1
|
Bai M, Shao X, Wang C, Wang J, Wang X, Guan P, Hu X. Application of carbon-based nanomaterials in Alzheimer's disease. MATERIALS HORIZONS 2024. [PMID: 39526325 DOI: 10.1039/d4mh01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder marked by permanent impairment of brain function across the whole brain. This condition results in a progressive deterioration of cognitive function in patients and is frequently associated with psychological symptoms such as agitation and anxiety, imposing a significant burden on both patients and their families. Nanomaterials possess numerous distinctive physical and chemical features that render them extensively utilized. In the biomedical domain, nanomaterials can be utilized for disease prevention and therapy, including medication delivery systems, biosensors, and tissue engineering. This article explores the etiology and potential molecular processes of AD, as well as the application of carbon-based nanomaterials in the diagnosis and treatment of AD. Some of such nanomaterials are carbon quantum dots, carbon nanotubes, and graphene, among others. These materials possess distinctive physicochemical features that render them highly promising for applications in biosensing, drug delivery, neuroprotection, and photothermal treatment. In addition, this review explored various therapeutic approaches for AD in terms of reducing inflammation, preventing oxidative damage, and inhibiting Aβ aggregation. The advent of carbon nanomaterials in nanotechnology has facilitated the development of novel treatment approaches for Alzheimer's disease. These strategies provide promising approaches for early diagnosis, effective intervention and neuroprotection of the disease.
Collapse
Affiliation(s)
- Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Juanxia Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
2
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Gvazava N, Konings SC, Cepeda-Prado E, Skoryk V, Umeano CH, Dong J, Silva IAN, Ottosson DR, Leigh ND, Wagner DE, Klementieva O. Label-Free
High-Resolution Photothermal Optical Infrared
Spectroscopy for Spatiotemporal Chemical Analysis in Fresh, Hydrated
Living Tissues and Embryos. J Am Chem Soc 2023; 145. [PMCID: PMC10655180 DOI: 10.1021/jacs.3c08854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 06/24/2024]
Abstract
Label-free chemical imaging of living and functioning systems is the holy grail of biochemical research. However, existing techniques often require extensive sample preparation to remove interfering molecules such as water, rendering many molecular imaging techniques unsuitable for in situ structural studies. Here, we examined freshly extracted tissue biopsies and living small vertebrates at submicrometer resolution using optical photothermal infrared (O-PTIR) microspectroscopy and demonstrated the following major advances: (1) O-PTIR can be used for submicrometer structural analysis of unprocessed, fully hydrated tissue biopsies extracted from diverse organs, including living brain and lung tissues. (2) O-PTIR imaging can be performed on living organisms, such as salamander embryos, without compromising their further development. (3) Using O-PTIR, we tracked the structural changes of amyloids in functioning brain tissues over time, observing the appearance of newly formed amyloids for the first time. (4) Amyloid structures appeared altered following standard fixation and dehydration procedures. Thus, we demonstrate that O-PTIR enables time-resolved submicrometer in situ investigation of chemical and structural changes in diverse biomolecules in their native conditions, representing a technological breakthrough for in situ molecular imaging of biological samples.
Collapse
Affiliation(s)
- Nika Gvazava
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Sabine C. Konings
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
| | - Efrain Cepeda-Prado
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Valeriia Skoryk
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
| | - Chimezie H. Umeano
- Department
of Laboratory Medicine, Molecular Medicine
and Gene Therapy, 22184 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Jiao Dong
- NanoLund, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Iran A. N. Silva
- NanoLund, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Daniella Rylander Ottosson
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Nicholas D. Leigh
- Department
of Laboratory Medicine, Molecular Medicine
and Gene Therapy, 22184 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Darcy Elizabeth Wagner
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Oxana Klementieva
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
| |
Collapse
|
4
|
Pomeshchik Y, Velasquez E, Gil J, Klementieva O, Gidlöf R, Sydoff M, Bagnoli S, Nacmias B, Sorbi S, Westergren-Thorsson G, Gouras GK, Rezeli M, Roybon L. Proteomic analysis across patient iPSC-based models and human post-mortem hippocampal tissue reveals early cellular dysfunction and progression of Alzheimer's disease pathogenesis. Acta Neuropathol Commun 2023; 11:150. [PMID: 37715247 PMCID: PMC10504768 DOI: 10.1186/s40478-023-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
The hippocampus is a primary region affected in Alzheimer's disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aβ-42 and β-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden.
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | - Erika Velasquez
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, BMC D13, Lund University, 22184, Lund, Sweden
| | - Oxana Klementieva
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Medical Micro-Spectroscopy, Department of Experimental Medical Science, BMC B10, Lund University, 22184, Lund, Sweden
| | - Ritha Gidlöf
- Lund University BioImaging Centre, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Marie Sydoff
- Lund University BioImaging Centre, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Silvia Bagnoli
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sandro Sorbi
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Gunilla Westergren-Thorsson
- Department of Experimental Medical Science, BMC C12, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Gunnar K Gouras
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, 22184, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, BMC D13, Lund University, 22184, Lund, Sweden
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, 22184, Lund, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden.
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.
- Department of Neurodegenerative Science, The MiND Program, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
5
|
Konings SC, Nyberg E, Martinsson I, Torres-Garcia L, Klementieva O, Guimas Almeida C, Gouras GK. Apolipoprotein E intersects with amyloid-β within neurons. Life Sci Alliance 2023; 6:e202201887. [PMID: 37290814 PMCID: PMC10250689 DOI: 10.26508/lsa.202201887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most important genetic risk factor for Alzheimer's disease (AD). Among the earliest changes in AD is endosomal enlargement in neurons, which was reported as enhanced in ApoE4 carriers. ApoE is thought to be internalized into endosomes of neurons, whereas β-amyloid (Aβ) accumulates within neuronal endosomes early in AD. However, it remains unknown whether ApoE and Aβ intersect intracellularly. We show that internalized astrocytic ApoE localizes mostly to lysosomes in neuroblastoma cells and astrocytes, whereas in neurons, it preferentially localizes to endosomes-autophagosomes of neurites. In AD transgenic neurons, astrocyte-derived ApoE intersects intracellularly with amyloid precursor protein/Aβ. Moreover, ApoE4 increases the levels of endogenous and internalized Aβ42 in neurons. Taken together, we demonstrate differential localization of ApoE in neurons, astrocytes, and neuron-like cells, and show that internalized ApoE intersects with amyloid precursor protein/Aβ in neurons, which may be of considerable relevance to AD.
Collapse
Affiliation(s)
- Sabine C Konings
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma Nyberg
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Isak Martinsson
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oxana Klementieva
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Claudia Guimas Almeida
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Griffiths J, Grant SGN. Synapse pathology in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:13-23. [PMID: 35690535 DOI: 10.1016/j.semcdb.2022.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
Synapse loss and damage are central features of Alzheimer's disease (AD) and contribute to the onset and progression of its behavioural and physiological features. Here we review the literature describing synapse pathology in AD, from what we have learned from microscopy in terms of its impacts on synapse architecture, to the mechanistic role of Aβ, tau and glial cells, mitochondrial dysfunction, and the link with AD risk genes. We consider the emerging view that synapse pathology may operate at a further level, that of synapse diversity, and discuss the prospects for leveraging new synaptome mapping methods to comprehensively understand the molecular properties of vulnerable and resilient synapses. Uncovering AD impacts on brain synapse diversity should inform therapeutic approaches targeted at preserving or replenishing lost and damaged synapses and aid the interpretation of clinical imaging approaches that aim to measure synapse damage.
Collapse
Affiliation(s)
- Jessica Griffiths
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
7
|
Prater C, Bai Y, Konings SC, Martinsson I, Swaminathan VS, Nordenfelt P, Gouras G, Borondics F, Klementieva O. Fluorescently Guided Optical Photothermal Infrared Microspectroscopy for Protein-Specific Bioimaging at Subcellular Level. J Med Chem 2023; 66:2542-2549. [PMID: 36599042 PMCID: PMC9969395 DOI: 10.1021/acs.jmedchem.2c01359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/06/2023]
Abstract
Infrared spectroscopic imaging is widely used for the visualization of biomolecule structures, and techniques such as optical photothermal infrared (OPTIR) microspectroscopy can achieve <500 nm spatial resolution. However, these approaches lack specificity for particular cell types and cell components and thus cannot be used as a stand-alone technique to assess their properties. Here, we have developed a novel tool, fluorescently guided optical photothermal infrared microspectroscopy, that simultaneously exploits epifluorescence imaging and OPTIR to perform fluorescently guided IR spectroscopic analysis. This novel approach exceeds the diffraction limit of infrared microscopy and allows structural analysis of specific proteins directly in tissue and single cells. Experiments described herein used epifluorescence to rapidly locate amyloid proteins in tissues or neuronal cultures, thus guiding OPTIR measurements to assess amyloid structures at the subcellular level. We believe that this new approach will be a valuable addition to infrared spectroscopy providing cellular specificity of measurements in complex systems for studies of structurally altered protein aggregates.
