1
|
Jernigan CM, Mammen LCC, Brown RD, Sheehan MJ. Paper wasps: A model clade for social cognition. Curr Opin Neurobiol 2024; 89:102928. [PMID: 39454467 DOI: 10.1016/j.conb.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Paper wasps are a highly intelligent group of socially flexible insects with complex lives and variation in social structures. They engage in sophisticated communication within their small societies using olfaction, vibration, and even visual signals of quality or individual identity in some species. Here we describe the social biology of paper wasps as well as the impressive visual and cognitive abilities seen in this group. We summarize the recent discoveries about where and how social information is processed in the wasp brain and highlight the potential of this clade to further our understanding of the neural underpinnings of complex social cognition, its development, and its evolution.
Collapse
Affiliation(s)
- Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Lorenz C C Mammen
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Ronald D Brown
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Hirons-Major C, Ruberto T, Swaney WT, Reddon AR. Submissive behaviour is affected by group size in a social fish. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240539. [PMID: 39076789 PMCID: PMC11285878 DOI: 10.1098/rsos.240539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/31/2024]
Abstract
For social groups to form and be stable over time, animals must develop strategies to cope with conflict among group members. Animals may behave submissively either by fleeing from an aggressor, or by signalling submission. The use of these two submissive responses may vary depending on the social and ecological context. Group size is a key aspect of social context for group living animals, as individuals in smaller groups may respond to aggression differently than those from larger groups. Here, we examine the relationship between group size and submissive behaviour in a cooperatively breeding fish, the daffodil cichlid (Neolamprologus pulcher). We found that subordinate fish showed similar levels of submission signals in response to dominant aggression in larger and smaller groups, however, subordinates from larger groups were less likely to flee from dominant aggression than those in smaller groups. Subordinates in larger groups also showed more digging behaviour which may be also used to avoid conflict with the dominant group members. Our data show that social context affects submissive behaviour in a cooperatively breeding fish.
Collapse
Affiliation(s)
- Chelsie Hirons-Major
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tommaso Ruberto
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - William T. Swaney
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Adam R. Reddon
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
3
|
Priyanto A, Ahmad Hapidin D, Xaveriano Waresindo W, Susanto S, Prasetya Aji M, Khairurrijal K. Paper wasps larval formations from the perspective of physics. INSECT SCIENCE 2023; 30:1827-1830. [PMID: 36992653 DOI: 10.1111/1744-7917.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
From a physics perspective, paper wasps arrange larval systems in specific formations to attain mechanical stability for the nest. The closer the distance between the center of mass of the larval system (CML) and the center of mass of the nest (CMN), the lower the moment of force generated by the larval system, resulting in a more stable nest.
Collapse
Affiliation(s)
- Aan Priyanto
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
| | - Dian Ahmad Hapidin
- Department of Physics, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
| | - William Xaveriano Waresindo
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
- Department of Physics, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
| | - Susanto Susanto
- Physics Division, Cahaya Rancamaya Islamic Boarding School, Bogor, Jawa Barat, Indonesia
| | | | - Khairurrijal Khairurrijal
- Department of Physics, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia
- Faculty of Science, Department of Physics, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Lampung Selatan, Indonesia
| |
Collapse
|
4
|
Sekizawa M, Kutsukake N. Opportunistic availability of an infant and social relationship to a mother influence grooming before infant handling in Japanese macaques. Am J Primatol 2023; 85:e23529. [PMID: 37311620 DOI: 10.1002/ajp.23529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Biological market theory (BMT) predicts that the balance between supply and demand determines the economic value of a "commodity," which consequently determines the amount of "services" that an individual needs to provide to obtain the commodity. In infant handling among primates, the existing literature suggests that handlers need to groom a mother to obtain access to its infant, particularly when the value of the infant is high (e.g., when the number of infants is low). However, grooming by handlers may not be a prerequisite for the occurrence of infant handling, because handlers can handle an infant that is separated from its mother. Based on 3 years of behavioral observations of wild Japanese macaques (Macaca fuscata), we examined the process by which infant handling occurs and the role of grooming in infant handling. We found that infant handling occurred more frequently when the mother and infant were separated than when they were in contact. Grooming rarely occurred before infant handling. The subsequent occurrence of infant handling was not predicted by either the occurrence or duration of grooming toward mothers by non-mother individuals. Grooming by handlers was also more likely to occur when an infant was in contact with its mother and when an infant's mother was dominant to the handlers. Contrary to BMT, the number of infants in a group did not affect grooming by handlers. These results indicate that the handlers' decision to groom depended on the opportunistic availability of an infant and the social relationship between the infant's mother and themselves. We conclude that grooming was not always necessary for infant handling.
