1
|
Olivier E, Zhang S, Yan Z, Bouhassira EE. Stem cell factor and erythropoietin-independent production of cultured reticulocytes. Haematologica 2024; 109:3705-3720. [PMID: 38618684 PMCID: PMC11532706 DOI: 10.3324/haematol.2023.284427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Cultured reticulocytes can supplement transfusion needs and offer promise for drug delivery and immune tolerization. They can be produced from induced pluripotent stem cells (iPSC), but the 45-day culture time and cytokine costs make largescale production prohibitive. To overcome these limitations, we have generated iPSC that express constitutive stem cell factor (SCF) receptor and jak2 adaptor alleles. We show that iPSC lines carrying these alleles can differentiate into self-renewing erythroblasts that can proliferate for up to 70 cell-doubling in a cost-effective, chemically-defined, albumin- and cytokine-free medium. These kitjak2 self-renewing erythroblasts retain the ability to enucleate at a high rate up to senescence. Kitjak2-derived cultured reticulocytes should be safe for transfusion because they can be irradiated to eliminate residual nucleated cells. The kitjak2 cells express blood group 0 and test negative for RhD and other clinically significant red blood cell antigens and have sufficient proliferation capacity to meet global red blood cell needs.
Collapse
Affiliation(s)
- Emmanuel Olivier
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Shouping Zhang
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Zi Yan
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York, 10461
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, New York.
| |
Collapse
|
2
|
Kronstein-Wiedemann R, Thiel J, Sürün D, Teichert M, Künzel SR, Zimmermann S, Wagenführ L, Buchholz F, Tonn T. Characterization of immortalized bone marrow erythroid progenitor adult (imBMEP-A)-The first inducible immortalized red blood cell progenitor cell line derived from bone marrow CD71-positive cells. Cytotherapy 2024; 26:1362-1373. [PMID: 39001769 DOI: 10.1016/j.jcyt.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AIMS Ex vivo production of red blood cells (RBCs) represents a promising alternative for transfusion medicine. Several strategies have been described to generate erythroid cell lines from different sources, including embryonic, induced pluripotent, and hematopoietic stem cells. All these approaches have in common that they require elaborate differentiation cultures whereas the yield of enucleated RBCs is inefficient. METHODS We generated a human immortalized adult erythroid progenitor cell line derived from bone marrow CD71-positive erythroid progenitor cells (immortalized bone marrow erythroid progenitor adult, or imBMEP-A) by an inducible expression system, to shorten differentiation culture necessary for terminal erythroid differentiation. It is the first erythroid cell line that is generated from direct reticulocyte progenitors and demonstrates robust hemoglobin production in the immortalized state. RESULTS Morphologic analysis of the immortalized cells showed that the preferred cell type of the imBMEP-A line corresponds to hemoglobin-producing basophilic erythroblasts. In addition, we were able to generate a stable cell line from a single cell clone with the triple knockout of RhAG, RhDCE and KELL. After removal of doxycycline, part of the cells differentiated into normoblasts and reticulocytes within 5-7 days. CONCLUSIONS Our results demonstrate that the imBMEP-A cell line can serve as a stable and straightforward modifiable platform for RBC engineering in the future.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Jessica Thiel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Duran Sürün
- UCC, Medical Systems Biology - Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Madeleine Teichert
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stephan R Künzel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Lisa Wagenführ
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Frank Buchholz
- UCC, Medical Systems Biology - Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.
| |
Collapse
|
3
|
Metral S, Genetet S, Gamain B, Mouro-Chanteloup I. JK-1, a useful erythroleukemic cell line model to study a controlled erythroid differentiation from progenitors to terminal erythropoiesis. Sci Rep 2024; 14:25885. [PMID: 39468295 PMCID: PMC11519332 DOI: 10.1038/s41598-024-76897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
New hematopoietic cell models have recently emerged through immortalization of CD34 cells to study and understand various molecular mechanisms of erythropoiesis. Here, we characterize the JK-1 CML-derived cell line, previously shown to spontaneously differentiate without cytokines. Using an epigenetic differentiation inhibitor that keeps JK-1 in an early differentiation phase, we characterized 2 progenitor stages: BFU-E JK-1 and CFU-E JK-1 with CD34+/CD36- and CD34-/CD36 + phenotypes respectively. Then, using the PFI-1 inducer known to synchronously control the terminal differentiation of JK-1 cells, 5 precursor stages were obtained (ProE, Baso1-2, PolyC, OrthoC) and characterized via cell morphology, CD49a and Band3 markers. Enlarged phenotyping was carried out for the earlier phase, and expression kinetics of membrane proteins such as RhAG, RhD/CE, CD47, DARC and CD44 were performed on each stage of the terminal phase. Furthermore, since JK-1 offers the unique property of covering a broad spectrum of differentiation stages, we explored deeper the GATA2/GATA1 and the non-erythroid/erythroid spectrin 'switching'. The possibility of obtaining large quantities of JK-1 cells at each stage of differentiation, as shown in this study, as well as the potential to genetically modify these cells, via CrisprCas9, makes their use of considerable interest for studying pathologies occurring during erythropoiesis.
Collapse
Affiliation(s)
- Sylvain Metral
- Université Paris Cité and Université des Antilles, Inserm U1134, BIGR, Paris, France
| | - Sandrine Genetet
- Université Paris Cité and Université des Antilles, Inserm U1134, BIGR, Paris, France
| | - Benoît Gamain
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Paris, France
- Centre d'Immunologie et des Maladies Infectieuses, Faculté de médecine Sorbonne Université, 5e étage - Bureau 506 91 boulevard de l'Hôpital, 75013, Paris, France
| | - Isabelle Mouro-Chanteloup
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Paris, France.
- Centre d'Immunologie et des Maladies Infectieuses, Faculté de médecine Sorbonne Université, 5e étage - Bureau 506 91 boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
4
|
Martins Freire C, King NR, Dzieciatkowska M, Stephenson D, Moura PL, Dobbe JGG, Streekstra GJ, D'Alessandro A, Toye AM, Satchwell TJ. Complete absence of GLUT1 does not impair human terminal erythroid differentiation. Blood Adv 2024; 8:5166-5178. [PMID: 38916993 PMCID: PMC11470287 DOI: 10.1182/bloodadvances.2024012743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024] Open
Abstract
ABSTRACT The glucose transporter 1 (GLUT1) is 1 of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates, to our knowledge, for the first time, generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMP-activated protein kinase signaling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1-deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation, or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function, and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anemia in GLUT1-deficiency syndrome.
Collapse
Affiliation(s)
| | - Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Pedro L. Moura
- Department of Medicine, Center for Haematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Johannes G. G. Dobbe
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Geert J. Streekstra
- Biomedical Engineering and Physics, University of Amsterdam, Amsterdam UMC location, Amsterdam, The Netherlands
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
5
|
Nemkov T, Stephenson D, Earley EJ, Keele GR, Hay A, Key A, Haiman ZB, Erickson C, Dzieciatkowska M, Reisz JA, Moore A, Stone M, Deng X, Kleinman S, Spitalnik SL, Hod EA, Hudson KE, Hansen KC, Palsson BO, Churchill GA, Roubinian N, Norris PJ, Busch MP, Zimring JC, Page GP, D'Alessandro A. Biological and genetic determinants of glycolysis: Phosphofructokinase isoforms boost energy status of stored red blood cells and transfusion outcomes. Cell Metab 2024; 36:1979-1997.e13. [PMID: 38964323 PMCID: PMC11374506 DOI: 10.1016/j.cmet.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Mature red blood cells (RBCs) lack mitochondria and thus exclusively rely on glycolysis to generate adenosine triphosphate (ATP) during aging in vivo or storage in blood banks. Here, we leveraged 13,029 volunteers from the Recipient Epidemiology and Donor Evaluation Study to identify associations between end-of-storage levels of glycolytic metabolites and donor age, sex, and ancestry-specific genetic polymorphisms in regions encoding phosphofructokinase 1, platelet (detected in mature RBCs); hexokinase 1 (HK1); and ADP-ribosyl cyclase 1 and 2 (CD38/BST1). Gene-metabolite associations were validated in fresh and stored RBCs from 525 Diversity Outbred mice and via multi-omics characterization of 1,929 samples from 643 human RBC units during storage. ATP and hypoxanthine (HYPX) levels-and the genetic traits linked to them-were associated with hemolysis in vitro and in vivo, both in healthy autologous transfusion recipients and in 5,816 critically ill patients receiving heterologous transfusions, suggesting their potential as markers to improve transfusion outcomes.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | | | - Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Zachary B Haiman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Eldad A Hod
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krystalyn E Hudson
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Kaiser Permanente Northern California Division of Research, Oakland, CA, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA; Omix Technologies Inc., Aurora, CO, USA.
| |
Collapse
|
6
|
Chen C, Liu W, Xia Y. Gene-metabolite linkage marks stored red blood cell quality. Cell Metab 2024; 36:1905-1907. [PMID: 39232277 DOI: 10.1016/j.cmet.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Red blood cell (RBC) transfusion has long been the cornerstone of treatment for multiple diseases, but there is a knowledge gap between biological and genetic factors impacting RBC storage quality and transfusion efficacy. In this issue of Cell Metabolism, Nemkov et al. present a multiomics approach to identify gene-metabolite associations in fresh and stored RBCs. These findings provide potential strategies to mark the quality of stored RBCs and improve their storage and transfusion performance.