Collapse
Affiliation(s)
- Craig Prater
- Photothermal
Spectroscopy Corporation, Santa
Barbara, California93101, United States
| | - Yeran Bai
- Photothermal
Spectroscopy Corporation, Santa
Barbara, California93101, United States
- Neuroscience
Research Institute, University of California,
Santa Barbara, Santa Barbara, California93106, United States
| | - Sabine C. Konings
- Medical
Microspectroscopy, Department of Experimental Medical Science, Lund University, 22180Lund, Sweden
- NanoLund, Lund University, 22180Lund, Sweden
- Multipark, Lund University, 22180Lund, Sweden
| | - Isak Martinsson
- Experimental
Dementia Research Group, Department of Experimental Medical Science, Lund University, 22180Lund, Sweden
- Multipark, Lund University, 22180Lund, Sweden
| | - Vinay S. Swaminathan
- Division
of Oncology, Department of Clinical Sciences, Wallenberg Centre for
Molecular Medicine (WCMM), Lund University, 22180Lund, Sweden
- NanoLund, Lund University, 22180Lund, Sweden
| | - Pontus Nordenfelt
- Division
of Infection Medicine, Department of Clinical Sciences, Lund University, 22180Lund, Sweden
- NanoLund, Lund University, 22180Lund, Sweden
| | - Gunnar Gouras
- Experimental
Dementia Research Group, Department of Experimental Medical Science, Lund University, 22180Lund, Sweden
- Multipark, Lund University, 22180Lund, Sweden
| | - Ferenc Borondics
- Synchrotron
SOLEIL, L’Orme des Merisiers, 91192Gif Sur Yvette
Cedex, France
| | - Oxana Klementieva
- Medical
Microspectroscopy, Department of Experimental Medical Science, Lund University, 22180Lund, Sweden
- NanoLund, Lund University, 22180Lund, Sweden
- Multipark, Lund University, 22180Lund, Sweden
| |
Collapse
|
8
|
Chen C, Wang K, Hou X. Protein conformation characterization via a silicon resonator-based optical sensor based on the combination of wavelength interrogation and dual polarization detection. OPTICS EXPRESS 2022; 30:44472-44486. [PMID: 36522871 DOI: 10.1364/oe.474043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Protein conformational abnormality causes cell malfunction. Conformational change of amyloid protein causes neuron malfunction, which renders "protein conformational disease" Alzheimer's disease. Dual polarization interferometry enables to provide one-dimensional structure of a protein biolayer via deconvolution of interference patterns, which in turn is interpreted as the protein molecule conformation. However, it is still challenging to avoid interference patterns becoming faint and obscure sometimes. Resonance wavelength response to the biolayer structure can achieve a very low detection limit due to inherent high Q factor of an optical resonator. Here, we introduce the concept of combining dual polarization detection with wavelength interrogation via a simple and compact resonator-based optical biosensor. Biolayer were probed by the wave of dual polarization and its opto-geometrical parameters were resolved into resonance wavelength shift. Because protein molecule with distinct conformation produced a biolayer with unique thickness and mass density. Amyloid proteins in monomeric and dimeric morphology were respectively characterized. This concept enables protein conformation characterization in an easy and direct paradigm and provides a desirable sensing performance due to sensitive resonance response in the form of the sharp resonance profile occurring in a nonoverlapping spectrum.
Collapse
|
9
|
Xue M, Ye S, Ma X, Ye F, Wang C, Zhu L, Yang Y, Chen J. Single-Vesicle Infrared Nanoscopy for Noninvasive Tumor Malignancy Diagnosis. J Am Chem Soc 2022; 144:20278-20287. [DOI: 10.1021/jacs.2c07393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengfei Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyuan Ye
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaopeng Ma
- The First Affiliated Hospital University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230000, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
10
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Aplin C, Milano SK, Zielinski KA, Pollack L, Cerione RA. Evolving Experimental Techniques for Structure-Based Drug Design. J Phys Chem B 2022; 126:6599-6607. [PMID: 36029222 PMCID: PMC10161966 DOI: 10.1021/acs.jpcb.2c04344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-based drug design (SBDD) is a prominent method in rational drug development and has traditionally benefitted from the atomic models of protein targets obtained using X-ray crystallography at cryogenic temperatures. In this perspective, we highlight recent advances in the development of structural techniques that are capable of probing dynamic information about protein targets. First, we discuss advances in the field of X-ray crystallography including serial room-temperature crystallography as a method for obtaining high-resolution conformational dynamics of protein-inhibitor complexes. Next, we look at cryogenic electron microscopy (cryoEM), another high-resolution technique that has recently been used to study proteins and protein complexes that are too difficult to crystallize. Finally, we present small-angle X-ray scattering (SAXS) as a potential high-throughput screening tool to identify inhibitors that target protein complexes and protein oligomerization.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kara A Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
13
|
Zheng XY, Zhang HC, Lv YD, Jin FY, Wu XJ, Zhu J, Ruan Y. Levetiracetam alleviates cognitive decline in Alzheimer’s disease animal model by ameliorating the dysfunction of the neuronal network. Front Aging Neurosci 2022; 14:888784. [PMID: 36092803 PMCID: PMC9452890 DOI: 10.3389/fnagi.2022.888784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Patients with Alzheimer’s disease (AD) have a significantly higher risk of seizures than other individuals in an age-matched population, suggesting a close association between epilepsy and AD. We aimed to examine the effects of levetiracetam (LEV)—a drug for treating seizures—on learning and memory and the neuropathological features of AD. Methods We crossbred APP23 mice with microtubule-associated protein tau (MAPT) transgenic mice to generate APP23/MAPT mice. These mice were treated with different concentrations of LEV in the presence of kainic acid (KA) for 3 months. Results Low doses of LEV alleviated the effects of KA on memory defects in APP23/MAPT mice. Mechanistic investigations showed that low concentrations of LEV decreased tau phosphorylation by reducing the activities of cyclin-dependent kinase 5 and glycogen synthase kinase 3α/β, thus rescuing neurons from synaptic dystrophy and apoptosis. Low doses of LEV inhibited the effects of KA (i.e., inducing neuroinflammation and impairing the autophagy of amyloid β-peptide), thus improving cognitive decline. High concentrations of LEV decreased the production and deposition of amyloid β-peptide (Aβ) by reducing the expression of β-site APP-cleaving enzyme 1 and presenilin 1. However, high concentrations of LEV also induced neuronal apoptosis, decreased movement ability in mice, and did not alleviate cognitive decline in AD mice. Conclusion Our results support the hypothesis that aberrant network activity contributes to the synaptic and cognitive deficits in APP23/MAPT mice. A low concentration of LEV may help ameliorate abnormalities of AD; however, a high LEV concentration did not induce similar results.
Collapse
Affiliation(s)
- Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xiang-Yu Zheng,
| | - Hai-Chen Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu-Dan Lv
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Feng-Yan Jin
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiu-Juan Wu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Yang Ruan,
| |
Collapse
|
14
|
Busser B, Bulin AL, Gardette V, Elleaume H, Pelascini F, Bouron A, Motto-Ros V, Sancey L. Visualizing the cerebral distribution of chemical elements: A challenge met with LIBS elemental imaging. J Neurosci Methods 2022; 379:109676. [PMID: 35850297 DOI: 10.1016/j.jneumeth.2022.109676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Biological tissues contain various metals and metalloids ions with central role in the regulation of several pathophysiological functions. In parallel, the development and the evaluation of novel nanocompounds for biomedicine require the monitoring of their biodistribution in tissues of interest. Therefore, researchers need to use reliable and accessible techniques to detect and quantify major and trace elements in space-resolved manner. In this communication, we report how Laser-Induced Breakdown Spectroscopy (LIBS) can be used to image the distribution of chemical elements in brain tissues.
Collapse
Affiliation(s)
- Benoit Busser
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France; Grenoble Alpes University Hospital, 38700 Grenoble, France; Institut Universitaire de France (IUF), France.
| | - Anne-Laure Bulin
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France; Univ. Grenoble Alpes, INSERM, UA07 STROBE, 38000 Grenoble, France.
| | - Vincent Gardette
- Institut Lumière Matière, UMR 5306, Univ. Lyon 1, CNRS, 69622 Villeurbanne, France.
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM, UA07 STROBE, 38000 Grenoble, France.
| | | | - Alexandre Bouron
- Univ. Grenoble Alpes, INSERM, CEA, UMR 1292, 38000 Grenoble, France.
| | - Vincent Motto-Ros
- Institut Lumière Matière, UMR 5306, Univ. Lyon 1, CNRS, 69622 Villeurbanne, France.
| | - Lucie Sancey
- Univ. Grenoble Alpes, INSERM U1209, CNRS, UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France.
| |
Collapse
|
15
|
Paulus A, Yogarasa S, Kansiz M, Martinsson I, Gouras GK, Deierborg T, Engdahl A, Borondics F, Klementieva O. Correlative imaging to resolve molecular structures in individual cells: Substrate validation study for super-resolution infrared microspectroscopy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102563. [PMID: 35504462 DOI: 10.1016/j.nano.2022.102563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Light microscopy has been a favorite tool of biological studies for almost a century, recently producing detailed images with exquisite molecular specificity achieving spatial resolution at nanoscale. However, light microscopy is insufficient to provide chemical information as a standalone technique. An increasing amount of evidence demonstrates that optical photothermal infrared microspectroscopy (O-PTIR) is a valuable imaging tool that can extract chemical information to locate molecular structures at submicron resolution. To further investigate the applicability of sub-micron infrared microspectroscopy for biomedical applications, we analyzed the contribution of substrate chemistry to the infrared spectra acquired from individual neurons grown on various imaging substrates. To provide an example of correlative immunofluorescence/O-PTIR imaging, we used immunofluorescence to locate specific organelles for O-PTIR measurement, thus capturing molecular structures at the sub-cellular level directly in cells, which is not possible using traditional infrared microspectroscopy or immunofluorescence microscopy alone.
