2018; 48:1329-1343. [DOI: 10.1007/s40279-018-0883-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Reed KM, Mendoza KM, Strasburg GM, Velleman SG. Response of Turkey Muscle Satellite Cells to Thermal Challenge. II. Transcriptome Effects in Differentiating Cells. Front Physiol 2017; 8:948. [PMID: 29249977 PMCID: PMC5714890 DOI: 10.3389/fphys.2017.00948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/08/2017] [Indexed: 01/21/2023] Open
Abstract
Background: Exposure of poultry to extreme temperatures during the critical period of post-hatch growth can seriously affect muscle development and thus compromise subsequent meat quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells by thermal challenge during differentiation. Our goal is to better define how thermal stress alters breast muscle ultrastructure and subsequent development. Results: Skeletal muscle satellite cells previously isolated from the Pectoralis major muscle of 7-wk-old male turkeys (Meleagris gallopavo) from two breeding lines: the F-line (16 wk body weight-selected) and RBC2 (randombred control line) were used in this study. Cultured cells were induced to differentiate at 38°C (control) or thermal challenge temperatures of 33 or 43°C. After 48 h of differentiation, cells were harvested and total RNA was isolated for RNAseq analysis. Analysis of 39.9 Gb of sequence found 89% mapped to the turkey genome (UMD5.0, annotation 101) with average expression of 18,917 genes per library. In the cultured satellite cells, slow/cardiac muscle isoforms are generally present in greater abundance than fast skeletal isoforms. Statistically significant differences in gene expression were observed among treatments and between turkey lines, with a greater number of genes affected in the F-line cells following cold treatment whereas more differentially expressed (DE) genes were observed in the RBC2 cells following heat treatment. Many of the most significant pathways involved signaling, consistent with ongoing cellular differentiation. Regulation of Ca2+ homeostasis appears to be significantly affected by temperature treatment, particularly cold treatment. Conclusions: Satellite cell differentiation is directly influenced by temperature at the level of gene transcription with greater effects attributed to selection for fast growth. At lower temperature, muscle-associated genes in the satellite cells were among the genes with the greatest down regulation consistent with slower differentiation and smaller myotubes. Fewer expression differences were observed in the differentiating cells than previously observed for proliferating cells. This suggests the impact of temperature on satellite cells occurs primarily at early points in satellite cell activation.
Collapse
Affiliation(s)
- Kent M. Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Gale M. Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Sandra G. Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH, United States
| |
Collapse
|
45
|
Armour SM, Remsberg JR, Damle M, Sidoli S, Ho WY, Li Z, Garcia BA, Lazar MA. An HDAC3-PROX1 corepressor module acts on HNF4α to control hepatic triglycerides. Nat Commun 2017; 8:549. [PMID: 28916805 PMCID: PMC5601916 DOI: 10.1038/s41467-017-00772-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/26/2017] [Indexed: 01/23/2023] Open
Abstract
The histone deacetylase HDAC3 is a critical mediator of hepatic lipid metabolism, and liver-specific deletion of HDAC3 leads to fatty liver. To elucidate the underlying mechanism, here we report a method of cross-linking followed by mass spectrometry to define a high-confidence HDAC3 interactome in vivo that includes the canonical NCoR-HDAC3 complex as well as Prospero-related homeobox 1 protein (PROX1). HDAC3 and PROX1 co-localize extensively on the mouse liver genome, and are co-recruited by hepatocyte nuclear factor 4α (HNF4α). The HDAC3-PROX1 module controls the expression of a gene program regulating lipid homeostasis, and hepatic-specific ablation of either component increases triglyceride content in liver. These findings underscore the importance of specific combinations of transcription factors and coregulators in the fine tuning of organismal metabolism.HDAC3 is a critical mediator of hepatic lipid metabolism and its loss leads to fatty liver. Here, the authors characterize the liver HDAC3 interactome in vivo, provide evidence that HDAC3 interacts with PROX1, and show that HDAC3 and PROX1 control expression of genes regulating lipid homeostasis.
