1
|
Mukhopadhyay S, Sahoo RK, Patro AG, Khuntia AP, Nembenna S. Low-valent germanium and tin hydrides as catalysts for hydroboration, hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) of heterocumulenes. Dalton Trans 2024. [PMID: 39466610 DOI: 10.1039/d3dt04080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The low-valent germanium and tin hydrides, [LMH; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3}; M = Ge; (Ge-1), Sn (Sn-2)] bearing bis-guanidinato anions are employed as catalysts for chemoselective reduction of heterocumulenes via hydroboration reactions. This protocol demonstrates that a wide range of carbodiimides (CDI), isocyanates, isothiocyanates, and isoselenocyanates undergo partial reduction, yielding the corresponding N-boryl formamidine, N-boryl formamide, N-boryl thioformamide, and N-boryl selenoformamide products, respectively. Isocyanates and isothiocyanates are further converted into N-boryl methyl amines through hydrodeoxygenation (HDO) and hydrodesulfurization (HDS) reactions in the presence of catalyst Ge-1. Additionally, catalyst Sn-2 exhibits excellent inter and intra-molecular chemoselectivity over other functional groups. Based on stoichiometric experiments, a plausible catalytic cycle for chemoselective hydroboration of heterocumulenes is proposed.
Collapse
Affiliation(s)
- Sayantan Mukhopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Anwesh Prasad Khuntia
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
2
|
Xie H, Gao X, Dong B, Wang H, Spokoyny AM, Mu X. Electrochemical deconstruction of alkyl substituted boron clusters to produce alkyl boronate esters. Chem Commun (Camb) 2024; 60:11548-11551. [PMID: 39311548 DOI: 10.1039/d4cc04232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Closo-Hexaborate (closo-B6H62-) can engage in nucleophilic substitution reactions with a wide variety of alkyl electrophiles. The resulting functionalized boron clusters undergo oxidative electrochemical deconstruction, selectively cleaving B-B bonds while preserving B-C bonds in these species. This approach allows the conversion of multinuclear boron clusters into single boron site organoboranes. Trapped boron-based fragments were isolated from the electrochemical cluster deconstruction process, providing further mechanistic insights into the developed reaction.
Collapse
Affiliation(s)
- Huanhuan Xie
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Xinying Gao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Beibei Dong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| | - Haoyang Wang
- Laboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China.
| |
Collapse
|
3
|
Boronski JT, Crumpton AE, Roper AF, Aldridge S. A nucleophilic beryllyl complex via metathesis at [Be-Be] 2. Nat Chem 2024; 16:1295-1300. [PMID: 38760434 PMCID: PMC11321998 DOI: 10.1038/s41557-024-01534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Owing to its high toxicity, the chemistry of element number four, beryllium, is poorly understood. However, as the lightest elements provide the basis for fundamental models of chemical bonding, there is a need for greater insight into the properties of beryllium. In this context, the chemistry of the homo-elemental Be-Be bond is of fundamental interest. Here the ligand metathesis chemistry of diberyllocene (1; CpBeBeCp)-a stable complex with a Be-Be bond-has been investigated. These studies yield two complexes with Be-Be bonds: Cp*BeBeCp (2) and [K{(HCDippN)2BO}2]BeBeCp (3; Dipp = 2,6-diisopropylphenyl). Quantum chemical calculations indicate that the Be-Be bond in 3 is polarized to such an extent that the complex could be formulated as a mixed-oxidation state Be0/BeII complex. Correspondingly, it is demonstrated that 3 can transfer the 'beryllyl' anion, [BeCp]-, to an organic substrate, by analogy with the reactivity of sp2-sp3 diboranes. Indeed, this work reveals striking similarities between the homo-elemental bonding linkages of beryllium and boron, despite the respective metallic and non-metallic natures of these elements.
Collapse
Affiliation(s)
- Josef T Boronski
- Chemistry Research Laboratory Department of Chemistry, University of Oxford, Oxford, UK.
| | - Agamemnon E Crumpton
- Chemistry Research Laboratory Department of Chemistry, University of Oxford, Oxford, UK
| | - Aisling F Roper
- Chemistry Research Laboratory Department of Chemistry, University of Oxford, Oxford, UK
| | - Simon Aldridge
- Chemistry Research Laboratory Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Griffin LP, Ellwanger MA, Crumpton AE, Roy MMD, Heilmann A, Aldridge S. Mercury-Group 13 Metal Covalent Bonds: A Systematic Comparison of Aluminyl, Gallyl and Indyl Metallo-ligands. Angew Chem Int Ed Engl 2024; 63:e202404527. [PMID: 38545953 DOI: 10.1002/anie.202404527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Bimetallic compounds containing direct metal-group 13 element bonds have been shown to display unprecedented patterns of cooperative reactivity towards small molecules, which can be influenced by the identity of the group 13 element. In this context, we present here a systematic appraisal of group 13 metallo-ligands of the type [(NON)E]- (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) for E=Al, Ga and In, through a comparison of structural and spectroscopic parameters associated with the trans L or X ligands in linear d10 complexes of the types LM{E(NON)} and XM'{E(NON)}. These studies are facilitated by convenient syntheses (from the In(I) precursor, InCp) of the potassium indyl species [{K(NON)In}⋅KCp]n (1) and [(18-crown-6)2K2Cp] [(NON)In] (1'), and lead to the first structural characterisation of Ag-In and Hg-E (E=Al, In) covalent bonds. The resulting structural, spectroscopic and quantum chemical probes of Ag/Hg complexes are consistent with markedly stronger σ-donor capabilities of the aluminyl ligand, [(NON)Al]-, over its gallium and indium counterparts.
Collapse
Affiliation(s)
- Liam P Griffin
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Agamemnon E Crumpton
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
5
|
Shere HTW, Liu HY, Neale SE, Hill MS, Mahon MF, McMullin CL. The borylamino-diborata-allyl anion. Chem Sci 2024; 15:7999-8007. [PMID: 38817583 PMCID: PMC11134337 DOI: 10.1039/d4sc01953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
Reactions of β-diketiminato alkaline earth alkyldiboranate derivatives [(BDI)Ae{pinBB(R)pin}] (BDI = HC{(Me)CNDipp}2; Dipp = 2,6-i-Pr2C6H3; Ae = Mg, R = n-Bu or Ae = Ca, R = n-hexyl) with t-BuNC provide access to the respective group 2 derivatives of unprecedented diborata-allyl, {(pinB)2CNBpin(t-Bu)}-, anions. Although the necessary mode of B-C bond cleavage implicated in these transformations could not be elucidated, further studies of the reactivity of magnesium triboranates toward isonitriles delivered a more general and rational synthetic access to analogous anionic moieties. Extending this latter reactivity to a less symmetric triboranate variant also provided an isomeric Mg-C-bonded dibora-alkyl species and sufficient experimental insight to prompt theoretical evaluation of this reactivity. DFT calculations, thus, support a reaction pathway predicated on initial RNC attack at a peripheral boron centre and the intermediacy of such dibora-alkyl intermediates.
