1
|
Sundharbaabu PR, Chang J, Kim Y, Shim Y, Lee B, Noh C, Heo S, Lee SS, Shim SH, Lim KI, Jo K, Lee JH. Artificial Intelligence-Enhanced Analysis of Genomic DNA Visualized with Nanoparticle-Tagged Peptides under Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405065. [PMID: 39380435 DOI: 10.1002/smll.202405065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Indexed: 10/10/2024]
Abstract
DNA visualization has advanced across multiple microscopy platforms, albeit with limited progress in the identification of novel staining agents for electron microscopy (EM), notwithstanding its ability to furnish a broad magnification range and high-resolution details for observing DNA molecules. Herein, a non-toxic, universal, and simple method is proposed that uses gold nanoparticle-tagged peptides to stain all types of naturally occurring DNA molecules, enabling their visualization under EM. This method enhances the current DNA visualization capabilities, allowing for sequence-specific, genomic-scale, and multi-conformational visualization. Importantly, an artificial intelligence (AI)-enabled pipeline for identifying DNA molecules imaged under EM is presented, followed by classification based on their size, shape, or conformation, and finally, extraction of their significant dimensional features, which to the best of authors' knowledge, has not been reported yet. This pipeline strongly improved the accuracy of obtaining crucial information such as the number and mean length of DNA molecules in a given EM image for linear DNA (salmon sperm DNA) and the circumferential length and diameter for circular DNA (M13 phage DNA), owing to its image segmentation capability. Furthermore, it remained robust to several variations in the raw EM images arising from handling during the DNA staining stage.
Collapse
Affiliation(s)
| | - Junhyuck Chang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Yunchul Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Youmin Shim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Byoungsang Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Chanyoung Noh
- Department of Chemistry & Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Sujung Heo
- Department of Chemistry & Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Seung Seo Lee
- School of Chemistry and Chemical Engineering, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Kwang-I Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, 04312, South Korea
| | - Kyubong Jo
- Department of Chemistry & Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, South Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| |
Collapse
|
2
|
Wang K, Deng P, Lin H, Sun W, Shen J. DNA-Based Conductors: From Materials Design to Ultra-Scaled Electronics. SMALL METHODS 2024:e2400694. [PMID: 39049716 DOI: 10.1002/smtd.202400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Photolithography has been the foundational fabrication paradigm in current high-performance electronics. However, due to the limitation in fabrication resolution, scaling beyond a 20-nm critical dimension for metal conductors presents a significant challenge for photolithography. Structural DNA nanotechnology emerges as a promising alternative to photolithography, allowing for the site-specific assembly of nano-materials at single-molecule resolution. Substantial progresses have been achieved in the ultra-scaled DNA-based conductors, exhibiting novel transport characteristics and small critical dimensions. This review highlights the structure-transport property relationship for various DNA-based conductors and their potential applications in quantum /semiconductor electronics, going beyond the conventional scope focusing mainly on the shape diversity of DNA-templated metals. Different material synthesis methods and their morphological impacts on the conductivities are discussed in detail, with particular emphasis on the conducting mechanisms, such as insulating, metallic conducting, quantum tunneling, and superconducting. Furthermore, the ionic gating effect of self-assembled DNA structures in electrolyte solutions is examined. This review also suggests potential solutions to address current challenges in DNA-based conductors, encouraging multi-disciplinary collaborations for the future development of this exciting area.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Pu Deng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Huili Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
- Zhangjiang Laboratory, Shanghai, 201210, China
| | - Jie Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
4
|
Liu Y, Li B, Wang F, Li Q, Jia S, Liu X, Li M. Quantitative Analysis of Resistance to Deformation of the DNA Origami Framework Supported by Struts. ACS APPLIED BIO MATERIALS 2024; 7:1311-1316. [PMID: 38303492 DOI: 10.1021/acsabm.3c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Nanostructures with controlled shapes are of particular interest due to their consistent physical and chemical properties and their potential for assembly into complex superstructures. The use of supporting struts has proven to be effective in the construction of precise DNA polyhedra. However, the influence of struts on the structure of DNA origami frameworks on the nanoscale remains unclear. In this study, we developed a flexible square DNA origami (SDO) framework and enhanced its structural stability by incorporating interarm supporting struts (SDO-s). Comparing the framework with and without such struts, we found that SDO-s demonstrated a significantly improved resistance to deformation. We assessed the deformability of these two DNA origami structures through the statistical analysis of interior angles of polygons based on atomic force microscopy and transmission electron microscopy data. Our results showed that SDO-s exhibited more centralized interior angle distributions compared to SDO, reducing from 30-150° to 60-120°. Furthermore, molecular dynamics simulations indicated that supporting struts significantly decreased the thermodynamic fluctuations of the SDO-s, as described by the root-mean-square fluctuation parameter. Finally, we experimentally demonstrated that the 2D arrays assembled from SDO-s exhibited significantly higher quality than those assembled from SDO. These quantitative analyses provide an understanding of how supporting struts can enhance the structural integrity of DNA origami frameworks.