Collapse
Affiliation(s)
- Maisa Sekizawa
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| |
Collapse
|
5
|
Bshary R, Noë R. A marine cleaning mutualism provides new insights in biological market dynamics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210501. [PMID: 36934753 PMCID: PMC10024986 DOI: 10.1098/rstb.2021.0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/22/2023] [Indexed: 03/21/2023] Open
Abstract
Most mutually beneficial social interactions (cooperation within species, mutualism between species) involve some degree of partner choice. In an analogy to economic theory as applied to human trading practices, biological market theory (BMT) focuses on how partner choice affects payoff distributions among non-human traders. BMT has inspired a great diversity of research, including research on the mutualism between cleaner fish Labroides dimidiatus and other marine fish, their 'clients'. In this mutualism, clients have ectoparasites removed and cleaners obtain food in return. We use the available data on L. dimidiatus cleaner-client interactions to identify avenues for future expansion of BMT. We focus on three main topics, namely how partner quality interacts with supply-to-demand ratios to affect service quality, the role of threats and forms of forceful intervention, and the potential role of cognition. We consider it essential to identify the specifics of each biological market as a basis for the development of more sophisticated BMT models. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Redouan Bshary
- Institute of Biology, University of Neuchâtel, Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Ronald Noë
- Department of Psychology, Tuk, The Netherlands and Arizona State University, Tempe, AZ 85287-1104, USA
| |
Collapse
|
6
|
Shah SS, Rubenstein DR. Group augmentation underlies the evolution of complex sociality in the face of environmental instability. Proc Natl Acad Sci U S A 2023; 120:e2212211120. [PMID: 37094171 PMCID: PMC10160950 DOI: 10.1073/pnas.2212211120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/16/2023] [Indexed: 04/26/2023] Open
Abstract
Although kin selection is assumed to underlie the evolution of sociality, many vertebrates-including nearly half of all cooperatively breeding birds-form groups that also include unrelated individuals. Theory predicts that despite reducing kin structure, immigration of unrelated individuals into groups can provide direct, group augmentation benefits, particularly when offspring recruitment is insufficient for group persistence. Using population dynamic modeling and analysis of long-term data, we provide clear empirical evidence of group augmentation benefits favoring the evolution and maintenance of complex societies with low kin structure and multiple reproductives. We show that in the superb starling (Lamprotornis superbus)-a plural cooperative breeder that forms large groups with multiple breeding pairs, and related and unrelated nonbreeders of both sexes-offspring recruitment alone cannot prevent group extinction, especially in smaller groups. Further, smaller groups, which stand to benefit more from immigration, exhibit lower reproductive skew for immigrants, suggesting that reproductive opportunities as joining incentives lead to plural breeding. Yet, despite a greater likelihood of becoming a breeder in smaller groups, immigrants are more likely to join larger groups where they experience increased survivorship and greater reproductive success as breeders. Moreover, immigrants form additional breeding pairs, increasing future offspring recruitment into the group and guarding against complete reproductive failure in the face of environmental instability and high nest predation. Thus, plural breeding likely evolves because the benefits of group augmentation by immigrants generate a positive feedback loop that maintains societies with low and mixed kinship, large group sizes, and multiple reproductives.
Collapse
Affiliation(s)
- Shailee S. Shah
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY10027
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY10027
- Center for Integrative Animal Behavior, Columbia University, New York, NY10027
| |
Collapse
|
7
|
Zöttl M, Schreier T, Taborsky M. Coercion promotes alloparental care in cooperative breeders. Behav Ecol 2023; 34:363-372. [PMID: 37192918 PMCID: PMC10183202 DOI: 10.1093/beheco/arac125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 03/06/2023] Open
Abstract
Members of social groups may negotiate among each other about the exchange of goods and services. If this involves asymmetries between interacting partners, for instance in condition, power, or expected payoffs, coercion may be involved in the bargain. Cooperative breeders are excellent models to study such interactions, because asymmetries are inherent in the relationship between dominant breeders and subordinate helpers. Currently it is unclear whether punishment is used to enforce costly cooperation in such systems. Here we investigated experimentally in the cooperatively breeding cichlid Neolamprologus pulcher whether alloparental brood care provided by subordinates is contingent on enforcement by dominant breeders. We manipulated first the brood care behavior of a subordinate group member and then the possibility of the dominant breeders to punish idle helpers. When subordinates were prevented from providing brood care, breeders increased their attacks on them, which triggered increased alloparental brood care by helpers as soon as this was again possible. In contrast, when the possibility to punish helpers was prevented, energetically costly alloparental brood care did not increase. Our results confirm predictions of the pay-to-stay mechanism causing alloparental care in this species and they suggest more generally that coercion can play an important role in the control of cooperation.