Collapse
Affiliation(s)
- Henry T W Shere
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Han-Ying Liu
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Samuel E Neale
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Michael S Hill
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Claire L McMullin
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
6
|
Guo X, Lin Z. Boryls, their compounds and reactivity: a structure and bonding perspective. Chem Sci 2024; 15:3060-3070. [PMID: 38425516 PMCID: PMC10901493 DOI: 10.1039/d3sc06864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Boryls and their compounds are important due to their diverse range of applications in the fields of materials science and catalysis. They are an integral part of boron chemistry, which has attracted tremendous research interest over the past few decades. In this perspective, we provide an in-depth analysis of the reaction chemistry of boryl compounds from a structure and bonding perspective. We discuss the reactivity of boryls in various transition metal complexes and diborane(4) compounds towards different substrate molecules, with a focus on their nucleophilic and electrophilic properties in various reaction processes. Additionally, we briefly discuss the reactivity of boryl radicals. Our analysis sheds new light on the unique properties of boryls and their potential for catalytic applications.
Collapse
Affiliation(s)
- Xueying Guo
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| |
Collapse
|
7
|
Nahon EE, Nelmes GR, Brothers PJ, Hicks J. Intramolecular C-N bond activation by a transient boryl anion. Chem Commun (Camb) 2023; 59:14281-14284. [PMID: 37964585 DOI: 10.1039/d3cc05182j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Using a flexible diamido framework, a bulky boron bromide has been prepared as a precusor to a boryl anion with an extremely wide N-B-N angle. Reduction of the compound with lithium metal resulted in intramolecular C-N bond activation and migration of an aryl group onto the boron centre. Reaction of the boron bromide with K[FeCp(CO)2] resulted in nucleophilic reactivity of a carbonyl oxygen and the cooperative activation of CO.
Collapse
Affiliation(s)
- Emily E Nahon
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Gareth R Nelmes
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Penelope J Brothers
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| | - Jamie Hicks
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
8
|
Kistner L, Filbeck E, Ihle P, Bučak Gasser D, Häussermann SWH, Kowatsch D, Kaifer E, Himmel H. Cationic Symmetrically and Unsymmetrically Substituted Diboranes and Bis(diboranes) with Direct Boron‐Boron Bond: Synthesis by Substitution, Stability and Properties. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Lucas Kistner
- Inorganic Chemistry Ruprecht-Karls University of Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Erik Filbeck
- Inorganic Chemistry Ruprecht-Karls University of Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Patrick Ihle
- Inorganic Chemistry Ruprecht-Karls University of Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - David Bučak Gasser
- Inorganic Chemistry Ruprecht-Karls University of Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Sebastian W. H. Häussermann
- Inorganic Chemistry Ruprecht-Karls University of Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Dario Kowatsch
- Inorganic Chemistry Ruprecht-Karls University of Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Elisabeth Kaifer
- Inorganic Chemistry Ruprecht-Karls University of Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hans‐Jörg Himmel
- Inorganic Chemistry Ruprecht-Karls University of Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
9
|
Sahoo R, Patro AG, Sarkar N, Nembenna S. Comparison of Two Zinc Hydride Precatalysts for Selective Dehydrogenative Borylation of Terminal Alkynes: A Detailed Mechanistic Study. ACS OMEGA 2023; 8:3452-3460. [PMID: 36713704 PMCID: PMC9878541 DOI: 10.1021/acsomega.2c07381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The conjugated bis-guanidinate-stabilized zinc hydride complex (I)-precatalyzed chemoselective dehydroborylation of a wide array of terminal alkynes with excellent yields is reported. Further, precatalyst I is compared with a newly synthesized DiethylNacNac zinc hydride precatalyst (III) for selective dehydroborylation of terminal alkynes, and it is discovered that precatalyst I is more active than III. We have studied intra- and intermolecular chemoselective dehydroborylation of terminal alkynes over other reducible functionalities such as alkene, ester, isocyanide, nitro, and heterocycles. The highly efficient precatalyst I shows a turnover number of 48.5 and turnover frequency of up to 60.5 h-1 in the dehydroborylation of 1-ethynyl-4-fluorobenzene (1i). A plausible mechanism for selective dehydrogenative borylation of alkynes has been proposed based on active catalyst isolation and a series of stoichiometric reactions.
Collapse
|
10
|
Liu HY, Hill MS, Mahon MF. Diverse reactivity of an Al(I)-centred anion towards ketones. Chem Commun (Camb) 2022; 58:6938-6941. [PMID: 35640128 DOI: 10.1039/d2cc02333d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of a seven-membered cyclic potassium diamidoalumanyl toward a variety of ketone small molecules has been assessed. Whilst acetophenone generates an aluminium pinacolate derivative, reductive C-C coupling is induced between the ketyl and ortho-carbon centres of two equivalents of benzophenone. In contrast, whereas oxidative addition of an enolisable proton is observed with 2,4-dimethyl-3-pentanone, 2,2,4,4-tetramethyl-3-pentanone undergoes an unprecedented hydroalumination process, where the reducing hydride may be traced to intramolecular oxidative addition of a (sp3)C-H bond.
Collapse
Affiliation(s)
- Han-Ying Liu
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
11
|
Fernández NLG, Medina RE, Vallejos MM. Ability of Boron to Act as a Nucleophile and an Electrophile in Boryl Shift Reactions Unveiled by Electron Density Distribution Analysis. J Org Chem 2022; 87:4680-4691. [PMID: 35266696 DOI: 10.1021/acs.joc.1c03119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The behavior of the tetracoordinate boron of N-methyliminodiacetic acid (MIDA) boronates as a nucleophile and an electrophile during the 1,2-boryl migration promoted by a Lewis acid and the 1,4-boryl migration promoted by a neighboring atom, respectively, have been investigated using density functional theory and the quantum theory of atoms in molecules. We found that when boron acts as a nucleophile, the electron density of the B-N interaction of the BMIDA moiety maintains the charge concentration over the boron atom, facilitating its transport toward the electron-deficient center. In this process, the BMIDA remains as a tetracoordinate. On the other hand, the B-N weakening generates a charge depletion region over the boron, allowing it to interact with the electron-rich center of O1, developing the boron atom, a pentacoordinate form. Then, the B-N bond breaking triggers a series of changes in the electronic structure of the boron atom. Our results explain the role of the MIDA ligand upon the remarkable susceptibility of the boron atom for switching its structural and electronic characteristics in the migration processes. In addition, the dichotomous behavior was evaluated with a different scenario, considering tricoordinate pinacol boronate as a boryl migrating group.
Collapse
Affiliation(s)
- Nora Lis G Fernández
- Laboratorio de Química Orgánica, Instituto de Química Básica y Aplicada del NEA (IQUIBA-NEA, UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
| | - Roxana E Medina
- Laboratorio de Química Orgánica, Instituto de Química Básica y Aplicada del NEA (IQUIBA-NEA, UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
| | - Margarita M Vallejos
- Laboratorio de Química Orgánica, Instituto de Química Básica y Aplicada del NEA (IQUIBA-NEA, UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, Corrientes 3400, Argentina
| |
Collapse
|
12
|
Mao X, Zhang J, Lu Z, Xie Z. A (μ-hydrido)diborane(4) anion and its coordination chemistry with coinage metals. Chem Sci 2022; 13:3009-3013. [PMID: 35382458 PMCID: PMC8905795 DOI: 10.1039/d2sc00318j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
A tetra(o-tolyl) (μ-hydrido)diborane(4) anion 1, an analogue of [B2H5]- species, was facilely prepared through the reaction of tetra(o-tolyl)diborane(4) with sodium hydride. Unlike common sp2-sp3 diborane species, 1 exhibited a σ-B-B bond nucleophilicity towards NHC-coordinated transition-metal (Cu, Ag, and Au) halides, resulting in the formation of η2-B-B bonded complexes 2 as confirmed by single-crystal X-ray analyses. Compared with 1, the structural data of 2 imply significant elongations of B-B bonds, following the order Au > Cu > Ag. DFT studies show that the diboron ligand interacts with the coinage metal through a three-center-two-electron B-M-B bonding mode. The fact that the B-B bond of the gold complex is much prolonged than the related Cu and Ag compounds might be ascribed to the superior electrophilicity of the gold atom.