Collapse
Affiliation(s)
- Yongjun Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bochen Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Wang S, Lin PA, DeLuca M, Zauscher S, Arya G, Ke Y. Controlling Silicification on DNA Origami with Polynucleotide Brushes. J Am Chem Soc 2024; 146:358-367. [PMID: 38117542 PMCID: PMC10785815 DOI: 10.1021/jacs.3c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
DNA origami has been used as biotemplates for growing a range of inorganic materials to create novel organic-inorganic hybrid nanomaterials. Recently, the solution-based silicification of DNA has been used to grow thin silica shells on DNA origami. However, the silicification reaction is sensitive to the reaction conditions and often results in uncontrolled DNA origami aggregation, especially when growth of thicker silica layers is desired. Here, we investigated how site-specifically placed polynucleotide brushes influence the silicification of DNA origami. Our experiments showed that long DNA brushes, in the form of single- or double-stranded DNA, significantly suppress the aggregation of DNA origami during the silicification process. Furthermore, we found that double-stranded DNA brushes selectively promote silica growth on DNA origami surfaces. These observations were supported and explained by coarse-grained molecular dynamics simulations. This work provides new insights into our understanding of the silicification process on DNA and provides a powerful toolset for the development of novel DNA-based organic-inorganic nanomaterials.
Collapse
Affiliation(s)
- Shuang Wang
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Po-An Lin
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Marcello DeLuca
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Stefan Zauscher
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Martynenko IV, Erber E, Ruider V, Dass M, Posnjak G, Yin X, Altpeter P, Liedl T. Site-directed placement of three-dimensional DNA origami. NATURE NANOTECHNOLOGY 2023; 18:1456-1462. [PMID: 37640908 PMCID: PMC7616159 DOI: 10.1038/s41565-023-01487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023]
Abstract
The combination of lithographic methods with two-dimensional DNA origami self-assembly has led, among others, to the development of photonic crystal cavity arrays and the exploration of sensing nanoarrays where molecular devices are patterned on the sub-micrometre scale. Here we extend this concept to the third dimension by mounting three-dimensional DNA origami onto nanopatterned substrates, followed by silicification to provide hybrid DNA-silica structures exhibiting mechanical and chemical stability and achieving feature sizes in the sub-10-nm regime. Our versatile and scalable method relying on self-assembly at ambient temperatures offers the potential to three-dimensionally position any inorganic and organic components compatible with DNA origami nanoarchitecture, demonstrated here with gold nanoparticles. This way of nanotexturing could provide a route for the low-cost production of complex and three-dimensionally patterned surfaces and integrated devices designed on the molecular level and reaching macroscopic dimensions.
Collapse
Affiliation(s)
- Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany.
| | - Elisabeth Erber
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Veronika Ruider
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Mihir Dass
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Gregor Posnjak
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Xin Yin
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Altpeter
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
7
|
Jeong J, An SY, Hu X, Zhao Y, Yin R, Szczepaniak G, Murata H, Das SR, Matyjaszewski K. Biomass RNA for the Controlled Synthesis of Degradable Networks by Radical Polymerization. ACS NANO 2023; 17:21912-21922. [PMID: 37851525 PMCID: PMC10655241 DOI: 10.1021/acsnano.3c08244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Nucleic acids extracted from biomass have emerged as sustainable and environmentally friendly building blocks for the fabrication of multifunctional materials. Until recently, the fabrication of biomass nucleic acid-based structures has been facilitated through simple crosslinking of biomass nucleic acids, which limits the possibility of material properties engineering. This study presents an approach to convert biomass RNA into an acrylic crosslinker through acyl imidazole chemistry. The number of acrylic moieties on RNA was engineered by varying the acylation conditions. The resulting RNA crosslinker can undergo radical copolymerization with various acrylic monomers, thereby offering a versatile route for creating materials with tunable properties (e.g., stiffness and hydrophobic characteristics). Further, reversible-deactivation radical polymerization methods, such as atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT), were also explored as additional approaches to engineer the hydrogel properties. The study also demonstrated the metallization of the biomass RNA-based material, thereby offering potential applications in enhancing electrical conductivity. Overall, this research expands the opportunities in biomass-based biomaterial fabrication, which allows tailored properties for diverse applications.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - So Young An
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Hironobu Murata
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Mao D, Liu L, Zhang C, Liu H, Mao C. Molecular Lithography on Silicon Wafers Guided by Porous, Extended Arrays of Small DNA Tiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11782-11787. [PMID: 37562139 DOI: 10.1021/acs.langmuir.3c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Tile-based DNA self-assembly is a cost-effective fabrication method for large-scale nanopatterns. Herein, we report a protocol to directly assemble DNA 2D arrays on silicon wafers and then use the DNA nanostructures as molds to fabricate the corresponding nanostructures on the silicon wafers by hydrogen fluoride (HF) etching. Similar HF etching has been used with robust large DNA origami structures as templates. This work demonstrates that DNA nanostructures assembled from small tiles are sufficiently stable for this process. The resulting feature size (∼8.6 nm) approaches the sizes of e-beam lithography. While the reported method is parallel and inexpensive, e-beam lithography is a serial method and is expensive. We expect that this method will be very useful for preparing fine nanopatterns in large areas.