Collapse
Affiliation(s)
- Agnes Paulus
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden; Experimental Neuroinflammation Lab, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden.
| | - Sahana Yogarasa
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mustafa Kansiz
- Photothermal Spectroscopy Corporation, Santa Barbara, CA 93101, USA
| | - Isak Martinsson
- Experimental Dementia Research, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden
| | - Gunnar K Gouras
- Experimental Dementia Research, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Lab, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden
| | - Anders Engdahl
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ferenc Borondics
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Gif Sur Yvette Cedex, France
| | - Oxana Klementieva
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, Lund, Sweden; Lund Institute for Advanced Neutron and X-ray Science (LINXS), 223 70 Lund, Sweden.
| |
Collapse
|
16
|
Yang S, Zhang Q, Yang H, Shi H, Dong A, Wang L, Yu S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int J Biol Macromol 2022; 206:175-187. [PMID: 35217087 DOI: 10.1016/j.ijbiomac.2022.02.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Infrared (IR) spectroscopy is a highly sensitive technique that provides complete information on chemical compositions. The IR spectra of proteins or peptides give rise to nine characteristic IR absorption bands. The amide I bands are the most prominent and sensitive vibrational bands and widely used to predict protein secondary structures. The interference of H2O absorbance is the greatest challenge for IR protein secondary structure prediction. Much effort has been made to reduce/eliminate the interference of H2O, simplify operation steps, and increase prediction accuracy. Progress in sampling and equipment has rendered the Fourier transform infrared (FTIR) technique suitable for determining the protein secondary structure in broader concentration ranges, greatly simplifying the operating steps. This review highlights the recent progress in sample preparation, data analysis, and equipment development of FTIR in A/T mode, with a focus on recent applications of FTIR spectroscopy in the prediction of protein secondary structure. This review also provides a brief introduction of the progress in ATR-FTIR for predicting protein secondary structure and discusses some combined IR methods, such as AFM-based IR spectroscopy, that are used to analyze protein structural dynamics and protein aggregation.
Collapse
Affiliation(s)
- Shouning Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | | | - Huayan Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haimei Shi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Aichun Dong
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, USA.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
17
|
Van Bulck M, Brandt N, Claus RA, Gräler M, Bräuer AU. Aβ-Induced Alterations in Membrane Lipids Occur before Synaptic Loss Appears. Int J Mol Sci 2022; 23:ijms23042300. [PMID: 35216416 PMCID: PMC8877175 DOI: 10.3390/ijms23042300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Loss of active synapses and alterations in membrane lipids are crucial events in physiological aging as well as in neurodegenerative disorders. Both are related to the abnormal aggregation of amyloid-beta (Aβ) species, generally known as amyloidosis. There are two major known human Aβ species: Aβ(1–40) and Aβ(1–42). However, which of these species have more influence on active synapses and membrane lipids is still poorly understood. Additionally, the time-dependent effect of Aβ species on alterations in membrane lipids of hippocampal neurones and glial cells remains unknown. Therefore, our study contributes to a better understanding of the role of Aβ species in the loss of active synapses and the dysregulation of membrane lipids in vitro. We showed that Aβ(1–40) or Aβ(1–42) treatment influences membrane lipids before synaptic loss appears and that the loss of active synapses is not dependent on the Aβ species. Our lipidomic data analysis showed early changes in specific lipid classes such as sphingolipid and glycerophospholipid neurones. Our results underscore the potential role of lipids as a possible early diagnostic biomarker in amyloidosis-related disorders.
Collapse
Affiliation(s)
- Michiel Van Bulck
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Experimental Models of Human Disease, Networked Center of Biomedical Research on Neurodegenerative Diseases (CIBERNED), Institute for Biomedical Research A. Sols (CSIC-UAM), 28029 Madrid, Spain
- Correspondence: (M.V.B.); (A.U.B.)
| | - Nicola Brandt
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
| | - Ralf A. Claus
- Department of Anaesthesiology and Intensive Care Medicine Center for Molecular Biomedicine(CMB), Jena University Hospital, 07745 Jena, Germany; (R.A.C.); (M.G.)
| | - Markus Gräler
- Department of Anaesthesiology and Intensive Care Medicine Center for Molecular Biomedicine(CMB), Jena University Hospital, 07745 Jena, Germany; (R.A.C.); (M.G.)
- Centre for Sepsis Control and Care (CSCC), Jena University Hospital, 07745 Jena, Germany
| | - Anja U. Bräuer
- Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Research Centre for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Correspondence: (M.V.B.); (A.U.B.)
| |
Collapse
|
18
|
Tremblay G, Rousseau J, Mbakam CH, Tremblay JP. Insertion of the Icelandic Mutation (A673T) by Prime Editing: A Potential Preventive Treatment for Familial and Sporadic Alzheimer's Disease. CRISPR J 2022; 5:109-122. [PMID: 35133877 DOI: 10.1089/crispr.2021.0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the result of abnormal processing of the amyloid precursor protein (APP) by β-secretase and γ-secretase, which leads to the formation of toxic β-amyloid peptides. The toxic β-amyloid peptides induce neuron death, memory problems, and AD development. Several APP mutations increase the risk of developing early-onset AD. However, the A673T mutation identified in the Icelandic population prevents AD development by reducing the cleavage of APP by β-secretase. In this study, we inserted the A673T mutation in human cells using the CRISPR prime editing (PE) technique. Repeated PE treatments resulted in the insertion of the A673T mutation in up to 49.2% of APP genes when a second nick was induced in the other DNA strand. When the protospacer adjacent motif used for PE was also mutated, up to 68.9% of the APP genes contained the protective A673T mutation. PE is a promising approach to introduce the A673T mutation precisely without mutating nearby nucleotides.
Collapse
Affiliation(s)
- Guillaume Tremblay
- Research Center of CHU de Québec-Université Laval, Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Joël Rousseau
- Research Center of CHU de Québec-Université Laval, Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Cedric Happi Mbakam
- Research Center of CHU de Québec-Université Laval, Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Jacques P Tremblay
- Research Center of CHU de Québec-Université Laval, Department of Molecular Medicine, Laval University, Quebec, Canada
| |
Collapse
|
19
|
Chen L, Zhou Z, Zhang Y, Pan J, Wang K, Wang HX. Near-infrared Irradiation Controlled Thermo-Switchable Polymeric Photosensitizer against β-Amyloid Fibrillation. J Mater Chem B 2022; 10:4832-4839. [DOI: 10.1039/d2tb00372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy (PTT) as an emerging paradigm toward degradation of amyloid-β (Aβ) aggregations has become an effective way of treating Alzheimer’s disease (AD). A promising PTT therapeutic option requires control...
Collapse
|
20
|
Freitas RO, Cernescu A, Engdahl A, Paulus A, Levandoski JE, Martinsson I, Hebisch E, Sandt C, Gouras GK, Prinz CN, Deierborg T, Borondics F, Klementieva O. Nano-Infrared Imaging of Primary Neurons. Cells 2021; 10:cells10102559. [PMID: 34685539 PMCID: PMC8534030 DOI: 10.3390/cells10102559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) accounts for about 70% of neurodegenerative diseases and is a cause of cognitive decline and death for one-third of seniors. AD is currently underdiagnosed, and it cannot be effectively prevented. Aggregation of amyloid-β (Aβ) proteins has been linked to the development of AD, and it has been established that, under pathological conditions, Aβ proteins undergo structural changes to form β-sheet structures that are considered neurotoxic. Numerous intensive in vitro studies have provided detailed information about amyloid polymorphs; however, little is known on how amyloid β-sheet-enriched aggregates can cause neurotoxicity in relevant settings. We used scattering-type scanning near-field optical microscopy (s-SNOM) to study amyloid structures at the nanoscale, in individual neurons. Specifically, we show that in well-validated systems, s-SNOM can detect amyloid β-sheet structures with nanometer spatial resolution in individual neurons. This is a proof-of-concept study to demonstrate that s-SNOM can be used to detect Aβ-sheet structures on cell surfaces at the nanoscale. Furthermore, this study is intended to raise neurobiologists’ awareness of the potential of s-SNOM as a tool for analyzing amyloid β-sheet structures at the nanoscale in neurons without the need for immunolabeling.
Collapse
Affiliation(s)
- Raul O. Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil;
- Correspondence: (R.O.F.); (O.K.)
| | - Adrian Cernescu
- Attocube Systems AG, Eglfinger Weg 2, 85540 Munich, Germany;
| | - Anders Engdahl
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden; (A.E.); (A.P.)
| | - Agnes Paulus
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden; (A.E.); (A.P.)
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden;
| | - João E. Levandoski
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil;
| | - Isak Martinsson
- Experimental Dementia Research, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden; (I.M.); (G.K.G.)
| | - Elke Hebisch
- Division of Solid State Physics and NanoLund, Lund University, 22100 Lund, Sweden; (E.H.); (C.N.P.)
| | - Christophe Sandt
- Synchrotron SOLEIL, L’Orme des Merisiers, CEDEX, 91192 Gif Sur Yvette, France; (C.S.); (F.B.)
| | - Gunnar Keppler Gouras
- Experimental Dementia Research, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden; (I.M.); (G.K.G.)
| | - Christelle N. Prinz
- Division of Solid State Physics and NanoLund, Lund University, 22100 Lund, Sweden; (E.H.); (C.N.P.)
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden;
| | - Ferenc Borondics
- Synchrotron SOLEIL, L’Orme des Merisiers, CEDEX, 91192 Gif Sur Yvette, France; (C.S.); (F.B.)
| | - Oxana Klementieva
- Medical Microspectroscopy, Department of Experimental Medical Science, Lund University, 22180 Lund, Sweden; (A.E.); (A.P.)
- Correspondence: (R.O.F.); (O.K.)
| |
Collapse
|
21
|
In situ identification and G4-PPI-His-Mal-dendrimer-induced reduction of early-stage amyloid aggregates in Alzheimer's disease transgenic mice using synchrotron-based infrared imaging. Sci Rep 2021; 11:18368. [PMID: 34526539 PMCID: PMC8443673 DOI: 10.1038/s41598-021-96379-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Amyloid plaques composed of Aβ amyloid peptides and neurofibrillary tangles are a pathological hallmark of Alzheimer Disease. In situ identification of early-stage amyloid aggregates in Alzheimer's disease is relevant for their importance as potential targets for effective drugs. Synchrotron-based infrared imaging is here used to identify early-stage oligomeric/granular aggregated amyloid species in situ in the brain of APP/PS1 transgenic mice for the first time. Also, APP/PS1 mice show fibrillary aggregates at 6 and 12 months. A significant decreased burden of early-stage aggregates and fibrillary aggregates is obtained following treatment with poly(propylene imine) dendrimers with histidine-maltose shell (a neurodegenerative protector) in 6-month-old APP/PS1 mice, thus demonstrating their putative therapeutic properties of in AD models. Identification, localization, and characterization using infrared imaging of these non-fibrillary species in the cerebral cortex at early stages of AD progression in transgenic mice point to their relevance as putative pharmacological targets. No less important, early detection of these structures may be useful in the search for markers for non-invasive diagnostic techniques.