Collapse
Affiliation(s)
- Changhan Chen
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wuping Liu
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Langlands HD, Shoemark DK, Toye AM. Modulation of Antioxidant Enzyme Expression of In Vitro Culture-Derived Reticulocytes. Antioxidants (Basel) 2024; 13:1070. [PMID: 39334729 PMCID: PMC11429491 DOI: 10.3390/antiox13091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The regulation of reactive oxygen species (ROS) in red blood cells (RBCs) is crucial for maintaining functionality and lifespan. Indeed, dysregulated ROS occurs in haematological diseases such as sickle cell disease and β-thalassaemia. In order to combat this, RBCs possess high levels of protective antioxidant enzymes. We aimed to further boost RBC antioxidant capacity by overexpressing peroxiredoxin (Prxs) and glutathione peroxidase (GPxs) enzymes. Multiple antioxidant enzyme cDNAs were individually overexpressed in expanding immortalised erythroblasts using lentivirus, including Prx isoforms 1, 2, and 6 and GPx isoforms 1 and 4. Enhancing Prx protein expression proved straightforward, but GPx overexpression required modifications. For GPx4, these modifications included adding a SECIS element in the 3'UTR, the removal of a mitochondrial-targeting sequence, and removing putative ubiquitination sites. Culture-derived reticulocytes exhibiting enhanced levels of Prx and GPx antioxidant proteins were successfully engineered, demonstrating a novel approach to improve RBC resilience to oxidative stress. Further work is needed to explore the activity of these proteins and their impact on RBC metabolism, but this strategy shows promise for improving RBC function in physiological and pathological contexts and during storage for transfusion. Enhancing the antioxidant capacity of reticulocytes has exciting promise for developing culture-derived RBCs with enhanced resistance to oxidative damage and offers new therapeutic interventions in diseases with elevated oxidative stress.
Collapse
Affiliation(s)
- Hannah D Langlands
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
8
|
Yang J, Li A, Li M, Ruan S, Ye L. CRISPR/Cas9-Editing K562 Cell Line as a Potential Tool in Transfusion Applications: Knockout of Vel Antigen Gene. Transfus Med Hemother 2024; 51:265-273. [PMID: 39021420 PMCID: PMC11250041 DOI: 10.1159/000534012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 07/20/2024] Open
Abstract
Introduction The Vel- phenotype is a rare blood group, and it is challenging for identifying this phenotype due to limited available reagents. Moreover, there are relatively few studies on genomic editing of erythroid antigens and generation of knockout (KO) cell lines at present. Methods To identify the high-efficiency small-guiding RNA (sgRNA) sequence, candidate sgRNAs were transfected into HEK 293T cells and analyzed using Sanger sequencing. Following this, the high-efficiency sgRNA was transfected into K562 cells using lentivirus transduction to generate KO Vel blood group gene cells. The expression of the Vel protein was detected using Western blot on single-cell clones. Additionally, flow cytometry was used to detect the erythroid markers CD235a and CD71. Hemoglobin quantification and Giemsa staining were also performed to evaluate the erythroid differentiation of KO clones induced by hemin. Results The high-efficiency sgRNA was successfully obtained and used for CRISPR-Cas9 editing in K562 cells. After limiting dilution and screening, two KO clones had either deleted 2 or 4 bases and showed no expression of the Vel protein. In the hemin-induced KO clone, there was a significant difference in erythroid marker and hemoglobin quantification compared to untreated cells. The morphological changes were also observed for the hemin-induced KO clone. Conclusion In this study, a highly efficient sgRNA was screened out and used to generate Vel erythroid antigen KO single-cell clones in K562 cells. The edited cells could then be induced to undergo erythroid differentiation with the use of hemin.
Collapse
Affiliation(s)
- Jiaxuan Yang
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Aijing Li
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Minghao Li
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Shulin Ruan
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Luyi Ye
- Molecular Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| |
Collapse
|
9
|
Persaud Y, Leonard A, Rai P. Current and emerging drug treatment strategies to tackle sickle cell anemia. Expert Opin Emerg Drugs 2024:1-20. [PMID: 38988318 DOI: 10.1080/14728214.2024.2379260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Since its discovery in the early 1900s, sickle cell disease (SCD) has contributed significantly to the scientific understanding of hemoglobin and hemoglobinopathies. Despite this, now almost a century later, optimal medical management and even curative options remain limited. Encouragingly, in the last decade, there has been a push toward advancing the care for individuals with SCD and a diversifying interest in options to manage this disorder. AREAS COVERED Here, we review the current state of disease modifying therapies for SCD including fetal hemoglobin inducers, monoclonal antibodies, anti-inflammatory modulators, and enzyme activators. We also discuss current curative strategies with specific interest in transformative gene therapies. EXPERT OPINION SCD is a chronic, progressive disease that despite a century of clinical description, only now is seeing a growth and advance in therapeutic options to improve the lifespan and quality of life for individuals with SCD. We anticipate newly designed and even repurposed therapies that may work as a single agent or combination agents to tackle the progression of SCD. The vast majority of individuals living with SCD are unlikely to receive gene therapy, therefore improved disease management is critical even for those that may ultimately chose to pursue a potentially curative strategy.
Collapse
Affiliation(s)
- Yogindra Persaud
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alexis Leonard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Parul Rai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
10
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
11
|
Wang E, Liu S, Zhang X, Peng Q, Yu H, Gao L, Xie A, Ma D, Zhao G, Cheng L. An Optimized Human Erythroblast Differentiation System Reveals Cholesterol-Dependency of Robust Production of Cultured Red Blood Cells Ex Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303471. [PMID: 38481061 PMCID: PMC11165465 DOI: 10.1002/advs.202303471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/01/2023] [Indexed: 06/12/2024]
Abstract
The generation of cultured red blood cells (cRBCs) ex vivo represents a potentially unlimited source for RBC transfusion and other cell therapies. Human cRBCs can be generated from the terminal differentiation of proliferating erythroblasts derived from hematopoietic stem/progenitor cells or erythroid precursors in peripheral blood mononuclear cells. Efficient differentiation and maturation into cRBCs highly depend on replenishing human plasma, which exhibits variable potency across donors or batches and complicates the consistent cRBC production required for clinical translation. Hence, the role of human plasma in erythroblast terminal maturation is investigated and uncovered that 1) a newly developed cell culture basal medium mimicking the metabolic profile of human plasma enhances cell growth and increases cRBC yield upon erythroblast terminal differentiation and 2) LDL-carried cholesterol, as a substitute for human plasma, is sufficient to support erythroid survival and terminal differentiation ex vivo. Consequently, a chemically-defined optimized medium (COM) is developed, enabling robust generation of cRBCs from erythroblasts of multiple origins, with improved enucleation efficiency and higher reticulocyte yield, without the need for supplementing human plasma or serum. In addition, the results reveal the crucial role of lipid metabolism during human terminal erythropoiesis.
Collapse
Affiliation(s)
- Enyu Wang
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Senquan Liu
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xinye Zhang
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Qingyou Peng
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Huijuan Yu
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Lei Gao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - An Xie
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Ding Ma
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Linzhao Cheng
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Division of HematologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
12
|
Izard C, Laget L, Beley S, Bichel N, De Boisgrollier L, Picard C, Chiaroni J, Di Cristofaro J. Resolution of RHCE Haplotype Ambiguities in Transfusion Settings. Int J Mol Sci 2024; 25:5868. [PMID: 38892055 PMCID: PMC11172784 DOI: 10.3390/ijms25115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Red blood cell (RBC) transfusion, limited by patient alloimmunization, demands accurate blood group typing. The Rh system requires specific attention due to the limitations of serological phenotyping methods. Although these have been compensated for by molecular biology solutions, some RhCE ambiguities remain unresolved. The RHCE mRNA length is compatible with full-length analysis and haplotype discrimination, but the RHCE mRNA analyses reported so far are based on reticulocyte isolation and molecular biology protocols that are fastidious to implement in a routine context. We aim to present the most efficient reticulocyte isolation method, combined with an RT-PCR sequencing protocol that embraces the phasing of all haplotype configurations and identification of any allele. Two protocols were tested for reticulocyte isolation based either on their size/density properties or on their specific antigenicity. We show that the reticulocyte sorting method by antigen specificity from EDTA blood samples collected up to 48 h before processing is the most efficient and that the combination of an RHCE-specific RT-PCR followed by RHCE allele-specific sequencing enables analysis of cDNA RHCE haplotypes. All samples analyzed show full concordance between RHCE phenotype and haplotype sequencing. Two samples from the immunohematology laboratory with ambiguous results were successfully analyzed and resolved, one of them displaying a novel RHCE allele (RHCE*03 c.340C>T).
Collapse
Affiliation(s)
- Caroline Izard
- Etablissement Français du Sang PACA Corse, 13005 Marseille, France
- Aix Marseille University CNRS EFS ADES UMR7268, 13015 Marseille, France
| | - Laurine Laget
- Etablissement Français du Sang PACA Corse, 13005 Marseille, France
- Aix Marseille University CNRS EFS ADES UMR7268, 13015 Marseille, France
| | - Sophie Beley
- Etablissement Français du Sang PACA Corse, 13005 Marseille, France
| | - Nelly Bichel
- Etablissement Français du Sang PACA Corse, 13005 Marseille, France
| | | | - Christophe Picard
- Etablissement Français du Sang PACA Corse, 13005 Marseille, France
- Aix Marseille University CNRS EFS ADES UMR7268, 13015 Marseille, France
| | - Jacques Chiaroni
- Etablissement Français du Sang PACA Corse, 13005 Marseille, France
- Aix Marseille University CNRS EFS ADES UMR7268, 13015 Marseille, France
| | - Julie Di Cristofaro
- Etablissement Français du Sang PACA Corse, 13005 Marseille, France
- Aix Marseille University CNRS EFS ADES UMR7268, 13015 Marseille, France
| |
Collapse
|
13
|
Day CJ, Favuzza P, Bielfeld S, Haselhorst T, Seefeldt L, Hauser J, Shewell LK, Flueck C, Poole J, Jen FEC, Schäfer A, Dangy JP, Gilberger TW, França CT, Duraisingh MT, Tamborrini M, Brancucci NMB, Grüring C, Filarsky M, Jennings MP, Pluschke G. The essential malaria protein PfCyRPA targets glycans to invade erythrocytes. Cell Rep 2024; 43:114012. [PMID: 38573856 DOI: 10.1016/j.celrep.2024.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.