Collapse
Affiliation(s)
- Xiaofeng Mao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Jie Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Zhenpin Lu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Zuowei Xie
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| |
Collapse
|
13
|
Seidel FW, Nozaki K. A Ni
0
σ‐Borane Complex Bearing a Rigid Bidentate Borane/Phosphine Ligand: Boryl Complex Formation by Oxidative Dehydrochloroborylation and Catalytic Activity for Ethylene Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Falk William Seidel
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| |
Collapse
|
14
|
Okokhere-Edeghoghon B, Neale SE, Hill MS, Mahon MF, McMullin CL. Isocyanate deoxygenation by a molecular magnesium silanide. Dalton Trans 2021; 51:136-144. [PMID: 34866137 DOI: 10.1039/d1dt03775g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stoichiometric reactivity of a β-diketiminato (BDI) magnesium silanide towards a variety of organic isocyanates has been assessed. While the primary outcome of reactions of t-BuNCO, DippNCO and CyNCO was the production of β-diketiminato magnesium siloxide adducts of the isonitrile resulting from isocyanate deoxygenation, analogous treatment with i-PrNCO led to multiple products, four of which have been positively identified. Although the specificity of this latter reaction was hampered by competitive isocycanate addition at the γ-methine carbon of the BDI supporting ligand, the identification of [{i-PrNCO}CH{(Me)CNDipp}Mg{Me2PhSi}C(O)Ni-Pr]6 provided corroborative evidence for the likely generation of sila-amidate intermediates in all four reactions under study. The formation of [{Me2PhSi}C(O)NR]- anions as the most likely initial species formed en route to isonitrile and siloxide formation was, therefore, validated by a computational density functional theory (DFT) study.
Collapse
Affiliation(s)
| | - Samuel E Neale
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Claire L McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
15
|
Seidel FW, Nozaki K. A Ni 0 σ-Borane Complex Bearing a Rigid Bidentate Borane/Phosphine Ligand: Boryl Complex Formation by Oxidative Dehydrochloroborylation and Catalytic Activity for Ethylene Polymerization. Angew Chem Int Ed Engl 2021; 61:e202111691. [PMID: 34854528 DOI: 10.1002/anie.202111691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/08/2022]
Abstract
While of interest, synthetically feasible access to boryl ligands and complexes remains limited, meaning such complexes remain underexploited in catalysis. For bidentate boryl ligands, oxidative addition of boranes to low-valent IrI or Pt0 are the only examples yet reported. As part of our interest in developing improved group 10 ethylene polymerization catalysts, we present here an optimized synthesis of a novel, rigid borane/phosphine ligand and its Ni0 σ-borane complex. From the latter, an unprecedented oxidative dehydrochloroborylation, to give a NiII boryl complex, was achieved. Furthermore, this new B/P ligand allowed the nickel-catalyzed polymerization of ethylene, which suggests that Ni0 σ-hydroborane complexes act as masked NiII boryl hydride reagents.
Collapse
Affiliation(s)
- Falk William Seidel
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
Horsley Downie TM, Charman RSC, Hall JW, Mahon MF, Lowe JP, Liptrot DJ. A stable ring-expanded NHC-supported copper boryl and its reactivity towards heterocumulenes. Dalton Trans 2021; 50:16336-16342. [PMID: 34734620 DOI: 10.1039/d1dt03540a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Reaction of bis(pinacolato)diboron with (6-Dipp)CuOtBu generates a ring-expanded N-heterocyclic carbene supported copper(I) boryl, (6-Dipp)CuBpin. This compound showed remarkable stability and was characterised by NMR spectroscopy and X-ray crystallography. (6-Dipp)CuBpin readily dechalcogenated a range of heterocumulenes such as CO2, isocyanates and isothiocyanates to yield (6-Dipp)CuXBpin (X = O, S). In the case of CO2 catalytic reduction to CO is viable in the presence of excess bis(pinacolato)diboron. In contrast, in the case of iso(thio)cyanates, the isocyanide byproduct of dechalcogenation reacted with (6-Dipp)CuBpin to generate a copper(I) borylimidinate, (6-Dipp)CuC(NR)Bpin, which went on to react with heterocumulenes. This off-cycle reactivity gives selective access to a range of novel boron-containing heterocycles bonded to copper, but precludes catalytic reactivity.
Collapse
Affiliation(s)
| | - Rex S C Charman
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - Jonathan W Hall
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - Mary F Mahon
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - John P Lowe
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| | - David J Liptrot
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
17
|
Schwamm RJ, Hill MS, Liu HY, Mahon MF, McMullin CL, Rajabi NA. Seven-Membered Cyclic Potassium Diamidoalumanyls. Chemistry 2021; 27:14971-14980. [PMID: 34403562 PMCID: PMC8596455 DOI: 10.1002/chem.202102682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/08/2022]
Abstract
The seven-membered cyclic potassium alumanyl species, [{SiNMes }AlK]2 [{SiNMes }={CH2 SiMe2 N(Mes)}2 ; Mes=2,4,6-Me3 C6 H2 ], which adopts a dimeric structure supported by flanking K-aryl interactions, has been isolated either by direct reduction of the iodide precursor, [{SiNMes }AlI], or in a stepwise manner via the intermediate dialumane, [{SiNMes }Al]2 . Although the intermediate dialumane has not been observed by reduction of a Dipp-substituted analogue (Dipp=2,6-i-Pr2 C6 H3 ), partial oxidation of the potassium alumanyl species, [{SiNDipp }AlK]2 , where {SiNDipp }={CH2 SiMe2 N(Dipp)}2 , provided the extremely encumbered dialumane [{SiNDipp }Al]2 . [{SiNDipp }AlK]2 reacts with toluene by reductive activation of a methyl C(sp3 )-H bond to provide the benzyl hydridoaluminate, [{SiNDipp }AlH(CH2 Ph)]K, and as a nucleophile with BPh3 and RN=C=NR (R=i-Pr, Cy) to yield the respective Al-B- and Al-C-bonded potassium aluminaborate and alumina-amidinate products. The dimeric structure of [{SiNDipp }AlK]2 can be disrupted by partial or complete sequestration of potassium. Equimolar reactions with 18-crown-6 result in the corresponding monomeric potassium alumanyl, [{SiNDipp }Al-K(18-cr-6)], which provides a rare example of a direct Al-K contact. In contrast, complete encapsulation of the potassium cation of [{SiNDipp }AlK]2 , either by an excess of 18-cr-6 or 2,2,2-cryptand, allows the respective isolation of bright orange charge-separated species comprising the 'free' [{SiNDipp }Al]- alumanyl anion. Density functional theory (DFT) calculations performed on this moiety indicate HOMO-LUMO energy gaps in the of order 200-250 kJ mol-1 .