Collapse
|
22
|
Yin X, Qiu Y, Zhao C, Zhou Z, Bao J, Qian W. The Role of Amyloid-Beta and Tau in the Early Pathogenesis of Alzheimer's Disease. Med Sci Monit 2021; 27:e933084. [PMID: 34471085 PMCID: PMC8422899 DOI: 10.12659/msm.933084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The abnormal accumulation of amyloid-b (Ab) and neurofibrillary tangles (NFTs) containing phosphorylated tau proteins are the main histopathological feature of Alzheimer's disease (AD). Synaptic damage and loss are earlier events than amyloid plaques and NFTs in AD progress and best correlate with cognitive deficits in AD patients. Soluble oligomeric Aß initiates the progression of AD and tau mediates the subsequent synaptic impairments at an early stage of AD. In this review we discuss how Ab or/and tau causes synaptic dysfunction. Ab oligomers gather at synapses and give rise to synaptic death in a variety of ways such as regulating receptors and receptor tyrosine kinases, unbalancing calcium homeostasis, and activating caspases and calcineurin. A large amount of hyperphosphorylated tau exists in the synapse of the AD brain. Aß-triggered synaptic deficits are dependent on tau. Soluble, hyperphosphorylated tau is much more correlated to cognitive decline in AD patients. Tau-targeted therapies have received more attention because the treatments targeting Aß failed in AD. Here, we also review the therapy strategies used to intervene in the very early stages of AD. Soluble hyperphosphorylated tau forms a complex with cell surface receptors, scaffold proteins, or intracellular signaling molecules to damage synaptic function. Therefore, therapeutic strategies targeting synaptic tau at the early stage of AD may ameliorating pathology in AD. This review aims to provide an update on the role of oligomeric Ab and soluble hyperphosphorylated tau in the early pathogenesis of Alzheimer's disease and to develop a new treatment strategy based on this.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China (mainland).,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Yanyan Qiu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Chenhao Zhao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Junze Bao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China (mainland).,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China (mainland)
| |
Collapse
|
23
|
Huang Y, Chang Y, Liu L, Wang J. Nanomaterials for Modulating the Aggregation of β-Amyloid Peptides. Molecules 2021; 26:4301. [PMID: 34299575 PMCID: PMC8305396 DOI: 10.3390/molecules26144301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
The aberrant aggregation of amyloid-β (Aβ) peptides in the brain has been recognized as the major hallmark of Alzheimer's disease (AD). Thus, the inhibition and dissociation of Aβ aggregation are believed to be effective therapeutic strategiesforthe prevention and treatment of AD. When integrated with traditional agents and biomolecules, nanomaterials can overcome their intrinsic shortcomings and boost their efficiency via synergistic effects. This article provides an overview of recent efforts to utilize nanomaterials with superior properties to propose effective platforms for AD treatment. The underlying mechanismsthat are involved in modulating Aβ aggregation are discussed. The summary of nanomaterials-based modulation of Aβ aggregation may help researchers to understand the critical roles in therapeutic agents and provide new insight into the exploration of more promising anti-amyloid agents and tactics in AD theranostics.
Collapse
Affiliation(s)
- Yaliang Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
24
|
Álvarez-Marimon E, Castillo-Michel H, Reyes-Herrera J, Seira J, Aso E, Carmona M, Ferrer I, Cladera J, Benseny-Cases N. Synchrotron X-ray Fluorescence and FTIR Signatures for Amyloid Fibrillary and Nonfibrillary Plaques. ACS Chem Neurosci 2021; 12:1961-1971. [PMID: 33990138 DOI: 10.1021/acschemneuro.1c00048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid plaques are one of the principal hallmarks of Alzheimer's disease and are mainly composed of Aβ amyloid peptides together with other components such as lipids, cations, or glycosaminoglycans. The structure of amyloid peptide's aggregates is related to the peptide toxicity and highly depends on the aggregation conditions and the presence of cofactors. While fibrillary aggregates are nowadays considered nontoxic, oligomeric/granular (nonfibrillary) aggregates have been found to be toxic. In this work we have characterized in situ two different types of amyloid deposits analyzing sections of the cortex of patients in advanced stages of Alzheimer disease. By combining SR-μFTIR for the study of the secondary structure of the peptide and ThS fluorescence as an indicator of fibrillary structures, we found two types of plaques: ThS positive plaques with a clear infrared band at 1630 cm-1 that would correspond to fibrillary plaques and ThS negative plaques showing a mixture of nonfibrillar β-sheet and unordered aggregated structures that would correspond to the nonfibrillary plaques (plaques with increased unordered structure). The analysis of the FTIR spectra has allowed correlation of lipid oxidation with the presence of nonfibrillary plaques. The metal composition of the two types of plaques has been analyzed using SR-nano-XRF and XANES. The results have shown higher accumulation of iron (mainly Fe2+) in fibrillary plaques than in nonfibrillary ones. However, in nonfibrillary plaques Fe3+ has been found to predominate over Fe2+. The identification of different types of aggregated forms and the different composition of metals found in the different types of plaques could be of paramount importance for the understanding of the development of Alzheimer disease.
Collapse
Affiliation(s)
- Elena Álvarez-Marimon
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Hiram Castillo-Michel
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Juan Reyes-Herrera
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Jofre Seira
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Ester Aso
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Barcelona, Spain
| | - Margarita Carmona
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Barcelona, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Cladera
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Núria Benseny-Cases
- Consorcio para la Construccion Equipamiento y Explotacion del Laboratorio de Luz Sincrotron, ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
25
|
Hu YT, Boonstra J, McGurran H, Stormmesand J, Sluiter A, Balesar R, Verwer R, Swaab D, Bao AM. Sex differences in the neuropathological hallmarks of Alzheimer's disease: focus on cognitively intact elderly individuals. Neuropathol Appl Neurobiol 2021; 47:958-966. [PMID: 33969531 PMCID: PMC9290663 DOI: 10.1111/nan.12729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/24/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
AIMS Women are more vulnerable to Alzheimer's disease (AD) than men. We investigated (i) whether and at what age the AD hallmarks, that is, β-amyloid (Aβ) and hyperphosphorylated Tau (p-Tau) show sex differences; and (ii) whether such sex differences may occur in cognitively intact elderly individuals. METHODS We first analysed the entire post-mortem brain collection of all non-demented 'controls' and AD donors from our Brain Bank (245 men and 403 women), for the presence of sex differences in AD hallmarks. Second, we quantitatively studied possible sex differences in Aβ, Aβ42 and p-Tau in the entorhinal cortex of well-matched female (n = 31) and male (n = 21) clinically cognitively intact elderly individuals. RESULTS Women had significantly higher Braak stages for tangles and amyloid scores than men, after 80 years. In the cognitively intact elderly, women showed higher levels of p-Tau, but not Aβ or Aβ42, in the entorhinal cortex than men, and a significant interaction of sex with age was found only for p-Tau but not Aβ or Aβ42. CONCLUSIONS Enhanced p-Tau in the entorhinal cortex may play a major role in the vulnerability to AD in women.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jackson Boonstra
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Hugo McGurran
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Jochem Stormmesand
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Arja Sluiter
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Rawien Balesar
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Ronald Verwer
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Dick Swaab
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
26
|
Paulus A, Engdahl A, Yang Y, Boza-Serrano A, Bachiller S, Torres-Garcia L, Svanbergsson A, Garcia MG, Gouras GK, Li JY, Deierborg T, Klementieva O. Amyloid Structural Changes Studied by Infrared Microspectroscopy in Bigenic Cellular Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:3430. [PMID: 33810433 PMCID: PMC8037084 DOI: 10.3390/ijms22073430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease affects millions of lives worldwide. This terminal disease is characterized by the formation of amyloid aggregates, so-called amyloid oligomers. These oligomers are composed of β-sheet structures, which are believed to be neurotoxic. However, the actual secondary structure that contributes most to neurotoxicity remains unknown. This lack of knowledge is due to the challenging nature of characterizing the secondary structure of amyloids in cells. To overcome this and investigate the molecular changes in proteins directly in cells, we used synchrotron-based infrared microspectroscopy, a label-free and non-destructive technique available for in situ molecular imaging, to detect structural changes in proteins and lipids. Specifically, we evaluated the formation of β-sheet structures in different monogenic and bigenic cellular models of Alzheimer's disease that we generated for this study. We report on the possibility to discern different amyloid signatures directly in cells using infrared microspectroscopy and demonstrate that bigenic (amyloid-β, α-synuclein) and (amyloid-β, Tau) neuron-like cells display changes in β-sheet load. Altogether, our findings support the notion that different molecular mechanisms of amyloid aggregation, as opposed to a common mechanism, are triggered by the specific cellular environment and, therefore, that various mechanisms lead to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Agnes Paulus
- Medical Microspectroscopy Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (A.P.); (A.E.)
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (Y.Y.); (A.B.-S.); (S.B.); (M.G.G.)
| | - Anders Engdahl
- Medical Microspectroscopy Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (A.P.); (A.E.)
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (Y.Y.); (A.B.-S.); (S.B.); (M.G.G.)
| | - Antonio Boza-Serrano
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (Y.Y.); (A.B.-S.); (S.B.); (M.G.G.)
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (Y.Y.); (A.B.-S.); (S.B.); (M.G.G.)
| | - Laura Torres-Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (L.T.-G.); (G.K.G.)
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (A.S.); (J.-Y.L.)
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (A.S.); (J.-Y.L.)
| | - Megg G. Garcia
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (Y.Y.); (A.B.-S.); (S.B.); (M.G.G.)