Collapse
Affiliation(s)
- Dake Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Longfei Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Cuizheng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Liu F, Hu Y, Qu Z, Ma X, Li Z, Zhu R, Yan Y, Wen B, Ma Q, Liu M, Zhao S, Fan Z, Zeng J, Liu M, Jin Z, Lin Z. Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy. Proc Natl Acad Sci U S A 2023; 120:e2303262120. [PMID: 37339215 PMCID: PMC10293823 DOI: 10.1073/pnas.2303262120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
Graphene nanoribbons (GNRs) are widely recognized as intriguing building blocks for high-performance electronics and catalysis owing to their unique width-dependent bandgap and ample lone pair electrons on both sides of GNR, respectively, over the graphene nanosheet counterpart. However, it remains challenging to mass-produce kilogram-scale GNRs to render their practical applications. More importantly, the ability to intercalate nanofillers of interest within GNR enables in-situ large-scale dispersion and retains structural stability and properties of nanofillers for enhanced energy conversion and storage. This, however, has yet to be largely explored. Herein, we report a rapid, low-cost freezing-rolling-capillary compression strategy to yield GNRs at a kilogram scale with tunable interlayer spacing for situating a set of functional nanomaterials for electrochemical energy conversion and storage. Specifically, GNRs are created by sequential freezing, rolling, and capillary compression of large-sized graphene oxide nanosheets in liquid nitrogen, followed by pyrolysis. The interlayer spacing of GNRs can be conveniently regulated by tuning the amount of nanofillers of different dimensions added. As such, heteroatoms; metal single atoms; and 0D, 1D, and 2D nanomaterials can be readily in-situ intercalated into the GNR matrix, producing a rich variety of functional nanofiller-dispersed GNR nanocomposites. They manifest promising performance in electrocatalysis, battery, and supercapacitor due to excellent electronic conductivity, catalytic activity, and structural stability of the resulting GNR nanocomposites. The freezing-rolling-capillary compression strategy is facile, robust, and generalizable. It renders the creation of versatile GNR-derived nanocomposites with adjustable interlay spacing of GNR, thereby underpinning future advances in electronics and clean energy applications.
Collapse
Affiliation(s)
- Fan Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui243002, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Yi Hu
- Ministry of Education Key Laboratory of Mesoscopic Chemistry, Ministry of Education Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200433, China
| | - Xin Ma
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Zaifeng Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266061, China
| | - Rui Zhu
- Analyzing and Test Center, Jiangsu Normal University, Xuzhou, Jiangsu221116, China
| | - Yan Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui243002, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Bihan Wen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Qianwen Ma
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Minjie Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Shuang Zhao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong999077, China
| | - Jie Zeng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui243002, China
| | - Mingkai Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui243002, China
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou221116, China
| | - Zhong Jin
- Ministry of Education Key Laboratory of Mesoscopic Chemistry, Ministry of Education Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore117585, Singapore
| |
Collapse
|
10
|
Tarannum T, Ahmed S. Recent development in antiviral surfaces: Impact of topography and environmental conditions. Heliyon 2023; 9:e16698. [PMID: 37260884 PMCID: PMC10227326 DOI: 10.1016/j.heliyon.2023.e16698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.