Collapse
Affiliation(s)
- Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Paola Favuzza
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Sabrina Bielfeld
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Leonie Seefeldt
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Julia Hauser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Christian Flueck
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Jessica Poole
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Tim-W Gilberger
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany; Department of Cellular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Camila Tenorio França
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Marco Tamborrini
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Nicolas M B Brancucci
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Christof Grüring
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Michael Filarsky
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany; Department of Biology, University of Hamburg, Hamburg, Germany
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Dolberg TB, Gunnels TF, Ling T, Sarnese KA, Crispino JD, Leonard JN. Building Synthetic Biosensors Using Red Blood Cell Proteins. ACS Synth Biol 2024; 13:1273-1289. [PMID: 38536408 PMCID: PMC11536268 DOI: 10.1021/acssynbio.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Toward addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC-protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including noninvasive monitoring of physiological signals for a range of diagnostic applications.
Collapse
Affiliation(s)
- Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly A. Sarnese
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
15
|
Gupta P, Goswami SG, Kumari G, Saravanakumar V, Bhargava N, Rai AB, Singh P, Bhoyar RC, Arvinden VR, Gunda P, Jain S, Narayana VK, Deolankar SC, Prasad TSK, Natarajan VT, Scaria V, Singh S, Ramalingam S. Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies. Nat Commun 2024; 15:1794. [PMID: 38413594 PMCID: PMC10899644 DOI: 10.1038/s41467-024-46036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Ex vivo cellular system that accurately replicates sickle cell disease and β-thalassemia characteristics is a highly sought-after goal in the field of erythroid biology. In this study, we present the generation of erythroid progenitor lines with sickle cell disease and β-thalassemia mutation using CRISPR/Cas9. The disease cellular models exhibit similar differentiation profiles, globin expression and proteome dynamics as patient-derived hematopoietic stem/progenitor cells. Additionally, these cellular models recapitulate pathological conditions associated with both the diseases. Hydroxyurea and pomalidomide treatment enhanced fetal hemoglobin levels. Notably, we introduce a therapeutic strategy for the above diseases by recapitulating the HPFH3 genotype, which reactivates fetal hemoglobin levels and rescues the disease phenotypes, thus making these lines a valuable platform for studying and developing new therapeutic strategies. Altogether, we demonstrate our disease cellular systems are physiologically relevant and could prove to be indispensable tools for disease modeling, drug screenings and cell and gene therapy-based applications.
Collapse
Affiliation(s)
- Pragya Gupta
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sangam Giri Goswami
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Geeta Kumari
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vinodh Saravanakumar
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - Nupur Bhargava
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - Akhila Balakrishna Rai
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Praveen Singh
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul C Bhoyar
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
| | - V R Arvinden
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Padma Gunda
- Thalassemia and Sickle Cell Society- Kamala Hospital and Research Centre, Shivarampally, Hyderabad, India
| | - Suman Jain
- Thalassemia and Sickle Cell Society- Kamala Hospital and Research Centre, Shivarampally, Hyderabad, India
| | - Vanya Kadla Narayana
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Sayali C Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Vivek T Natarajan
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shailja Singh
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Sivaprakash Ramalingam
- CSIR- Institute for Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
King NR, Martins Freire C, Touhami J, Sitbon M, Toye AM, Satchwell TJ. Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog 2024; 20:e1011989. [PMID: 38315723 PMCID: PMC10868855 DOI: 10.1371/journal.ppat.1011989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum invasion of the red blood cell is reliant upon the essential interaction of PfRh5 with the host receptor protein basigin. Basigin exists as part of one or more multiprotein complexes, most notably through interaction with the monocarboxylate transporter MCT1. However, the potential requirement for basigin association with MCT1 and the wider role of basigin host membrane context and lateral protein associations during merozoite invasion has not been established. Using genetically manipulated in vitro derived reticulocytes, we demonstrate the ability to uncouple basigin ectodomain presentation from its transmembrane domain-mediated interactions, including with MCT1. Merozoite invasion of reticulocytes is unaffected by disruption of basigin-MCT1 interaction and by removal or replacement of the basigin transmembrane helix. Therefore, presentation of the basigin ectodomain at the red blood cell surface, independent of its native association with MCT1 or other interactions mediated by the transmembrane domain, is sufficient to facilitate merozoite invasion.
Collapse
Affiliation(s)
- Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Jawida Touhami
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
17
|
Pance A, Ng BL, Mwikali K, Koutsourakis M, Agu C, Rouhani FJ, Montandon R, Law F, Ponstingl H, Rayner JC. Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria. Front Cell Infect Microbiol 2023; 13:1287355. [PMID: 38173794 PMCID: PMC10762799 DOI: 10.3389/fcimb.2023.1287355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the anuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.
Collapse
Affiliation(s)
- Alena Pance
- Wellcome Sanger Institute, Cambridge, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bee L. Ng
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Chukwuma Agu
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Ruddy Montandon
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances Law
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Julian C. Rayner
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Dolberg TB, Gunnels TF, Ling T, Sarnese KA, Crispino JD, Leonard JN. Building synthetic biosensors using red blood cell proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.571988. [PMID: 38168174 PMCID: PMC10760168 DOI: 10.1101/2023.12.16.571988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Towards addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including non-invasive monitoring of physiological signals for a range of diagnostic applications.
Collapse
Affiliation(s)
- Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F. Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Te Ling
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly A. Sarnese
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
19
|
Han Y, Wang S, Wang Y, Huang Y, Gao C, Guo X, Chen L, Zhao H, An X. Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1117-1132. [PMID: 37657739 PMCID: PMC11082260 DOI: 10.1016/j.gpb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/19/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, the expression of genes enriched in proteolysis and autophagy was up-regulated in orthochromatic erythroblasts (OrthoEs), suggesting the involvement of these pathways in enucleation. We also performed RNA-seq of in vitro cultured erythroblasts derived from FL CD34+ cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, the expression of lipid metabolism-related genes was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34+ cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry were immortalized at the proerythroblast stage and can be induced to differentiate into OrthoEs, but their enucleation ability was very low. Comparison of the transcriptomes between OrthoEs with and without enucleation capability revealed the down-regulation of pathways involved in chromatin organization and mitophagy in OrthoEs without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoEs to enucleate. Additionally, the expression of HBE1, HBZ, and HBG2 was up-regulated in FL-iEry compared with CB-iEry, and such up-regulation was accompanied by down-regulated expression of BCL11A and up-regulated expression of LIN28B and IGF2BP1. Our study provides new insights into human FL erythropoiesis and rich resources for future studies.
Collapse
Affiliation(s)
- Yongshuai Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Shihui Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Institute of Hematology, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yumin Huang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Chengjie Gao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
Xu L, Zeng Q, Liang L, Yang Z, Qu M, Li H, Zhang B, Zhang J, Yuan X, Chen L, Fan Z, He L, Nan X, Yue W, Xie X, Pei X. Generation of Rh D-negative blood using CRISPR/Cas9. Cell Prolif 2023; 56:e13486. [PMID: 37096780 PMCID: PMC10623963 DOI: 10.1111/cpr.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Blood supply shortages, especially the shortage of rare blood types, threaten the current medical system. Research on stem cells has shed light on in vitro blood cell manufacturing. The in vitro production of universal red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) has become the focus of transfusion medicine. To obtain O-type Rh D-negative blood, we developed O-type Rh D-negative human (h)iPSCs using homology-directed repair (HDR)-based CRISPR/Cas9. HuAiPSCs derived from human umbilical arterial endothelial cells and showing haematopoietic differentiation preferences were selected for gene modification. Guide RNAs (gRNAs) were selected, and a donor template flanked by gRNA-directed homologous arms was set to introduce a premature stop code to RHD exon 2. CRISPR/Cas9 gene editing has resulted in the successful generation of an RHD knockout cell line. The HuAiPSC-A1-RHD-/- cell line was differentiated into haematopoietic stem/progenitor cells and subsequently into erythrocytes in the oxygen concentration-optimized differentiation scheme. HuAiPSC-A1-RHD-/- derived erythrocytes remained positive for the RBC markers CD71 and CD235a. These erythrocytes did not express D antigen and did not agglutinate in the presence of anti-Rh D reagents. In conclusion, taking the priority of haematopoietic preference hiPSCs, the HDR-based CRISPR/Cas9 system and optimizing the erythroid-lineage differentiation protocol, we first generated O-type Rh D-negative universal erythrocytes from RHD knockout HuAiPSCs. Its production is highly efficient and shows great potential for clinical applications.