Collapse
Affiliation(s)
- Markus Zöttl
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Tanja Schreier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
| | - Michael Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, CH-3032 Hinterkappelen, Switzerland
- Max Planck Institute of Animal Behavior, D-78467 Konstanz, Germany
- Institute for Advanced Study (Wissenschaftskolleg) Berlin, D-14193 Berlin, Germany
| |
Collapse
|
8
|
Who to help? Helping decisions in a cooperatively breeding bird with redirected care. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
Cooperative breeding sometimes occurs when adult breeders form groups following natal dispersal and mating. In such cases, individuals typically face a choice of social partner with whom to cooperate. Selecting appropriate social partners is crucial to maximising the fitness payoffs from cooperation, but our understanding of the criteria guiding partner choice is limited. Here, we analyse helping decisions by long-tailed tits (Aegithalos caudatus), which may redirect their care to assist breeders in raising offspring following the failure of their own nests. In this species, helpers prefer to help relatives at nearby nests, but it is unclear whether other criteria that may affect helper fitness also influence helping decisions. When choosing among broods of equivalent kinship, we found that helpers did not prefer those broods that offered the greatest indirect fitness returns. Further analyses revealed that helpers did not choose nests on the basis of brood size or age, but were more likely to help broods that were closer to their own failed nests and that were already being cared for by other helpers. Both effects likely reflect the limited choice available to helpers: although individuals breed close to relatives within kin neighbourhoods, a high rate of nest predation constrains helpers’ choice of broods. In other species where cooperatively breeding groups form after natal dispersal, a greater range of options may be available and here detailed analysis of group formation will be helpful for determining the decision rules that underpin partner choice and permit stable cooperation in the face of alternative options.
Significance statement
Cooperative breeding occurs most frequently when offspring delay dispersal from their natal site and help to care for their younger siblings. In some species, however, individuals first disperse and then come together as adults to cooperate in rearing young. In the latter case, multiple social partners may be available — what then determines which partner is helped? We studied partner choice in long-tailed tits, which may help to feed other broods if their own brood fails. When multiple related broods were available, individuals were more likely to help those close by but showed no preference for broods offering the greatest indirect fitness returns. One explanation for this result is that helping options for most individuals are limited by high levels of nest predation, favouring a simpler decision-making process based on identifying close relatives breeding in close proximity.
Collapse
|
9
|
Triki Z, Richter XYL, Demairé C, Kurokawa S, Bshary R. Marine cleaning mutualism defies standard logic of supply and demand. Am Nat 2021; 199:455-467. [DOI: 10.1086/718315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio PO, Saltz JB, Wey TW, Wice EW. Anticipated effects of abiotic environmental change on intraspecific social interactions. Biol Rev Camb Philos Soc 2021; 96:2661-2693. [PMID: 34212487 DOI: 10.1111/brv.12772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, U.K
| | - R Julia Kilgour
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Stocker Road, Exeter, EX4 4PY, U.K
| | - Jennifer R Foote
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 3X8, Canada
| | - Julia B Saltz
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| | - Tina W Wey
- Maelstrom Research, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, QC, H3G 1A4, Canada
| | - Eric W Wice
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| |
Collapse
|
11
|
Kennedy P, Sumner S, Botha P, Welton NJ, Higginson AD, Radford AN. Diminishing returns drive altruists to help extended family. Nat Ecol Evol 2021; 5:468-479. [PMID: 33589803 PMCID: PMC7610556 DOI: 10.1038/s41559-020-01382-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022]
Abstract
Altruism between close relatives can be easily explained. However, paradoxes arise when organisms divert altruism towards more distantly related recipients. In some social insects, workers drift extensively between colonies and help raise less related foreign brood, seemingly reducing inclusive fitness. Since being highlighted by W. D. Hamilton, three hypotheses (bet hedging, indirect reciprocity and diminishing returns to cooperation) have been proposed for this surprising behaviour. Here, using inclusive fitness theory, we show that bet hedging and indirect reciprocity could only drive cooperative drifting under improbable conditions. However, diminishing returns to cooperation create a simple context in which sharing workers is adaptive. Using a longitudinal dataset comprising over a quarter of a million nest cell observations, we quantify cooperative payoffs in the Neotropical wasp Polistes canadensis, for which drifting occurs at high levels. As the worker-to-brood ratio rises in a worker's home colony, the predicted marginal benefit of a worker for expected colony productivity diminishes. Helping related colonies can allow effort to be focused on related brood that are more in need of care. Finally, we use simulations to show that cooperative drifting evolves under diminishing returns when dispersal is local, allowing altruists to focus their efforts on related recipients. Our results indicate the power of nonlinear fitness effects to shape social organization, and suggest that models of eusocial evolution should be extended to include neglected social interactions within colony networks.