Collapse
Affiliation(s)
- Tanjina Tarannum
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| |
Collapse
|
11
|
Liu J, Liu S, Zou C, Xu S, Zhou C. Research Progress in Construction and Application of Enzyme-Based DNA Logic Gates. IEEE Trans Nanobioscience 2023; 22:245-258. [PMID: 35679378 DOI: 10.1109/tnb.2022.3181615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a research hotspot in the field of information processing, DNA computing exhibits several important underlying characteristics-from parallel computing and low energy consumption to high-performance storage capabilities-thereby enabling its wide application in nanomachines, molecular encryption, biological detection, medical diagnosis, etc. Based on DNA computing, the most rapidly developed field focuses on DNA molecular logic-gates computing. In particular, the recent advances in enzyme-based DNA logic gates has emerged as ideal materials for constructing DNA logic gates. In this review, we explore protein enzymes that can manipulate DNA, especially, nicking enzymes and polymerases with high efficiency and specificity, which are widely used in constructing DNA logic gates, as well as ribozyme that can construct DNA logic gates following various mechanism with distinct biomaterials. Accordingly, the review highlights the characteristics and applications of various types of DNAzyme-based logic gates models, considering their future developments in information, biomedicine, chemistry, and computers.
Collapse
|
12
|
Manuguri S, Nguyen MK, Loo J, Natarajan AK, Kuzyk A. Advancing the Utility of DNA Origami Technique through Enhanced Stability of DNA-Origami-Based Assemblies. Bioconjug Chem 2023; 34:6-17. [PMID: 35984467 PMCID: PMC9853507 DOI: 10.1021/acs.bioconjchem.2c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Since its discovery in 2006, the DNA origami technique has revolutionized bottom-up nanofabrication. This technique is simple yet versatile and enables the fabrication of nanostructures of almost arbitrary shapes. Furthermore, due to their intrinsic addressability, DNA origami structures can serve as templates for the arrangement of various nanoscale components (small molecules, proteins, nanoparticles, etc.) with controlled stoichiometry and nanometer-scale precision, which is often beyond the reach of other nanofabrication techniques. Despite the multiple benefits of the DNA origami technique, its applicability is often restricted by the limited stability in application-specific conditions. This Review provides an overview of the strategies that have been developed to improve the stability of DNA-origami-based assemblies for potential biomedical, nanofabrication, and other applications.
Collapse
Affiliation(s)
- Sesha Manuguri
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Minh-Kha Nguyen
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet St., Dist. 10, Ho Chi Minh
City 70000, Vietnam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh
City 756100, Vietnam
| | - Jacky Loo
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Ashwin Karthick Natarajan
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Anton Kuzyk
- Department
of Neuroscience and Biomedical Engineering, School of Science, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
13
|
Dunn KE, Elfick A. Harnessing DNA Nanotechnology and Chemistry for Applications in Photonics and Electronics. Bioconjug Chem 2023; 34:97-104. [PMID: 36121896 PMCID: PMC9853499 DOI: 10.1021/acs.bioconjchem.2c00286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Indexed: 01/24/2023]
Abstract
Many photonic and electronic devices rely on nanotechnology and nanofabrication, but DNA-based approaches have yet to make a significant commercial impact in these fields even though DNA molecules are now well-established as versatile building blocks for nanostructures. As we describe here, DNA molecules can be chemically modified with a wide variety of functional groups enabling nanocargoes to be attached at precisely determined locations. DNA nanostructures can also be used as templates for the growth of inorganic structures. Together, these factors enable the use of DNA nanotechnology for the construction of many novel devices and systems. In this topical review, we discuss four case studies of potential applications in photonics and electronics: carbon nanotube transistors, devices for quantum computing, artificial electromagnetic materials, and enzymatic fuel cells. We conclude by speculating about the barriers to the exploitation of these technologies in real-world settings.
Collapse
Affiliation(s)
- Katherine E. Dunn
- School of
Engineering, Institute for
Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3DW, Scotland, U.K.
| | - Alistair Elfick
- School of
Engineering, Institute for
Bioengineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3DW, Scotland, U.K.
| |
Collapse
|
14
|
Torres-Huerta AL, Antonio-Pérez A, García-Huante Y, Alcázar-Ramírez NJ, Rueda-Silva JC. Biomolecule-Based Optical Metamaterials: Design and Applications. BIOSENSORS 2022; 12:962. [PMID: 36354471 PMCID: PMC9688573 DOI: 10.3390/bios12110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.