Collapse
Affiliation(s)
- Lei Xu
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Quan Zeng
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Liqing Liang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Zhou Yang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Mingyi Qu
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Huilin Li
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Jing Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Xin Yuan
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
| | - Lin Chen
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Zeng Fan
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Lijuan He
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
- Institute of Health Service and Transfusion MedicineBeijingChina
| | - Xue Nan
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Wen Yue
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Xiaoyan Xie
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineGuangzhouChina
| |
Collapse
|
21
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. Accessory-cell-free differentiation of hematopoietic stem and progenitor cells into mature red blood cells. Cytotherapy 2023; 25:1242-1248. [PMID: 37598334 DOI: 10.1016/j.jcyt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AIMS The culture and ex vivo engineering of red blood cells (RBCs) can help characterize genetic variants, model diseases, and may eventually spur the development of applications in transfusion medicine. In the last decade, improvements to the in vitro production of RBCs have enabled efficient erythroid progenitor proliferation and high enucleation levels from several sources of hematopoietic stem and progenitor cells (HSPCs). Despite these advances, there remains a need for refining the terminal step of in vitro human erythropoiesis, i.e., the terminal maturation of reticulocytes into erythrocytes, so that it can occur without feeder or accessory cells and animal-derived components. METHODS Here, we describe the near-complete erythroid differentiation of cultured RBCs (cRBCs) from adult HSPCs in accessory-cell-free and xeno-free conditions. RESULTS The approach improves post-enucleation cell integrity and cell survival, and it enables subsequent storage of cRBCs for up to 42 days in classical additive solution conditions without any specialized equipment. CONCLUSIONS We foresee that these improvements will facilitate the characterization of RBCs derived from gene-edited HSPCs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada; Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Josée Laganière
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada.
| |
Collapse
|
22
|
Daniels DE, Ferrer-Vicens I, Hawksworth J, Andrienko TN, Finnie EM, Bretherton NS, Ferguson DCJ, Oliveira ASF, Szeto JYA, Wilson MC, Brewin JN, Frayne J. Human cellular model systems of β-thalassemia enable in-depth analysis of disease phenotype. Nat Commun 2023; 14:6260. [PMID: 37803026 PMCID: PMC10558456 DOI: 10.1038/s41467-023-41961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
β-thalassemia is a prevalent genetic disorder causing severe anemia due to defective erythropoiesis, with few treatment options. Studying the underlying molecular defects is impeded by paucity of suitable patient material. In this study we create human disease cellular model systems for β-thalassemia by gene editing the erythroid line BEL-A, which accurately recapitulate the phenotype of patient erythroid cells. We also develop a high throughput compatible fluorometric-based assay for evaluating severity of disease phenotype and utilize the assay to demonstrate that the lines respond appropriately to verified reagents. We next use the lines to perform extensive analysis of the altered molecular mechanisms in β-thalassemia erythroid cells, revealing upregulation of a wide range of biological pathways and processes along with potential novel targets for therapeutic investigation. Overall, the lines provide a sustainable supply of disease cells as research tools for identifying therapeutic targets and as screening platforms for new drugs and reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jenn-Yeu A Szeto
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - John N Brewin
- Haematology Department, King's college Hospital NHS Foundation, London, SE5 9RS, UK
- Red Cell Biology Group, Kings College London, London, SE5 9NU, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
23
|
Preston AE, Frost JN, Badat M, Teh M, Armitage AE, Norfo R, Wideman SK, Hanifi M, White N, Roy N, Ghesquiere B, Babbs C, Kassouf M, Davies J, Hughes JR, Beagrie R, Higgs DR, Drakesmith H. Ancient genomic linkage couples metabolism with erythroid development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.558944. [PMID: 37808769 PMCID: PMC10557585 DOI: 10.1101/2023.09.25.558944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Generation of mature cells from progenitors requires tight coupling of differentiation and metabolism. During erythropoiesis, erythroblasts are required to massively upregulate globin synthesis then clear extraneous material and enucleate to produce erythrocytes1-3. Nprl3 has remained in synteny with the α-globin genes for >500 million years4, and harbours the majority of the α-globin enhancers5. Nprl3 is a highly conserved inhibitor of mTORC1, which controls cellular metabolism. However, whether Nprl3 itself serves an erythroid role is unknown. Here, we show that Nprl3 is a key regulator of erythroid metabolism. Using Nprl3-deficient fetal liver and adult competitive bone marrow - fetal liver chimeras, we show that NprI3 is required for sufficient erythropoiesis. Loss of Nprl3 elevates mTORC1 signalling, suppresses autophagy and disrupts erythroblast glycolysis and redox control. Human CD34+ progenitors lacking NPRL3 produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Finally, we show that the α-globin enhancers upregulate NprI3 expression, and that this activity is necessary for optimal erythropoiesis. Therefore, the anciently conserved linkage of NprI3, α-globin and their associated enhancers has enabled coupling of metabolic and developmental control in erythroid cells. This may enable erythropoiesis to adapt to fluctuating nutritional and environmental conditions.
Collapse
Affiliation(s)
- Alexandra E Preston
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Mohsin Badat
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Megan Teh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ruggiero Norfo
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah K Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Natasha White
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Noémi Roy
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Bart Ghesquiere
- Metabolomics Expertise Center, VIB Center for Cancer Biology, 3000 Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - James Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Rob Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
24
|
Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int J Mol Sci 2023; 24:12716. [PMID: 37628897 PMCID: PMC10454025 DOI: 10.3390/ijms241612716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In modern science, immortalized cells are not only a convenient tool in fundamental research, but they are also increasingly used in practical medicine. This happens due to their advantages compared to the primary cells, such as the possibility to produce larger amounts of cells and to use them for longer periods of time, the convenience of genetic modification, the absence of donor-to-donor variability when comparing the results of different experiments, etc. On the other hand, immortalization comes with drawbacks: possibilities of malignant transformation and/or major phenotype change due to genetic modification itself or upon long-term cultivation appear. At first glance, such issues are huge hurdles in the way of immortalized cells translation into medicine. However, there are certain ways to overcome such barriers that we describe in this review. We determined four major areas of usage of immortalized cells for practical medicinal purposes, and each has its own means to negate the drawbacks associated with immortalization. Moreover, here we describe specific fields of application of immortalized cells in which these problems are of much lesser concern, for example, in some cases where the possibility of malignant growth is not there at all. In general, we can conclude that immortalized cells have their niches in certain areas of practical medicine where they can successfully compete with other therapeutic approaches, and more preclinical and clinical trials with them should be expected.
Collapse
Affiliation(s)
- Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
25
|
Ferrer-Vicens I, Ferguson DCJ, Wilson MC, Heesom KJ, Bieker JJ, Frayne J. A novel human cellular model of CDA IV enables comprehensive analysis revealing the molecular basis of the disease phenotype. Blood 2023; 141:3039-3054. [PMID: 37084386 PMCID: PMC10315626 DOI: 10.1182/blood.2022018735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 04/23/2023] Open
Abstract
Red blood cell disorders can result in severe anemia. One such disease congenital dyserythropoietic anemia IV (CDA IV) is caused by the heterozygous mutation E325K in the transcription factor KLF1. However, studying the molecular basis of CDA IV is severely impeded by the paucity of suitable and adequate quantities of material from patients with anemia and the rarity of the disease. We, therefore, took a novel approach, creating a human cellular disease model system for CDA IV that accurately recapitulates the disease phenotype. Next, using comparative proteomics, we reveal extensive distortion of the proteome and a wide range of disordered biological processes in CDA IV erythroid cells. These include downregulated pathways the governing cell cycle, chromatin separation, DNA repair, cytokinesis, membrane trafficking, and global transcription, and upregulated networks governing mitochondrial biogenesis. The diversity of such pathways elucidates the spectrum of phenotypic abnormalities that occur with CDA IV and impairment to erythroid cell development and survival, collectively explaining the CDA IV disease phenotype. The data also reveal far more extensive involvement of KLF1 in previously assigned biological processes, along with novel roles in the regulation of intracellular processes not previously attributed to this transcription factor. Overall, the data demonstrate the power of such a model cellular system to unravel the molecular basis of disease and how studying the effects of a rare mutation can reveal fundamental biology.
Collapse
Affiliation(s)
| | | | - Marieangela C. Wilson
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - James J. Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Venkatesan V, Christopher AC, Rhiel M, Azhagiri MKK, Babu P, Walavalkar K, Saravanan B, Andrieux G, Rangaraj S, Srinivasan S, Karuppusamy KV, Jacob A, Bagchi A, Pai AA, Nakamura Y, Kurita R, Balasubramanian P, Pai R, Marepally SK, Mohankumar KM, Velayudhan SR, Boerries M, Notani D, Cathomen T, Srivastava A, Thangavel S. Editing the core region in HPFH deletions alters fetal and adult globin expression for treatment of β-hemoglobinopathies. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:671-688. [PMID: 37215154 PMCID: PMC10197010 DOI: 10.1016/j.omtn.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Reactivation of fetal hemoglobin (HbF) is a commonly adapted strategy to ameliorate β-hemoglobinopathies. However, the continued production of defective adult hemoglobin (HbA) limits HbF tetramer production affecting the therapeutic benefits. Here, we evaluated deletional hereditary persistence of fetal hemoglobin (HPFH) mutations and identified an 11-kb sequence, encompassing putative repressor region (PRR) to β-globin exon-1 (βE1), as the core deletion that ablates HbA and exhibits superior HbF production compared with HPFH or other well-established targets. PRR-βE1-edited hematopoietic stem and progenitor cells (HSPCs) retained their genome integrity and their engraftment potential to repopulate for long-term hematopoiesis in immunocompromised mice producing HbF positive cells in vivo. Furthermore, PRR-βE1 gene editing is feasible without ex vivo HSPC culture. Importantly, the editing induced therapeutically significant levels of HbF to reverse the phenotypes of both sickle cell disease and β-thalassemia major. These findings imply that PRR-βE1 gene editing of patient HSPCs could lead to improved therapeutic outcomes for β-hemoglobinopathy gene therapy.
