1
|
Wang S, Pang X, Cai Y, Tian X, Bai J, Xi M, Cao J, Jin L, Wang X, Wang T, Li D, Li M, Fan X. Acute heat stress upregulates Akr1b3 through Nrf-2 to increase endogenous fructose leading to kidney injury. J Biol Chem 2024:108121. [PMID: 39710324 DOI: 10.1016/j.jbc.2024.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/20/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
In recent years, the prevalence of extremely high-temperature climates, has led to an increase in cases of acute heat stress, which has been identified as a contributing factor to various kidney diseases. Fructose, the end product of the polyol pathway, has been linked to kidney conditions such as kidney stones, chronic kidney disease and acute kidney injury. However, the relationship between acute heat stress and kidney injury caused by endogenous fructose remains unclear. The study found that acute heat stress triggers the production of reactive oxygen species (ROS), which in turn activate the Nrf-2 and Akr1b3 leading to an increase in endogenous fructose levels in kidney cells. It was further demonstrated that the elevated levels of endogenous fructose play a crucial role in causing damage to kidney cells. Moreover, inhibiting Nrf-2 effectively mitigated kidney damage induced by acute heat stress by reducing endogenous fructose levels. These findings underscore the detrimental impact of excessive fructose resulting from acute stress on kidney function, offering a novel perspective for future research on the prevention and treatment of acute heat stress-induced kidney injury.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Pang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue Tian
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingchuan Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaxue Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy,Chengdu University, Chengdu, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy,Chengdu University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xiaolan Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, 611130, China; Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Wang M, Guo X, Liao Z, Sun S, Farag MA, Ren Q, Li P, Li N, Sun J, Liu C. Monitoring the fluctuation of hydrogen peroxide with a near-infrared fluorescent probe for the diagnosis and management of kidney injury. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134949. [PMID: 38901256 DOI: 10.1016/j.jhazmat.2024.134949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Kidney injury has become an increasing concern for patients because of environmental hazards and physiological factors. However, the early diagnosis of kidney injury remains challenging. Studies have shown that oxidative stress was closely related to the occurrence and development of kidney injury, in which abnormal hydrogen peroxide (H2O2) production was a common characteristic. Consequently, monitoring H2O2 level changes is essential for the diagnosis and management of kidney injury. Herein, based on fluorescence imaging advantages, a near-infrared fluorescent probe DHX-1 was designed to detect H2O2. DHX-1 showed high sensitivity and selectivity toward H2O2, with a fast response time and excellent imaging capacity for H2O2 in living cells and zebrafish. DHX-1 could detect H2O2 in pesticide-induced HK-2 cells, revealing the main cause of kidney injury caused by pesticides. Moreover, we performed fluorescence imaging, which confirmed H2O2 fluctuation in kidney injury caused by uric acid. In addition, DHX-1 achieved rapid screening of active compounds to ameliorate pesticide-induced kidney injury. This study presents a tool and strategy for monitoring H2O2 levels that could be employed for the early diagnosis and effective management of kidney injury.
Collapse
Affiliation(s)
- Muxuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China; Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Zhixin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Shutao Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Qidong Ren
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China.
| |
Collapse
|
3
|
Asowata EO, Romoli S, Sargeant R, Tan JY, Hoffmann S, Huang MM, Mahbubani KT, Krause FN, Jachimowicz D, Agren R, Koulman A, Jenkins B, Musial B, Griffin JL, Soderberg M, Ling S, Hansen PBL, Saeb-Parsy K, Woollard KJ. Multi-omics and imaging mass cytometry characterization of human kidneys to identify pathways and phenotypes associated with impaired kidney function. Kidney Int 2024; 106:85-97. [PMID: 38431215 DOI: 10.1016/j.kint.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Despite the recent advances in our understanding of the role of lipids, metabolites, and related enzymes in mediating kidney injury, there is limited integrated multi-omics data identifying potential metabolic pathways driving impaired kidney function. The limited availability of kidney biopsies from living donors with acute kidney injury has remained a major constraint. Here, we validated the use of deceased transplant donor kidneys as a good model to study acute kidney injury in humans and characterized these kidneys using imaging and multi-omics approaches. We noted consistent changes in kidney injury and inflammatory markers in donors with reduced kidney function. Neighborhood and correlation analyses of imaging mass cytometry data showed that subsets of kidney cells (proximal tubular cells and fibroblasts) are associated with the expression profile of kidney immune cells, potentially linking these cells to kidney inflammation. Integrated transcriptomic and metabolomic analysis of human kidneys showed that kidney arachidonic acid metabolism and seven other metabolic pathways were upregulated following diminished kidney function. To validate the arachidonic acid pathway in impaired kidney function we demonstrated increased levels of cytosolic phospholipase A2 protein and related lipid mediators (prostaglandin E2) in the injured kidneys. Further, inhibition of cytosolic phospholipase A2 reduced injury and inflammation in human kidney proximal tubular epithelial cells in vitro. Thus, our study identified cell types and metabolic pathways that may be critical for controlling inflammation associated with impaired kidney function in humans.
Collapse
Affiliation(s)
- Evans O Asowata
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom; Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Simone Romoli
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jennifer Y Tan
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Scott Hoffmann
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Margaret M Huang
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Fynn N Krause
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Jachimowicz
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Agren
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Barbara Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Magnus Soderberg
- Department of Pathology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom.
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
4
|
Yang S, Liu H, Fang XM, Yan F, Zhang Y. Signaling pathways in uric acid homeostasis and gout: From pathogenesis to therapeutic interventions. Int Immunopharmacol 2024; 132:111932. [PMID: 38560961 DOI: 10.1016/j.intimp.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1β to bioactive IL-1β. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.
Collapse
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong 510520, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China.
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Issue 12(th) of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi‑Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China.
| |
Collapse
|
5
|
Tsuruta H, Yasuda-Yamahara M, Yoshibayashi M, Kuwagata S, Yamahara K, Tanaka-Sasaki Y, Chin-Kanasaki M, Matsumoto S, Ema M, Kume S. Fructose overconsumption accelerates renal dysfunction with aberrant glomerular endothelial-mesangial cell interactions in db/db mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167074. [PMID: 38354758 DOI: 10.1016/j.bbadis.2024.167074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
For the advancement of DKD treatment, identifying unrecognized residual risk factors is essential. We explored the impact of obesity diversity derived from different carbohydrate qualities, with an emphasis on the increasing trend of excessive fructose consumption and its effect on DKD progression. In this study, we utilized db/db mice to establish a novel diabetic model characterized by fructose overconsumption, aiming to uncover the underlying mechanisms of renal damage. Compared to the control diet group, the fructose-fed db/db mice exhibited more pronounced obesity yet demonstrated milder glucose intolerance. Plasma cystatin C levels were elevated in the fructose model compared to the control, and this elevation was accompanied by enhanced glomerular sclerosis, even though albuminuria levels and tubular lesions were comparable. Single-cell RNA sequencing of the whole kidney highlighted an increase in Lrg1 in glomerular endothelial cells (GECs) in the fructose model, which appeared to drive mesangial fibrosis through enhanced TGF-β1 signaling. Our findings suggest that excessive fructose intake exacerbates diabetic kidney disease progression, mediated by aberrant Lrg1-driven crosstalk between GECs and mesangial cells.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mamoru Yoshibayashi
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yuki Tanaka-Sasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan.
| |
Collapse
|
6
|
Shao X, Zhang M, Fang J, Ge R, Su Y, Liu H, Zhang D, Wang Q. Analysis of the lncRNA-miRNA-mRNA network to explore the regulation mechanism in human traumatic brain injury. Neuroreport 2024; 35:328-336. [PMID: 38407897 DOI: 10.1097/wnr.0000000000002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Traumatic brain injury (TBI) refers to brain dysfunction with or without traumatic structural injury induced by an external force. Nevertheless, the molecular mechanism of TBI remains undefined. Differentially expressed (DE) lncRNAs, DEmRNAs and DEmiRNAs were selected between human TBI tissues and the adjacent histologically normal tissue by high-throughput sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis of overlapping DEmRNAs between predicted mRNAs of DEmiRNAs and DEmRNAs. The competitive endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was established in light of the ceRNA theory. In the ceRNA network, the key lncRNAs were screened out. Then key lncRNAs related ceRNA subnetwork was constructed. After that, qRT-PCR was applied to validate the expression levels of hub genes. 114 DElncRNAs, 1807 DEmRNAs and 6 DEmiRNAs were DE in TBI. The TBI-related ceRNA network was built with 73 lncRNA nodes, 81 mRNA nodes and 6 miRNAs. According to topological analysis, two hub lncRNAs (ENST00000562897 and ENST00000640877) were selected to construct the ceRNA subnetwork. Subsequently, key lncRNA-miRNA-mRNA regulatory axes constructed by two lncRNAs including ENST00000562897 and ENST00000640877, two miRNAs including miR-6721-5p and miR-129-1-3p, two mRNAs including ketohexokinase (KHK) and cyclic nucleotide-gated channel beta1 (CNGB1), were identified. Furthermore, qRT-PCR results displayed that the expression of ENST00000562897, KHK and CNGB1 were significantly decreased in TBI, while the miR-6721-5p expression levels were markedly increased in TBI. The results of our study reveal a new insight into understanding the ceRNA regulation mechanism in TBI and select key lncRNA-miRNA-mRNA axes for prevention and treatment of TBI.