Collapse
Affiliation(s)
- Ana Laura Torres-Huerta
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Aurora Antonio-Pérez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Yolanda García-Huante
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City 07340, Mexico
| | - Nayelhi Julieta Alcázar-Ramírez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Juan Carlos Rueda-Silva
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
15
|
Di Muccio G, Morozzo della Rocca B, Chinappi M. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores. ACS NANO 2022; 16:8716-8728. [PMID: 35587777 PMCID: PMC9245180 DOI: 10.1021/acsnano.1c03017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Selectivity toward positive and negative ions in nanopores is often associated with electroosmotic flow, the control of which is pivotal in several micro-nanofluidic technologies. Selectivity is traditionally understood to be a consequence of surface charges that alter the ion distribution in the pore lumen. Here we present a purely geometrical mechanism to induce ionic selectivity and electroosmotic flow in uncharged nanopores, and we tested it via molecular dynamics simulations. Our approach exploits the accumulation of charges, driven by an external electric field, in a coaxial cavity that decorates the membrane close to the pore entrance. The selectivity was shown to depend on the applied voltage and becomes completely inverted when reversing the voltage. The simultaneous inversion of ionic selectivity and electric field direction causes a unidirectional electroosmotic flow. We developed a quantitatively accurate theoretical model for designing pore geometry to achieve the desired electroosmotic velocity. Finally, we show that unidirectional electroosmosis also occurs in much more complex scenarios, such as a biological pore whose structure presents a coaxial cavity surrounding the pore constriction as well as a complex surface charge pattern. The capability to induce ion selectivity without altering the pore lumen shape or the surface charge may be useful for a more flexible design of selective membranes.
Collapse
Affiliation(s)
- Giovanni Di Muccio
- Dipartimento
di Ingegneria Industriale, Università
di Roma Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Blasco Morozzo della Rocca
- Dipartimento
di Biologia, Università di Roma Tor
Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Mauro Chinappi
- Dipartimento
di Ingegneria Industriale, Università
di Roma Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
- E-mail:
| |
Collapse
|
16
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
17
|
Dong Y, Jin Z, Zhang X, Tang Y, Tian Y, Zhu JJ, Min Q. A six-plex switchable DNA origami cipher disk for tandem-in-time cryptography. Chem Commun (Camb) 2022; 58:6124-6127. [PMID: 35506597 DOI: 10.1039/d2cc01349e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a DNA origami cipher disk (DOCD) allowing random, continuous and reversible switchover between six visibly different patterns in response to the input DNA strands. A DOCD-enabled tandem-in-time cryptographic protocol was thereby established by using a string of DNA strands as a carrier for accurate information encoding and transmission.
Collapse
Affiliation(s)
- Yuxiang Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Zehui Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yuanyuan Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China. .,Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China. .,Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Chen Y, Yang C, Zhu Z, Sun W. Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays. Nat Commun 2022; 13:2707. [PMID: 35577805 PMCID: PMC9110747 DOI: 10.1038/s41467-022-30441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
While DNA-directed nano-fabrication enables the high-resolution patterning for conventional electronic materials and devices, the intrinsic self-assembly defects of DNA structures present challenges for further scaling into sub-1 nm technology nodes. The high-dimensional crystallographic defects, including line dislocations and grain boundaries, typically lead to the pattern defects of the DNA lattices. Using periodic line arrays as model systems, we discover that the sequence periodicity mainly determines the formation of line defects, and the defect rate reaches 74% at 8.2-nm line pitch. To suppress high-dimensional defects rate, we develop an effective approach by assigning the orthogonal sequence sets into neighboring unit cells, reducing line defect rate by two orders of magnitude at 7.5-nm line pitch. We further demonstrate densely aligned metal nano-line arrays by depositing metal layers onto the assembled DNA templates. The ultra-scaled critical pitches in the defect-free DNA arrays may further promote the dimension-dependent properties of DNA-templated materials.
Collapse
Affiliation(s)
- Yahong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Chaoyong Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhi Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Hui L, Chen C, Kim MA, Liu H. Fabrication of DNA-Templated Pt Nanostructures by Area-Selective Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16538-16545. [PMID: 35357800 DOI: 10.1021/acsami.2c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the fabrication of DNA-templated Pt nanostructures by area-selective atomic layer deposition. A DNA-templated self-assembled monolayer was used to mediate the area-selective deposition of Pt. Using this approach, we demonstrated the fabrication of both single- and two-component nanostructure patterns, including Pt, TiO2/Pt, and Al2O3/Pt. These nanoscale patterns were used as hard masks for plasma deep etching of Si to fabricate anti-reflection surfaces. This work demonstrated a gas-phase, DNA-templated fabrication of metal nanostructures, which complements earlier work of solution-based DNA metallization. The nanostructures obtained here are useful for applications in nanoelectronics, nanophotonics, and surface engineering.