Collapse
Affiliation(s)
- P. Kennedy
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK,Correspondence:
| | - S. Sumner
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - P. Botha
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - N. J. Welton
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK
| | - A. D. Higginson
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, EX4 4QG, UK
| | - A. N. Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
12
|
Social Structure. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Branconi R, Barbasch TA, Francis RK, Srinivasan M, Jones GP, Buston PM. Ecological and social constraints combine to promote evolution of non-breeding strategies in clownfish. Commun Biol 2020; 3:649. [PMID: 33159133 PMCID: PMC7648053 DOI: 10.1038/s42003-020-01380-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals that forgo their own reproduction in animal societies represent an evolutionary paradox because it is not immediately apparent how natural selection can preserve the genes that underlie non-breeding strategies. Cooperative breeding theory provides a solution to the paradox: non-breeders benefit by helping relatives and/or inheriting breeding positions; non-breeders do not disperse to breed elsewhere because of ecological constraints. However, the question of why non-breeders do not contest to breed within their group has rarely been addressed. Here, we use a wild population of clownfish (Amphiprion percula), where non-breeders wait peacefully for years to inherit breeding positions, to show non-breeders will disperse when ecological constraints (risk of mortality during dispersal) are experimentally weakened. In addition, we show non-breeders will contest when social constraints (risk of eviction during contest) are experimentally relaxed. Our results show it is the combination of ecological and social constraints that promote the evolution of non-breeding strategies. The findings highlight parallels between, and potential for fruitful exchange between, cooperative breeding theory and economic bargaining theory: individuals will forgo their own reproduction and wait peacefully to inherit breeding positions (engage in cooperative options) when there are harsh ecological constraints (poor outside options) and harsh social constraints (poor inside options).
Collapse
Affiliation(s)
- Rebecca Branconi
- Department of Biology, Boston University, 5 Cummington Mall 101, Boston, MA, 02215, USA.
| | - Tina A Barbasch
- Department of Biology, Boston University, 5 Cummington Mall 101, Boston, MA, 02215, USA
| | - Robin K Francis
- Department of Biology, Boston University, 5 Cummington Mall 101, Boston, MA, 02215, USA
| | - Maya Srinivasan
- ARC Centre of Excellence for Coral Reef Studies, and College of Science & Engineering, James Cook University, Townsville, 4811, QLD, Australia
| | - Geoffrey P Jones
- ARC Centre of Excellence for Coral Reef Studies, and College of Science & Engineering, James Cook University, Townsville, 4811, QLD, Australia
| | - Peter M Buston
- Department of Biology, Boston University, 5 Cummington Mall 101, Boston, MA, 02215, USA
| |
Collapse
|
14
|
Velev MV. Entropy and free-energy based interpretation of the laws of supply and demand. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43546-020-00009-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Naef J, Taborsky M. Punishment controls helper defence against egg predators but not fish predators in cooperatively breeding cichlids. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Prétôt L, Gonzalez G, McAuliffe K. Children avoid inefficient but fair partners in a cooperative game. Sci Rep 2020; 10:10511. [PMID: 32601496 PMCID: PMC7324404 DOI: 10.1038/s41598-020-65452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
Human adults use a range of social cues to obtain information about potential partners in cooperative contexts: we prefer partners who are competent, wealthy and generous, and those who abide by moral and social rules. One factor that carries particular weight is whether a prospective partner is fair. Here we ask whether children share this preference for fair partners and, if so, whether a prospective partner’s past fair behaviour influences children’s behaviour in a cooperative dilemma. Six- to nine-year-olds chose between partners who accepted or rejected resource allocations that were either strongly advantageously unequal, strongly disadvantageously unequal, or equal. They then played a one-shot Prisoner’s Dilemma Game with their chosen partner. Children overwhelmingly preferred to play with the partner who accepted rather than rejected allocations. Regardless of their partner choice decisions, children tended to defect in the Prisoner’s Dilemma Game, yet expected that their partners would be relatively more cooperative. Finally, children were more likely to cooperate with those they believed would cooperate. Together, these findings shed new light on the links between partner choice, fairness and cooperation in child development.