Collapse
Affiliation(s)
- Xuefei Shao
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Maosong Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Jincheng Fang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Ruixiang Ge
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| | - Yue Su
- Graduate School of Wannan Medical College, Wuhu, China
| | - Hongbing Liu
- Graduate School of Wannan Medical College, Wuhu, China
| | - Daojin Zhang
- Graduate School of Wannan Medical College, Wuhu, China
| | - Qifu Wang
- Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College (Yi-Ji Shan Hospital)
| |
Collapse
|
7
|
Ducloux D. Fructokinase Inhibition to Prevent Kidney Disease. Clin J Am Soc Nephrol 2024; 19:01277230-990000000-00355. [PMID: 38349648 PMCID: PMC11168823 DOI: 10.2215/cjn.0000000000000442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Affiliation(s)
- Didier Ducloux
- CHU Besançon, EFS, INSERM, UMR RIGHT, Université de Franche-Comté, Besançon, France
| |
Collapse
|
8
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Li Y, Jiang T, Du M, He S, Huang N, Cheng B, Yan C, Tang W, Gao W, Guo H, Li Q, Wang Q. Ketohexokinase-dependent metabolism of cerebral endogenous fructose in microglia drives diabetes-associated cognitive dysfunction. Exp Mol Med 2023; 55:2417-2432. [PMID: 37907746 PMCID: PMC10689812 DOI: 10.1038/s12276-023-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 11/02/2023] Open
Abstract
Dementia, as an advanced diabetes-associated cognitive dysfunction (DACD), has become the second leading cause of death among diabetes patients. Given that little guidance is currently available to address the DACD process, it is imperative to understand the underlying mechanisms and screen out specific therapeutic targets. The excessive endogenous fructose produced under high glucose conditions can lead to metabolic syndrome and peripheral organ damage. Although generated by the brain, the role of endogenous fructose in the exacerbation of cognitive dysfunction is still unclear. Here, we performed a comprehensive study on leptin receptor-deficient T2DM mice and their littermate m/m mice and revealed that 24-week-old db/db mice had cognitive dysfunction and excessive endogenous fructose metabolism in the hippocampus by multiomics analysis and further experimental validation. We found that the rate-limiting enzyme of fructose metabolism, ketohexokinase, is primarily localized in microglia. It is upregulated in the hippocampus of db/db mice, which enhances mitochondrial damage and reactive oxygen species production by promoting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) expression and mitochondrial translocation. Inhibiting fructose metabolism via ketohexokinase depletion reduces microglial activation, leading to the restoration of mitochondrial homeostasis, recovery of structural synaptic plasticity, improvement of CA1 pyramidal neuron electrophysiology and alleviation of cognitive dysfunction. Our findings demonstrated that enhanced endogenous fructose metabolism in microglia plays a dominant role in diabetes-associated cognitive dysfunction and could become a potential target for DACD.
Collapse
Affiliation(s)
- Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Ning Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Wenxin Tang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Andres-Hernando A, Orlicky DJ, Kuwabara M, Cicerchi C, Pedler M, Petrash MJ, Johnson RJ, Tolan DR, Lanaspa MA. Endogenous Fructose Production and Metabolism Drive Metabolic Dysregulation and Liver Disease in Mice with Hereditary Fructose Intolerance. Nutrients 2023; 15:4376. [PMID: 37892451 PMCID: PMC10609559 DOI: 10.3390/nu15204376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Excessive intake of sugar, and particularly fructose, is closely associated with the development and progression of metabolic syndrome in humans and animal models. However, genetic disorders in fructose metabolism have very different consequences. While the deficiency of fructokinase, the first enzyme involved in fructose metabolism, is benign and somewhat desirable, missense mutations in the second enzyme, aldolase B, causes a very dramatic and sometimes lethal condition known as hereditary fructose intolerance (HFI). To date, there is no cure for HFI, and treatment is limited to avoiding fructose and sugar. Because of this, for subjects with HFI, glucose is their sole source of carbohydrates in the diet. However, clinical symptoms still occur, suggesting that either low amounts of fructose are still being consumed or, alternatively, fructose is being produced endogenously in the body. Here, we demonstrate that as a consequence of consuming high glycemic foods, the polyol pathway, a metabolic route in which fructose is produced from glucose, is activated, triggering a deleterious mechanism whereby glucose, sorbitol and alcohol induce severe liver disease and growth retardation in aldolase B knockout mice. We show that generically and pharmacologically blocking this pathway significantly improves metabolic dysfunction and thriving and increases the tolerance of aldolase B knockout mice to dietary triggers of endogenous fructose production.
Collapse
Affiliation(s)
- Ana Andres-Hernando
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver, Aurora, CO 80045, USA;
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Masanari Kuwabara
- Department of Cardiology, Toranomon Hospital, Tokyo 105-8470, Japan;
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Tochigi 329-0431, Japan
| | - Christina Cicerchi
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA; (C.C.); (R.J.J.)
| | - Michelle Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (M.P.); (M.J.P.)
| | - Mark J. Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (M.P.); (M.J.P.)
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO 80045, USA; (C.C.); (R.J.J.)
| | - Dean R. Tolan
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Miguel A. Lanaspa
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver, Aurora, CO 80045, USA;
| |
Collapse
|
11
|
Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, Tolan D, Nakagawa T, Ishimoto T, Andres-Hernando A, Rodriguez-Iturbe B, Stenvinkel P. The fructose survival hypothesis for obesity. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220230. [PMID: 37482773 PMCID: PMC10363705 DOI: 10.1098/rstb.2022.0230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/04/2023] [Indexed: 07/25/2023] Open
Abstract
The fructose survival hypothesis proposes that obesity and metabolic disorders may have developed from over-stimulation of an evolutionary-based biologic response (survival switch) that aims to protect animals in advance of crisis. The response is characterized by hunger, thirst, foraging, weight gain, fat accumulation, insulin resistance, systemic inflammation and increased blood pressure. The process is initiated by the ingestion of fructose or by stimulating endogenous fructose production via the polyol pathway. Unlike other nutrients, fructose reduces the active energy (adenosine triphosphate) in the cell, while blocking its regeneration from fat stores. This is mediated by intracellular uric acid, mitochondrial oxidative stress, the inhibition of AMP kinase and stimulation of vasopressin. Mitochondrial oxidative phosphorylation is suppressed, and glycolysis stimulated. While this response is aimed to be modest and short-lived, the response in humans is exaggerated due to gain of 'thrifty genes' coupled with a western diet rich in foods that contain or generate fructose. We propose excessive fructose metabolism not only explains obesity but the epidemics of diabetes, hypertension, non-alcoholic fatty liver disease, obesity-associated cancers, vascular and Alzheimer's dementia, and even ageing. Moreover, the hypothesis unites current hypotheses on obesity. Reducing activation and/or blocking this pathway and stimulating mitochondrial regeneration may benefit health-span. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Richard J. Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Miguel A. Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - L. Gabriela Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología ‘Ignacio Chavez’, Mexico City 14080, Mexico
| | - Dean Tolan
- Biology Department, Boston University, Boston, MA 02215, USA
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai-Otowa Hospital, Kyoto 607-8062, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Aichi 480-1103, Japan
| | - Ana Andres-Hernando
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80016, USA
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición ‘Salvador Zubirán’, Mexico City 14080, Mexico
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
12
|
Sánchez-Lozada LG, Madero M, Mazzali M, Feig DI, Nakagawa T, Lanaspa MA, Kanbay M, Kuwabara M, Rodriguez-Iturbe B, Johnson RJ. Sugar, salt, immunity and the cause of primary hypertension. Clin Kidney J 2023; 16:1239-1248. [PMID: 37529651 PMCID: PMC10387395 DOI: 10.1093/ckj/sfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 08/03/2023] Open
Abstract
Despite its discovery more than 150 years ago, the cause of primary hypertension remains unknown. Most studies suggest that hypertension involves genetic, congenital or acquired risk factors that result in a relative inability of the kidney to excrete salt (sodium chloride) in the kidneys. Here we review recent studies that suggest there may be two phases, with an initial phase driven by renal vasoconstriction that causes low-grade ischemia to the kidney, followed by the infiltration of immune cells that leads to a local autoimmune reaction that maintains the renal vasoconstriction. Evidence suggests that multiple mechanisms could trigger the initial renal vasoconstriction, but one way may involve fructose that is provided in the diet (such as from table sugar or high fructose corn syrup) or produced endogenously. The fructose metabolism increases intracellular uric acid, which recruits NADPH oxidase to the mitochondria while inhibiting AMP-activated protein kinase. A drop in intracellular ATP level occurs, triggering a survival response. Leptin levels rise, triggering activation of the sympathetic central nervous system, while vasopressin levels rise, causing vasoconstriction in its own right and stimulating aldosterone production via the vasopressin 1b receptor. Low-grade renal injury and autoimmune-mediated inflammation occur. High-salt diets can amplify this process by raising osmolality and triggering more fructose production. Thus, primary hypertension may result from the overactivation of a survival response triggered by fructose metabolism. Restricting salt and sugar and hydrating with ample water may be helpful in the prevention of primary hypertension.
Collapse
Affiliation(s)
- Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Magdalena Madero
- Division of Nephrology, Department of Medicine, Instituto Nacional de Cardiología “Ignacio Chavez”, Mexico City, Mexico
| | - Marilda Mazzali
- Division of Nephrology, University of Campinas, São Paulo, Brazil
| | - Daniel I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, AL, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Mehmet Kanbay
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | | | - Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
13
|
Johnson RJ, Lee SMK, Sánchez-Lozada LG, Kanbay M, Bansal A, Tolan DR, Bjornstad P, Lanaspa MA, Maesaka J. Fructose: A New Variable to Consider in SIADH and the Hyponatremia Associated With Long-Distance Running? Am J Kidney Dis 2023; 82:105-112. [PMID: 36940740 PMCID: PMC10330032 DOI: 10.1053/j.ajkd.2023.01.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/01/2023] [Indexed: 03/23/2023]
Abstract
Fructose has recently been proposed to stimulate vasopressin secretion in humans. Fructose-induced vasopressin secretion is not only postulated to result from ingestion of fructose-containing drinks but may also occur from endogenous fructose production via activation of the polyol pathway. This raises the question of whether fructose might be involved in some cases of vasopressin-induced hyponatremia, especially in situations where the cause is not fully known such as in the syndrome of inappropriate secretion of diuretic hormone (SIADH) and exercise-associated hyponatremia, which has been observed in marathon runners. Here we discuss the new science of fructose and vasopressin, and how it may play a role in some of these conditions, as well as in the complications associated with rapid treatment (such as the osmotic demyelination syndrome). Studies to test the role of fructose could provide new pathophysiologic insights as well as novel potential treatment strategies for these common conditions.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado.
| | | | | | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - Anip Bansal
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Dean R Tolan
- Biology Department, Boston University, Boston Massachusetts
| | - Petter Bjornstad
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado; Section of Endocrinology, Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - John Maesaka
- Department of Medicine and Division of Nephrology and Hypertension, NYU Langone Hospitals, Mineola, New York
| |
Collapse
|
14
|
Andres-Hernando A, Orlicky DJ, Cicerchi C, Kuwabara M, Garcia GE, Nakagawa T, Sanchez-Lozada LG, Johnson RJ, Lanaspa MA. High Fructose Corn Syrup Accelerates Kidney Disease and Mortality in Obese Mice with Metabolic Syndrome. Biomolecules 2023; 13:biom13050780. [PMID: 37238651 DOI: 10.3390/biom13050780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of obesity and metabolic syndrome is strongly linked with chronic kidney disease (CKD), but the mechanisms responsible for the association are poorly understood. Here, we tested the hypothesis that mice with obesity and metabolic syndrome might have increased susceptibility to CKD from liquid high fructose corn syrup (HFCS) by favoring the absorption and utilization of fructose. We evaluated the pound mouse model of metabolic syndrome to determine if it showed baseline differences in fructose transport and metabolism and whether it was more susceptible to chronic kidney disease when administered HFCS. Pound mice have increased expression of fructose transporter (Glut5) and fructokinase (the limiting enzyme driving fructose metabolism) associated with enhanced fructose absorption. Pound mice receiving HFCS rapidly develop CKD with increased mortality rates associated with intrarenal mitochondria loss and oxidative stress. In pound mice lacking fructokinase, the effect of HFCS to cause CKD and early mortality was aborted, associated with reductions in oxidative stress and fewer mitochondria loss. Obesity and metabolic syndrome show increased susceptibility to fructose-containing sugars and increased risk for CKD and mortality. Lowering added sugar intake may be beneficial in reducing the risk for CKD in subjects with metabolic syndrome.