Collapse
Affiliation(s)
- Ryan J Schwamm
- Department of Chemistry, University of Bath Claverton Down, Bath, BA2 7AY, UK
| | - Michael S Hill
- Department of Chemistry, University of Bath Claverton Down, Bath, BA2 7AY, UK
| | - Han-Ying Liu
- Department of Chemistry, University of Bath Claverton Down, Bath, BA2 7AY, UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath Claverton Down, Bath, BA2 7AY, UK
| | - Claire L McMullin
- Department of Chemistry, University of Bath Claverton Down, Bath, BA2 7AY, UK
| | - Nasir A Rajabi
- Department of Chemistry, University of Bath Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
18
|
Drescher W, Kleeberg C. N-H deprotonation of a diaminodialkoxido diborane(4) - a structural study on bifunctional Lewis acids/bases and their dimerisation to B(sp 2) 2B(sp 3) 2N 2 six membered rings. Dalton Trans 2021; 50:13149-13157. [PMID: 34581355 DOI: 10.1039/d1dt02327f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-H deprotonation of the diaminodialkoxido diborane(4) pinB-Bdab (1) (pin: (OCMe2)2, dab: 1,2-(NH)2C6H4), is crucial for the electrophilic N-functionalisation towards unsymmetrical diborane(4) reagents. An N-H deprotonated diborane(4) comprises Lewis basic nitrogen atoms and at the same time Lewis acidic boron atoms. This bifunctionality governs its reactivity and structural chemistry. Whilst bases such as Na(hmds), tBuLi or Li(tmp) readily effect a single deprotonation of 1, the second deprotonation is less straightforward and cleanly only achieved with Li(tmp) as a strong but little nucleophilic base. The N-H deprotonated diborane(4) derivatives readily dimerise to give B(sp2)2B(sp3)2N2 six-membered ring Lewis base adducts. The structural chemistry of this class of compounds was studied in detail in the solid state by single crystal X-ray diffraction as well as in solution by NMR spectroscopy.
Collapse
Affiliation(s)
- Wiebke Drescher
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
19
|
Affiliation(s)
- Ruibin Wang
- Department of Chemistry Guangdong Technion Israel Institute of Technology Guangdong 515063 P. R. China
| | - Sehoon Park
- Department of Chemistry Guangdong Technion Israel Institute of Technology Guangdong 515063 P. R. China
- Technion-Israel Institute of Technology Technion City 32000 Haifa Israel
| |
Collapse
|
20
|
Shere H, Hill MS, Pécharman AF, Mahon MF. Reactivity of a magnesium diboranate with organic nitriles. Dalton Trans 2021; 50:1283-1292. [PMID: 33393542 DOI: 10.1039/d0dt04016a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of complexes generated through reactions of the β-diketiminato magnesium diboranate species, [(BDI)Mg{(n-Bu)pinB-Bpin}] (BDI = HC{(Me)CNDipp}2; Dipp = 2,6-di-iso-propylphenyl), and a variety of organic nitriles are reported. Although, in every case, the diboranate anion acts as a surrogate source of the {Bpin} nucleophile, resulting in B-C bond formation at the electrophilic sp-hydridised nitrile carbon, the resultant compounds display a variable propensity to undergo subsequent reaction with additional nitrile equivalents. This behaviour is rationalised to be a consequence of substituent-dependent modulation in the basicity and resultant electrophilicity of magnesium-coordinated nitrile intermediates.
Collapse
Affiliation(s)
- Henry Shere
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
21
|
Protchenko AV, Vasko P, Fuentes MÁ, Hicks J, Vidovic D, Aldridge S. Approaching a "Naked" Boryl Anion: Amide Metathesis as a Route to Calcium, Strontium, and Potassium Boryl Complexes. Angew Chem Int Ed Engl 2021; 60:2064-2068. [PMID: 33026153 PMCID: PMC7894291 DOI: 10.1002/anie.202011839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 11/08/2022]
Abstract
Amide metathesis has been used to generate the first structurally characterized boryl complexes of calcium and strontium, {(Me3 Si)2 N}M{B(NDippCH)2 }(thf)n (M=Ca, n=2; M=Sr, n=3), through the reactions of the corresponding bis(amides), M{N(SiMe3 )2 }2 (thf)2 , with (thf)2 Li- {B(NDippCH)2 }. Most notably, this approach can also be applied to the analogous potassium amide K{N(SiMe3 )2 }, leading to the formation of the solvent-free borylpotassium dimer [K{B(NDippCH)2 }]2 , which is stable in the solid state at room temperature for extended periods (48 h). A dimeric structure has been determined crystallographically in which the K+ cations interact weakly with both the ipso-carbons of the flanking Dipp groups and the boron centres of the diazaborolyl heterocycles, with K⋅⋅⋅B distances of >3.1 Å. These structural features, together with atoms in molecules (QTAIM) calculations imply that the boron-containing fragment closely approaches a limiting description as a "free" boryl anion in the condensed phase.
Collapse
Affiliation(s)
- Andrey V. Protchenko
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Petra Vasko
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
- Department of Chemistry, Nanoscience CenterUniversity of JyväskyläP. O. Box 3540014JyväskyläFinland
| | - M. Ángeles Fuentes
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Jamie Hicks
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Dragoslav Vidovic
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
22
|
Protchenko AV, Vasko P, Fuentes MÁ, Hicks J, Vidovic D, Aldridge S. Approaching a “Naked” Boryl Anion: Amide Metathesis as a Route to Calcium, Strontium, and Potassium Boryl Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrey V. Protchenko
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Petra Vasko
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
- Department of Chemistry, Nanoscience Center University of Jyväskylä P. O. Box 35 40014 Jyväskylä Finland
| | - M. Ángeles Fuentes
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Jamie Hicks
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Dragoslav Vidovic
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
23
|
Okokhere-Edeghoghon B, Dehmel M, Hill MS, Kretschmer R, Mahon MF, McMullin CL, Morris LJ, Rajabi NA. Nucleophilic Magnesium Silanide and Silaamidinate Derivatives. Inorg Chem 2020; 59:13679-13689. [DOI: 10.1021/acs.inorgchem.0c02034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Maximilian Dehmel
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael S. Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Robert Kretschmer
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Claire L. McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Louis J. Morris
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Nasir A. Rajabi
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
24
|
|
25
|
Hicks J, Vasko P, Goicoechea JM, Aldridge S. The Aluminyl Anion: A New Generation of Aluminium Nucleophile. Angew Chem Int Ed Engl 2020; 60:1702-1713. [DOI: 10.1002/anie.202007530] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Jamie Hicks
- Research School of Chemistry Australian National University Sullivans Creek Road Acton 2601 Australia
| | - Petra Vasko
- Department of Chemistry Nanoscience Center University of Jyväskylä P. O. Box 35 Jyväskylä FI-40014 Finland
| | - Jose M. Goicoechea
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
26
|
Dange D, Paparo A, Jones C. Synthesis and Characterization of a Magnesium Boryl and a Beryllium-Substituted Diazaborole. Chem Asian J 2020; 15:2447-2450. [PMID: 32558390 DOI: 10.1002/asia.202000662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 11/11/2022]
Abstract
Reaction of a lithium boryl, [(THF)2 Li{B(DAB)}] (DAB=[(DipNCH)2 ]2- , Dip=2,6-diisopropylphenyl), with a dinuclear magnesium(I) compound [{(Mes Nacnac)Mg}2 ] (Mes Nacnac=[HC(MeCNMes)2 ]- , Mes=mesityl) unexpectedly afforded a rare example of a terminal magnesium boryl species, [(Mes Nacnac)(THF)Mg{B(DAB)}]. Attempts to prepare the magnesium boryl via a salt metathesis reaction between the lithium boryl and a β-diketiminato magnesium iodide compound, instead led to an intractable mixture of products. Similarly, reaction of the lithium boryl with a β-diketiminato beryllium bromide precursor, [(Dep Nacnac)BeBr] (Dep=2,6-diethylphenyl) did not give a beryllium boryl, but instead afforded an unprecedented example of a beryllium substituted diazaborole heterocycle, [{(Dep Nacnac)Be(4-DAB-H )}BBr]. For sake of comparison, the same group 2 halide precursor compounds were treated with a potassium gallyl analogue of the lithium boryl, viz. [(tmeda)K{:Ga(DAB)}] (tmeda=N,N,N',N'-tetramethylethylenediamine), but no reactions were observed.