Collapse
Affiliation(s)
- Vigneshwaran Venkatesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abisha Crystal Christopher
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Manoj Kumar K. Azhagiri
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prathibha Babu
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kaivalya Walavalkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Bharath Saravanan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine & Medical Center - University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sumathi Rangaraj
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Saranya Srinivasan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Karthik V. Karuppusamy
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Annlin Jacob
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Abhirup Bagchi
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan
| | | | - Rekha Pai
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Srujan Kumar Marepally
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| | | | - Shaji R. Velayudhan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine & Medical Center - University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dimple Notani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu 632002, India
| |
Collapse
|
27
|
D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfus Med Hemother 2023; 50:174-183. [PMID: 37434999 PMCID: PMC10331163 DOI: 10.1159/000529744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 07/30/2023] Open
Abstract
Background Blood transfusion is a life-saving intervention for millions of recipients worldwide. Over the last 15 years, the advent of high-throughput, affordable omics technologies - including genomics, proteomics, lipidomics, and metabolomics - has allowed transfusion medicine to revisit the biology of blood donors, stored blood products, and transfusion recipients. Summary Omics approaches have shed light on the genetic and non-genetic factors (environmental or other exposures) impacting the quality of stored blood products and efficacy of transfusion events, based on the current Food and Drug Administration guidelines (e.g., hemolysis and post-transfusion recovery for stored red blood cells). As a treasure trove of data accumulates, the implementation of machine learning approaches promises to revolutionize the field of transfusion medicine, not only by advancing basic science. Indeed, computational strategies have already been used to perform high-content screenings of red blood cell morphology in microfluidic devices, generate in silico models of erythrocyte membrane to predict deformability and bending rigidity, or design systems biology maps of the red blood cell metabolome to drive the development of novel storage additives. Key Message In the near future, high-throughput testing of donor genomes via precision transfusion medicine arrays and metabolomics of all donated products will be able to inform the development and implementation of machine learning strategies that match, from vein to vein, donors, optimal processing strategies (additives, shelf life), and recipients, realizing the promise of personalized transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
28
|
Cervellera CF, Mazziotta C, Di Mauro G, Iaquinta MR, Mazzoni E, Torreggiani E, Tognon M, Martini F, Rotondo JC. Immortalized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application. Stem Cell Res Ther 2023; 14:139. [PMID: 37226267 PMCID: PMC10210309 DOI: 10.1186/s13287-023-03367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Blood transfusions represent common medical procedures, which provide essential supportive therapy. However, these procedures are notoriously expensive for healthcare services and not without risk. The potential threat of transfusion-related complications, such as the development of pathogenic infections and the occurring of alloimmunization events, alongside the donor's dependence, strongly limits the availability of transfusion units and represents significant concerns in transfusion medicine. Moreover, a further increase in the demand for donated blood and blood transfusion, combined with a reduction in blood donors, is expected as a consequence of the decrease in birth rates and increase in life expectancy in industrialized countries. MAIN BODY An emerging and alternative strategy preferred over blood transfusion is the in vitro production of blood cells from immortalized erythroid cells. The high survival capacity alongside the stable and longest proliferation time of immortalized erythroid cells could allow the generation of a large number of cells over time, which are able to differentiate into blood cells. However, a large-scale, cost-effective production of blood cells is not yet a routine clinical procedure, as being dependent on the optimization of culture conditions of immortalized erythroid cells. CONCLUSION In our review, we provide an overview of the most recent erythroid cell immortalization approaches, while also describing and discussing related advancements of establishing immortalized erythroid cell lines.
Collapse
Affiliation(s)
- Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Elena Torreggiani
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
29
|
Kim S, Jo KW, Park JM, Shin A, Kurita R, Nakamura Y, Kweon S, Baek EJ. Irradiation is not sufficient to eradicate residual immortalized erythroid cells in in vitro-generated red blood cell products. Transfusion 2023. [PMID: 37154531 DOI: 10.1111/trf.17394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The generation of immortalized erythroid progenitor cell lines capable of producing enough red blood cells (RBCs) for blood transfusion typically requires the overexpression of oncogenes in stem cells or progenitor cells to permanently proliferate immature cells. It is essential that any live oncogene-expressing cells are eliminated from the final RBC products for clinical use. STUDY DESIGN AND METHODS It is believed that safety issues may be resolved by using a leukoreduction filter or by irradiating the final products, as is conventionally done in blood banks; however, this has never been proven to be effective. Therefore, to investigate whether immortalized erythroblasts can be completely removed using γ-ray irradiation, we irradiated the erythroblast cell line, HiDEP, and the erythroleukemic cell line, K562 that overexpress HPV16 E6/E7. We then analyzed the extent of cell death using flow cytometry and polymerase chain reaction (PCR). The cells were also subjected to leukoreduction filters. RESULTS Using γ-ray irradiation at 25 Gy, 90.4% of HiDEP cells, 91.6% of K562-HPV16 E6/E7 cells, and 93.5% of non-transduced K562 cells were dead. In addition, 5.58 × 107 HiDEP cells were passed through a leukoreduction filter, and 38 intact cells were harvested, revealing a filter removal efficiency of 99.9999%. However, both intact cells and oncogene DNA were still detected. DISCUSSION Irradiation cannot induce total cell death of oncogene-expressing erythroblasts and leukocyte filter efficiency is not 100%. Therefore, our findings imply that for clinical applications, safer methods should be developed to completely remove residual nucleated cells from cell line-derived RBC products.
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Kyeong Won Jo
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Ju Mi Park
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Arim Shin
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Soonho Kweon
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
| | - Eun Jung Baek
- Department of Research and Development, ArtBlood Inc., Seoul, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Kumari S, Sinha A. Culture and transfection: Two major bottlenecks in understanding Plasmodium vivax biology. Front Microbiol 2023; 14:1144453. [PMID: 37082177 PMCID: PMC10110902 DOI: 10.3389/fmicb.2023.1144453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The long term in vitro culture of Plasmodium falciparum was successfully established by Trager and Jensen in 1976; however it largely remains unachieved for P. vivax. The major obstacle associated with Plasmodium vivax in vitro culture is its predilection for invading younger reticulocytes and the complex remodelling of invaded reticulocytes. There are many factors under exploration for this predilection and host–parasite interactions between merozoites and invaded reticulocytes. These include various factors related to parasite, host and environment such as compromised reticulocyte osmotic stability after invasion, abundance of iron in the reticulocytes which makes them favourable for P. vivax growth and propagation and role of a hypoxic environment in P. vivax in vitro growth. P. vivax blood stage transfection represents another major hurdle towards understanding this parasite’s complex biology. Efforts in making this parasite amenable for molecular investigation by genetic modification are limited. Newer approaches in sustaining a longer in vitro culture and thereby help advancing transfection technologies in P. vivax are urgently needed that can be explored to understand the unique biology of this parasite.
Collapse
|
31
|
de Bardet JC, Cardentey CR, González BL, Patrone D, Mulet IL, Siniscalco D, Robinson-Agramonte MDLA. Cell Immortalization: In Vivo Molecular Bases and In Vitro Techniques for Obtention. BIOTECH 2023; 12:14. [PMID: 36810441 PMCID: PMC9944833 DOI: 10.3390/biotech12010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Somatic human cells can divide a finite number of times, a phenomenon known as the Hayflick limit. It is based on the progressive erosion of the telomeric ends each time the cell completes a replicative cycle. Given this problem, researchers need cell lines that do not enter the senescence phase after a certain number of divisions. In this way, more lasting studies can be carried out over time and avoid the tedious work involved in performing cell passes to fresh media. However, some cells have a high replicative potential, such as embryonic stem cells and cancer cells. To accomplish this, these cells express the enzyme telomerase or activate the mechanisms of alternative telomere elongation, which favors the maintenance of the length of their stable telomeres. Researchers have been able to develop cell immortalization technology by studying the cellular and molecular bases of both mechanisms and the genes involved in the control of the cell cycle. Through it, cells with infinite replicative capacity are obtained. To obtain them, viral oncogenes/oncoproteins, myc genes, ectopic expression of telomerase, and the manipulation of genes that regulate the cell cycle, such as p53 and Rb, have been used.
Collapse
Affiliation(s)
- Javier Curi de Bardet
- Department of Neurobiology, International Center for Neurological Restoration, Havana 11300, Cuba
| | | | - Belkis López González
- Department of Allergy, Calixto Garcia General University Hospital, Havana 10400, Cuba
| | - Deanira Patrone
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| | | |
Collapse
|
32
|
Karamatic Crew V, Tilley LA, Satchwell TJ, AlSubhi SA, Jones B, Spring FA, Walser PJ, Martins Freire C, Murciano N, Rotordam MG, Woestmann SJ, Hamed M, Alradwan R, AlKhrousey M, Skidmore I, Lewis S, Hussain S, Jackson J, Latham T, Kilby MD, Lester W, Becker N, Rapedius M, Toye AM, Thornton NM. Missense mutations in PIEZO1, which encodes the Piezo1 mechanosensor protein, define Er red blood cell antigens. Blood 2023; 141:135-146. [PMID: 36122374 PMCID: PMC10644042 DOI: 10.1182/blood.2022016504] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the identification of the high-incidence red cell antigen Era nearly 40 years ago, the molecular background of this antigen, together with the other 2 members of the Er blood group collection, has yet to be elucidated. Whole exome and Sanger sequencing of individuals with serologically defined Er alloantibodies identified several missense mutations within the PIEZO1 gene, encoding amino acid substitutions within the extracellular domain of the Piezo1 mechanosensor ion channel. Confirmation of Piezo1 as the carrier molecule for the Er blood group antigens was demonstrated using immunoprecipitation, CRISPR/Cas9-mediated gene knockout, and expression studies in an erythroblast cell line. We report the molecular bases of 5 Er blood group antigens: the recognized Era, Erb, and Er3 antigens and 2 novel high-incidence Er antigens, described here as Er4 and Er5, establishing a new blood group system. Anti-Er4 and anti-Er5 are implicated in severe hemolytic disease of the fetus and newborn. Demonstration of Piezo1, present at just a few hundred copies on the surface of the red blood cell, as the site of a new blood group system highlights the potential antigenicity of even low-abundance membrane proteins and contributes to our understanding of the in vivo characteristics of this important and widely studied protein in transfusion biology and beyond.