Collapse
Affiliation(s)
- Ana Andres-Hernando
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Nephrology, Rocky Mountain VA Medical Center, Aurora, CO 80045, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Cicerchi
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Masanari Kuwabara
- Division of Cardiovascular Disease, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Gabriela E Garcia
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takahiko Nakagawa
- Department of Regenerative Medicine Development, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | | | - Richard J Johnson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Miguel A Lanaspa
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Nephrology, Rocky Mountain VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Shen L, Yang Y, Zhang J, Feng L, Zhou Q. Diacylated anthocyanins from purple sweet potato ( Ipomoeabatatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet. J Zhejiang Univ Sci B 2023; 24:587-601. [PMID: 37455136 PMCID: PMC10350372 DOI: 10.1631/jzus.b2200587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/06/2023] [Indexed: 04/15/2023]
Abstract
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
Collapse
Affiliation(s)
- Luhong Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lanjie Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| |
Collapse
|
16
|
Johnson RJ, Tolan DR, Bredesen D, Nagel M, Sánchez-Lozada LG, Fini M, Burtis S, Lanaspa MA, Perlmutter D. Could Alzheimer's disease be a maladaptation of an evolutionary survival pathway mediated by intracerebral fructose and uric acid metabolism? Am J Clin Nutr 2023; 117:455-466. [PMID: 36774227 PMCID: PMC10196606 DOI: 10.1016/j.ajcnut.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
An important aspect of survival is to assure enough food, water, and oxygen. Here, we describe a recently discovered response that favors survival in times of scarcity, and it is initiated by either ingestion or production of fructose. Unlike glucose, which is a source for immediate energy needs, fructose metabolism results in an orchestrated response to encourage food and water intake, reduce resting metabolism, stimulate fat and glycogen accumulation, and induce insulin resistance as a means to reduce metabolism and preserve glucose supply for the brain. How this survival mechanism affects brain metabolism, which in a resting human amounts to 20% of the overall energy demand, is only beginning to be understood. Here, we review and extend a previous hypothesis that this survival mechanism has a major role in the development of Alzheimer's disease and may account for many of the early features, including cerebral glucose hypometabolism, mitochondrial dysfunction, and neuroinflammation. We propose that the pathway can be engaged in multiple ways, including diets high in sugar, high glycemic carbohydrates, and salt. In summary, we propose that Alzheimer's disease may be the consequence of a maladaptation to an evolutionary-based survival pathway and what had served to enhance survival acutely becomes injurious when engaged for extensive periods. Although more studies are needed on the role of fructose metabolism and its metabolite, uric acid, in Alzheimer's disease, we suggest that both dietary and pharmacologic trials to reduce fructose exposure or block fructose metabolism should be performed to determine whether there is potential benefit in the prevention, management, or treatment of this disease.
Collapse
Affiliation(s)
- Richard J Johnson
- Department of Medicine, Rocky Mountain VA Medical Center, Aurora, CO, USA; Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Dean R Tolan
- Biology Department, Boston University, Boston, MA, USA
| | - Dale Bredesen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maria Nagel
- Department of Neurology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laura G Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Mehdi Fini
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | | |
Collapse
|
17
|
Kanbay M, Altıntas A, Yavuz F, Copur S, Sanchez-Lozada LG, Lanaspa MA, Johnson RJ. Responses to Hypoxia: How Fructose Metabolism and Hypoxia-Inducible Factor-1a Pathways Converge in Health and Disease. Curr Nutr Rep 2023; 12:181-190. [PMID: 36708463 DOI: 10.1007/s13668-023-00452-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Oxygen is critical for the high output of energy (adenosine triphosphate) generated by oxidative phosphorylation in the mitochondria, and when oxygen delivery is impaired due to systemic hypoxia, impaired or reduced delivery of red blood cells, or from local ischemia, survival processes are activated. RECENT FINDINGS One major mechanism is the activation of hypoxia-inducible factors (HIFs) that act to reduce oxygen needs by blocking mitochondrial function and stimulating glucose uptake and glycolysis while also stimulating red blood cell production and local angiogenesis. Recently, endogenous fructose production with uric acid generation has also been shown to occur in hypoxic and ischemic tissues where it also appears to drive the same functions, and indeed, there is evidence that many of hypoxia-inducible factors effects may be mediated by the stimulation of fructose production and metabolism. Unfortunately, while being acutely protective, these same systems in overdrive lead to chronic inflammation and disease and may also be involved in the development of metabolic syndrome and related disease. The benefit of SGLT2 inhibitors may act in part by reducing the delivery of glucose with the stimulation of fructose formation, thereby allowing a conversion from the glycolytic metabolism to one involving mitochondrial metabolism. The use of hypoxia-inducible factor stabilizers is expected to aid the treatment of anemia but, in the long-term, could potentially lead to worsening cardiovascular and metabolic outcomes. We suggest more studies are needed on the use of these agents.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey.
| | - Alara Altıntas
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Han Z, Li J, Xu Z, Su Y, Wang Y, Zhuo L, Du J, Zhu C, Hao X. Design and synthesis of novel quinazolin-4(1H)-one derivatives as potent and selective inhibitors targeting AKR1B1. Arch Pharm (Weinheim) 2023; 356:e2200577. [PMID: 36707406 DOI: 10.1002/ardp.202200577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/29/2023]
Abstract
Inhibition of aldose reductase (AKR1B1) is a promising option for the treatment of diabetic complications. However, most of the developed small molecule inhibitors lack selectivity or suffer from low bioactivity. To address this limitation, a novel series of quinazolin-4(1H)-one derivatives as potent and selective inhibitors of AKR1B1 were designed and synthesized. Aldose reductase inhibitory activities of the novel compounds were characterized by IC50 values ranging from 0.015 to 31.497 μM. Markedly enhanced selectivity of these derivatives was also recorded, which was further supported by docking studies. Of these inhibitors, compound 5g exhibited the highest inhibition activity with selectivity indices reaching 1190.8. The structure-activity relationship highlighted the importance of N1-acetic acid and N3-benzyl groups with electron-withdrawing substituents on the quinazolin-4(1H)-one scaffold for the construction of efficient and selective AKR1B1 inhibitors.
Collapse
Affiliation(s)
- Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Jiahui Li
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Zilu Xu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yu Su
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yihan Wang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Lili Zhuo
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Jiaming Du
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Xin Hao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
19
|
Pan JJ, Yang Y, Chen XQ, Shi J, Wang MZ, Tong ML, Zhou XG. RNA sequencing and bioinformatics analysis of circular RNAs in asphyxial newborns with acute kidney injury. Kaohsiung J Med Sci 2023; 39:337-344. [PMID: 36655871 DOI: 10.1002/kjm2.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/20/2023] Open
Abstract
As one kind of novel noncoding RNA, circular RNAs (circRNAs) are involved in different biological processes. Although growing evidences have supported the important role of circRNAs in renal diseases, the mechanism remains unclear in neonatal acute kidney injury (AKI). High-throughput sequencing analysis was used to investigate the expression of circRNAs between hypoxia-induced AKI neonates and controls. Bioinformatics analysis was conducted to predict the function of differentially expressed circRNAs. Finally, the differentially expressed circRNAs were screened and determined by quantitative real-time PCR (qPCR). (1) A total of 296 differentially expressed circRNAs were identified (Fold change >2 and p < 0.05). Of them, 184 circRNAs were markedly upregulated, and 112 were significantly downregulated in the AKI group. (2) The pathway analysis showed that ubiquitin-mediated proteolysis, renal cell carcinoma, Jak-STAT, and HIF-1 signaling pathways participated in AKI. (3) Top five upregulated and five downregulated circRNAs with higher fold changes were selected for qPCR validation. Hsa_circ_0008898 (Fold Change = 5.48, p = 0.0376) and hsa_circ_0005519 (Fold Change = 4.65, p = 0.0071) were significantly upregulated, while hsa_circ_0132279 (Fold Change = -4.47, p = 0.0008), hsa_circ_0112327 (Fold Change = -4.26, p = 0.0048), and hsa_circ_0017647 (Fold Change = -4.15, p = 0.0313) were significantly downregulated in asphyxia-induced AKI group compared with the control group. This study could contribute to future research on neonatal AKI and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Jing-Jing Pan
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Neonatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Child Healthcare, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qing Chen
- Department of Neonatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia Shi
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mu-Zi Wang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mei-Ling Tong
- Department of Child Healthcare, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Guang Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Possible Toxic Mechanisms of Deoxynivalenol (DON) Exposure to Intestinal Barrier Damage and Dysbiosis of the Gut Microbiota in Laying Hens. Toxins (Basel) 2022; 14:toxins14100682. [PMID: 36287951 PMCID: PMC9609298 DOI: 10.3390/toxins14100682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Deoxynivalenol is one the of most common mycotoxins in cereals and grains and causes a serious health threat to poultry and farm animals. Our previous study found that DON decreased the production performance of laying hens. It has been reported that DON could exert significant toxic effects on the intestinal barrier and microbiota. However, whether the decline of laying performance is related to intestinal barrier damage, and the underlying mechanisms of DON induced intestine function injury remain largely unclear in laying hens. In this study, 80 Hy-line brown laying hens at 26 weeks were randomly divided into 0, 1, 5 and 10 mg/kg.bw (body weight) DON daily for 6 weeks. The morphology of the duodenum, the expression of inflammation factors and tight junction proteins, and the diversity and abundance of microbiota were analyzed in different levels of DON treated to laying hens. The results demonstrated that the mucosal detachment and reduction of the villi number were presented in different DON treated groups with a dose-effect manner. Additionally, the genes expression of pro-inflammatory factors IL-1β, IL-8, TNF-α and anti-inflammatory factors IL-10 were increased or decreased at 5 and 10 mg/kg.bw DON groups, respectively. The levels of ZO-1 and claudin-1 expression were significantly decreased in 5 and 10 mg/kg.bw DON groups. Moreover, the alpha diversity including Chao, ACE and Shannon indices were all reduced in DON treated groups. At the phylum level, Firmicutes and Actinobacteria and Bacteroidetes, Proteobacteria, and Spirochaetes were decreased and increased in 10 mg/kg.bw DON group, respectively. At the genus levels, the relative abundance of Clostridium and Lactobacillus in 5 and 10 mg/kg.bw DON groups, and Alkanindiges and Spirochaeta in the 10 mg/kg.bw DON were significantly decreased and increased, respectively. Moreover, there were significant correlation between the expression of tight junction proteins and the relative abundance of Lactobacillus and Succinispira. These results indicated that DON exposure to the laying hens can induce the inflammation and disrupt intestinal tight junctions, suggesting that DON can directly damage barrier function, which may be closely related to the dysbiosis of intestinal microbiota.