Collapse
Affiliation(s)
- Laurent Prétôt
- Department of Psychology, Boston College, Chestnut Hill, MA, USA.
| | - Gorana Gonzalez
- Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
17
|
Naef J, Taborsky M. Commodity-specific punishment for experimentally induced defection in cooperatively breeding fish. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191808. [PMID: 32257335 PMCID: PMC7062066 DOI: 10.1098/rsos.191808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/14/2020] [Indexed: 05/02/2023]
Abstract
Coercion is an important but underrated component in the evolution of cooperative behaviour. According to the pay-to-stay hypothesis of cooperative breeding, subordinates trade alloparental care for the concession to stay in the group. Punishment of idle subordinates is a key prediction of this hypothesis, which has received some experimental scrutiny. However, previous studies neither allowed separating between punishment and effects of disruption of social dynamics, nor did they differentiate between different helping behaviours that may reflect either mutualistic or reciprocal interaction dynamics. In the cooperative breeder Neolamprologus pulcher, we experimentally engineered the ability of subordinates to contribute to alloparental care by manipulating two different helping behaviours independently from one another in a full factorial design. We recorded the treatment effects on breeder aggression, subordinate helping efforts and submissive displays. We found two divergent regulatory mechanisms of cooperation, dependent on behavioural function. Experimental impediment of territory maintenance of subordinates triggered punishment by dominants, whereas prevented defence against egg predators released a compensatory response of subordinates without any enforcement, suggesting pre-emptive appeasement. These effects occurred independently of one another. Apparently, in the complex negotiation process among members of cooperative groups, behaviours fulfilling different functions may be regulated by divergent interaction mechanisms.
Collapse
Affiliation(s)
- Jan Naef
- Department for Behavioural Ecology, University of Bern, Wohlenstrasse 50a, Hinterkappelen CH-3032, Switzerland
| | | |
Collapse
|
18
|
Hellmann JK, Stiver KA, Marsh-Rollo S, Alonzo SH. Defense against outside competition is linked to cooperation in male–male partnerships. Behav Ecol 2019. [DOI: 10.1093/beheco/arz206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Male–male competition is a well-known driver of reproductive success and sexually selected traits in many species. However, in some species, males work together to court females or defend territories against male competitors. Dominant (nesting) males sire most offspring, but subordinate (satellite) males are better able to obtain fertilizations relative to unpartnered males. Because satellites only gain reproductive success by sneaking, there has been much interest in identifying the mechanisms enforcing satellite cooperation (defense) and reducing satellite sneaking. One such potential mechanism is outside competition: unpartnered satellites can destabilize established male partnerships and may force partnered satellites to restrain from cheating to prevent the dominant male from replacing them with an unpartnered satellite. Here, we manipulated perceived competition in the Mediterranean fish Symphodus ocellatus by presenting an “intruding” satellite male to established nesting and satellite male pairs. Focal satellite aggression to the intruder was higher when focal satellites were less cooperative, suggesting that satellites increase aggression to outside competitors when their social position is less stable. In contrast, nesting male aggression to the intruder satellite increased as spawning activity increased, suggesting that nesting males increase their defense toward outside competitors when their current relationship is productive. We found no evidence of altered spawning activity or nesting/satellite male interactions before and after the presentation. These results collectively suggest that response to outside competition is directly linked to behavioral dynamics between unrelated male partners and may be linked to conflict and cooperation in ways that are similar to group-living species.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Kelly A Stiver
- Psychology Department, Southern Connecticut State University, New Haven, USA
| | - Susan Marsh-Rollo
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Canada
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA
| | - Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA
| |
Collapse
|
19
|
Nonacs P. Reproductive skew in cooperative breeding: Environmental variability, antagonistic selection, choice, and control. Ecol Evol 2019; 9:10163-10175. [PMID: 31624543 PMCID: PMC6787806 DOI: 10.1002/ece3.5502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/05/2023] Open
Abstract
A multitude of factors may determine reproductive skew among cooperative breeders. One explanation, derived from inclusive fitness theory, is that groups can partition reproduction such that subordinates do at least as well as noncooperative solitary individuals. The majority of recent data, however, fails to support this prediction; possibly because inclusive fitness models cannot easily incorporate multiple factors simultaneously to predict skew. Notable omissions are antagonistic selection (across generations, genes will be in both dominant and subordinate bodies), constraints on the number of sites suitable for successful reproduction, choice in which group an individual might join, and within-group control or suppression of competition. All of these factors and more are explored through agent-based evolutionary simulations. The results suggest the primary drivers for the initial evolution of cooperative breeding may be a combination of limited suitable sites, choice across those sites, and parental manipulation of offspring into helping roles. Antagonistic selection may be important when subordinates are more frequent than dominants. Kinship matters, but its main effect may be in offspring being available for manipulation while unrelated individuals are not. The greater flexibility of evolutionary simulations allows the incorporation of species-specific life histories and ecological constraints to better predict sociobiology.