Collapse
Affiliation(s)
- Vanja Karamatic Crew
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
| | - Louise A. Tilley
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
| | - Timothy J. Satchwell
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Samah A. AlSubhi
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Benjamin Jones
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
| | - Frances A. Spring
- National Institute for Health Research Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Piers J. Walser
- Clinical Biotechnology Centre, NHS Blood and Transplant, Bristol, United Kingdom
| | | | - Nicoletta Murciano
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Research and Development, Nanion Technologies, Munich, Germany
| | | | | | | | | | | | - Ian Skidmore
- Red Cell Immunohaematology, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Sarah Lewis
- Red Cell Immunohaematology, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Shimon Hussain
- Red Cell Immunohaematology, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Jane Jackson
- Haematology Department at Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Tom Latham
- NHS Blood and Transplant, Bristol, United Kingdom
| | - Mark D. Kilby
- College of Medical & Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - William Lester
- Haematology Department at Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, United Kingdom
| | - Nadine Becker
- Research and Development, Nanion Technologies, Munich, Germany
| | - Markus Rapedius
- Research and Development, Nanion Technologies, Munich, Germany
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Nicole M. Thornton
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
33
|
Sherpa D, Mueller J, Karayel Ö, Xu P, Yao Y, Chrustowicz J, Gottemukkala KV, Baumann C, Gross A, Czarnecki O, Zhang W, Gu J, Nilvebrant J, Sidhu SS, Murray PJ, Mann M, Weiss MJ, Schulman BA, Alpi AF. Modular UBE2H-CTLH E2-E3 complexes regulate erythroid maturation. eLife 2022; 11:e77937. [PMID: 36459484 PMCID: PMC9718529 DOI: 10.7554/elife.77937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The development of haematopoietic stem cells into mature erythrocytes - erythropoiesis - is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood. By measuring the proteomic landscape of in vitro human erythropoiesis models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase complex that formed maturation stage-dependent assemblies of topologically homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of CTLH's cognate E2 ubiquitin conjugating enzyme UBE2H increased during terminal differentiation, and UBE2H expression depended on catalytically active CTLH E3 complexes. CRISPR-Cas9-mediated inactivation of CTLH E3 assemblies or UBE2H in erythroid progenitors revealed defects, including spontaneous and accelerated erythroid maturation as well as inefficient enucleation. Thus, we propose that dynamic maturation stage-specific changes of UBE2H-CTLH E2-E3 modules control the orderly progression of human erythropoiesis.
Collapse
Affiliation(s)
- Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Judith Mueller
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Özge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Centre for Hematologic Diseases, Collaborative Innovation Centre of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhouChina
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Yu Yao
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Karthik V Gottemukkala
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Christine Baumann
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Annette Gross
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
- Department of Immunoregulation, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Oliver Czarnecki
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Jun Gu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Johan Nilvebrant
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Peter J Murray
- Department of Immunoregulation, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
34
|
Erythrocyte-Plasmodium interactions: genetic manipulation of the erythroid lineage. Curr Opin Microbiol 2022; 70:102221. [PMID: 36242898 DOI: 10.1016/j.mib.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
Targeting critical host factors is an emerging concept in the treatment of infectious diseases. As obligate pathogens of erythrocytes, the Plasmodium spp. parasites that cause malaria must exploit erythroid host factors for their survival. However, our understanding of this important aspect of the malaria lifecycle is limited, in part because erythrocytes are enucleated cells that lack a nucleus and DNA, rendering them genetically intractable. Recent advances in genetic analysis of the erythroid lineage using small-hairpin RNAs and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) in red-blood cells derived from stem cells have generated new insights into the functions of several candidate host factors for Plasmodium parasites. Along with efforts in other hematopoietic cells, these advances have also laid a strong foundation for genetic screens to identify novel erythrocyte host factors for malaria.
Collapse
|
35
|
Molina-Franky J, Reyes C, Picón Jaimes YA, Kalkum M, Patarroyo MA. The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. Int J Mol Sci 2022; 23:ijms232314528. [PMID: 36498854 PMCID: PMC9739029 DOI: 10.3390/ijms232314528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease's extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax's exclusive invasion of reticulocytes, which represent 1-2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite's alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax's merozoite invasion to contribute to a better understanding of the parasite's biology, pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Animal Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | | | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: (M.K.); (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence: (M.K.); (M.A.P.)
| |
Collapse
|
36
|
Satchwell TJ. Generation of red blood cells from stem cells: Achievements, opportunities and perspectives for malaria research. Front Cell Infect Microbiol 2022; 12:1039520. [PMID: 36452302 PMCID: PMC9702814 DOI: 10.3389/fcimb.2022.1039520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 06/22/2024] Open
Abstract
Parasites of the genus Plasmodium that cause malaria survive within humans by invasion of, and proliferation within, the most abundant cell type in the body, the red blood cell. As obligate, intracellular parasites, interactions between parasite and host red blood cell components are crucial to multiple aspects of the blood stage malaria parasite lifecycle. The requirement for, and involvement of, an array of red blood cell proteins in parasite invasion and intracellular development is well established. Nevertheless, detailed mechanistic understanding of host cell protein contributions to these processes are hampered by the genetic intractability of the anucleate red blood cell. The advent of stem cell technology and more specifically development of methods that recapitulate in vitro the process of red blood cell development known as erythropoiesis has enabled the generation of erythroid cell stages previously inaccessible in large numbers for malaria studies. What is more, the capacity for genetic manipulation of nucleated erythroid precursors that can be differentiated to generate modified red blood cells has opened new horizons for malaria research. This review summarises current methodologies that harness in vitro erythroid differentiation of stem cells for generation of cells that are susceptible to malaria parasite invasion; discusses existing and emerging approaches to generate novel red blood cell phenotypes and explores the exciting potential of in vitro derived red blood cells for improved understanding the broad role of host red blood cell proteins in malaria pathogenesis.
Collapse
|
37
|
Gallego‐Murillo JS, Iacono G, van der Wielen LAM, van den Akker E, von Lindern M, Wahl SA. Expansion and differentiation of ex vivo cultured erythroblasts in scalable stirred bioreactors. Biotechnol Bioeng 2022; 119:3096-3116. [PMID: 35879812 PMCID: PMC9804173 DOI: 10.1002/bit.28193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
Transfusion of donor-derived red blood cells (RBCs) is the most common form of cell therapy. Production of transfusion-ready cultured RBCs (cRBCs) is a promising replacement for the current, fully donor-dependent therapy. A single transfusion unit, however, contains 2 × 1012 RBC, which requires large scale production. Here, we report on the scale-up of cRBC production from static cultures of erythroblasts to 3 L stirred tank bioreactors, and identify the effect of operating conditions on the efficiency of the process. Oxygen requirement of proliferating erythroblasts (0.55-2.01 pg/cell/h) required sparging of air to maintain the dissolved oxygen concentration at the tested setpoint (2.88 mg O2 /L). Erythroblasts could be cultured at dissolved oxygen concentrations as low as 0.7 O2 mg/ml without negative impact on proliferation, viability or differentiation dynamics. Stirring speeds of up to 600 rpm supported erythroblast proliferation, while 1800 rpm led to a transient halt in growth and accelerated differentiation followed by a recovery after 5 days of culture. Erythroblasts differentiated in bioreactors, with final enucleation levels and hemoglobin content similar to parallel cultures under static conditions.
Collapse
Affiliation(s)
- Joan Sebastián Gallego‐Murillo
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands,Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Present address:
MeatableAlexander Fleminglaan 1,2613AX,DelftThe Netherlands
| | - Giulia Iacono
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Bernal Institute, Faculty of Science and EngineeringUniversity of LimerickLimerickRepublic of Ireland
| | - Emile van den Akker
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Marieke von Lindern
- Sanquin Research and Landsteiner Laboratory, Department of HematopoiesisAmsterdam UMCAmsterdamThe Netherlands
| | - Sebastian Aljoscha Wahl
- Department of Biotechnology, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands,Present address:
Lehrstuhl Für BioverfahrenstechnikFriedrich‐Alexander Universität Erlangen‐NürnbergPaul‐Gordan‐Str. 3,91052,ErlangenGermany
| |
Collapse
|
38
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
39
|
An HH, Gagne AL, Maguire JA, Pavani G, Abdulmalik O, Gadue P, French DL, Westhoff CM, Chou ST. The use of pluripotent stem cells to generate diagnostic tools for transfusion medicine. Blood 2022; 140:1723-1734. [PMID: 35977098 PMCID: PMC9707399 DOI: 10.1182/blood.2022015883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common medical treatments, with more than 10 million units transfused per year in the United States alone. Alloimmunization to foreign Rh proteins (RhD and RhCE) on donor RBCs remains a challenge for transfusion effectiveness and safety. Alloantibody production disproportionately affects patients with sickle cell disease who frequently receive blood transfusions and exhibit high genetic diversity in the Rh blood group system. With hundreds of RH variants now known, precise identification of Rh antibody targets is hampered by the lack of appropriate reagent RBCs with uncommon Rh antigen phenotypes. Using a combination of human-induced pluripotent stem cell (iPSC) reprogramming and gene editing, we designed a renewable source of cells with unique Rh profiles to facilitate the identification of complex Rh antibodies. We engineered a very rare Rh null iPSC line lacking both RHD and RHCE. By targeting the AAVS1 safe harbor locus in this Rh null background, any combination of RHD or RHCE complementary DNAs could be reintroduced to generate RBCs that express specific Rh antigens such as RhD alone (designated D--), Goa+, or DAK+. The RBCs derived from these iPSCs (iRBCs) are compatible with standard laboratory assays used worldwide and can determine the precise specificity of Rh antibodies in patient plasma. Rh-engineered iRBCs can provide a readily accessible diagnostic tool and guide future efforts to produce an alternative source of rare RBCs for alloimmunized patients.