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (L.T.-G.); (G.K.G.)
| | - Gunnar K. Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (L.T.-G.); (G.K.G.)
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (A.S.); (J.-Y.L.)
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (Y.Y.); (A.B.-S.); (S.B.); (M.G.G.)
| | - Oxana Klementieva
- Medical Microspectroscopy Laboratory, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (A.P.); (A.E.)
- Lund Institute for Advanced Neutron and X-ray Science (LINXS), 22370 Lund, Sweden
| |
Collapse
|
27
|
Takahashi RH, Yokotsuka M, Tobiume M, Sato Y, Hasegawa H, Nagao T, Gouras GK. Accumulation of cellular prion protein within β-amyloid oligomer plaques in aged human brains. Brain Pathol 2021; 31:e12941. [PMID: 33624334 PMCID: PMC8412093 DOI: 10.1111/bpa.12941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is the main cause of dementia, and β‐amyloid (Aβ) is a central factor in the initiation and progression of the disease. Different forms of Aβ have been identified as monomers, oligomers, and amyloid fibrils. Many proteins have been implicated as putative receptors of respective forms of Aβ. Distinct forms of Aβ oligomers are considered to be neurotoxic species that trigger the pathophysiology of AD. It was reported that cellular prion protein (PrPC) is one of the most selective and high‐affinity binding partners of Aβ oligomers. The interaction of Aβ oligomers with PrPC is important to synaptic dysfunction and loss. The binding of Aβ oligomers to PrPC has mostly been studied with synthetic peptides, cell culture, and murine models of AD by biochemical and biological methods. However, the molecular mechanisms underlying the relationship between Aβ oligomers and PrPC remain unclear, especially in the human brain. We immunohistochemically investigated the relationship between Aβ oligomers and PrPC in human brain tissue with and without amyloid pathology. We histologically demonstrate that PrPC accumulates with aging in human brain tissue even prior to AD mainly within diffuse‐type amyloid plaques, which are composed of more soluble Aβ oligomers without stacked β‐sheet fibril structures. Our results suggest that PrPC accumulating plaques are associated with more soluble Aβ oligomers, and appear even prior to AD. The investigation of PrPC accumulating plaques may provide new insights into AD.
Collapse
Affiliation(s)
- Reisuke H Takahashi
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan.,Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mayumi Yokotsuka
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Kang YJ, Diep YN, Tran M, Cho H. Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer's Disease. Int J Mol Sci 2020; 21:E9591. [PMID: 33339351 PMCID: PMC7766709 DOI: 10.3390/ijms21249591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, typically showing progressive neurodegeneration in aging brains. The key signatures of the AD progression are the deposition of amyloid-beta (Aβ) peptides, the formation of tau tangles, and the induction of detrimental neuroinflammation leading to neuronal loss. However, conventional pharmacotherapeutic options are merely relying on the alleviation of symptoms that are limited to mild to moderate AD patients. Moreover, some of these medicines discontinued to use due to either the insignificant effectiveness in improving the cognitive impairment or the adverse side effects worsening essential bodily functions. One of the reasons for the failure is the lack of knowledge on the underlying mechanisms that can accurately explain the major causes of the AD progression correlating to the severity of AD. Therefore, there is an urgent need for the better understanding of AD pathogenesis and the development of the disease-modifying treatments, particularly for severe and late-onset AD, which have not been covered thoroughly. Here, we review the underlying mechanisms of AD progression, which have been employed for the currently established therapeutic strategies. We believe this will further spur the discovery of a novel disease-modifying treatment for mild to severe, as well as early- to late-onset, AD.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA;
- Department of Biological Sciences, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Yen N. Diep
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| |
Collapse
|
29
|
Label-free vibrational imaging of different Aβ plaque types in Alzheimer's disease reveals sequential events in plaque development. Acta Neuropathol Commun 2020; 8:222. [PMID: 33308303 PMCID: PMC7733282 DOI: 10.1186/s40478-020-01091-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
The neuropathology of Alzheimer’s disease (AD) is characterized by hyperphosphorylated tau neurofibrillary tangles (NFTs) and amyloid-beta (Aβ) plaques. Aβ plaques are hypothesized to follow a development sequence starting with diffuse plaques, which evolve into more compact plaques and finally mature into the classic cored plaque type. A better molecular understanding of Aβ pathology is crucial, as the role of Aβ plaques in AD pathogenesis is under debate. Here, we studied the deposition and fibrillation of Aβ in different plaque types with label-free infrared and Raman imaging. Fourier-transform infrared (FTIR) and Raman imaging was performed on native snap-frozen brain tissue sections from AD cases and non-demented control cases. Subsequently, the scanned tissue was stained against Aβ and annotated for the different plaque types by an AD neuropathology expert. In total, 160 plaques (68 diffuse, 32 compact, and 60 classic cored plaques) were imaged with FTIR and the results of selected plaques were verified with Raman imaging. In diffuse plaques, we detect evidence of short antiparallel β-sheets, suggesting the presence of Aβ oligomers. Aβ fibrillation significantly increases alongside the proposed plaque development sequence. In classic cored plaques, we spatially resolve cores containing predominantly large parallel β-sheets, indicating Aβ fibrils. Combining label-free vibrational imaging and immunohistochemistry on brain tissue samples of AD and non-demented cases provides novel insight into the spatial distribution of the Aβ conformations in different plaque types. This way, we reconstruct the development process of Aβ plaques in human brain tissue, provide insight into Aβ fibrillation in the brain, and support the plaque development hypothesis.
Collapse
|
30
|
Dahal E, Ghammraoui B, Ye M, Smith JC, Badano A. Label-free X-ray estimation of brain amyloid burden. Sci Rep 2020; 10:20505. [PMID: 33239703 PMCID: PMC7689528 DOI: 10.1038/s41598-020-77554-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/12/2020] [Indexed: 12/02/2022] Open
Abstract
Amyloid plaque deposits in the brain are indicative of Alzheimer’s and other diseases. Measurements of brain amyloid burden in small animals require laborious post-mortem histological analysis or resource-intensive, contrast-enhanced imaging techniques. We describe a label-free method based on spectral small-angle X-ray scattering with a polychromatic beam for in vivo estimation of brain amyloid burden. Our findings comparing 5XFAD versus wild-type mice correlate well with histology, showing promise for a fast and practical in vivo technique.
Collapse
Affiliation(s)
- Eshan Dahal
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Bahaa Ghammraoui
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - J Carson Smith
- School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Aldo Badano
- Division of Imaging, Diagnostics and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
31
|
Neuroprotective Effects of OMO within the Hippocampus and Cortex in a D-Galactose and A β 25-35-Induced Rat Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1067541. [PMID: 33101436 PMCID: PMC7569426 DOI: 10.1155/2020/1067541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/30/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022]
Abstract
Morinda officinalis F.C. How. (Rubiaceae) is a herbal medicine. It has been recorded that its oligosaccharides have neuroprotective properties. In order to understand the oligosaccharides extracted from Morinda officinalis (OMO), a systematic study was conducted to provide evidence that supports its use in neuroprotective therapies for Alzheimer's disease (AD). AD rat models were prepared with D-galactose and Aβ25–35. The following groups were used in the present experiment: normal control group, sham-operated group, model group, Aricept group, OMO low-dose group, OMO medium-dose group, and OMO high-dose group. The effects on behavioral tests, antioxidant levels, energy metabolism, neurotransmitter levels, and AD-related proteins were detected with corresponding methodologies. AD rats administered with different doses of OMO all exhibited a significant (P < 0.05) decrease in latency and an increase (P < 0.05) in the ratio of swimming distance to total distance in a dose-dependent manner in the Morris water maze. There was a significant (P < 0.05) increase in antioxidant enzyme activities (SOD, GSH-Px, and CAT), neurotransmitter levels (acetylcholine, γ-GABA, and NE and DA), energy metabolism (Na+/K+-ATPase), and relative synaptophysin (SYP) expression levels in AD rats administered with OMO. Furthermore, there was a significant (P < 0.05) decrease in MDA levels and relative expression levels of APP, tau, and caspase-3 in AD rats with OMO. The present research suggests that OMO protects against D-galactose and Aβ25–35-induced neurodegeneration, which may provide a novel strategy for improving AD in clinic.
Collapse
|
32
|
From Mouse to Human: Comparative Analysis between Grey and White Matter by Synchrotron-Fourier Transformed Infrared Microspectroscopy. Biomolecules 2020; 10:biom10081099. [PMID: 32722088 PMCID: PMC7464184 DOI: 10.3390/biom10081099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fourier Transform Infrared microspectroscopy (μFTIR) is a very useful method to analyze the biochemical properties of biological samples in situ. Many diseases affecting the central nervous system (CNS) have been studied using this method, to elucidate alterations in lipid oxidation or protein aggregation, among others. In this work, we describe in detail the characteristics between grey matter (GM) and white matter (WM) areas of the human brain by μFTIR, and we compare them with the mouse brain (strain C57BL/6), the most used animal model in neurological disorders. Our results show a clear different infrared profile between brain areas in the lipid region of both species. After applying a second derivative in the data, we established a 1.5 threshold value for the lipid/protein ratio to discriminate between GM and WM areas in non-pathological conditions. Furthermore, we demonstrated intrinsic differences of lipids and proteins by cerebral area. Lipids from GM present higher C=CH, C=O and CH3 functional groups compared to WM in humans and mice. Regarding proteins, GM present lower Amide II amounts and higher intramolecular β-sheet structure amounts with respect to WM in both species. However, the presence of intermolecular β-sheet structures, which is related to β-aggregation, was only observed in the GM of some human individuals. The present study defines the relevant biochemical properties of non-pathological human and mouse brains by μFTIR as a benchmark for future studies involving CNS pathological samples.