Collapse
|
21
|
Hotait ZS, Lo Cascio JN, Choos END, Shepard BD. The sugar daddy: the role of the renal proximal tubule in glucose homeostasis. Am J Physiol Cell Physiol 2022; 323:C791-C803. [PMID: 35912988 PMCID: PMC9448277 DOI: 10.1152/ajpcell.00225.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Renal blood flow represents >20% of total cardiac output and with this comes the great responsibility of maintaining homeostasis through the intricate regulation of solute handling. Through the processes of filtration, reabsorption, and secretion, the kidneys ensure that solutes and other small molecules are either returned to circulation, catabolized within renal epithelial cells, or excreted through the process of urination. Although this occurs throughout the renal nephron, one segment is tasked with the bulk of solute reabsorption-the proximal tubule. Among others, the renal proximal tubule is entirely responsible for the reabsorption of glucose, a critical source of energy that fuels the body. In addition, it is the only other site of gluconeogenesis outside of the liver. When these processes go awry, pathophysiological conditions such as diabetes and acidosis result. In this review, we highlight the recent advances made in understanding these processes that occur within the renal proximal tubule. We focus on the physiological mechanisms at play regarding glucose reabsorption and glucose metabolism, emphasize the conditions that occur under diseased states, and explore the emerging class of therapeutics that are responsible for restoring homeostasis.
Collapse
Affiliation(s)
- Zahraa S Hotait
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Julia N Lo Cascio
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Elijah N D Choos
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
22
|
Abstract
The consumption of fructose as sugar and high-fructose corn syrup has markedly increased during the past several decades. This trend coincides with the exponential rise of metabolic diseases, including obesity, nonalcoholic fatty liver disease, cardiovascular disease, and diabetes. While the biochemical pathways of fructose metabolism were elucidated in the early 1990s, organismal-level fructose metabolism and its whole-body pathophysiological impacts have been only recently investigated. In this review, we discuss the history of fructose consumption, biochemical and molecular pathways involved in fructose metabolism in different organs and gut microbiota, the role of fructose in the pathogenesis of metabolic diseases, and the remaining questions to treat such diseases.
Collapse
Affiliation(s)
- Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, California, USA;,Institute of Bioengineering, Bio-MAX, Seoul National University, Seoul, South Korea
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, California, USA;,Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA,Center for Complex Biological Systems, University of California, Irvine, California, USA,Center for Epigenetics and Metabolism, University of California, Irvine, California, USA
| |
Collapse
|
23
|
Fang XY, Qi LW, Chen HF, Gao P, Zhang Q, Leng RX, Fan YG, Li BZ, Pan HF, Ye DQ. The Interaction Between Dietary Fructose and Gut Microbiota in Hyperuricemia and Gout. Front Nutr 2022; 9:890730. [PMID: 35811965 PMCID: PMC9257186 DOI: 10.3389/fnut.2022.890730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
With the worldwide epidemics of hyperuricemia and associated gout, the diseases with purine metabolic disorders have become a serious threat to human public health. Accumulating evidence has shown that they have been linked to increased consumption of fructose in humans, we hereby made a timely review on the roles of fructose intake and the gut microbiota in regulating purine metabolism, together with the potential mechanisms by which excessive fructose intake contributes to hyperuricemia and gout. To this end, we focus on the understanding of the interaction between a fructose-rich diet and the gut microbiota in hyperuricemia and gout to seek for safe, cheap, and side-effect-free clinical interventions. Furthermore, fructose intake recommendations for hyperuricemia and gout patients, as well as the variety of probiotics and prebiotics with uric acid-lowering effects targeting the intestinal tract are also summarized to provide reference and guidance for the further research.
Collapse
Affiliation(s)
- Xin-yu Fang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Liang-wei Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Hai-feng Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Peng Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Qin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Rui-xue Leng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Yin-guang Fan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Bao-zhu Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hai-feng Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| | - Dong-qing Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
- *Correspondence: Dong-qing Ye
| |
Collapse
|
24
|
Johnson RJ, García-Arroyo FE, Gonzaga-Sánchez G, Vélez-Orozco KA, Álvarez-Álvarez YQ, Aparicio-Trejo OE, Tapia E, Osorio-Alonso H, Andrés-Hernando A, Nakagawa T, Kuwabara M, Kanbay M, Lanaspa MA, Sánchez-Lozada LG. Current Hydration Habits: The Disregarded Factor for the Development of Renal and Cardiometabolic Diseases. Nutrients 2022; 14:2070. [PMID: 35631211 PMCID: PMC9145744 DOI: 10.3390/nu14102070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023] Open
Abstract
Improper hydration habits are commonly disregarded as a risk factor for the development of chronic diseases. Consuming an intake of water below recommendations (underhydration) in addition to the substitution of sugar-sweetened beverages (SSB) for water are habits deeply ingrained in several countries. This behavior is due to voluntary and involuntary dehydration; and because young children are exposed to SSB, the preference for a sweet taste is profoundly implanted in the brain. Underhydration and SSB intake lead to mild hyperosmolarity, which stimulates biologic processes, such as the stimulation of vasopressin and the polyol-fructose pathway, which restore osmolarity to normal but at the expense of the continued activation of these biological systems. Unfortunately, chronic activation of the vasopressin and polyol-fructose pathways has been shown to mediate many diseases, such as obesity, diabetes, metabolic syndrome, chronic kidney disease, and cardiovascular disease. It is therefore urgent that we encourage educational and promotional campaigns that promote the evaluation of personal hydration status, a greater intake of potable water, and a reduction or complete halting of the drinking of SSB.
Collapse
Affiliation(s)
- Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Fernando E. García-Arroyo
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Guillermo Gonzaga-Sánchez
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Kevin A. Vélez-Orozco
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Yamnia Quetzal Álvarez-Álvarez
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Omar Emiliano Aparicio-Trejo
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Edilia Tapia
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Horacio Osorio-Alonso
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| | - Ana Andrés-Hernando
- Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland, OR 97239, USA; (A.A.-H.); (M.A.L.)
| | - Takahiko Nakagawa
- Department of Nephrology, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan;
| | - Masanari Kuwabara
- Intensive Care Unit, Toranomon Hospital, Tokyo 105-8470, Japan;
- Department of Cardiology, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, Istanbul 34010, Turkey;
| | - Miguel A. Lanaspa
- Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland, OR 97239, USA; (A.A.-H.); (M.A.L.)
| | - Laura Gabriela Sánchez-Lozada
- Department Cardio-Renal Physiopathology, INC Ignacio Chávez, Mexico City 14080, Mexico; (F.E.G.-A.); (G.G.-S.); (K.A.V.-O.); (Y.Q.Á.-Á.); (O.E.A.-T.); (E.T.); (H.O.-A.)
| |
Collapse
|
25
|
Gerhardt LMS, McMahon AP. Identifying Common Molecular Mechanisms in Experimental and Human Acute Kidney Injury. Semin Nephrol 2022; 42:151286. [PMID: 36402654 PMCID: PMC11017289 DOI: 10.1016/j.semnephrol.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute kidney injury (AKI) is a highly prevalent, heterogeneous syndrome, associated with increased short- and long-term mortality. A multitude of different factors cause AKI including ischemia, sepsis, nephrotoxic drugs, and urinary tract obstruction. Upon injury, the kidney initiates an intrinsic repair program that can result in adaptive repair with regeneration of damaged nephrons and functional recovery of epithelial activity, or maladaptive repair and persistence of damaged epithelial cells with a characteristic proinflammatory, profibrotic molecular signature. Maladaptive repair is linked to disease progression from AKI to chronic kidney disease. Despite extensive efforts, no therapeutic strategies provide consistent benefit to AKI patients. Since kidney biopsies are rarely performed in the acute injury phase in humans, most of our understanding of AKI pathophysiology is derived from preclinical AKI models. This raises the question of how well experimental models of AKI reflect the molecular and cellular mechanisms underlying human AKI? Here, we provide a brief overview of available AKI models, discuss their strengths and limitations, and consider important aspects of the AKI response in mice and humans, with a particular focus on the role of proximal tubule cells in adaptive and maladaptive repair.