Collapse
Affiliation(s)
- Sean M Armour
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Jarrett R Remsberg
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Manashree Damle
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Wesley Y Ho
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Zhenghui Li
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA. .,Divison of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, SCTR 12-102, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Perroud J, Bernheim L, Frieden M, Koenig S. Distinct roles of NFATc1 and NFATc4 in human primary myoblast differentiation and in the maintenance of reserve cells. J Cell Sci 2017; 130:3083-3093. [PMID: 28760926 DOI: 10.1242/jcs.198978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Ca2+ signaling plays a key role during human myoblast differentiation. Among Ca2+-sensitive pathways, calcineurin is essential for myoblast differentiation and muscle regeneration. Nuclear factor of activated T-cell (NFAT) transcription factors are the major calcineurin targets. We investigated the expression and the role of each NFAT gene during human primary myoblast differentiation. We found that three NFAT isoforms are present, NFATc1, NFATc3 and NFATc4. Importantly, while their mRNA expression increases during differentiation, NFATc1 is more highly expressed in myotubes, whilst NFATc4 is specifically maintained in reserve cells. NFATc3 is present in both cell types, although no specific role during myoblast differentiation was observed. Knockdown of either NFATc1 or NFATc4 affects the differentiation process similarly, by decreasing the expression of late differentiation markers, but impairs myotube formation differently. Whereas NFATc1 knockdown strongly reduced the number and the surface area of myotubes, NFATc4 knockdown increased the surface area of myotubes and reduced the pool of reserve cells. We conclude that NFAT genes have specific roles in myotube formation and in the maintenance of the reserve cell pool during human postnatal myogenesis.
Collapse
Affiliation(s)
- Julie Perroud
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Laurent Bernheim
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Stephane Koenig
- Department of Basic Neurosciences, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
47
|
Tatsumi R, Suzuki T, Do MKQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE. Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells 2017; 35:1815-1834. [PMID: 28480592 DOI: 10.1002/stem.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Recently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression. Importantly, satellite cell-specific Sema3A conditional-knockout adult mice (Pax7CreERT2 -Sema3Afl °x activated by tamoxifen-i.p. injection) provided direct in vivo evidence for the Sema3A-driven program, by showing that slow-fiber generation and muscle endurance were diminished after repair from cardiotoxin-injury of gastrocnemius muscle. Overall, the findings highlight an active role for satellite cell-secreted Sema3A ligand as a key "commitment factor" for the slow-fiber population during muscle regeneration. Results extend our understanding of the myogenic stem-cell strategy that regulates fiber-type differentiation and is responsible for skeletal muscle contractility, energy metabolism, fatigue resistance, and its susceptibility to aging and disease. Stem Cells 2017;35:1815-1834.
Collapse
Affiliation(s)
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences.,Department of Molecular and Developmental Biology.,Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences
| | - Yuki Ohya
- Department of Animal and Marine Bioresource Sciences
| | - Judy E Anderson
- Faculty of Science, Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayumi Shibata
- Department of Animal and Marine Bioresource Sciences
| | - Mai Kawaguchi
- Department of Animal and Marine Bioresource Sciences
| | - Shunpei Ohya
- Department of Animal and Marine Bioresource Sciences
| | | | | | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences
| | | | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | - Takanori Nishimura
- Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ronald E Allen
- The School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
48
|
Zhang S, Yu N, Wang L, Liu Y, Kong Y, Liu J, Xie Y. Prox1 represses IL-2 gene expression by interacting with NFAT2. Oncotarget 2017; 8:69422-69434. [PMID: 29050214 PMCID: PMC5642489 DOI: 10.18632/oncotarget.17278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023] Open
Abstract
Interleukin-2 (IL-2) is critical for T lymphocyte activation and regulated by many transcriptional factors. Prospero-related homeobox 1 (Prox1) is a multifunctional transcription factor, which can work as either a transcriptional activator or repressor depending on the cellular and developmental environment. We previously reported the Prox1 expression in T cells, raising the possibility of Prox1 involvement in the regulation of T cell function and IL-2 production. Here we demonstrated that the Prox1 expression in CD4+ T cells was downregulated by T cell receptor (TCR) activation. Overexpression of Prox1 attenuated IL-2 production, while knockdown of endogenous Prox1 by small interfering RNA increased IL-2 expression. Mechanistically, we showed that Prox1 inhibited the IL-2 promoter activity, and associated with the minimal IL-2 promoter. Prox1 repressed the nuclear factor of activated T cells 2 (NFAT2)-dependent transactivation of IL-2 gene by physically binding to NFAT2. The N-terminal region of Prox1 was essential for the binding and repression. In summary, our findings established Prox1 as a negative regulator in IL-2 gene expression through the direct interaction with NFAT2.
Collapse
Affiliation(s)
- Shujie Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Medical Molecular Virology (MOE and MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ning Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai 200050, China
| | - Linfang Wang
- Key Laboratory of Medical Molecular Virology (MOE and MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanfeng Liu
- Key Laboratory of Medical Molecular Virology (MOE and MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuying Kong
- Key Laboratory of Medical Molecular Virology (MOE and MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE and MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE and MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|