Collapse
|
33
|
Pomeshchik Y, Klementieva O, Gil J, Martinsson I, Hansen MG, de Vries T, Sancho-Balsells A, Russ K, Savchenko E, Collin A, Vaz AR, Bagnoli S, Nacmias B, Rampon C, Sorbi S, Brites D, Marko-Varga G, Kokaia Z, Rezeli M, Gouras GK, Roybon L. Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports 2020; 15:256-273. [PMID: 32589876 PMCID: PMC7363942 DOI: 10.1016/j.stemcr.2020.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is important for memory formation and is severely affected in the brain with Alzheimer disease (AD). Our understanding of early pathogenic processes occurring in hippocampi in AD is limited due to tissue unavailability. Here, we report a chemical approach to rapidly generate free-floating hippocampal spheroids (HSs), from human induced pluripotent stem cells. When used to model AD, both APP and atypical PS1 variant HSs displayed increased Aβ42/Aβ40 peptide ratios and decreased synaptic protein levels, which are common features of AD. However, the two variants differed in tau hyperphosphorylation, protein aggregation, and protein network alterations. NeuroD1-mediated gene therapy in HSs-derived progenitors resulted in modulation of expression of numerous genes, including those involved in synaptic transmission. Thus, HSs can be harnessed to unravel the mechanisms underlying early pathogenic changes in the hippocampi of AD patients, and provide a robust platform for the development of therapeutic strategies targeting early stage AD.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Oxana Klementieva
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Medical Microspectroscopy, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Jeovanis Gil
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Isak Martinsson
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Marita Grønning Hansen
- Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund SE-221 84, Sweden
| | - Tessa de Vries
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Anna Sancho-Balsells
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Kaspar Russ
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Ekaterina Savchenko
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Anna Collin
- Department of Clinical Genetics and Pathology, Office for Medical Services, Lund SE-221 85, Sweden
| | - Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Silvia Bagnoli
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Sandro Sorbi
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund SE-221 84, Sweden
| | - Melinda Rezeli
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Gunnar K Gouras
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| |
Collapse
|
34
|
Ruan Y, Qiu X, Lv YD, Dong D, Wu XJ, Zhu J, Zheng XY. Kainic acid Induces production and aggregation of amyloid β-protein and memory deficits by activating inflammasomes in NLRP3- and NF-κB-stimulated pathways. Aging (Albany NY) 2020; 11:3795-3810. [PMID: 31182681 PMCID: PMC6594814 DOI: 10.18632/aging.102017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/03/2019] [Indexed: 01/17/2023]
Abstract
Kainic acid (KA) treatment causes neuronal degeneration, which is a feature of Alzheimer’s disease (AD) symptoms such as amyloid β-protein production and memory deficits. Inflammasomes are known to be critical for the progression of AD. However, the underlying mechanism by which inflammasomes influence AD progression remains unknown. The present study investigated the damaging effect of KA on neurons by focusing on the inflammasome-mediated signaling pathways. Assessments using cultured microglia and mouse brains demonstrated that KA treatment specifically induced inflammasome activation. Mechanistic evaluations showed that KA activated two major components of inflammasomes, nucleotide binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) and nuclear factor (NF)-κB, which resulted in the production of interleukin-1β (IL-1β) and brain-derived neurotrophic factor (BDNF). Inhibition of NLRP3 or NF-κB by Bay11-7082 caused a reduction in the KA-induced expression of interleukin (IL)-1β and BDNF. Moreover, knockdown of the expression of KA receptors (KARs) such as Grik1 and Grik3 induced suppression of NLRP3 and NF-κB, suggesting that KARs function upstream of NLRP3 and NF-κB to mediate the effects of KA on regulation of IL-1β and BDNF expression. Notably, IL-1β was shown to exert positive effects on the expression of BACE1, which is blocked by Bay11-7082. Overall, our results revealed that Bay11-7082 acts against KA-induced neuronal degeneration, amyloid β-protein (Aβ) deposition, and memory defects via inflammasomes and further highlighted the protective role of Bay11-7082 in KA-induced neuronal defects.
Collapse
Affiliation(s)
- Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiang Qiu
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Dan Lv
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Dong Dong
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiu-Juan Wu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China.,, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm 141 86, Sweden
| | - Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
35
|
Heo C, Ha T, You C, Huynh T, Lim H, Kim J, Kesama MR, Lee J, Kim TT, Lee YH. Identifying Fibrillization State of Aβ Protein via Near-Field THz Conductance Measurement. ACS NANO 2020; 14:6548-6558. [PMID: 32167289 DOI: 10.1021/acsnano.9b08572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Progressive Alzheimer's disease is correlated with the oligomerization and fibrillization of the amyloid beta (Aβ) protein. We identify the fibrillization stage of the Aβ protein through label-free near-field THz conductance measurements in a buffer solution. Frequency-dependent conductance was obtained by measuring the differential transmittance of the time-domain spectroscopy in the THz range with a molar concentration of monomer, oligomer, and fibrillar forms of the Aβ protein. Conductance at the lower frequency limit was observed to be high in monomers, reduced in oligomers, and dropped to an insulating state in fibrils and increased proportionally with the Aβ protein concentration. The monotonic decrease in the conductance at low frequency was dominated by a simple Drude component in the monomer with concentration and nonlinear conductance behaviors in the oligomer and fibril. By extracting the structural localization parameter, a dimensionless constant, with the modified Drude-Smith model, we defined a dementia quotient (DQ) value (0 < De < 1) as a discrete metric for a various Aβ proteins at a low concentration of 0.1 μmol/L; DQ = 1.0 ± 0.002 (fibril by full localization, mainly by Smith component), DQ = 0.64 ± 0.013 (oligomer by intermixed localization), and DQ = 0.0 ± 0.000 (monomer by Drude component). DQ values were discretely preserved independent of the molar concentration or buffer variation. This provides plenty of room for the label-free diagnosis of Alzheimer's disease using the near-field THz conductance measurement.
Collapse
Affiliation(s)
- Chaejeong Heo
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taewoo Ha
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Chunjae You
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Thuy Huynh
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hosub Lim
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiwon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mallikarjuna Reddy Kesama
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinkee Lee
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Teun-Teun Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
36
|
Dahal E, Ghammraoui B, Badano A. Feasibility of a label-free X-ray method to estimate brain amyloid load in small animals. J Neurosci Methods 2020; 343:108822. [PMID: 32574641 DOI: 10.1016/j.jneumeth.2020.108822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Amyloid plaque in the brain is associated with a wide range of neurodegenerative diseases such as Alzheimer's and Parkinson's and defined as aggregates of amyloid fibrils rich in β-sheet structures. NEW METHOD We report a label-free method based on small-angle X-ray scattering (SAXS) to estimate amyloid load in an intact mouse head with skull. The method is based on recording and analyzing the X rays elastically scattered from the β-sheets of amyloid plaques in a mouse head at angles smaller than 10° and energies between 30 and 45 keV. The method is demonstrated by acquiring the spectral SAXS data of an amyloid model and an excised head from a wild-type mouse for 600 s. RESULTS We captured the distinct scattering peaks of the amyloid plaques at momentum transfer (q) of 6 and 13 nm-1 associated with β-sheet structure. We first show linear correlation between the mass fraction of the amyloid target and the area under the peak (AUP) of the scattering curve. We report results for estimating amyloid load in a fixed mouse head by recovering the characteristic scattering signal from the amyloid target situated at various locations. The coefficient of variation in the amyloid load estimate is found to be less than 10%. COMPARISON WITH EXISTING METHODS There are no previously described label-free X-ray methods for the estimation of amyloid load in an intact head. CONCLUSIONS We demonstrated the feasibility of a label-free method based on SAXS to potentially estimate brain amyloid in small animals.
Collapse
Affiliation(s)
- Eshan Dahal
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Bahaa Ghammraoui
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Aldo Badano
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
37
|
Bruyère J, Abada YS, Vitet H, Fontaine G, Deloulme JC, Cès A, Denarier E, Pernet-Gallay K, Andrieux A, Humbert S, Potier MC, Delatour B, Saudou F. Presynaptic APP levels and synaptic homeostasis are regulated by Akt phosphorylation of huntingtin. eLife 2020; 9:56371. [PMID: 32452382 PMCID: PMC7269668 DOI: 10.7554/elife.56371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington’s disease, regulates neuritic transport of APP, we used a microfluidic corticocortical neuronal network-on-a-chip to examine APP transport and localization to the pre- and post-synaptic compartments. We found that HTT, upon phosphorylation by the Ser/Thr kinase Akt, regulates APP transport in axons but not dendrites. Expression of an unphosphorylatable HTT decreased axonal anterograde transport of APP, reduced presynaptic APP levels, and increased synaptic density. Ablating in vivo HTT phosphorylation in APPPS1 mice, which overexpress APP, reduced presynaptic APP levels, restored synapse number and improved learning and memory. The Akt-HTT pathway and axonal transport of APP thus regulate APP presynaptic levels and synapse homeostasis.
Collapse
Affiliation(s)
- Julie Bruyère
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Yah-Se Abada
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Hélène Vitet
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Gaëlle Fontaine
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Jean-Christophe Deloulme
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Aurélia Cès
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Karin Pernet-Gallay
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
38
|
Singh A, Upadhyay V, Singh A, Panda AK. Structure-Function Relationship of Inclusion Bodies of a Multimeric Protein. Front Microbiol 2020; 11:876. [PMID: 32457730 PMCID: PMC7225587 DOI: 10.3389/fmicb.2020.00876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
High level expression of recombinant proteins in bacteria often results in their aggregation into inclusion bodies. Formation of inclusion bodies poses a major bottleneck in high-throughput recovery of recombinant protein. These aggregates have amyloid-like nature and can retain biological activity. Here, effect of expression temperature on the quality of Escherichia coli asparaginase II (a tetrameric protein) inclusion bodies was evaluated. Asparaginase was expressed as inclusion bodies at different temperatures. Purified inclusion bodies were checked for biological activities and analyzed for structural properties in order to establish a structure-activity relationship. Presence of activity in inclusion bodies showed the existence of properly folded asparaginase tetramers. Expression temperature affected the properties of asparaginase inclusion bodies. Inclusion bodies expressed at higher temperatures were characterized by higher biological activity and less amyloid content as evident by Thioflavin T binding and Fourier Transform Infrared (FTIR) spectroscopy. Complex kinetics of proteinase K digestion of asparaginase inclusion bodies expressed at higher temperatures indicate higher extent of conformational heterogeneity in these aggregates.