Collapse
Affiliation(s)
- Deepak Dange
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Albert Paparo
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| |
Collapse
|
27
|
Morris LJ, Rajabi NA, Mahon MF, Manners I, McMullin CL, Hill MS. Synthesis and reactivity of alkaline-earth stannanide complexes by hydride-mediated distannane metathesis and organostannane dehydrogenation. Dalton Trans 2020; 49:10523-10534. [PMID: 32691789 DOI: 10.1039/d0dt02406f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis of heteroleptic complexes with calcium- and magnesium-tin bonds is described. The dimeric β-diketiminato calcium hydride complex, [(BDI)Ca(μ-H)]2 (ICa) reacts with Ph3Sn-SnPh3 to provide the previously reported μ2-H bridged calcium stannanide dimer, [(BDI)2Ca2(SnPh3)(μ-H)] (3). Computational assessment of this reaction supports a mechanism involving a hypervalent stannate intermediate formed by nucleophilic attack of hydride on the distannane. Monomeric calcium stannanides, [(BDI)Ca(SnPh3)·OPPh3] (8·OPPh3) and [(BDI)Ca(SnPh3)·TMTHF] (8·TMTHF, TMTHF = 2,2,5,5-tetramethyltetrahydrofuran) were obtained from ICa and Ph3Sn-SnPh3, after addition OPPh3 or TMTHF. Both complexes were also synthesised by deprotonation of Ph3SnH by ICa in the presence of the Lewis base. The calcium and magnesium THF adducts, [(BDI)Ca(SnPh3)·THF2] (8·THF2) and [(BDI)Mg(SnPh3)·THF] (9·THF), were similarly prepared from [(BDI)Ca(μ-H)·(THF)]2 (ICa·THF2) or [(BDI)Mg(μ-H)]2 (IMg) and Ph3SnH. An excess of THF or TMTHF was essential in order to obtain 8·TMTHF, 8·THF2 and 9·THF in high yields whilst avoiding redistribution of the phenyl-tin ligand. The resulting Ae-Sn complexes were used as a source of [Ph3Sn]- in salt metathesis, to provide the known tristannane Ph3Sn-Sn(t-Bu)2-SnPh3 (11). Nucleophilic addition or insertion with N,N'-di-iso-propylcarbodiimide provided the stannyl-amidinate complexes, [(BDI)Mg{(iPrN)2CSnPh3}] (12) and [(BDI)Ca{(iPrN)2CSnPh3}·L] (13·TMTHF, 13·THF, L = TMTHF, THF). The reactions and products were monitored and characterised by multinuclear NMR spectroscopy, whilst for compounds 8, 9, 12, and 13·THF, the X-ray crystal structures are presented and discussed.
Collapse
Affiliation(s)
- Louis J Morris
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Nasir A Rajabi
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria BC V8P 5C2, Canada
| | - Claire L McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
28
|
Pécharman AF, Hill MS, McMullin CL, Mahon MF. [BO 2 ] - as a Synthon for the Generation of Boron-Centered Carbamate and Carboxylate Isosteres. Angew Chem Int Ed Engl 2020; 59:13628-13632. [PMID: 32401402 PMCID: PMC7496551 DOI: 10.1002/anie.202005674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/09/2020] [Indexed: 12/14/2022]
Abstract
Oxoborane carbamate and carboxylate analogues result from the in situ trapping of [BO2]− produced by elimination of 2,3‐dimethyl‐2‐butene from a pinacolatoboryl anion.
Collapse
Affiliation(s)
| | - Michael S Hill
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | | | - Mary F Mahon
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
29
|
Influence of the second layer on geometry and spectral properties of doped two-dimensional hexagonal boron nitride. J Mol Model 2020; 26:216. [PMID: 32719904 PMCID: PMC7384999 DOI: 10.1007/s00894-020-04456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/21/2020] [Indexed: 11/08/2022]
Abstract
Influence of the additional layer of hexagonal boron nitride (h-BN) on structure, energetics, and electronic spectra of a layer doped with magnesium, silicon, phosphorus, aluminum, or carbon atoms has been examined by theoretical methods. The h-BN layers are modeled as BN clusters of over thirty atoms with the defect in the center. The calculations show that atom positions undergo some modifications in the presence of the second layer, which in several cases lead to significant changes in electronic spectra, like (i) modifications of the character of some states from local excitation to a partial charge transfer; (ii) redshift of the majority of lowest excitations; (iii) absence or appearance of new states in comparison with the monolayers. For instance, a zero-intensity excitation below 4 eV for the carbon atom in place of boron transforms into a dipole-allowed one in the presence of the second layer. A comparison of the interaction energies of doped and undoped clusters shows a strong dependence of the stabilizing of destabilizing effect on the dopant atom, the replaced atom, and in some cases also on the stacking type (AA’ or AB). The stabilization energy per BN pair, calculated for two undoped clusters, is equal to − 31 and − 28 meV for the AA’ and AB stacking, respectively, thus confirming a larger stability of the AA’ stacking for the h-BN case.
Collapse
|
30
|
Pécharman A, Hill MS, McMullin CL, Mahon MF. [BO
2
]
−
as a Synthon for the Generation of Boron‐Centered Carbamate and Carboxylate Isosteres. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Mary F. Mahon
- Department of Chemistry University of Bath Bath BA2 7AY UK
| |
Collapse
|
31
|
Schön F, Greb L, Kaifer E, Himmel H. Desymmetrization of Dicationic Diboranes by Isomerization Catalyzed by a Nucleophile. Angew Chem Int Ed Engl 2020; 59:9127-9133. [PMID: 32181953 PMCID: PMC7317786 DOI: 10.1002/anie.202001640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Indexed: 11/11/2022]
Abstract
Cationic monoboranes exhibit a rich chemistry. By constrast, only a few cationic diboranes are known, that all are symmetrically substituted. In this work, the first unsymmetrically substituted dicationic diboranes, featuring sp2 -sp2 -hybridized boron atoms, are reported. The compounds are formed by intramolecular rearrangement from preceding isomeric symmetrically substituted dicationic diboranes, a process that is catalyzed by nucleophiles. From the temperature-dependence of the isomerization rate, activation parameters for this unprecedented rearrangement are derived. The difference in fluoride ion affinity between the two boron atoms and the bonding situation in these unique unsymmetrical dicationic diboranes are evaluated.