Collapse
Affiliation(s)
- Peter Nonacs
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
20
|
Parsons PJ, Grinsted L, Field J. Partner choice correlates with fine scale kin structuring in the paper wasp Polistes dominula. PLoS One 2019; 14:e0221701. [PMID: 31465487 PMCID: PMC6715180 DOI: 10.1371/journal.pone.0221701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
Cooperation among kin is common in animal societies. Kin groups may form by individuals directly discriminating relatives based on kin recognition cues, or form passively through natal philopatry and limited dispersal. We describe the genetic landscape for a primitively eusocial wasp, Polistes dominula, and ask whether individuals choose cooperative partners that are nearby and/or that are genetic relatives. Firstly, we genotyped an entire sub-population of 1361 wasps and found genetic structuring on an extremely fine scale: the probability of finding genetic relatives decreases exponentially within just a few meters of an individual's nest. At the same time, however, we found a lack of genetic structuring between natural nest aggregations within the population. Secondly, in a separate dataset where ~2000 wasps were genotyped, we show that wasps forced experimentally to make a new nest choice tended to choose new nests near to their original nests, and that these nests tended to contain some full sisters. However, a significant fraction of wasps chose nests that did not contain sisters, despite sisters being present in nearby nests. Although we cannot rule out a role for direct kin recognition or natal nest-mate recognition, our data suggest that kin groups may form via a philopatric rule-of-thumb, whereby wasps simply select groups and nesting sites that are nearby. The result is that most subordinate helpers obtain indirect fitness benefits by breeding cooperatively.
Collapse
Affiliation(s)
- Paul John Parsons
- College of Life and Environmental Sciences: Biosciences, University of Exeter, Exeter EX,QD, United Kingdom
- * E-mail:
| | - Lena Grinsted
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW, United Kingdom
| | - Jeremy Field
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR, United Kingdom
| |
Collapse
|
21
|
Rosenbaum S, Gettler LT. With a little help from her friends (and family) part I: the ecology and evolution of non-maternal care in mammals. Physiol Behav 2019; 193:1-11. [PMID: 29933836 DOI: 10.1016/j.physbeh.2017.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 10/28/2022]
Abstract
In the class Mammalia, most young are cared for exclusively by their mothers. In species where mothers receive help, however, non-maternal caregivers may play a crucial role in development and life history trajectories. In turn, recipients of such care may have important impacts on caregivers of all types. In Part I of this overview, we briefly review the evolutionary barriers to widespread non-maternal care in mammals, and explain why the exceptions are of particular theoretical importance. We also summarize the current understanding of the selective forces leading to non-maternal care, and the taxa and types of caretakers amongst which it occurs. Finally, we argue for a fresh look at the categorization schemes that have traditionally been used to separate various types of mammalian non-maternal caregivers. This two-part introduction is aimed at scientists from multiple disciplines who study diverse organismal systems. It draws from the social and biological sciences literatures to provide an overview of this special issue of Physiology and Behavior's suite of methodological offerings and theoretical underpinnings.
Collapse
Affiliation(s)
- Stacy Rosenbaum
- Department of Anthropology, Northwestern University, Evanston, IL, United States; Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, Chicago, IL, United States.
| | - Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, United States; The Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
22
|
Duncan C, Gaynor D, Clutton-Brock T. The importance of being beta: female succession in a cooperative breeder. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Noë R, Kiers ET. Mycorrhizal Markets, Firms, and Co-ops. Trends Ecol Evol 2018; 33:777-789. [PMID: 30177306 DOI: 10.1016/j.tree.2018.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
The nutrient exchange mutualism between arbuscular mycorrhizal fungi (AMFs) and their host plants qualifies as a biological market, but several complications have hindered its appropriate use. First, fungal 'trading agents' are hard to identify because AMFs are potentially heterokaryotic, that is, they may contain large numbers of polymorphic nuclei. This means it is difficult to define and study a fungal 'individual' acting as an independent agent with a specific trading strategy. Second, because nutrient exchanges occur via communal structures (arbuscules), this temporarily reduces outbidding competition and transaction costs and hence resembles exchanges among divisions of firms, rather than traditional trade on markets. We discuss how fungal nuclei may coordinate their trading strategies, but nevertheless retain some independence, similar to human co-operatives (co-ops).