Collapse
Affiliation(s)
- Anupam Singh
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Vaibhav Upadhyay
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Akansha Singh
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India
| |
Collapse
|
39
|
Amyloid β chaperone - lipocalin-type prostaglandin D synthase acts as a peroxidase in the presence of heme. Biochem J 2020; 477:1227-1240. [PMID: 32271881 PMCID: PMC7148433 DOI: 10.1042/bcj20190536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/01/2022]
Abstract
The extracellular transporter, lipocalin-type prostaglandin D synthase (L-PGDS) binds to heme and heme metabolites with high affinity. It has been reported that L-PGDS protects neuronal cells against apoptosis induced by exposure to hydrogen peroxide. Our study demonstrates that when human WT L-PGDS is in complex with heme, it exhibits a strong peroxidase activity thus behaving as a pseudo-peroxidase. Electron paramagnetic resonance studies confirm that heme in the L-PGDS–heme complex is hexacoordinated with high-spin Fe(III). NMR titration of heme in L-PGDS points to hydrophobic interaction between heme and several residues within the β-barrel cavity of L-PGDS. In addition to the transporter function, L-PGDS is a key amyloid β chaperone in human cerebrospinal fluid. The presence of high levels of bilirubin and its derivatives, implicated in Alzheimer's disease, by binding to L-PGDS may reduce its chaperone activity. Nevertheless, our ThT binding assay establishes that heme and heme metabolites do not significantly alter the neuroprotective chaperone function of L-PGDS. Guided by NMR data we reconstructed the heme L-PGDS complex using extensive molecular dynamics simulations providing a platform for mechanistic interpretation of the catalytic and transporting functions and their modulation by secondary ligands like Aβ peptides and heme metabolites.
Collapse
|
40
|
Fonseca EA, Lafetá L, Cunha R, Miranda H, Campos J, Medeiros HG, Romano-Silva MA, Silva RA, Barbosa AS, Vieira RP, Malard LM, Jorio A. A fingerprint of amyloid plaques in a bitransgenic animal model of Alzheimer's disease obtained by statistical unmixing analysis of hyperspectral Raman data. Analyst 2020; 144:7049-7056. [PMID: 31657367 DOI: 10.1039/c9an01631g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The global prevalence of Alzheimer's disease (AD) points to endemic levels, especially considering the increase of average life expectancy worldwide. AD diagnosis based on early biomarkers and better knowledge of related pathophysiology are both crucial in the search for medical interventions that are able to modify AD progression. In this study we used unsupervised spectral unmixing statistical techniques to identify the vibrational spectral signature of amyloid β aggregation in neural tissues, as early biomarkers of AD in an animal model. We analyzed spectral images composed of a total of 55 051 Raman spectra obtained from the frontal cortex and hippocampus of five bitransgenic APPswePS1ΔE9 mice, and colocalized amyloid β plaques by other fluorescence techniques. The Raman signatures provided a multifrequency fingerprint consistent with the results of synthesized amyloid β fibrils. The fingerprint obtained from unmixed analysis in neural tissues is shown to provide a detailed image of amyloid plaques in the brain, with the potential to be used as biomarkers for non-invasive early diagnosis and pathophysiology studies in AD on the retina.
Collapse
Affiliation(s)
- Emerson A Fonseca
- Departamento de Física, ICEx, UFMG, Belo Horizonte, MG 31270-901, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Köhler T, Patsis PA, Hahn D, Ruland A, Naas C, Müller M, Thiele J. DNAzymes as Catalysts for l-Tyrosine and Amyloid β Oxidation. ACS OMEGA 2020; 5:7059-7064. [PMID: 32280846 PMCID: PMC7143405 DOI: 10.1021/acsomega.9b02645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/05/2020] [Indexed: 05/03/2023]
Abstract
Single-stranded deoxyribonucleic acids have an enormous potential for catalysis by applying tailored sequences of nucleotides for individual reaction conditions and substrates. If such a sequence is guanine-rich, it may arrange into a three-dimensional structure called G-quadruplex and give rise to a catalytically active DNA molecule, a DNAzyme, upon addition of hemin. Here, we present a DNAzyme-mediated reaction, which is the oxidation of l-tyrosine toward dityrosine by hydrogen peroxide. With an optimal stoichiometry between DNA and hemin of 1:10, we report an activity of 101.2 ± 3.5 μUnits (μU) of the artificial DNAzyme Dz-00 compared to 33.0 ± 1.8 μU of free hemin. Exemplarily, DNAzymes may take part in neurodegeneration caused by amyloid beta (Aβ) aggregation due to l-tyrosine oxidation. We show that the natural, human genome-derived DNAzyme In1-sp is able to oxidize Aβ peptides with a 4.6% higher yield and a 33.3% higher velocity of the reaction compared to free hemin. As the artificial DNAzyme Dz-00 is even able to catalyze Aβ peptide oxidation with a 64.2% higher yield and 337.1% higher velocity, an in-depth screening of human genome-derived DNAzymes may identify further candidates with similarly high catalytic activity in Aβ peptide oxidation.
Collapse
Affiliation(s)
- Tony Köhler
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Panagiotis A. Patsis
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- European
Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dominik Hahn
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Center
for Regenerative Therapies Dresden (CRTD), Fetscherstraße 105, 01307 Dresden, Germany
| | - André Ruland
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Carolin Naas
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- E-mail:
| |
Collapse
|
42
|
In situ structural characterization of early amyloid aggregates in Alzheimer's disease transgenic mice and Octodon degus. Sci Rep 2020; 10:5888. [PMID: 32246090 PMCID: PMC7125182 DOI: 10.1038/s41598-020-62708-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Amyloid plaques composed of Aβ amyloid peptides and neurofibrillary tangles are a pathological hallmark of Alzheimer’s disease. In situ identification of early-stage amyloid aggregates in Alzheimer’s disease is relevant for their importance as potential targets for effective drugs. Synchrotron-based infrared imaging is here used to identify early-stage oligomeric/granular aggregated amyloid species in situ in the brain of APP/PS1 transgenic mice and Octodon degus for the first time. Also, APP/PS1 mice show fibrillary aggregates at 6 and 12 months whereas very little formation of fibrils is found in aged Octodon degus. Finally, significant decreased burden of early-stage aggregates and fibrillary aggregates is obtained following treatment with G4-His-Mal dendrimers (a neurodegenerative protector) in 6-month-old APP/PS1 mice, thus demonstrating putative therapeutic properties of G4-His-Mal dendrimers in AD models. Identification, localization, and characterization using infrared imaging of these non-fibrillary species in the cerebral cortex at early stages of AD progression in transgenic mice point to their relevance as putative pharmacological targets. No less important, early detection of these structures may be useful in the search for markers for non-invasive diagnostic techniques.
Collapse
|
43
|
Breedlove S, Crentsil J, Dahal E, Badano A. Small-angle X-ray scattering characterization of a [Formula: see text]-amyloid model in phantoms. BMC Res Notes 2020; 13:128. [PMID: 32131889 PMCID: PMC7057533 DOI: 10.1186/s13104-020-04969-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We present a method to prepare an amyloid model at scalable quantities for phantom studies to evaluate small-angle x-ray scattering systems for amyloid detection. Two amyloid models were made from a plasma protein with and without heating. Both models mimic the [Formula: see text]-sheet structure of the [Formula: see text]-amyloid ([Formula: see text]) plaques in Alzheimer's disease. Amyloid detection is based on the distinct peaks in the scattering signature of the [Formula: see text]-sheet structure. We characterized the amyloid models using a spectral small-angle x-ray scattering (sSAXS) prototype with samples in a plastic syringe and within a cylindrical polymethyl methacrylate (PMMA) phantom. RESULTS sSAXS data show that we can detect the scattering peaks characteristic of amyloid [Formula: see text]-sheet structure in both models around 6 and 13 [Formula: see text]. The [Formula: see text] model prepared without heating provides a stronger signal in the PMMA phantom. The methods described can be used to prepare models in sufficiently large quantities and used in samples with different packing density to assess the performance of [Formula: see text] quantification systems.
Collapse
Affiliation(s)
- Sophya Breedlove
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA USA
| | - Jasson Crentsil
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD USA
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD USA
| | - Eshan Dahal
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - Aldo Badano
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| |
Collapse
|
44
|
Klementieva O, Sandt C, Martinsson I, Kansiz M, Gouras GK, Borondics F. Super-Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903004. [PMID: 32195099 PMCID: PMC7080554 DOI: 10.1002/advs.201903004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/12/2020] [Indexed: 05/06/2023]
Abstract
Loss of memory during Alzheimer's disease (AD), a fatal neurodegenerative disorder, is associated with neuronal loss and the aggregation of amyloid proteins into neurotoxic β-sheet enriched structures. However, the mechanism of amyloid protein aggregation is still not well understood due to many challenges when studying the endogenous amyloid structures in neurons or in brain tissue. Available methods either require chemical processing of the sample or may affect the amyloid protein structure itself. Therefore, new approaches, which allow studying molecular structures directly in neurons, are urgently needed. A novel approach is tested, based on label-free optical photothermal infrared super-resolution microspectroscopy, to study AD-related amyloid protein aggregation directly in the neuron at sub-micrometer resolution. Using this approach, amyloid protein aggregates are detected at the subcellular level, along the neurites and strikingly, in dendritic spines, which has not been possible until now. Here, a polymorphic nature of amyloid structures that exist in AD transgenic neurons is reported. Based on the findings of this work, it is suggested that structural polymorphism of amyloid proteins that occur already in neurons may trigger different mechanisms of AD progression.