Collapse
Affiliation(s)
- Florian Schön
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
32
|
Schön F, Greb L, Kaifer E, Himmel H. Desymmetrization of Dicationic Diboranes by Isomerization Catalyzed by a Nucleophile. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Florian Schön
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
33
|
Trageser T, Bolte M, Lerner HW, Wagner M. B-B Bond Nucleophilicity in a Tetraaryl μ-Hydridodiborane(4) Anion. Angew Chem Int Ed Engl 2020; 59:7726-7731. [PMID: 32058652 PMCID: PMC7317828 DOI: 10.1002/anie.202000292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Indexed: 11/15/2022]
Abstract
The tetraaryl μ‐hydridodiborane(4) anion [2H]− possesses nucleophilic B−B and B−H bonds. Treatment of K[2H] with the electrophilic 9‐H‐9‐borafluorene (HBFlu) furnishes the B3 cluster K[3], with a triangular boron core linked through two BHB two‐electron, three‐center bonds and one electron‐precise B−B bond, reminiscent of the prominent [B3H8]− anion. Upon heating or prolonged stirring at room temperature, K[3] rearranges to a slightly more stable isomer K[3 a]. The reaction of M[2H] (M+=Li+, K+) with MeI or Me3SiCl leads to equimolar amounts of 9‐R‐9‐borafluorene and HBFlu (R=Me or Me3Si). Thus, [2H]− behaves as a masked [:BFlu]− nucleophile. The HBFlu by‐product was used in situ to establish a tandem substitution‐hydroboration reaction: a 1:1 mixture of M[2H] and allyl bromide gave the 1,3‐propylene‐linked ditopic 9‐borafluorene 5 as sole product. M[2H] also participates in unprecedented [4+1] cycloadditions with dienes to furnish dialkyl diaryl spiroborates, M[R2BFlu].
Collapse
Affiliation(s)
- Timo Trageser
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Michael Bolte
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt (Main), Germany
| |
Collapse
|
34
|
Gilmer J, Budy H, Kaese T, Bolte M, Lerner H, Wagner M. The 9H-9-Borafluorene Dianion: A Surrogate for Elusive Diarylboryl Anion Nucleophiles. Angew Chem Int Ed Engl 2020; 59:5621-5625. [PMID: 31834978 PMCID: PMC7155136 DOI: 10.1002/anie.201914219] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 11/13/2022]
Abstract
Double reduction of the THF adduct of 9H-9-borafluorene (1⋅THF) with excess alkali metal affords the dianion salts M2 [1] in essentially quantitative yields (M=Li-K). Even though the added charge is stabilized through π delocalization, [1]2- acts as a formal boron nucleophile toward organoboron (1⋅THF) and tetrel halide electrophiles (MeCl, Et3 SiCl, Me3 SnCl) to form B-B/C/Si/Sn bonds. The substrate dependence of open-shell versus closed-shell pathways has been investigated.
Collapse
Affiliation(s)
- Jannik Gilmer
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Hendrik Budy
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Thomas Kaese
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Michael Bolte
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| | - Matthias Wagner
- Institut für Anorganische ChemieGoethe-Universität FrankfurtMax-von-Laue-Strasse 760438Frankfurt (Main)Germany
| |
Collapse
|
35
|
Trageser T, Bolte M, Lerner H, Wagner M. B−B Bond Nucleophilicity in a Tetraaryl μ‐Hydridodiborane(4) Anion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Timo Trageser
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
36
|
Schwamm RJ, Coles MP, Hill MS, Mahon MF, McMullin CL, Rajabi NA, Wilson ASS. A Stable Calcium Alumanyl. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:3956-3960. [PMID: 32313322 PMCID: PMC7159353 DOI: 10.1002/ange.201914986] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Indexed: 11/18/2022]
Abstract
A seven-membered N,N'-heterocyclic potassium alumanyl nucleophile is introduced and utilised in the metathetical synthesis of Mg-Al and Ca-Al bonded derivatives. Both species have been characterised by experimental and theoretical means, allowing a rationalisation of the greater reactivity of the heavier group 2 species implied by an initial assay of their reactivity.
Collapse
Affiliation(s)
| | - Martyn P. Coles
- School of Chemical and Physical SciencesVictoria University of WellingtonPO Box 600WellingtonNew Zealand
| | | | - Mary F. Mahon
- Department of ChemistryUniversity of BathBathBA2 7AYUK
| | | | | | | |
Collapse
|
37
|
Schwamm RJ, Coles MP, Hill MS, Mahon MF, McMullin CL, Rajabi NA, Wilson ASS. A Stable Calcium Alumanyl. Angew Chem Int Ed Engl 2020; 59:3928-3932. [PMID: 31830364 PMCID: PMC7159655 DOI: 10.1002/anie.201914986] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Indexed: 12/02/2022]
Abstract
A seven‐membered N,N′‐heterocyclic potassium alumanyl nucleophile is introduced and utilised in the metathetical synthesis of Mg−Al and Ca−Al bonded derivatives. Both species have been characterised by experimental and theoretical means, allowing a rationalisation of the greater reactivity of the heavier group 2 species implied by an initial assay of their reactivity.
Collapse
Affiliation(s)
- Ryan J Schwamm
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Michael S Hill
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | | | - Nasir A Rajabi
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | | |
Collapse
|
38
|
Gilmer J, Budy H, Kaese T, Bolte M, Lerner H, Wagner M. The 9
H
‐9‐Borafluorene Dianion: A Surrogate for Elusive Diarylboryl Anion Nucleophiles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jannik Gilmer
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hendrik Budy
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Thomas Kaese
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
39
|
Schmidt U, Werner L, Arrowsmith M, Deissenberger A, Hermann A, Hofmann A, Ullrich S, Mattock JD, Vargas A, Braunschweig H. trans-Selective Insertional Dihydroboration of a cis-Diborene: Synthesis of Linear sp 3 -sp 2 -sp 3 -Triboranes and Subsequent Cationization. Angew Chem Int Ed Engl 2020; 59:325-329. [PMID: 31621993 PMCID: PMC6972689 DOI: 10.1002/anie.201911645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/11/2022]
Abstract
The reaction of aryl- and amino(dihydro)boranes with dibora[2]ferrocenophane 1 leads to the formation 1,3-trans-dihydrotriboranes by formal hydrogenation and insertion of a borylene unit into the B=B bond. The aryltriborane derivatives undergo reversible photoisomerization to the cis-1,2-μ-H-3-hydrotriboranes, while hydride abstraction affords cationic triboranes, which represent the first doubly base-stabilized B3 H4 + analogues.