Collapse
Affiliation(s)
- Ronald Noë
- Department of Psychology, Université de Strasbourg, Strasbourg, France.
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Grinsted L, Field J. Predictors of nest growth: diminishing returns for subordinates in the paper wasp Polistes dominula. Behav Ecol Sociobiol 2018; 72:88. [PMID: 29773925 PMCID: PMC5945790 DOI: 10.1007/s00265-018-2502-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/18/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022]
Abstract
ABSTRACT In cooperative breeders, subordinates that have alternative reproductive options are expected to stay and help dominant breeders only as long as they contribute to group productivity, if their fitness is linked with colony success. Female Polistes dominula paper wasps live as cooperative breeders in small groups of typically fewer than 10 females. Subordinates tend to have high-quality outside options, and so could choose alternative breeding tactics if their work efforts increased productivity negligibly. In the founding stage before workers emerge, we tested the effect of various predictors on nest growth, as a proxy for group productivity, and explored the shape of the relationship between group size and nest growth. We found group size to be the only significant predictor of nest growth: variation among body sizes within the group showed no effect, suggesting a lack of size-dependent task specialization in this species. Average body size and average genetic relatedness between group members similarly showed no effects on nest growth. Group size had a non-linear effect so that per-capita benefits to nest growth decreased in larger groups, and groups of 10 or more would benefit negligibly from additional group members. Hence, females might be better off pursuing other options than joining a large group. This finding helps to explain why P. dominula groups are usually relatively small in our study population. Further studies may illuminate the mechanisms behind the smaller per-capita nest growth that we found in larger groups. SIGNIFICANCE STATEMENT Identifying which factors influence the productivity of animal groups is key to understanding why different species breed cooperatively in groups of varying sizes. In the paper wasp Polistes dominula, we investigated the growth rate of nests as a measure of group productivity. We found that average body size, the variation in body sizes within the group, and average genetic relatedness between group members did not affect nest growth, while group size had a strong, positive effect: nests grew faster with more group members, but the per-capita benefit decreased in larger groups. The addition of extra group members in groups of 10 or more had negligible effects on nest growth. Hence, wasps may be better off pursuing other options than joining large groups. This finding helps to explain why groups normally consist of fewer than 10 wasps in this population.
Collapse
Affiliation(s)
- Lena Grinsted
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG UK
- Present Address: School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX UK
| | - Jeremy Field
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG UK
- Present Address: Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9EZ UK
| |
Collapse
|
25
|
Hellmann JK, Hamilton IM. Dominant and subordinate outside options alter help and eviction in a pay-to-stay negotiation model. Behav Ecol 2018. [DOI: 10.1093/beheco/ary006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Hellmann JK, Hamilton IM. Intragroup social dynamics vary with the presence of neighbors in a cooperatively breeding fish. Curr Zool 2018; 65:21-31. [PMID: 30697235 PMCID: PMC6347054 DOI: 10.1093/cz/zoy025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Conflict is an inherent part of social life in group-living species. Group members may mediate conflict through submissive and affiliative behaviors, which can reduce aggression, stabilize dominance hierarchies, and foster group cohesion. The frequency and resolution of within-group conflict may vary with the presence of neighboring groups. Neighbors can threaten the territory or resources of the whole group, promoting behaviors that foster within-group cohesion. However, neighbors may also foster conflict of interests among group members: opportunities for subordinate dispersal may alter conflict among dominants and subordinates while opportunities for extra-pair reproduction may increase conflict between mates. To understand how neighbors mediate within-group conflict in the cooperatively breeding fish Neolamprologus pulcher, we measured behavioral dynamics and social network structure in isolated groups, groups recently exposed to neighbors, and groups with established neighbors. Aggression and submission between the dominant male and female pair were high in isolated groups, but dominant aggression was directly primarily at subordinates when groups had neighbors. This suggests that neighbors attenuate conflict between mates and foster conflict between dominants and subordinates. Further, aggression and submission between similarly sized group members were most frequent when groups had neighbors, suggesting that neighbors induce rank-related conflict. We found relatively little change in within-group affiliative networks across treatments, suggesting that the presence of neighbors does not alter behaviors associated with promoting group cohesion. Collectively, these results provide some of the first empirical insights into the extent to which intragroup behavioral networks are mediated by intergroup interactions and the broader social context.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Grinsted L, Field J. Biological markets in cooperative breeders: quantifying outside options. Proc Biol Sci 2018; 284:rspb.2017.0904. [PMID: 28615504 PMCID: PMC5474085 DOI: 10.1098/rspb.2017.0904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/18/2017] [Indexed: 01/29/2023] Open