Collapse
Affiliation(s)
- Louisa M S Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
26
|
Rodriguez-Iturbe B, Johnson RJ, Lanaspa MA, Nakagawa T, Garcia-Arroyo FE, Sánchez-Lozada LG. Sirtuin deficiency and the adverse effects of fructose and uric acid synthesis. Am J Physiol Regul Integr Comp Physiol 2022; 322:R347-R359. [PMID: 35271385 PMCID: PMC8993531 DOI: 10.1152/ajpregu.00238.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Fructose metabolism and hyperuricemia have been shown to drive insulin resistance, metabolic syndrome, hepatic steatosis, hypertension, inflammation, and innate immune reactivity in experimental studies. We suggest that these adverse effects are at least in part the result of suppressed activity of sirtuins, particularly Sirtuin1. Deficiency of sirtuin deacetylations is a consequence of reduced bioavailability of its cofactor nicotinamide adenine dinucleotide (NAD+). Uric acid-induced inflammation and oxidative stress consume NAD+ and activation of the polyol pathway of fructose and uric acid synthesis also reduces the NAD+-to-NADH ratio. Variability in the compensatory regeneration of NAD+ could result in variable recovery of sirtuin activity that may explain the inconsistent benefits of treatments directed to reduce uric acid in clinical trials. Here, we review the pathogenesis of the metabolic dysregulation driven by hyperuricemia and their potential relationship with sirtuin deficiency. In addition, we discuss therapeutic options directed to increase NAD+ and sirtuins activity that may improve the adverse effects resulting from fructose and uric acid synthesis.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán," Mexico City, Mexico
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Denver, Colorado
- Kidney Disease Division, Rocky Mountain Regional Veterans Affairs Medical Center, Denver, Colorado
| | - Miguel A Lanaspa
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon
| | | | - Fernando E Garcia-Arroyo
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| | - Laura G Sánchez-Lozada
- Departments of Cardio-Renal Physiopathology Instituto Nacional de Cardiología "Ignacio Chavez," Mexico City, Mexico
| |
Collapse
|
27
|
Bier A, Shapira E, Khasbab R, Sharabi Y, Grossman E, Leibowitz A. High-Fructose Diet Increases Renal ChREBPβ Expression, Leading to Intrarenal Fat Accumulation in a Rat Model with Metabolic Syndrome. BIOLOGY 2022; 11:biology11040618. [PMID: 35453816 PMCID: PMC9027247 DOI: 10.3390/biology11040618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
Simple Summary Fructose consumption leads to the development of metabolic syndrome. Fatty liver and chronic kidney disease are closely related to metabolic syndrome. Lately, a transcription factor that regulates fructose metabolism in the liver, named ChREBPβ, which is responsible for de-novo lipogenesis and intra-hepatic fat accumulation (“fatty liver”), was described. In this study, we demonstrate that the effect of fructose consumption on the kidneys resembles its liver effect. Rats fed with a high-fructose diet exhibit bigger kidneys with higher triglycerides content, compared to control rats. The expression of ChREBPβ and its downstream genes was upregulated as well. Treating kidney-origin cells with fructose increased the expression of this factor as well, showing the direct effect of fructose on this factor. Thus, the appearance of fatty kidney in response to high-fructose consumption revealed a new mechanism linking metabolic syndrome to chronic kidney disease. Abstract Fructose consumption is associated with metabolic syndrome (MeS). Dysregulated lipid metabolism and ectopic lipid accumulation, such as in “fatty liver’’, are pivotal components of the syndrome. MeS is also associated with chronic kidney disease (CKD). The aim of this study was to evaluate kidney fructose metabolism and whether the addition of fructose leads to intrarenal fat accumulation. Sprague Dawley rats were fed either normal chow (Ctrl) or a high-fructose diet (HFrD). MeS features such as blood pressure and metabolic parameters in blood were measured. The kidneys were harvested for ChREBPβ and de novo lipogenesis (DNL) gene expression, triglyceride content and histopathology staining. HK2 (human kidney) cells were treated with fructose for 48 h and gene expression for ChREBPβ and DNL were determined. The HFrD rats exhibited higher blood pressure, glucose and triglyceride levels. The kidney weight of the HFrD rats was significantly higher than Ctrl rats. The difference can be explained by the higher triglyceride content in the HFrD kidneys. Oil red staining revealed lipid droplet formation in the HFrD kidneys, which was also supported by increased adipophilin mRNA expression. For ChREBPβ and its downstream genes, scd and fasn, mRNA expression was elevated in the HFrD kidneys. Treating HK2 cells with 40 mM fructose increased the expression of ChREBPβ. This study demonstrates that fructose consumption leads to intrarenal lipid accumulation and to the formation of a “fatty kidney”. This suggests a potential mechanism that can at least partially explain CKD development in fructose-induced MeS.
Collapse
Affiliation(s)
- Ariel Bier
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
| | - Eliyahu Shapira
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Rawan Khasbab
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel;
| | - Yehonatan Sharabi
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel;
| | - Ehud Grossman
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel;
| | - Avshalom Leibowitz
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel;
- Correspondence: ; Tel.: +972-35302834; Fax: +972-35302835
| |
Collapse
|
28
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
29
|
Zhou W, Sha Y, Zeng J, Zhang X, Zhang A, Ge X. Computational Systems Pharmacology, Molecular Docking and Experiments Reveal the Protective Mechanism of Li-Da-Qian Mixture in the Treatment of Glomerulonephritis. J Inflamm Res 2021; 14:6939-6958. [PMID: 34949932 PMCID: PMC8689049 DOI: 10.2147/jir.s338055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Glomerulonephritis is a common urinary system disease among children. Growing evidence suggests that traditional Chinese medicine has potential in treating glomerulonephritis, such as Li-Da-Qian mixture. Although its anti-glomerulonephritis and alleviating hematuria effects have been reported, the exact mechanism of Li-Da-Qian mixture devoting to glomerulonephritis remains unexplored. It was necessary to explore the mechanism of Li-Da-Qian mixture against glomerulonephritis using modern technology, such as Chinese medicine database and molecular biological experiments. Methods Online databases were used to look up ingredients and predict targets of Li-Da-Qian mixture against glomerulonephritis. The intersecting targets of Li-Da-Qian mixture and glomerulonephritis were selected for enrichment analysis. Cytoscape software was applied to establish network and MCODE analysis. Molecular docking was used for the primary validation. Furthermore, we examined the function of the core compounds analyzed from Li-Da-Qian mixture to rescue LPS-induced inflammation in vivo and vitro. We also explored whether the core compounds can alleviate TGFβ1-induced renal fibrosis in mouse proximal tubular cells. Results Network pharmacological analysis of Li-Da-Qian evaluated 20 active ingredients including baicalein, luteolin and quercetin. A total of 113 key targets were screened, including IL6, VEGFA, TP53, EGF, MMP2, etc, and they were enriched in AGE-RAGE signaling pathway in diabetic complications, TNF and IL-17 signaling pathways. Moreover, the core ingredients succeeded in binding to the main targets via molecular docking, further identifying the anti-glomerulonephritis effects and improvement of vascular injury. Western blotting and qPCR also suggested that baicalein and luteolin can improve inflammation and restore disturbance of mesangial cells or kidney induced by LPS. In addition, baicalein and luteolin inhibited renal fibrosis in vitro.
Collapse
Affiliation(s)
- Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yugen Sha
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingxia Zeng
- Pediatric Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoyue Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuhua Ge
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Pediatric Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Faivre A, Verissimo T, Auwerx H, Legouis D, de Seigneux S. Tubular Cell Glucose Metabolism Shift During Acute and Chronic Injuries. Front Med (Lausanne) 2021; 8:742072. [PMID: 34778303 PMCID: PMC8585753 DOI: 10.3389/fmed.2021.742072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Acute and chronic kidney disease are responsible for large healthcare costs worldwide. During injury, kidney metabolism undergoes profound modifications in order to adapt to oxygen and nutrient shortage. Several studies highlighted recently the importance of these metabolic adaptations in acute as well as in chronic phases of renal disease, with a potential deleterious effect on fibrosis progression. Until recently, glucose metabolism in the kidney has been poorly studied, even though the kidney has the capacity to use and produce glucose, depending on the segment of the nephron. During physiology, renal proximal tubular cells use the beta-oxidation of fatty acid to generate large amounts of energy, and can also produce glucose through gluconeogenesis. In acute kidney injury, proximal tubular cells metabolism undergo a metabolic shift, shifting away from beta-oxidation of fatty acids and gluconeogenesis toward glycolysis. In chronic kidney disease, the loss of fatty acid oxidation is also well-described, and data about glucose metabolism are emerging. We here review the modifications of proximal tubular cells glucose metabolism during acute and chronic kidney disease and their potential consequences, as well as the potential therapeutic implications.
Collapse
Affiliation(s)
- Anna Faivre
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Thomas Verissimo
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Hannah Auwerx
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - David Legouis
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Intensive Care Unit, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Geneva University Hospitals, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Nakagawa T, Kang DH. Fructose in the kidney: from physiology to pathology. Kidney Res Clin Pract 2021; 40:527-541. [PMID: 34781638 PMCID: PMC8685370 DOI: 10.23876/j.krcp.21.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
The Warburg effect is a unique property of cancer cells, in which glycolysis is activated instead of mitochondrial respiration despite oxygen availability. However, recent studies found that the Warburg effect also mediates non-cancer disorders, including kidney disease. Currently, diabetes or glucose has been postulated to mediate the Warburg effect in the kidney, but it is of importance that the Warburg effect can be induced under nondiabetic conditions. Fructose is endogenously produced in several organs, including the kidney, under both physiological and pathological conditions. In the kidney, fructose is predominantly metabolized in the proximal tubules; under normal physiologic conditions, fructose is utilized as a substrate for gluconeogenesis and contributes to maintain systemic glucose concentration under starvation conditions. However, when present in excess, fructose likely becomes deleterious, possibly due in part to excessive uric acid, which is a by-product of fructose metabolism. A potential mechanism is that uric acid suppresses aconitase in the Krebs cycle and therefore reduces mitochondrial oxidation. Consequently, fructose favors glycolysis over mitochondrial respiration, a process that is similar to the Warburg effect in cancer cells. Activation of glycolysis also links to several side pathways, including the pentose phosphate pathway, hexosamine pathway, and lipid synthesis, to provide biosynthetic precursors as fuel for renal inflammation and fibrosis. We now hypothesize that fructose could be the mediator for the Warburg effect in the kidney and a potential mechanism for chronic kidney disease.
Collapse
Affiliation(s)
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Institute, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Singh M, Kapoor A, Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021; 11:655. [PMID: 34677370 PMCID: PMC8541668 DOI: 10.3390/metabo11100655] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway represents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to excessive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol has been implicated in the development of secondary diabetic complications such as retinopathy, nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these complications a range of AR inhibitors have been developed and tested; however, their clinical efficacy has been found to be marginal at best. Moreover, recent work has shown that AR participates in the detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates. Although in some contexts this antioxidant function of AR helps protect against tissue injury and dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer identification of the specific role(s) of the AR enzyme in health and disease.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Internal Medicine—Critical Care, School of Medicine, Saint Louis University, St. Louis, MO 63141, USA;
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
33
|
Tamura H. Trends in pediatric nephrotic syndrome. World J Nephrol 2021; 10:88-100. [PMID: 34631479 PMCID: PMC8477269 DOI: 10.5527/wjn.v10.i5.88] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/15/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Nephrotic syndrome (NS) is relatively common in children, with most of its histological types being minimal changed disease. Its etiology has long been attributed to lymphocyte (especially T-cell) dysfunction, while T-cell-mediated vascular hyperpermeability increases protein permeability in glomerular capillaries, leading to proteinuria and hypoproteinemia. Based on this etiology, steroids and immunosuppressive drugs that are effective against this disease have also been considered to correct T-cell dysfunction. However, in recent years, this has been questioned. The primary cause of NS has been considered damage to glomerular epithelial cells and podocyte-related proteins. Therefore, we first describe the changes in expression of molecules involved in NS etiology, and then describe the mechanism by which abnormal expression of these molecules induces proteinuria. Finally, we consider the mechanism by which infection causes the recurrence of NS.