Collapse
Affiliation(s)
- Uwe Schmidt
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Wüzburg, Am Hubland, 97074, Würzburg, Germany
| | - Luis Werner
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Wüzburg, Am Hubland, 97074, Würzburg, Germany
| | - Merle Arrowsmith
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Wüzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andrea Deissenberger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Wüzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexander Hermann
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Wüzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexander Hofmann
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Wüzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stefan Ullrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Wüzburg, Am Hubland, 97074, Würzburg, Germany
| | - James D Mattock
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, Sussex, UK
| | - Alfredo Vargas
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, Sussex, UK
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Wüzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
40
|
Schmidt U, Werner L, Arrowsmith M, Deissenberger A, Hermann A, Hofmann A, Ullrich S, Mattock JD, Vargas A, Braunschweig H. Trans
‐selektive Dihydroborierung eines
cis
‐Diborens durch Insertion: Synthese eines linearen sp
3
‐sp
2
‐sp
3
‐Triborans und anschließende Kationisierung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Uwe Schmidt
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Wüzburg Am Hubland 97074 Würzburg Deutschland
| | - Luis Werner
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Wüzburg Am Hubland 97074 Würzburg Deutschland
| | - Merle Arrowsmith
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Wüzburg Am Hubland 97074 Würzburg Deutschland
| | - Andrea Deissenberger
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Wüzburg Am Hubland 97074 Würzburg Deutschland
| | - Alexander Hermann
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Wüzburg Am Hubland 97074 Würzburg Deutschland
| | - Alexander Hofmann
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Wüzburg Am Hubland 97074 Würzburg Deutschland
| | - Stefan Ullrich
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Wüzburg Am Hubland 97074 Würzburg Deutschland
| | - James D. Mattock
- Department of Chemistry School of Life Sciences University of Sussex Brighton BN1 9QJ Sussex Großbritannien
| | - Alfredo Vargas
- Department of Chemistry School of Life Sciences University of Sussex Brighton BN1 9QJ Sussex Großbritannien
| | - Holger Braunschweig
- Institut für Anorganische Chemie und Institut für nachhaltige Chemie und Katalyse mit Bor Julius-Maximilians-Universität Wüzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
41
|
Falconnet A, Magre M, Maity B, Cavallo L, Rueping M. Asymmetric Magnesium‐Catalyzed Hydroboration by Metal‐Ligand Cooperative Catalysis. Angew Chem Int Ed Engl 2019; 58:17567-17571. [DOI: 10.1002/anie.201908012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Alban Falconnet
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Marc Magre
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Bholanath Maity
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
42
|
Reddy GN, Parida R, Inostroza-Rivera R, Chakraborty A, Jena P, Giri S. Unique reactivity of B in B[Ge 9Y 3] 3 (Y = H, CH 3, BO, CN): formation of a Lewis base. Phys Chem Chem Phys 2019; 21:23301-23304. [PMID: 31490523 DOI: 10.1039/c9cp04361f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Boron compounds usually exhibit Lewis acidity at the boron center due to the presence of vacant p-orbitals. We show that this chemistry can be altered by an appropriate choice of ligands to decorate the boron center. To elucidate this effect, we studied the interactions of boron with two classes of ligands, one based on penta-substituted phenyl species (C6X5, X = F, BO, CN) and the other based on Zintl-ion-based groups (Ge9Y3, Y = H, CH3, BO, CN). An in-depth analysis of the charges and Fukui function values at the local atomic sites of the substituted boron derivatives B(C6X5)3 and B[Ge9Y3]3 shows that the B-center in the former is electrophilic, while it is nucleophilic in the latter. The chemical stability of the B[Ge9Y3]3 species is shown to be due to the presence of strong 2c-2e bonds between the B and Ge centers. Thus, the general notion of the Lewis acid nature of a boron center depends upon the choice of the ligand.
Collapse
Affiliation(s)
- G Naaresh Reddy
- School of Applied Sciences and Humanities, Haldia Institute of Technology, Haldia, 721657, India.
| | | | | | | | | | | |
Collapse
|
43
|
Falconnet A, Magre M, Maity B, Cavallo L, Rueping M. Asymmetric Magnesium‐Catalyzed Hydroboration by Metal‐Ligand Cooperative Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alban Falconnet
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Marc Magre
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
| | - Bholanath Maity
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- Institute of Organic ChemistryRWTH Aachen Landoltweg 1 52074 Aachen Germany
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
44
|
Vogler D, Wolf N, Kaifer E, Himmel HJ. Electron transfer in complexes of B II cations with organic π-acceptors: a combined experimental and quantum-chemical study. Dalton Trans 2019; 48:14354-14366. [PMID: 31513209 DOI: 10.1039/c9dt03151k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Due to their combined Lewis acidity and electron-donor capability, BII cations exhibit an interesting reactivity, which is almost unexplored so far. In this work, we compare the reduction in a dicationic diborane of a series of vicinal diones with different redox potentials, namely 3,5-di-tert-butylbenzoquinone, 3,4,5,6-tetrachlorobenzoquinone, 1,2-naphthalene-dione, 9,10-phenanthrene-dione, 2,2'-dichlorobenzil, benzil and 1,2-acenaphthylene-dione. The experimental work is complemented by quantum-chemical calculations, illuminating the electron-transfer step in the reactions.
Collapse
Affiliation(s)
- Daniel Vogler
- Anorganisch-Chemisches Institut, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Nina Wolf
- Anorganisch-Chemisches Institut, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Hans-Jörg Himmel
- Anorganisch-Chemisches Institut, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Radius M, Sattler E, Berberich H, Breher F. Reactivity of a Sterically Unencumbered α-Borylated Phosphorus Ylide towards Small Molecules. Chemistry 2019; 25:12206-12213. [PMID: 31355482 PMCID: PMC6771871 DOI: 10.1002/chem.201902681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Indexed: 01/06/2023]
Abstract
The influence of substituents on α-borylated phosphorus ylides (α-BCPs) has been investigated in a combined experimental and quantum chemical approach. The synthesis and characterization of Me3 PC(H)B(iBu)2 (1), consisting of small Me substituents on phosphorous and iBu residues on boron, is reported. Compound 1 is accessible through a novel synthetic approach, which has been further elucidated through DFT studies. The reactivity of 1 towards various small molecules was probed and compared with that of a previously published derivative, Ph3 PC(Me)BEt2 (2). Both α-BCPs react with NH3 to undergo heterolytic N-H bond cleavage. Different di- and trimeric ring structures were observed in the reaction products of 1 with CO and CO2 . With PhNCO and PHNCS, the expected insertion products [Me3 PC(H)(PhNCO)B(iBu)2 ] and [Me3 PC(H)(PhNCS)B(iBu)2 ], respectively, were isolated.
Collapse
Affiliation(s)
- Michael Radius
- Institute of Inorganic ChemistryDivision Molecular ChemistryKarlsruhe Institute of Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Ewald Sattler
- Institute of Inorganic ChemistryDivision Molecular ChemistryKarlsruhe Institute of Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Helga Berberich
- Institute of Inorganic ChemistryDivision Molecular ChemistryKarlsruhe Institute of Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryDivision Molecular ChemistryKarlsruhe Institute of Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| |
Collapse
|
46
|
Mu X, Axtell JC, Bernier NA, Kirlikovali KO, Jung D, Umanzor A, Qian K, Chen X, Bay KL, Kirollos M, Rheingold AL, Houk KN, Spokoyny AM. Sterically Unprotected Nucleophilic Boron Cluster Reagents. Chem 2019; 5:2461-2469. [PMID: 32292833 DOI: 10.1016/j.chempr.2019.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A cornerstone of modern synthetic chemistry rests on the ability to manipulate the reactivity of a carbon center by rendering it either electrophilic or nucleophilic. However, accessing a similar reactivity spectrum with boron-based reagents has been significantly more challenging. While classical nucleophilic carbon-based reagents normally do not require steric protection, readily accessible, unprotected boron-based nucleophiles have not yet been realized. Herein, we demonstrate that the bench stable closo-hexaborate cluster anion can engage in a nucleophilic substitution reaction with a wide array of organic and main group electrophiles. The resulting molecules containing B‒C bonds can be further converted to tricoordinate boron species widely used in organic synthesis.