Collapse
Affiliation(s)
- Liwei Hui
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chen Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Min A Kim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
20
|
Dai X, Chen X, Jing X, Zhang Y, Pan M, Li M, Li Q, Liu P, Fan C, Liu X. DNA Origami‐Encoded Integration of Heterostructures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xinpei Dai
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Division of Physical Biology CHINA
| | - Xiaoliang Chen
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xinxin Jing
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yinan Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Muchen Pan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Mingqiang Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qian Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Biodesign Center 300307 Tianjin CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering No. 800, Dongchuan Road 200240 Shanghai CHINA
| | - Xiaoguo Liu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine No. 800 Dongchuan road 200240 Shanghai CHINA
| |
Collapse
|
21
|
Dai X, Chen X, Jing X, Zhang Y, Pan M, Li M, Li Q, Liu P, Fan C, Liu X. DNA Origami-Encoded Integration of Heterostructures. Angew Chem Int Ed Engl 2021; 61:e202114190. [PMID: 34962699 DOI: 10.1002/anie.202114190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/09/2022]
Abstract
Integrating dissimilar materials at the nanoscale is crucial for modern electronics and optoelectronics. The structural DNA nanotechnology provides a universal platform for precision assembly of materials; nevertheless, heterogeneous integration of dissimilar materials with DNA nanostructures has yet to be explored. Here we report a DNA origami-encoded strategy for integrating silica-metal heterostructures. Theoretical and experimental studies reveal distinctive mechanisms for the binding and aggregation of silica and metal clusters on protruding double-stranded DNA (dsDNA) strands that are prescribed on the DNA origami template. In particular, the binding energy differences of silica/metal clusters and DNA molecules underlies the accessibilities of dissimilar material areas on DNA origami. We find that, by programming the densities and lengths of protruding dsDNA strands on DNA origami, silica and metal materials can be independently deposited at their predefined areas with a high vertical precision of 2 nm. We demonstrate the integration of silica-gold and silica-silver heterostructures with high site addressability. This DNA nanotechnology-based strategy is thus applicable for integrating various types of dissimilar materials, which opens new routes for bottom-up electronics.
Collapse
Affiliation(s)
- Xinpei Dai
- Shanghai Institute of Applied Physics Chinese Academy of Sciences, Division of Physical Biology, CHINA
| | - Xiaoliang Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Xinxin Jing
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yinan Zhang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Muchen Pan
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Mingqiang Li
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Qian Li
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biodesign Center, 300307, Tianjin, CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, No. 800, Dongchuan Road, 200240, Shanghai, CHINA
| | - Xiaoguo Liu
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, No. 800 Dongchuan road, 200240, Shanghai, CHINA
| |
Collapse
|
22
|
Gao Y, Chen J, Chen G, Fan C, Liu X. Recent Progress in the Transfer of Graphene Films and Nanostructures. SMALL METHODS 2021; 5:e2100771. [PMID: 34928026 DOI: 10.1002/smtd.202100771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Indexed: 06/14/2023]
Abstract
The one-atom-thick graphene has excellent electronic, optical, thermal, and mechanical properties. Currently, chemical vapor deposition (CVD) graphene has received a great deal of attention because it provides access to large-area and uniform films with high-quality. This allows the fabrication of graphene based-electronics, sensors, photonics, and optoelectronics for practical applications. Zero bandgap, however, limits the application of a graphene film as electronic transistor. The most commonly used bottom-up approaches have achieved efficient tuning of the electronic bandgap by customizing well-defined graphene nanostructures. The postgrowth transfer of graphene films/nanostructures to a certain substrate is crucial in utilizing graphene in applicable devices. In this review, the basic growth mechanism of CVD graphene is first introduced. Then, recent advances in various transfer methods of as-grown graphene to target substrates are presented. The fabrication and transfer methods of graphene nanostructures are also provided, and then the transfer-related applications are summarized. At last, the challenging issues and the potential transfer-free approaches are discussed.