Collapse
Affiliation(s)
- Hiroshi Tamura
- Department of Pediatrics, Kumamoto University, Kumamoto 8608556, Japan
| |
Collapse
|
34
|
Xiaoyu Xiezhuo Drink Protects against Ischemia-Reperfusion Acute Kidney Injury in Aged Mice through Inhibiting the TGF- β1/Smad3 and HIF1 Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9963732. [PMID: 34545331 PMCID: PMC8449228 DOI: 10.1155/2021/9963732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022]
Abstract
Acute kidney injury (AKI) is responsible for significant mortality among hospitalized patients that is especially troubling aged people. An effective self-made Chinese medicine formula, Xiaoyu Xiezhuo Drink (XXD), displayed therapeutic effects on AKI. However, the compositions and underlying mechanisms of XXD remain to be elucidated. In this study, we used the ultra-high-performance liquid chromatography method coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) to investigate the chemical components in XXD. Then, the absorbable components of XXD were identified based on the five principles and inputted into the SwissTargetPrediction and STITCH databases to identify the drug targets. AKI-related targets were collected from the GenCLiP 3, GeneCards, and DisGeNET databases. The crossover genes of XXD and AKI were identified for functional enrichment analysis. The protein-protein interaction (PPI) network of crossover genes was constructed, followed by the identification of hub genes. Subsequently, the effects and potential mechanisms of XXD on AKI predicted by the network pharmacology and bioinformatics analyses were experimentally validated in ischemia-reperfusion (I/R) injury-induced AKI aged mouse models. A total of 122 components in XXD were obtained; among them, 58 components were found that could be absorbed in the blood. There were 800 potential drug targets predicted from the 58 absorbable components in AKI which shared 36 crossover genes with AKI-related targets. The results of functional enrichment analysis indicated that crossover genes mostly associated with the response to oxidative stress and the HIF1 signaling pathway. In the PPI network analysis, 12 hub genes were identified, including ALB, IL-6, TNF, TP53, VEGFA, PTGS2, TLR4, NOS3, EGFR, PPARG, HIF1A, and HMOX1. In AKI aged mice, XXD prominently alleviated I/R injury-induced renal dysfunction, abnormal renal pathological changes, and cellular senescence, inflammation, and oxidative damage with a reduction in the expression level of the inflammatory mediator, α-SMA, collagen-1, F4/80, TP53, VEGFA, PTGS2, TLR4, NOS3, EGFR, PPARG, HIF1A, ICAM-1, TGF-β1, Smad3, and p-Smad3 and an increase of nephridial tissue p-H3, Ki67, HMOX1, MMP-9, and Smad7 levels. In summary, our findings suggest that XXD has renoprotective effects against AKI in aged mice via inhibiting the TGF-β1/Smad3 and HIF1 signaling pathways.
Collapse
|
35
|
Fructose and Mannose in Inborn Errors of Metabolism and Cancer. Metabolites 2021; 11:metabo11080479. [PMID: 34436420 PMCID: PMC8397987 DOI: 10.3390/metabo11080479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
History suggests that tasteful properties of sugar have been domesticated as far back as 8000 BCE. With origins in New Guinea, the cultivation of sugar quickly spread over centuries of conquest and trade. The product, which quickly integrated into common foods and onto kitchen tables, is sucrose, which is made up of glucose and fructose dimers. While sugar is commonly associated with flavor, there is a myriad of biochemical properties that explain how sugars as biological molecules function in physiological contexts. Substantial research and reviews have been done on the role of glucose in disease. This review aims to describe the role of its isomers, fructose and mannose, in the context of inborn errors of metabolism and other metabolic diseases, such as cancer. While structurally similar, fructose and mannose give rise to very differing biochemical properties and understanding these differences will guide the development of more effective therapies for metabolic disease. We will discuss pathophysiology linked to perturbations in fructose and mannose metabolism, diagnostic tools, and treatment options of the diseases.
Collapse
|
36
|
Nakagawa T, Sanchez-Lozada LG, Andres-Hernando A, Kojima H, Kasahara M, Rodriguez-Iturbe B, Bjornstad P, Lanaspa MA, Johnson RJ. Endogenous Fructose Metabolism Could Explain the Warburg Effect and the Protection of SGLT2 Inhibitors in Chronic Kidney Disease. Front Immunol 2021; 12:694457. [PMID: 34220855 PMCID: PMC8243983 DOI: 10.3389/fimmu.2021.694457] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic low-grade inflammation underlies the pathogenesis of non-communicable diseases, including chronic kidney diseases (CKD). Inflammation is a biologically active process accompanied with biochemical changes involving energy, amino acid, lipid and nucleotides. Recently, glycolysis has been observed to be increased in several inflammatory disorders, including several types of kidney disease. However, the factors initiating glycolysis remains unclear. Added sugars containing fructose are present in nearly 70 percent of processed foods and have been implicated in the etiology of many non-communicable diseases. In the kidney, fructose is transported into the proximal tubules via several transporters to mediate pathophysiological processes. Fructose can be generated in the kidney during glucose reabsorption (such as in diabetes) as well as from intra-renal hypoxia that occurs in CKD. Fructose metabolism also provides biosynthetic precursors for inflammation by switching the intracellular metabolic profile from mitochondrial oxidative phosphorylation to glycolysis despite the availability of oxygen, which is similar to the Warburg effect in cancer. Importantly, uric acid, a byproduct of fructose metabolism, likely plays a key role in favoring glycolysis by stimulating inflammation and suppressing aconitase in the tricarboxylic acid cycle. A consequent accumulation of glycolytic intermediates connects to the production of biosynthetic precursors, proteins, lipids, and nucleic acids, to meet the increased energy demand for the local inflammation. Here, we discuss the possibility of fructose and uric acid may mediate a metabolic switch toward glycolysis in CKD. We also suggest that sodium-glucose cotransporter 2 (SGLT2) inhibitors may slow the progression of CKD by reducing intrarenal glucose, and subsequently fructose levels.
Collapse
Affiliation(s)
- Takahiko Nakagawa
- Department of Nephrology, Rakuwakai Otowa Hospital, Kyoto, Japan.,Department of Biochemistry, Shiga University of Medical Science, Otsu, Japan
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States
| | - Hideto Kojima
- Department of Biochemistry, Shiga University of Medical Science, Otsu, Japan
| | - Masato Kasahara
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Kashihara, Japan
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran and Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico
| | - Petter Bjornstad
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States.,Department of Pediatrics-Endocrinology, University of Colorado Denver, Aurora, CO, United States
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
37
|
Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat Rev Nephrol 2021; 17:335-349. [PMID: 33547418 DOI: 10.1038/s41581-021-00394-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Kidney damage varies according to the primary insult. Different aetiologies of acute kidney injury (AKI), including kidney ischaemia, exposure to nephrotoxins, dehydration or sepsis, are associated with characteristic patterns of damage and changes in gene expression, which can provide insight into the mechanisms that lead to persistent structural and functional damage. Early morphological alterations are driven by a delicate balance between energy demand and oxygen supply, which varies considerably in different regions of the kidney. The functional heterogeneity of the various nephron segments is reflected in their use of different metabolic pathways. AKI is often linked to defects in kidney oxygen supply, and some nephron segments might not be able to shift to anaerobic metabolism under low oxygen conditions or might have remarkably low basal oxygen levels, which enhances their vulnerability to damage. Here, we discuss why specific kidney regions are at particular risk of injury and how this information might help to delineate novel routes for mitigating injury and avoiding permanent damage. We suggest that the physiological heterogeneity of the kidney should be taken into account when exploring novel renoprotective strategies, such as improvement of kidney tissue oxygenation, stimulation of hypoxia signalling pathways and modulation of cellular energy metabolism.
Collapse
|
38
|
Owumi SE, Lewu DO, Arunsi UO, Oyelere AK. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum Exp Toxicol 2021; 40:1656-1672. [PMID: 33827303 DOI: 10.1177/09603271211006171] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Doxorubicin is an effective anti-neoplastic agent; the reported toxicities of DOX limit its use. Luteolin is a polyphenolic phytochemical that exhibits beneficial biological effects via several mechanisms. We investigate luteolin protective effects on hepatorenal toxicity associated with doxorubicin treatment in rats. For 2 weeks, randomly assigned rat cohorts were treated as follows: control, luteolin (100 mg/kg; per os), doxorubicin alone (2mg/kg; by intraperitoneal injection), co-treated cohorts received luteolin (50 and 100 mg/kg) in addition to doxorubicin. Treatment with doxorubicin alone significantly (p < 0.05) increased biomarkers of hepatorenal toxicities in the serum. Doxorubicin also reduced relative organ weights, antioxidant capacity, and anti-inflammatory cytokine interleukine-10. Doxorubicin also increased reactive oxygen and nitrogen species, lipid peroxidation, pro-inflammatory-interleukin-1β and tumour necrosis factor-α-cytokine, and apoptotic caspases-3 and -9). Morphological damage accompanied these biochemical alterations in the rat's liver and kidney treated with doxorubicin alone. Luteolin co-treatment dose-dependently abated doxorubicin-mediated toxic responses, improved antioxidant capacity and interleukine-10 level. Luteolin reduced (p < 0.05) lipid peroxidation, caspases-3 and -9 activities and marginally improved rats' survivability. Similarly, luteolin co-treated rats exhibited improvement in hepatorenal pathological lesions observed in rats treated with doxorubicin alone. In summary, luteolin co-treatment blocked doxorubicin-mediated hepatorenal injuries linked with pro-oxidative, inflammatory, and apoptotic mechanisms. Therefore, luteolin can act as a chemoprotective agent in abating toxicities associated with doxorubicin usage and improve its therapeutic efficacy.