Collapse
Affiliation(s)
- Xin Mu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Nicholas A Bernier
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Kent O Kirlikovali
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Dahee Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Alexander Umanzor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Kevin Qian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Katherine L Bay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Monica Kirollos
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA.,Department California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.,Lead Contact
| |
Collapse
|
47
|
Akiyama S, Yamada K, Yamashita M. Reactivity of a Tetra(o-tolyl)diborane(4) Dianion as a Diarylboryl Anion Equivalent. Angew Chem Int Ed Engl 2019; 58:11806-11810. [PMID: 31264753 DOI: 10.1002/anie.201907400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Lithium and magnesium salts of tetra(o-tolyl)diborane(4) dianion, having B=B double bond character, were synthesized. It was clarified that the lithium salt of the dianion has a high-lying HOMO and a narrow HOMO-LUMO gap, which were perturbed by dissociation of Li+ cation, as judged by UV/Vis spectroscopy and DFT calculations. The lithium salt of the dianion reacted as two equivalents of a diarylboryl anion with CH2 Cl2 or S8 to give boryl-substituted products.
Collapse
Affiliation(s)
- Seiji Akiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Aichi, Japan
| | - Kaito Yamada
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Aichi, Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Aichi, Japan
| |
Collapse
|
48
|
Akiyama S, Yamada K, Yamashita M. Reactivity of a Tetra(
o
‐tolyl)diborane(4) Dianion as a Diarylboryl Anion Equivalent. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Seiji Akiyama
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Aichi Japan
| | - Kaito Yamada
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Aichi Japan
| | - Makoto Yamashita
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Aichi Japan
| |
Collapse
|
49
|
Pécharman AF, Hill MS, McMullon G, McMullin CL, Mahon MF. Snapshots of magnesium-centred diborane heterolysis by an outer sphere S N2 process. Chem Sci 2019; 10:6672-6682. [PMID: 31367321 PMCID: PMC6624991 DOI: 10.1039/c9sc02087j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023] Open
Abstract
Reactions of a magnesium diboranate as a source of [Bpin]– anions are initiated by ‘outer sphere’ attack of C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N bonded substrates.
Reactions of the β-diketiminato magnesium diboranate derivative, [(BDI)Mg{pinB(n-Bu)Bpin}] (BDI = HC{(Me)CNDipp}2; Dipp = 2,6-i-Pr2C6H3), with N,N′-dialkyl and N,N′-diaryl carbodiimides provided the corresponding C-borylated magnesium borylamidinates. This reactivity occurs with the displacement of n-BuBpin and with the apparent addition of a nucleophilic {Bpin} anion to the electrophilic unsaturated carbodiimide carbon centres. In contrast, while analogous reactions of [(BDI)Mg{pinB(n-Bu)Bpin}] with N-alkyl or N-aryl aldimines and ketimines also resulted in facile displacement of n-BuBpin, they provided the organomagnesium products of {Bpin} addition to the imine nitrogen atom rather than the more electrophilic trigonal imine carbon. Computational assessment by density functional theory (DFT) indicated that, although the energetic differences are marginal, the organomagnesium products may be considered as the kinetic outcome of these reactions with respect to the generation of alternative amidomagnesium regioisomers. This latter deduction was borne out by the thermally-induced conversion of two such organomagnesium species to their C-borylated amidomagnesium isomers, both of which occur with negligible entropies of activation indicative of purely intramolecular processes. Detailed analysis by DFT of the reaction of [(BDI)Mg{pinB(n-Bu)Bpin}] with PhN
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CHPh indicated that B–N bond formation is initiated by attack of the imine nitrogen at the three-coordinate boron atom of the diboranate anion rather than the more crowded magnesium centre. Consistent with an effectively spontaneous reaction, the resultant cleavage of the B–B bond of the diboranate unit is accomplished via the traversal of two very modest barriers of only 8.3 and 6.7 kcal mol–1. This analysis was also supportive of a subsequent intramolecular B–N to B–C isomerisation process. Of greater general significance, however, the addition of the {Bpin}– anion to the reducible aldimine is best rationalised as a consequence of the electrophilic character of this three-coordinate boron centre rather than any intrinsic nucleophilicity associated with the B–B bond of the [pinBB(n-Bu)pin]– anion.
Collapse
Affiliation(s)
| | - Michael S Hill
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK . ;
| | - Grace McMullon
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK . ;
| | - Claire L McMullin
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK . ;
| | - Mary F Mahon
- Department of Chemistry , University of Bath , Claverton Down , Bath , BA2 7AY , UK . ;
| |
Collapse
|
50
|
García-Castro M, García-Iriepa C, Del Horno E, Martín A, Mena M, Pérez-Redondo A, Temprado M, Yélamos C. The Puzzling Monopentamethylcyclopentadienyltitanium(III) Dichloride Reagent: Structure and Properties. Inorg Chem 2019; 58:5314-5324. [PMID: 30943022 DOI: 10.1021/acs.inorgchem.9b00437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Following the track of the useful titanocene [Ti(η5-C5H5)2Cl] reagent in organic synthesis, the related half-sandwich titanium(III) derivatives [Ti(η5-C5R5)Cl2] are receiving increasing attention in radical chemistry of many catalyzed transformations. However, the structure of the active titanium(III) species remains unknown in the literature. Herein, we describe the synthesis, crystal structure, and electronic structure of titanium(III) aggregates of composition [{Ti(η5-C5Me5)Cl2} n]. The thermolysis of [Ti(η5-C5Me5)Cl2Me] (1) in benzene or hexane at 180 °C results in the clean formation of [{Ti(η5-C5Me5)Cl(μ-Cl)}2] (2), methane, and ethene. The treatment of 1 with excess pinacolborane in hexane at 65 °C leads to a mixture of 2 and the paramagnetic trimer [{Ti(η5-C5Me5)(μ-Cl)2}3] (3). The X-ray crystal structures of compounds 2 and 3 show Ti-Ti distances of 3.267(1) and 3.219(12) Å, respectively. Computational studies (CASPT2//CASSCF and BS DFT methods) for dimer 2 reveal a singlet ground state and a relatively large singlet-triplet energy gap. Nuclear magnetic resonance spectroscopy of 2 in aromatic hydrocarbon solutions and DFT calculations for several [{Ti(η5-C5Me5)Cl2} n] aggregates are consistent with the existence of an equilibrium between the diamagnetic dimer [{Ti(η5-C5Me5)Cl(μ-Cl)}2] and a paramagnetic tetramer [{Ti(η5-C5Me5)(μ-Cl)2}4] in solution. In contrast, complex 2 readily dissolves in tetrahydrofuran to give a green-blue solution from which blue crystals of the mononuclear adduct [Ti(η5-C5Me5)Cl2(thf)] (4) were grown.
Collapse
Affiliation(s)
- María García-Castro
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain
| | - Cristina García-Iriepa
- Departamento de Química Analítica, Química Física e Ingeniería Química , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain.,Departamento de Química , Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ) , 26006 Logroño , Spain
| | - Estefanía Del Horno
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain
| | - Avelino Martín
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain.,Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain
| | - Miguel Mena
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain.,Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain
| | - Adrián Pérez-Redondo
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain.,Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain
| | - Manuel Temprado
- Departamento de Química Analítica, Química Física e Ingeniería Química , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain.,Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain
| | - Carlos Yélamos
- Departamento de Química Orgánica y Química Inorgánica , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain.,Instituto de Investigación Química "Andrés M. del Río" (IQAR) , Universidad de Alcalá , 28805 Alcalá de Henares- Madrid , Spain
| |
Collapse
|