Collapse
Affiliation(s)
- Yanjing Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Bennet D, Vo‐Dinh T, Zenhausern F. Current and emerging opportunities in biological medium‐based computing and digital data storage. NANO SELECT 2021. [DOI: 10.1002/nano.202100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
| | - Tuan Vo‐Dinh
- Department of Biomedical Engineering Department of Chemistry Fitzpatrick Institute for Photonics Duke University Durham North Carolina USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
- Department of Basic Medical Sciences College of Medicine Phoenix The University of Arizona Phoenix Arizona USA
- Department of Biomedical Engineering; and BIO5 Institute College of Engineering The University of Arizona Tucson Arizona USA
- School of Pharmaceutical Sciences University of Geneva Geneva Switzerland
| |
Collapse
|
24
|
Wei T, Hauke F, Hirsch A. Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104060. [PMID: 34569112 PMCID: PMC11468719 DOI: 10.1002/adma.202104060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Indexed: 05/26/2023]
Abstract
The realization that nanostructured graphene featuring nanoscale width can confine electrons to open its bandgap has aroused scientists' attention to the regulation of graphene structures, where the concept of graphene patterns emerged. Exploring various effective methods for creating graphene patterns has led to the birth of a new field termed graphene patterning, which has evolved into the most vigorous and intriguing branch of graphene research during the past decade. The efforts in this field have resulted in the development of numerous strategies to structure graphene, affording a variety of graphene patterns with tailored shapes and sizes. The established patterning approaches combined with graphene chemistry yields a novel chemical patterning route via molecular engineering, which opens up a new era in graphene research. In this review, the currently developed graphene patterning strategies is systematically outlined, with emphasis on the chemical patterning. In addition to introducing the basic concepts and the important progress of traditional methods, which are generally categorized into top-down, bottom-up technologies, an exhaustive review of established protocols for emerging chemical patterning is presented. At the end, an outlook for future development and challenges is proposed.
Collapse
Affiliation(s)
- Tao Wei
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| | - Frank Hauke
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy and Joint Institute of Advance Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐NürnbergNikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| |
Collapse
|
25
|
Zhao Y, Zhang C, Yang L, Xu X, Xu R, Ma Q, Tang Q, Yang Y, Han D. Programmable and Site-Specific Patterning on DNA Origami Templates with Heterogeneous Condensation of Silver and Silica. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103877. [PMID: 34636168 DOI: 10.1002/smll.202103877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
DNA origami has been widely used as a modular platform for condensation of functional molecules to assemble optical, electronic, and biological components. However, the heterogeneous condensation with greater diversities in chemical composition templated with DNA origami is still challenging. Herein, a programmable deposition method is developed to precisely condense silver-silica nanohybrids on DNA origami templates. First, the site-specific metallization of Ag is achieved by thiol group-initiated silver reduction at the designed areas of DNA origami. Next, cysteamine is used to selectively modify the condensed Ag surface with positively charged amino groups for creating an electronically different environment for site-specific placement of silica by a modified Stöber method. Using these strategies, customized patterning of both silver and silica on tubular and rectangular DNA origami nanostructures is successfully achieved with nanoscale spatial resolution. These findings will greatly facilitate the development of DNA nanotechnology-based bottom-up nanofabrication.
Collapse
Affiliation(s)
- Yumeng Zhao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Xuemei Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Rui Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Qian Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Qian Tang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine and State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200120, P. R. China
| |
Collapse
|
26
|
Adsorption behavior of uracil on external surface of MgO nanotubes: A new class of hybrid nano-bio materials. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Ye J, Aftenieva O, Bayrak T, Jain A, König TAF, Erbe A, Seidel R. Complex Metal Nanostructures with Programmable Shapes from Simple DNA Building Blocks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100381. [PMID: 34085729 PMCID: PMC11469289 DOI: 10.1002/adma.202100381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Advances in DNA nanotechnology allow the design and fabrication of highly complex DNA structures, uisng specific programmable interactions between smaller nucleic acid building blocks. To convey this concept to the fabrication of metallic nanoparticles, an assembly platform is developed based on a few basic DNA structures that can serve as molds. Programming specific interactions between these elements allows the assembly of mold superstructures with a range of different geometries. Subsequent seeded growth of gold within the mold cavities enables the synthesis of complex metal structures including tightly DNA-caged particles, rolling-pin- and dumbbell-shaped particles, as well as T-shaped and loop particles with high continuity. The method further supports the formation of higher-order assemblies of the obtained metal geometries. Based on electrical and optical characterizations, it is expected that the developed platform is a valuable tool for a self-assembly-based fabrication of nanoelectronic and nanooptic devices.