Collapse
Affiliation(s)
- S E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D O Lewu
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - U O Arunsi
- School of Medicine, Cancer Immunology and Biotechnology, Department of Biosciences, University of Nottingham, UK
| | - A K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, 1372Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
39
|
Giaccari A, Solini A, Frontoni S, Del Prato S. Metformin Benefits: Another Example for Alternative Energy Substrate Mechanism? Diabetes Care 2021; 44:647-654. [PMID: 33608326 PMCID: PMC7896249 DOI: 10.2337/dc20-1964] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/03/2020] [Indexed: 02/03/2023]
Abstract
Since the UK Prospective Diabetes Study (UKPDS), metformin has been considered the first-line medication for patients with newly diagnosed type 2 diabetes. Though direct evidence from specific trials is still lacking, several studies have suggested that metformin may protect from diabetes- and nondiabetes-related comorbidities, including cardiovascular, renal, neurological, and neoplastic diseases. In the past few decades, several mechanisms of action have been proposed to explain metformin's protective effects, none being final. It is certain, however, that metformin increases lactate production, concentration, and, possibly, oxidation. Once considered a mere waste product of exercising skeletal muscle or anaerobiosis, lactate is now known to act as a major energy shuttle, redistributed from production sites to where it is needed. Through the direct uptake and oxidation of lactate produced elsewhere, all end organs can be rapidly supplied with fundamental energy, skipping glycolysis and its possible byproducts. Increased lactate production (and consequent oxidation) could therefore be considered a positive mechanism of action of metformin, except when, under specific circumstances, metformin and lactate become excessive, increasing the risk of lactic acidosis. We are proposing that, rather than considering metformin-induced lactate production as dangerous, it could be considered a mechanism through which metformin exerts its possible protective effect on the heart, kidneys, and brain and, to some extent, its antineoplastic action.
Collapse
Affiliation(s)
- Andrea Giaccari
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Simona Frontoni
- Unit of Endocrinology, Diabetes and Metabolism, San Giovanni Calibita Fatebenefratelli Hospital, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
40
|
Osthol Ameliorates Kidney Damage and Metabolic Syndrome Induced by a High-Fat/High-Sugar Diet. Int J Mol Sci 2021; 22:ijms22052431. [PMID: 33670975 PMCID: PMC7957708 DOI: 10.3390/ijms22052431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Excessive intake of fructose results in metabolic syndrome (MS) and kidney damage, partly mediated by its metabolism by fructokinase-C or ketohexokinase-C (KHK-C). Osthol has antioxidant properties, is capable of regulating adipogenesis, and inhibits KHK-C activity. Here, we examined the potential protective role of osthol in the development of kidney disease induced by a Western (high-fat/high-sugar) diet. Control rats fed with a high-fat/high-sugar diet were compared with two groups that also received two different doses of osthol (30 mg/kg/d or 40 mg/kg/d body weight BW). A fourth group served as a normal control and received regular chow. At the end of the follow-up, kidney function, metabolic markers, oxidative stress, and lipogenic enzymes were evaluated. The Western diet induced MS (hypertension, hyperglycemia, hypertriglyceridemia, obesity, hyperuricemia), a fall in the glomerular filtration rate, renal tubular damage, and increased oxidative stress in the kidney cortex, with increased expression of lipogenic enzymes and increased kidney KHK expression. Osthol treatment prevented the development of MS and ameliorated kidney damage by inhibiting KHK activity, preventing oxidative stress via nuclear factor erythroid 2-related factor (Nrf2) activation, and reducing renal lipotoxicity. These data suggest that the nutraceutical osthol might be an ancillary therapy to slow the progression of MS and kidney damage induced by a Western diet.
Collapse
|
41
|
Zhang X, Chen H, Lei Y, Zhang X, Xu L, Liu W, Fan Z, Ma Z, Yin Z, Li L, Zhu C, Ma B. Multifunctional agents based on benzoxazolone as promising therapeutic drugs for diabetic nephropathy. Eur J Med Chem 2021; 215:113269. [PMID: 33588177 DOI: 10.1016/j.ejmech.2021.113269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is resulted from activations of polyol pathway and oxidative stress by abnormal metabolism of glucose, and no specific medication is available. We designed a novel class of benzoxazolone derivatives, and a number of individuals were found to have significant antioxidant activity and inhibition of aldose reductase of the key enzyme in the polyol pathway. The outstanding compound (E)-2-(7-(4-hydroxy-3-methoxystyryl)-2-oxobenzo[d]oxazol-3(2H)-yl)acetic acid was identified to reduce urinary proteins in diabetic mice suggesting an alleviation in the diabetic nephropathy, and this was confirmed by kidney hematoxylin-eosin staining. Further investigations showed blood glucose normalization, declined in the polyol pathway and lipid peroxides, and raised glutathione and superoxide dismutase activity. Thus, we suggest a therapeutic function of the compound for DN which could be attributed to the combination of hypoglycemic, aldose reductase inhibition and antioxidant.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Yanqi Lei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Xiaonan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Long Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Zhenya Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Zequn Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Zhechang Yin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, 100081, Beijing, China.
| |
Collapse
|
42
|
Wang YN, Yang CE, Zhang DD, Chen YY, Yu XY, Zhao YY, Miao H. Long non-coding RNAs: A double-edged sword in aging kidney and renal disease. Chem Biol Interact 2021; 337:109396. [PMID: 33508306 DOI: 10.1016/j.cbi.2021.109396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Aging as one of intrinsic biological processes is a risk factor for many chronic diseases. Kidney disease is a global problem and health care burden worldwide. The diagnosis of kidney disease is currently based on serum creatinine and urea levels. Novel biomarkers may improve diagnostic accuracy, thereby allowing early prevention and treatment. Over the past few years, advances in genome analyses have identified an emerging class of noncoding RNAs that play critical roles in the regulation of gene expression and epigenetic reprogramming. Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome and could bind DNA, RNA and protein. Emerging evidence has demonstrated that lncRNAs played an important role in all stages of kidney disease. To date, only some lncRNAs were well identified and characterized, but the complexity of multilevel regulation of transcriptional programs involved in these processes remains undefined. In this review, we summarized the lncRNA expression profiling of large-scale identified lncRNAs on kidney diseases including acute kidney injury, chronic kidney disease, diabetic nephropathy and kidney transplantation. We further discussed a number of annotated lncRNAs linking with complex etiology of kidney diseases. Finally, several lncRNAs were highlighted as diagnostic biomarkers and therapeutic targets. Targeting lncRNAs may represent a precise therapeutic strategy for progressive renal fibrosis.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Chang-E Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
43
|
A Sweet Story of Metabolic Innovation in the Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:271-286. [PMID: 34424520 DOI: 10.1007/978-3-030-65943-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The naked mole-rat's (Heterocephalus glaber) social and subterranean lifestyle imposes several evolutionary pressures which have shaped its physiology. One example is low oxygen availability in a crowded burrow system which the naked mole-rat has adapted to via several mechanisms. Here we describe a metabolic rewiring which enables the naked mole-rat to switch substrates in glycolysis from glucose to fructose thereby circumventing feedback inhibition at phosphofructokinase (PFK1) to allow unrestrained glycolytic flux and ATP supply under hypoxia. Preferential shift to fructose metabolism occurs in other species and biological systems as a means to provide fuel, water or like in the naked mole-rat, protection in a low oxygen environment. We review fructose metabolism through an ecological lens and suggest that the metabolic adaptation to utilize fructose in the naked mole-rat may have evolved to simultaneously combat multiple challenges posed by its hostile environment.
Collapse
|
44
|
Fluid Intake Restriction Concomitant to Sweetened Beverages Hydration Induce Kidney Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8850266. [PMID: 33354281 PMCID: PMC7735828 DOI: 10.1155/2020/8850266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022]
Abstract
Currently, there is the paradox of low water intake but increased intake of sugar-sweetened beverages (SB) in several populations; those habits are associated with an increased prevalence of metabolic derangements and greater chronic disease mortality. Persistent heat dehydration and increased SB intake stimulate the continued release of vasopressin and overactivation of the polyol-fructokinase pathway, synergizing each other, an effect partially mediated by oxidative stress. The objective of the present study was to evaluate whether water restriction concurrent with SB hydration can cause renal damage by stimulating similar pathways as heat dehydration. Three groups of male Wistar rats (n = 6) were fluid restricted; from 10 am to 12 pm animals could rehydrate with tap water (W), or sweetened beverages, one prepared with 11% of a fructose-glucose combination (SB), or with the noncaloric edulcorant stevia (ST). A normal control group of healthy rats was also studied. The animals were followed for 4 weeks. Markers of dehydration and renal damage were evaluated at the end of the study. Fluid restriction and water hydration mildly increased urine osmolality and induced a 15% fall in CrCl while increased the markers of tubular damage by NAG and KIM-1. Such changes were in association with a mild overexpression of V1a and V2 renal receptors, polyol fructokinase pathway overactivation, and increased renal oxidative stress with reduced expression of antioxidant enzymes. Hydration with SB significantly amplified those alterations, while in stevia hydrated rats, the changes were similar to the ones observed in water hydrated rats. These data suggest that current habits of hydration could be a risk factor in developing kidney damage.
Collapse
|
45
|
Shepherd EL, Saborano R, Northall E, Matsuda K, Ogino H, Yashiro H, Pickens J, Feaver RE, Cole BK, Hoang SA, Lawson MJ, Olson M, Figler RA, Reardon JE, Nishigaki N, Wamhoff BR, Günther UL, Hirschfield G, Erion DM, Lalor PF. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. JHEP Rep 2020; 3:100217. [PMID: 33490936 PMCID: PMC7807164 DOI: 10.1016/j.jhepr.2020.100217] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background & Aims Increasing evidence highlights dietary fructose as a major driver of non-alcoholic fatty liver disease (NAFLD) pathogenesis, the majority of which is cleared on first pass through the hepatic circulation by enzymatic phosphorylation to fructose-1-phosphate via the ketohexokinase (KHK) enzyme. Without a current approved therapy, disease management emphasises lifestyle interventions, but few patients adhere to such strategies. New targeted therapies are urgently required. Methods We have used a unique combination of human liver specimens, a murine dietary model of NAFLD and human multicellular co-culture systems to understand the hepatocellular consequences of fructose administration. We have also performed a detailed nuclear magnetic resonance-based metabolic tracing of the fate of isotopically labelled fructose upon administration to the human liver. Results Expression of KHK isoforms is found in multiple human hepatic cell types, although hepatocyte expression predominates. KHK knockout mice show a reduction in serum transaminase, reduced steatosis and altered fibrogenic response on an Amylin diet. Human co-cultures exposed to fructose exhibit steatosis and activation of lipogenic and fibrogenic gene expression, which were reduced by pharmacological inhibition of KHK activity. Analysis of human livers exposed to 13C-labelled fructose confirmed that steatosis, and associated effects, resulted from the accumulation of lipogenic precursors (such as glycerol) and enhanced glycolytic activity. All of these were dose-dependently reduced by administration of a KHK inhibitor. Conclusions We have provided preclinical evidence using human livers to support the use of KHK inhibition to improve steatosis, fibrosis, and inflammation in the context of NAFLD. Lay summary We have used a mouse model, human cells, and liver tissue to test how exposure to fructose can cause the liver to store excess fat and become damaged and scarred. We have then inhibited a key enzyme within the liver that is responsible for fructose metabolism. Our findings show that inhibition of fructose metabolism reduces liver injury and fibrosis in mouse and human livers and thus this may represent a potential route for treating patients with fatty liver disease in the future.