Collapse
Affiliation(s)
- Oxana Klementieva
- Medical Microspectroscopy Research GroupDepartment of Experimental Medical ScienceLund University22180LundSweden
- Lund Institute for advanced Neutron and X‐ray Science (LINXS)223 70LundSweden
| | - Christophe Sandt
- Synchrotron SOLEILL'Orme des Merisiers91192Gif Sur YvetteCedexFrance
| | - Isak Martinsson
- Experimental Dementia ResearchDepartment of Experimental Medical ScienceLund University22180LundSweden
| | - Mustafa Kansiz
- Photothermal Spectroscopy CorporationSanta BarbaraCA93101USA
| | - Gunnar K. Gouras
- Experimental Dementia ResearchDepartment of Experimental Medical ScienceLund University22180LundSweden
| | - Ferenc Borondics
- Synchrotron SOLEILL'Orme des Merisiers91192Gif Sur YvetteCedexFrance
| |
Collapse
|
45
|
Hillen H. The Beta Amyloid Dysfunction (BAD) Hypothesis for Alzheimer's Disease. Front Neurosci 2019; 13:1154. [PMID: 31787864 PMCID: PMC6853841 DOI: 10.3389/fnins.2019.01154] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Beta amyloid, Aβ 1–42, originally named as Amyloid A4 protein, is one of the most investigated peptides in neuroscience and has attracted substantial interest since its discovery as the main insoluble fibril-type protein in cerebrovascular amyloid angiopathy (Glenner and Wong, 1984; Masters et al., 1985) of Alzheimer’s disease (AD). From the very beginning, Aβ was regarded per se as a “bad molecule,” triggering the so-called “beta amyloid cascade hypothesis” (Hardy and Higgins, 1992). This hypothesis ignored any physiological function for in situ generated Aβ monomer with normal production and turnover rate (Bateman et al., 2006). Accordingly, pan-Aβ-related therapeutic approaches were designed to eliminate or lower the three structural isoforms in parallel: (1) the pre-amyloid monomer, (2) the misfolded oligomer, and (3) the final fibril. While we already knew about poor correlations between plaques and cognitive decline quite early (Terry et al., 1991), data for an essential benign physiological role for Aβ monomer at low concentrations were also not considered to be relevant. Here, a different Beta Amyloid hypothesis is described, the so-called “Beta Amyloid Dysfunction hypothesis,” which, in contrast to the “Beta Amyloid Cascade hypothesis,” builds on the homeostasis of essential Aβ monomer in the synaptic vesicle cycle (SVC). Disease-relevant early pathology emerges through disturbance of the Aβ homeostasis by so far unknown factors leading to the formation of misfolded Aβ oligomers. These early species interfere with the synaptic physiological Aβ monomer regulation and exert their neurotoxicity via various receptors for sticky oligomer-type Aβ aggregates. The Beta Amyloid Dysfunction (BAD) hypothesis is introduced and shown to explain negative clinical results of Gamma-secretase and Beta-secretase (BACE) inhibitors as well as pan-Aβ isotype unselective immunotherapies. This hypothesis gives guidance to what needs to be done therapeutically to revive successful clinical testing in AD for this highly validated target. The BAD hypothesis will need further refinement in particular through more detailed exploration for the role of physiological Aβ monomer.
Collapse
|
46
|
Role of physical nucleation theory in understanding conformational conversion between pathogenic and nonpathogenic aggregates of low-complexity amyloid peptides. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
LeVatte MA, Lipfert M, Ladner-Keay C, Wishart DS. Preparation and characterization of a highly soluble Aβ 1-42 peptide variant. Protein Expr Purif 2019; 164:105480. [PMID: 31425755 DOI: 10.1016/j.pep.2019.105480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease marked by the accumulation and deposition of misfolded amyloid beta or Abeta (Aβ) peptide. Two species of Aβ peptides are found in amyloid plaques, Aβ1-40 and Aβ1-42, with the latter being the more amyloidogenic of the two. Understanding how and why Aβ peptides misfold, oligomerize and form amyloid plaques requires a detailed understanding of their structure and dynamics. The poor solubility and strong aggregation tendencies of Aβ1-42 has made the isolation and characterization of its different structural isoforms (monomer, dimer, oligomer, amyloid) exceedingly difficult. Furthermore, while synthetic Aβ1-42 peptides (Aβ42syn) are readily available, the cost of isotopically labeled peptide is substantial, making their characterization by NMR spectroscopy cost prohibitive. Here we describe the design, cloning, high-level production, isotopic labeling and biophysical characterization of a modified (solubility-tagged) Aβ1-42 variant that exhibits excellent water solubility and shares similar aggregation properties as wildtype Aβ1-42. Specifically, we attached six lysines (6K) to the C-terminus of native Aβ1-42 to create a more soluble, monomeric form of Aβ1-42 called Aβ42C6K. A gene for the Aβ42C6K was designed, synthesized and cloned into Escherichia coli (E. coli) and the peptide was expressed at milligram levels. The Aβ42C6K peptide was characterized using circular dichroism (CD), NMR, electron microscopy and thioflavin T fluorescence. Its ability to form stable monomers, oligomers and fibrils under different conditions was assessed. Our results indicate that Aβ42C6K stays monomeric at high concentrations (unlike Aβ1-42) and can be induced to oligomerize and form fibrils like Aβ1-42. Our novel construct could be used to explore the structure and dynamics of Aβ1-42 as well as the interaction of ligands with Aβ1-42 via NMR.
Collapse
Affiliation(s)
- Marcia A LeVatte
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Matthias Lipfert
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Carol Ladner-Keay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E8, Canada; Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada.
| |
Collapse
|
48
|
Mouchard A, Boutonnet MC, Mazzocco C, Biendon N, Macrez N. ApoE-fragment/Aβ heteromers in the brain of patients with Alzheimer's disease. Sci Rep 2019; 9:3989. [PMID: 30850702 PMCID: PMC6408522 DOI: 10.1038/s41598-019-40438-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/13/2019] [Indexed: 11/09/2022] Open
Abstract
Identification of endogenous pathological amyloid β peptides (Aβ) forms in the brains of patients with Alzheimer’s disease (AD) is still unclear. In healthy brain, Aβ can associate with Apolipoprotein E (ApoE) which is involved in its metabolism and clearance. In the brain of patients with AD, ApoE is cleaved and produces ApoE fragments. We studied the forms of Aβ and their interaction with the ApoE fragments in post-mortem brains from control and AD patients by western blots and co-immunoprecipitation. Three Aβ-containing peptides and three ApoE fragments were specifically found in the brain of AD patients. Co-immunoprecipitations showed that ApoE fragments and Aβ1–42 peptides are co-partners in heteromers of 18 and 16 kDa while ApoE-fragments and Aβ peptides of 12 kDa did not interact with each other. Formation of the 18 kDa ApoE-fragment/Aβ heteromers is specifically increased in ApoE4 carriers and is a strong brain marker of AD while 16 kDa ApoE-fragment/Aβ and Aβ 12 kDa correlate to memory deficit. These data show that in patients with AD, ApoE fragmentation generates peptides that trap Aβ in the brain. Inhibiting the fragmentation or targeting ApoE fragments could be exploited to define strategies to detect or reverse AD.
Collapse
Affiliation(s)
- Amandine Mouchard
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France
| | - Claire Mazzocco
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France
| | - Nathalie Biendon
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France
| | - Nathalie Macrez
- Bordeaux University, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France. .,CNRS, Institut des Maladies Neurodégénératives, UMR, 5293, Bordeaux, France.
| | | |
Collapse
|
49
|
Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:198-209. [PMID: 30708052 DOI: 10.1016/j.nano.2019.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/17/2018] [Accepted: 01/13/2019] [Indexed: 01/02/2023]
Abstract
Poly(propylene imine) dendrimers have been shown to be promising 3-dimensional polymers for the use in the pharmaceutical and biomedical applications. Our aims of this study were first, to synthesize a novel type of dendrimer with poly(propylene imine) core and maltose-histidine shell (G4HisMal) assessing if maltose-histidine shell can improve the biocompatibility and the ability to cross the blood-brain barrier, and second, to investigate the potential of G4HisMal to protect Alzheimer disease transgenic mice from memory impairment. Our data demonstrate that G4HisMal has significantly improved biocompatibility and ability to cross the blood-brain barrier in vivo. Therefore, we suggest that a maltose-histidine shell can be used to improve biocompatibility and ability to cross the blood-brain barrier of dendrimers. Moreover, G4HisMal demonstrated properties for synapse and memory protection when administered to Alzheimer disease transgenic mice. Therefore, G4HisMal can be considered as a promising drug candidate to prevent Alzheimer disease via synapse protection.
Collapse
|
50
|
Vibrational Approach to the Dynamics and Structure of Protein Amyloids. Molecules 2019; 24:molecules24010186. [PMID: 30621325 PMCID: PMC6337179 DOI: 10.3390/molecules24010186] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Amyloid diseases, including neurodegenerative diseases such as Alzheimer’s and Parkinson’s, are linked to a poorly understood progression of protein misfolding and aggregation events that culminate in tissue-selective deposition and human pathology. Elucidation of the mechanistic details of protein aggregation and the structural features of the aggregates is critical for a comprehensive understanding of the mechanisms of protein oligomerization and fibrillization. Vibrational spectroscopies, such as Fourier transform infrared (FTIR) and Raman, are powerful tools that are sensitive to the secondary structure of proteins and have been widely used to investigate protein misfolding and aggregation. We address the application of the vibrational approaches in recent studies of conformational dynamics and structural characteristics of protein oligomers and amyloid fibrils. In particular, introduction of isotope labelled carbonyl into a peptide backbone, and incorporation of the extrinsic unnatural amino acids with vibrational moieties on the side chain, have greatly expanded the ability of vibrational spectroscopy to obtain site-specific structural and dynamic information. The applications of these methods in recent studies of protein aggregation are also reviewed.
Collapse
|