Collapse
Affiliation(s)
- Hyun Hyung An
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alyssa L. Gagne
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jean Ann Maguire
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Giulia Pavani
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
40
|
Petazzi P, Miquel‐Serra L, Huertas S, González C, Boto N, Muñiz‐Diaz E, Menéndez P, Sevilla A, Nogués N. ABO gene editing for the conversion of blood type A to universal type O in Rh null donor-derived human-induced pluripotent stem cells. Clin Transl Med 2022; 12:e1063. [PMID: 36281739 PMCID: PMC9593258 DOI: 10.1002/ctm2.1063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023] Open
Abstract
The limited availability of red cells with extremely rare blood group phenotypes is one of the global challenges in transfusion medicine that has prompted the search for alternative self-renewable pluripotent cell sources for the in vitro generation of red cells with rare blood group types. One such phenotype is the Rhnull , which lacks all the Rh antigens on the red cell membrane and represents one of the rarest blood types in the world with only a few active blood donors available worldwide. Rhnull red cells are critical for the transfusion of immunized patients carrying the same phenotype, besides its utility in the diagnosis of Rh alloimmunization when a high-prevalence Rh specificity is suspected in a patient or a pregnant woman. In both scenarios, the potential use of human-induced pluripotent stem cell (hiPSC)-derived Rhnull red cells is also dependent on ABO compatibility. Here, we present a CRISPR/Cas9-mediated ABO gene edition strategy for the conversion of blood type A to universal type O, which we have applied to an Rhnull donor-derived hiPSC line, originally carrying blood group A. This work provides a paradigmatic example of an approach potentially applicable to other hiPSC lines derived from rare blood donors not carrying blood type O.
Collapse
Affiliation(s)
- Paolo Petazzi
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
| | - Laia Miquel‐Serra
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Sergio Huertas
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Cecilia González
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Neus Boto
- Immunohematology LaboratoryBarcelonaSpain
| | - Eduardo Muñiz‐Diaz
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Department of Biomedicine, School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer‐CIBER‐ONCInstituto de Salud Carlos IIIBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)Instituto de Salud Carlos III (RICORS, RD21/0017/0029)
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Ana Sevilla
- Department of Cell BiologyPhysiology and Immunology, Faculty of Biology, University of BarcelonaBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Núria Nogués
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| |
Collapse
|
41
|
Genetic correction of haemoglobin E in an immortalised haemoglobin E/beta-thalassaemia cell line using the CRISPR/Cas9 system. Sci Rep 2022; 12:15551. [PMID: 36114353 PMCID: PMC9481540 DOI: 10.1038/s41598-022-19934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022] Open
Abstract
β-thalassaemia is one of the most common genetic blood diseases worldwide with over 300 mutations in the HBB gene affecting red blood cell functions. Recently, advances in genome editing technology have provided a powerful tool for precise genetic correction. Generation of patient-derived induced pluripotent stem cells (iPSCs) followed by genetic correction of HBB mutations and differentiation into haematopoietic stem/progenitor cells (HSPCs) offers a potential therapy to cure the disease. However, the biggest challenge is to generate functional HSPCs that are capable of self-renewal and transplantable. In addition, functional analyses of iPSC-derived erythroid cells are hampered by poor erythroid expansion and incomplete erythroid differentiation. Previously, we generated an immortalised erythroid cell line (SiBBE) with unique properties, including unlimited expansion and the ability to differentiate into mature erythrocytes. In this study, we report a highly efficient genetic correction of HbE mutation in the SiBBE cells using the CRISPR/Cas9 system. The HbE-corrected clones restored β-globin production with reduced levels of HbE upon erythroid differentiation. Our approach provides a sustainable supply of corrected erythroid cells and represents a valuable model for validating the therapeutic efficacy of gene editing systems.
Collapse
|
42
|
Damkham N, Lorthongpanich C, Klaihmon P, Lueangamornnara U, Kheolamai P, Trakarnsanga K, Issaragrisil S. YAP and TAZ play a crucial role in human erythrocyte maturation and enucleation. Stem Cell Res Ther 2022; 13:467. [PMID: 36076260 PMCID: PMC9461202 DOI: 10.1186/s13287-022-03166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) are two key transcription co-activators of the Hippo pathway. Both were originally characterized as organ size and cell proliferation regulators. Later studies demonstrated that the Hippo pathway may play a role in Drosophila and mammal hematopoiesis. However, the role of the Hippo pathway in human erythropoiesis has not yet been fully elucidated. METHODS The role of YAP and TAZ was studied in human erythropoiesis and hematopoietic stem cell (HSC) lineage determination by using mobilized peripheral blood (PB) and cord blood (CB)-derived HSC as a model. HSCs were isolated and cultured in an erythroid differentiation medium for erythroid differentiation and culture in methylcellulose assay for HSC lineage determination study. RESULTS YAP and TAZ were barely detectable in human HSCs, but became highly expressed in pro-erythroblasts and erythroblasts. Depletion or knockdown of YAP and/or TAZ did not affect the ability of HSC lineage specification to erythroid lineage in either methylcellulose assay or liquid culture. However, depletion of YAP and TAZ did impair erythroblast terminal differentiation to erythrocytes and their enucleation. Moreover, ectopic expression of YAP and TAZ in pro-erythroblasts did not exert an apparent effect on erythroid differentiation, expansion, or morphology. CONCLUSIONS This study demonstrated that YAP/TAZ plays important role in erythroid maturation and enucleation but is dispensable for lineage determination of human HSCs.
Collapse
Affiliation(s)
- Nattaya Damkham
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand
| | - Usaneeporn Lueangamornnara
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Kongtana Trakarnsanga
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Siriraj, Bangkoknoi, Bangkok, 10700, Thailand.
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, Thailand.
| |
Collapse
|
43
|
Luanpitpong S, Kang X, Janan M, Thumanu K, Li J, Kheolamai P, Issaragrisil S. Metabolic sensor O-GlcNAcylation regulates erythroid differentiation and globin production via BCL11A. Stem Cell Res Ther 2022; 13:274. [PMID: 35739577 PMCID: PMC9219246 DOI: 10.1186/s13287-022-02954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022] Open
Abstract
Background Human erythropoiesis is a tightly regulated, multistep process encompassing the differentiation of hematopoietic stem cells (HSCs) toward mature erythrocytes. Cellular metabolism is an important regulator of cell fate determination during the differentiation of HSCs. However, how O-GlcNAcylation, a posttranslational modification of proteins that is an ideal metabolic sensor, contributes to the commitment of HSCs to the erythroid lineage and to the terminal erythroid differentiation has not been addressed. Methods Cellular O-GlcNAcylation was manipulated using small molecule inhibition or CRISPR/Cas9 manipulation of catalyzing enzyme O-GlcNAc transferase (OGT) and removing enzyme O-GlcNAcase (OGA) in two cell models of erythroid differentiation, starting from: (i) human umbilical cord blood-derived CD34+ hematopoietic stem/progenitor cells (HSPCs) to investigate the erythroid lineage specification and differentiation; and (ii) human-derived erythroblastic leukemia K562 cells to investigate the terminal differentiation. The functional and regulatory roles of O-GlcNAcylation in erythroid differentiation, maturation, and globin production were investigated, and downstream signaling was delineated. Results First, we observed that two-step inhibition of OGT and OGA, which were established from the observed dynamics of O-GlcNAc level along the course of differentiation, promotes HSPCs toward erythroid differentiation and enucleation, in agreement with an upregulation of a multitude of erythroid-associated genes. Further studies in the efficient K562 model of erythroid differentiation confirmed that OGA inhibition and subsequent hyper-O-GlcNAcylation enhance terminal erythroid differentiation and affect globin production. Mechanistically, we found that BCL11A is a key mediator of O-GlcNAc-driven erythroid differentiation and β- and α-globin production herein. Additionally, analysis of biochemical contents using synchrotron-based Fourier transform infrared (FTIR) spectroscopy showed unique metabolic fingerprints upon OGA inhibition during erythroid differentiation, supporting that metabolic reprogramming plays a part in this process. Conclusions The evidence presented here demonstrated the novel regulatory role of O-GlcNAc/BCL11A axis in erythroid differentiation, maturation, and globin production that could be important in understanding erythropoiesis and hematologic disorders whose etiology is related to impaired erythroid differentiation and hemoglobinopathies. Our findings may lay the groundwork for future clinical applications toward an ex vivo production of functional human reticulocytes for transfusion from renewable cell sources, i.e., HSPCs and pluripotent stem cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02954-5.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Xing Kang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Jingting Li
- Institute of Precision Medicine, Department of Burns, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
44
|
Feldman TP, Egan ES. Uncovering a Cryptic Site of Malaria Pathogenesis: Models to Study Interactions Between Plasmodium and the Bone Marrow. Front Cell Infect Microbiol 2022; 12:917267. [PMID: 35719356 PMCID: PMC9201243 DOI: 10.3389/fcimb.2022.917267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
The bone marrow is a critical site of host-pathogen interactions in malaria infection. The discovery of Plasmodium asexual and transmission stages in the bone marrow has renewed interest in the tissue as a niche for cellular development of both host and parasite. Despite its importance, bone marrow in malaria infection remains largely unexplored due to the challenge of modeling the complex hematopoietic environment in vitro. Advancements in modeling human erythropoiesis ex-vivo from primary human hematopoietic stem and progenitor cells provide a foothold to study the host-parasite interactions occurring in this understudied site of malaria pathogenesis. This review focuses on current in vitro methods to recapitulate and assess bone marrow erythropoiesis and their potential applications in the malaria field. We summarize recent studies that leveraged ex-vivo erythropoiesis to shed light on gametocyte development in nucleated erythroid stem cells and begin to characterize host cell responses to Plasmodium infection in the hematopoietic niche. Such models hold potential to elucidate mechanisms of disordered erythropoiesis, an underlying contributor to malaria anemia, as well as understand the biological determinants of parasite sexual conversion. This review compares the advantages and limitations of the ex-vivo erythropoiesis approach with those of in vivo human and animal studies of the hematopoietic niche in malaria infection. We highlight the need for studies that apply single cell analyses to this complex system and incorporate physical and cellular components of the bone marrow that may influence erythropoiesis and parasite development.