Collapse
Key Words
- ALD, alcohol-related cirrhosis
- ALT, alanine transaminase
- APRI, AST to Platelet Ratio Index
- AST, aspartate transaminase
- BEC, biliary epithelial cells
- BSA, bovine serum albumin
- CT, computed tomography
- DNL, de novo lipogenesis
- FIB4, fibrosis-4
- Fibrosis
- Fructose
- G/F, glucose/fructose
- HSCs, hepatic stellate cells
- HSECs, hepatic sinusoidal endothelial cells
- HSQC, heteronuclear single quantum coherence
- IGF, insulin-like growth factor
- KHK, ketohexokinase
- KO, knockout
- LGLI, low glucose and insulin
- Metabolism
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- NPCs, non-parenchymal cells
- PBC, primary biliary cholangitis
- PDGF, platelet-derived growth factor
- PSC, primary sclerosing cholangitis
- TG, triglyceride
- TGFB, transforming growth factor beta
- TIMP-1, Tissue Inhibitor of Matrix metalloproteinase-1
- Treatment
- WT, wild-type
- aLMF, activated liver myofibroblasts
Collapse
Affiliation(s)
- Emma L Shepherd
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Raquel Saborano
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ellie Northall
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kae Matsuda
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | - Hitomi Ogino
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | - Hiroaki Yashiro
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | - Jason Pickens
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | | | | | | | | | | | | | | | - Nobuhiro Nishigaki
- Takeda Pharmaceuticals Cardiovascular and Metabolic Drug Discovery Unit, Kanagawa, Japan
| | | | - Ulrich L Günther
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gideon Hirschfield
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Toronto Centre for Liver Disease, University of Toronto, Toronto General Hospital, Toronto, Canada
| | - Derek M Erion
- Takeda Pharmaceuticals Gastroenterology Drug Discovery Unit, Cambridge, MA, USA
| | - Patricia F Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
46
|
Han Z, Qi G, Zhu J, Zhang Y, Xu Y, Yan K, Zhu C, Hao X. Novel 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS for treatment of diabetic complications: Design, synthesis and biological evaluation. Bioorg Chem 2020; 105:104428. [PMID: 33161249 DOI: 10.1016/j.bioorg.2020.104428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022]
Abstract
AKR1B1 (Aldose reductase) has been used as therapeutic intervention target for treatment of diabetic complications over 50 years, and more recently for inflammation and cancer. However, most developed small molecule inhibitors have the defect of low bioactivity. To address this limitation, novel series of 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS (Reactive Oxygen Species) were designed and synthesized. Most of these derivatives were found to be potent and selective against AKR1B1, and compound 8a was the most active with an IC50 value of 0.035 μM. Moreover, some prepared derivatives showed strong anti-ROS activity, and among them the phenolic 3,5-dihydroxyl compound 8b was proved to be the most potent, even comparable to that of the well-known antioxidant Trolox at a concentration of 100 μM. Thus the results suggested a success in the construction of potent dual inhibitor for the therapeutic intervention target of AKR1B1/ROS.
Collapse
Affiliation(s)
- Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China; Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Gang Qi
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Junkai Zhu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yundong Zhang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yin Xu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Kang Yan
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Xin Hao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
47
|
Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S. Tissue-Specific Fructose Metabolism in Obesity and Diabetes. Curr Diab Rep 2020; 20:64. [PMID: 33057854 DOI: 10.1007/s11892-020-01342-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The objective of this review is to provide up-to-date and comprehensive discussion of tissue-specific fructose metabolism in the context of diabetes, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS Increased intake of dietary fructose is a risk factor for a myriad of metabolic complications. Tissue-specific fructose metabolism has not been well delineated in terms of its contribution to detrimental health effects associated with fructose intake. Since inhibitors targeting fructose metabolism are being developed for the management of NAFLD and diabetes, it is essential to recognize how inability of one tissue to metabolize fructose may affect metabolism in the other tissues. The primary sites of fructose metabolism are the liver, intestine, and kidney. Skeletal muscle and adipose tissue can also metabolize a large portion of fructose load, especially in the setting of ketohexokinase deficiency, the rate-limiting enzyme of fructose metabolism. Fructose can also be sensed by the pancreas and the brain, where it can influence essential functions involved in energy homeostasis. Lastly, fructose is metabolized by the testes, red blood cells, and lens of the eye where it may contribute to infertility, advanced glycation end products, and cataracts, respectively. An increase in sugar intake, particularly fructose, has been associated with the development of obesity and its complications. Inhibition of fructose utilization in tissues primary responsible for its metabolism alters consumption in other tissues, which have not been traditionally regarded as important depots of fructose metabolism.
Collapse
Affiliation(s)
- Robert N Helsley
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Francois Moreau
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Manoj K Gupta
- Islet Cell and Regenerative Medicine, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Aurelia Radulescu
- Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, 40536, USA
| | - Brian DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63131, USA
| | - Samir Softic
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 138 Leader Ave, Lexington, KY, 40506, USA.
| |
Collapse
|
48
|
Zhang C, Li L, Zhang Y, Zeng C. Recent advances in fructose intake and risk of hyperuricemia. Biomed Pharmacother 2020; 131:110795. [PMID: 33152951 DOI: 10.1016/j.biopha.2020.110795] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022] Open
Abstract
With the widespread popularity of hyperuricemia, it has become a severe threat to human public health. Accumulating evidence suggests that dietary fructose has a close relationship with hyperuricemia, but the role of fructose intake in hyperuricemia remains unclear. Hyperuricemia is characterized by excessive production and deposition of urate crystals. Metabolism of fructose leads to the increased serum concentration of urate. In this review, we depict an update of fructose consumption worldwide and the epidemiology of hyperuricemia and summarize the progress in studying the relationship between fructose intake and the risk of hyperuricemia. This review highlights the metabolic process of fructose in the liver, small intestine, and kidney. Furthermore, we discuss molecular insights on fructose metabolism to reveal the underlying mechanism of fructose metabolism. Additionally, we elaborate on the effect of fructose metabolism on hyperuricemia to deeply understand the pathogenesis of hyperuricemia caused by fructose intake. Fructose consumption has a close correlation with an enhanced risk of developing hyperuricemia. More prospective studies are inevitable to understand the role of fructose intake in the development of hyperuricemia.
Collapse
Affiliation(s)
- Congwang Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, 518110, PR China
| | - Lijun Li
- Department of Quality Control, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, 518110, PR China
| | - Yipeng Zhang
- Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, 518110, PR China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, 518110, PR China.
| |
Collapse
|
49
|
Wei H, Wang J, Liang Z. STAT1-p53-p21axis-dependent stress-induced progression of chronic nephrosis in adriamycin-induced mouse model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1002. [PMID: 32953802 PMCID: PMC7475511 DOI: 10.21037/atm-20-5167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Chronic nephrosis (CN) is an aging-related disease with high mortality. Signal transduction and transcriptional activator 1 (STAT1) protein promotes senescence in human glomerular mesangial cells (HMCs), but whether it affects the progression of adriamycin (ADR)-induced CN in vivo remains unclear. Methods We established an ADR-induced CN mouse model that was completed in wild-type (wt) mice by a single intravenous injection of 10 mg/kg ADR for 2 or 4 weeks. Clinical indexes in each group were determined. Hematoxylin and eosin staining (H&E) was employed to determine renal histopathological damage, SA-β-gal staining was used to evaluate cell senescence phenotype. TUNEL and immunohistochemistry (IHC) staining were used to detect renal apoptosis. Protein levels of Bcl-2, Bax, STAT1, p53 and p21 were measured by Western Blot. Results STAT1 intervention ameliorated renal function. H&E staining indicated that STAT1-deficient (stat1−/−) improved the renal tubular injury, and stat1−/− obviously inhibited the apoptosis and Caspase-3+ number in kidney tissues. Besides, stat1−/− decreased proteinuria, and the levels of urea nitrogen and creatinine as well as that of reactive oxygen species induced by ADR. Also, stat1−/− resulted in the reduced expression of p53 and p21. Conclusions Our current study strongly demonstrated the involvement of the STAT1-p53-p21 axis in the regulation of CN and is a potential target for the nephrosis treatment.
Collapse
Affiliation(s)
- Hua Wei
- Nephrology Department, Xinxiang Central Hospital, Xinxiang, China
| | - Jiali Wang
- Nephrology Department, Xinxiang Central Hospital, Xinxiang, China
| | - Zhaozhi Liang
- Nephrology Department, Xinxiang Central Hospital, Xinxiang, China
| |
Collapse
|
50
|
Johnson RJ, Gomez-Pinilla F, Nagel M, Nakagawa T, Rodriguez-Iturbe B, Sanchez-Lozada LG, Tolan DR, Lanaspa MA. Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer's Disease. Front Aging Neurosci 2020; 12:560865. [PMID: 33024433 PMCID: PMC7516162 DOI: 10.3389/fnagi.2020.560865] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The loss of cognitive function in Alzheimer's disease is pathologically linked with neurofibrillary tangles, amyloid deposition, and loss of neuronal communication. Cerebral insulin resistance and mitochondrial dysfunction have emerged as important contributors to pathogenesis supporting our hypothesis that cerebral fructose metabolism is a key initiating pathway for Alzheimer's disease. Fructose is unique among nutrients because it activates a survival pathway to protect animals from starvation by lowering energy in cells in association with adenosine monophosphate degradation to uric acid. The fall in energy from fructose metabolism stimulates foraging and food intake while reducing energy and oxygen needs by decreasing mitochondrial function, stimulating glycolysis, and inducing insulin resistance. When fructose metabolism is overactivated systemically, such as from excessive fructose intake, this can lead to obesity and diabetes. Herein, we present evidence that Alzheimer's disease may be driven by overactivation of cerebral fructose metabolism, in which the source of fructose is largely from endogenous production in the brain. Thus, the reduction in mitochondrial energy production is hampered by neuronal glycolysis that is inadequate, resulting in progressive loss of cerebral energy levels required for neurons to remain functional and viable. In essence, we propose that Alzheimer's disease is a modern disease driven by changes in dietary lifestyle in which fructose can disrupt cerebral metabolism and neuronal function. Inhibition of intracerebral fructose metabolism could provide a novel way to prevent and treat this disease.
Collapse
Affiliation(s)
- Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maria Nagel
- Departments of Neurology and Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Bernardo Rodriguez-Iturbe
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, MA, United States
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|