Abstract
A major aim in evolutionary biology is to understand altruistic help and reproductive partitioning in cooperative societies, where subordinate helpers forego reproduction to rear dominant breeders' offspring. Traditional models of cooperation in these societies typically make a key assumption: that the only alternative to staying and helping is solitary breeding, an often unfeasible task. Using large-scale field experiments on paper wasps (Polistes dominula), we show that individuals have high-quality alternative nesting options available that offer fitness payoffs just as high as their actual chosen options, far exceeding payoffs from solitary breeding. Furthermore, joiners could not easily be replaced if they were removed experimentally, suggesting that it may be costly for dominants to reject them. Our results have implications for expected payoff distributions for cooperating individuals, and suggest that biological market theory, which incorporates partner choice and competition for partners, is necessary to understand helping behaviour in societies like that of P. dominula. Traditional models are likely to overestimate the incentive to stay and help, and therefore the amount of help provided, and may underestimate the size of reproductive concession required to retain subordinates. These findings are relevant for a wide range of cooperative breeders where there is dispersal between social groups.
Collapse
Affiliation(s)
- Lena Grinsted
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, UK
| | - Jeremy Field
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
28
|
Kingma SA. Direct benefits explain interspecific variation in helping behaviour among cooperatively breeding birds. Nat Commun 2017; 8:1094. [PMID: 29061969 PMCID: PMC5653647 DOI: 10.1038/s41467-017-01299-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/07/2017] [Indexed: 11/09/2022] Open
Abstract
Kin selection theory provides one important explanation for seemingly altruistic helping behaviour by non-breeding subordinates in cooperative breeding animals. However, it cannot explain why helpers in many species provide energetically costly care to unrelated offspring. Here, I use comparative analyses to show that direct fitness benefits of helping others, associated with future opportunities to breed in the resident territory, are responsible for the widespread variation in helping effort (offspring food provisioning) and kin discrimination across cooperatively breeding birds. In species where prospects of territory inheritance are larger, subordinates provide more help, and, unlike subordinates that cannot inherit a territory, do not preferentially direct care towards related offspring. Thus, while kin selection can underlie helping behaviour in some species, direct benefits are much more important than currently recognised and explain why unrelated individuals provide substantial help in many bird species.
Collapse
Affiliation(s)
- Sjouke A Kingma
- Behavioural & Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P. O. Box 11103, Groningen, 9700 CC, The Netherlands.
| |
Collapse
|
29
|
Declining soil Crustacea in a World Heritage Site caused by land nemertean. Sci Rep 2017; 7:12400. [PMID: 28963523 PMCID: PMC5622052 DOI: 10.1038/s41598-017-12653-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
Invasive non-native species are of great concern throughout the world. Potential severity of the impacts of non-native species is assessed for effective conservation managements. However, such risk assessment is often difficult, and underestimating possible harm can cause substantial issues. Here, we document catastrophic decline of a soil ecosystem in the Ogasawara Islands, a UNESCO World Heritage site, due to predation by non-native land nemertine Geonemertes pelaensis of which harm has been previously unnoticed. This nemertine is widely distributed in tropical regions, and no study has shown that it feeds on arthropods. However, we experimentally confirmed that G. pelaensis predates various arthropod groups. Soil fauna of Ogasawara was originally dominated by isopods and amphipods, but our surveys in the southern parts of Hahajima Island showed that these became extremely scarce in the areas invaded by G. pelaensis. Carnivorous arthropods decreased by indirect effects of its predation. Radical decline of soil arthropods since the 1980s on Chichijima Island was also caused by G. pelaensis and was first recorded in 1981. Thus, the soil ecosystem was already seriously damaged in Ogasawara by the nemertine. The present findings raise an issue and limitation in recognizing threats of non-native species.
Collapse
|