Collapse
Affiliation(s)
- Tamar P. Feldman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Elizabeth S. Egan,
| |
Collapse
|
45
|
Soboleva S, Miharada K. Induction of enucleation in primary and immortalized erythroid cells. Int J Hematol 2022; 116:192-198. [PMID: 35610497 DOI: 10.1007/s12185-022-03386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Enucleation is a crucial event during the erythropoiesis, implicating drastic morphologic and transcriptomic/proteomic changes. While many genes deletion lead to failed or impaired enucleation have been identified, directly triggering the erythroid maturation, particularly enucleation, is still challenging. Inducing enucleation at the desired timing is necessary to develop efficient methods to generate mature, fully functional red blood cells in vitro for future transfusion therapies. However, there are considerable differences between primary erythroid cells and cultured cell sources, particularly pluripotent stem cell-derived erythroid cells and immortalized erythroid cell lines. For instance, the difference in the proliferative status between those cell types could be a critical factor, as cell cycle exit is closely connected to the terminal maturation of primary. In this review, we will discuss previous findings on the enucleation machinery and current challengings to trigger the enucleation of infinite erythroid cell sources.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
46
|
Groomes PV, Kanjee U, Duraisingh MT. RBC membrane biomechanics and Plasmodium falciparum invasion: probing beyond ligand-receptor interactions. Trends Parasitol 2022; 38:302-315. [PMID: 34991983 PMCID: PMC8917059 DOI: 10.1016/j.pt.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion. In this review we explore how Plasmodium falciparum merozoites interact with the RBC membrane during invasion to modulate RBC deformability and facilitate invasion. We further highlight RBC biomechanics-related polymorphisms that might have been selected for in human populations due to their ability to reduce parasite invasion. Such an understanding will reveal the translational potential of targeting host pathways affecting RBC biomechanical properties for the treatment of malaria.
Collapse
Affiliation(s)
- Patrice V Groomes
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Usheer Kanjee
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Wang S, Zhao H, Zhang H, Gao C, Guo X, Chen L, Lobo C, Yazdanbakhsh K, Zhang S, An X. Analyses of erythropoiesis from embryonic stem cell‐CD34
+
and cord blood‐CD34
+
cells reveal mechanisms for defective expansion and enucleation of embryomic stem cell‐erythroid cells. J Cell Mol Med 2022; 26:2404-2416. [PMID: 35249258 PMCID: PMC8995447 DOI: 10.1111/jcmm.17263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self‐renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS‐derived erythroid cells is limited and the enucleation of ES/iPS‐derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell‐derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell‐derived orthochromatic erythroblasts (ES‐ortho), we found the chromatin of ES‐ortho was less condensed than that of CB CD34+ cell‐derived orthochromatic erythroblasts (CB‐ortho). At the molecular level, both RNA‐seq and ATAC‐seq analyses revealed that pathways involved in chromatin modification were down‐regulated in ES‐ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES‐ortho compared to that in CB‐ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell‐derived erythroid cells and may help to improve ex vivo RBC production from stem cells.
Collapse
Affiliation(s)
- Shihui Wang
- School of Life Sciences Zhengzhou University Zhengzhou China
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Huizhi Zhao
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Huan Zhang
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Chengjie Gao
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Xinhua Guo
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Lixiang Chen
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Cheryl Lobo
- Laboratory of Blood Borne Parasites New York Blood Center New York New York USA
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology New York Blood Center New York New York USA
| | - Shijie Zhang
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Xiuli An
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| |
Collapse
|
48
|
Ravi NS, Wienert B, Wyman SK, Bell HW, George A, Mahalingam G, Vu JT, Prasad K, Bandlamudi BP, Devaraju N, Rajendiran V, Syedbasha N, Pai AA, Nakamura Y, Kurita R, Narayanasamy M, Balasubramanian P, Thangavel S, Marepally S, Velayudhan SR, Srivastava A, DeWitt MA, Crossley M, Corn JE, Mohankumar KM. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. eLife 2022; 11:e65421. [PMID: 35147495 PMCID: PMC8865852 DOI: 10.7554/elife.65421] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Naturally occurring point mutations in the HBG promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous HBG proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of HBG promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC). We further demonstrated in vitro that the introduction of -123T > C and -124T > C HPFH-like mutations drives gamma-globin expression by creating a de novo binding site for KLF1. Overall, our findings shed light on so far unknown regulatory elements within the HBG promoter and identified additional targets for therapeutic upregulation of fetal hemoglobin.
Collapse
Affiliation(s)
- Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Beeke Wienert
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Institute of Data Science and Biotechnology, Gladstone InstitutesSan FranciscoUnited States
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
| | - Henry William Bell
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Jonathan T Vu
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
| | - Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Manipal Academy of Higher EducationKarnatakaIndia
| | - Bhanu Prasad Bandlamudi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Manipal Academy of Higher EducationKarnatakaIndia
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Nazar Syedbasha
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
- Department of Haematology, Christian Medical College & HospitalVelloreIndia
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource CenterIbarakiJapan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute Blood Service Headquarters, Japanese Red Cross Society, JapanTokyoJapan
| | - Muthuraman Narayanasamy
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Department of Biochemistry, Christian Medical CollegeVelloreIndia
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
- Department of Haematology, Christian Medical College & HospitalVelloreIndia
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Shaji R Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
- Department of Haematology, Christian Medical College & HospitalVelloreIndia
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
- Department of Haematology, Christian Medical College & HospitalVelloreIndia
| | - Mark A DeWitt
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Institute of Molecular Health Sciences, Department of BiologyZurichSwitzerland
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| |
Collapse
|
49
|
Abstract
In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1–2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.
Collapse
|
50
|
Javed R, Flores L, Bhave SJ, Jawed A, Mishra DK. The Future of Red Cell Transfusion Lies in Cultured Red Cells. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1740068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractBlood is a very important resource for healthcare-based services and there has been a consistently increasing demand for it in most parts of the world. Poor volunteer-based collection system, high-risk of transfusion-transmitted infections, and emergence of new pathogens as evident from the ongoing Coronavirus Disease 2019 (COVID-19) pandemic are potential challenges to the global healthcare systems. It is imperative to explore safe and reliable alternatives to red cell transfusions. Ex vivo culture of red cells (cRBCs) from different sources such as hematopoietic stem cells (HSCs), pluripotent stem cells, and immortalized progenitors (e.g., BELA-2 cells) could revolutionize transfusion medicine. cRBC could be of great diagnostic and therapeutic utility. It may provide a backup in times of acute shortages in patients with rare blood groups, and in cases with multiple antibodies or sickle cell anemia. The CRISP-Cas9 system has been used to develop personalized, multi-compatible RBCs for diagnostic reagents and patients with multiple allo-antibodies. cRBC could be practically feasible for pediatric patients, who require small quantities of red cell transfusions. cRBC produced under good manufacturing practice (GMP) conditions has been reported to survive in human blood circulation for more than 26 days. Recently, a phase I randomized controlled clinical trial called RESTORE was initiated to assess the survival and recovery of cRBCs. However, feasible technological advancement is required to produce enough cRBCs for clinical use. It is crucial to identify sustainable sources for large-scale production of clinically useful cRBCs. Although the potential cost of one unit of cRBC is extrapolated to be around US$ 8000, it is a life-saving product for patients having rare blood groups and is a “ready to use” source of phenotype-matched, homogenous young red cells in emergency situations.
Collapse
Affiliation(s)
- Rizwan Javed
- Department of Clinical Haematology and BMT, TATA Medical Center, Kolkata, West Bengal, India
| | - Lorraine Flores
- Department of Histocompatibility and Immunogenetics, NHS Blood and Transplant, Filton, Bristol, United Kingdom
| | - Saurabh Jayant Bhave
- Department of Clinical Haematology and BMT, TATA Medical Center, Kolkata, West Bengal, India
| | - Asheer Jawed
- Department of Respiratory Medicine at William Harvey Hospital, Ashford, United Kingdom
| | | |
Collapse
|