Collapse
Affiliation(s)
- Jingjing Ye
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| | - Olha Aftenieva
- Leibniz‐Institut für Polymerforschung Dresden e. V.Hohe Straße 601069DresdenGermany
| | - Türkan Bayrak
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
| | - Archa Jain
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
- Faculty of Electrical Engineering and Information TechnologyChair of Nanoelectronics TechnologiesTechnische Universität Chemnitz09107ChemnitzGermany
| | - Tobias A. F. König
- Leibniz‐Institut für Polymerforschung Dresden e. V.Hohe Straße 601069DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| | - Artur Erbe
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
| | - Ralf Seidel
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| |
Collapse
|
28
|
Conformational Control of DNA Origami by DNA Oligomers, Intercalators and UV Light. Methods Protoc 2021; 4:mps4020038. [PMID: 34067324 PMCID: PMC8163164 DOI: 10.3390/mps4020038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
DNA origami has garnered great attention due to its excellent programmability and precision. It offers a powerful means to create complex nanostructures which may not be possible by other methods. The macromolecular structures may be used as static templates for arranging proteins and other molecules. They are also capable of undergoing structural transformation in response to external signals, which may be exploited for sensing and actuation at the nanoscale. Such on-demand reconfigurations are executed mostly by DNA oligomers through base-pairing and/or strand displacement, demonstrating drastic shape changes between two different states, for example, open and close. Recent studies have developed new mechanisms to modulate the origami conformation in a controllable, progressive manner. Here we present several methods for conformational control of DNA origami nanostructures including chemical adducts and UV light as well as widely applied DNA oligomers. The detailed methods should be useful for beginners in the field of DNA nanotechnology.
Collapse
|
29
|
Shen J, Sun W, Liu D, Schaus T, Yin P. Three-dimensional nanolithography guided by DNA modular epitaxy. NATURE MATERIALS 2021; 20:683-690. [PMID: 33846583 DOI: 10.1038/s41563-021-00930-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Lithographic scaling of periodic three-dimensional patterns is critical for advancing scalable nanomanufacturing. Current state-of-the-art quadruple patterning or extreme-ultraviolet lithography produce a line pitch down to around 30 nm, which might be further scaled to sub-20 nm through complex post-fabrication processes. Herein, we report the use of three-dimensional (3D) DNA nanostructures to scale the line pitch down to 16.2 nm, around 50% smaller than state-of-the-art results. We use a DNA modular epitaxy approach to fabricate 3D DNA masks with prescribed structural parameters (geometry, pitch and critical dimensions) along a designer assembly pathway. Single-run reactive ion etching then transfers the DNA patterns to a Si substrate at a lateral critical dimension of 7 nm and a vertical critical dimension of 2 nm. The nanolithography guided by DNA modular epitaxy achieves a smaller pitch than the projected values for advanced technology nodes in field-effect transistors, and provides a potential complement to the existing lithographic tools for advanced 3D nanomanufacturing.
Collapse
Affiliation(s)
- Jie Shen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Wei Sun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Di Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas Schaus
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Jiang C, Zhang Y, Wang F, Liu H. Toward Smart Information Processing with Synthetic DNA Molecules. Macromol Rapid Commun 2021; 42:e2100084. [PMID: 33864315 DOI: 10.1002/marc.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Indexed: 11/07/2022]
Abstract
DNA, a biological macromolecule, is a naturally evolved information material. From the structural point of view, an individual DNA strand can be considered as a chain of data with its bases working as single units. For decades, due to the high biochemical stability, large information storage capacity, and high recognition specificity, DNA has been recognized as an attractive material for information processing. Especially, the chemical synthesis strategies and DNA sequencing techniques have been rapidly developed recently, further enabling encoding information with synthetic DNA molecules. Herein, recent progresses are summarized on information processing based on synthetic DNA molecules from three aspects including information storage, computation, and encryption, and proposed the challenges and future development directions.
Collapse
Affiliation(s)
- Chu Jiang
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| | - Yinan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Molecular Design and Biomimetics, School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| |
Collapse
|
31
|
Abstract
Structural DNA nanotechnology is a pioneering biotechnology that presents the opportunity to engineer DNA-based hardware that will mediate a profound interface to the nanoscale. To date, an enormous library of shaped 3D DNA nanostructures have been designed and assembled. Moreover, recent research has demonstrated DNA nanostructures that are not only static but can exhibit specific dynamic motion. DNA nanostructures have thus garnered significant research interest as a template for pursuing shape and motion-dependent nanoscale phenomena. Potential applications have been explored in many interdisciplinary areas spanning medicine, biosensing, nanofabrication, plasmonics, single-molecule chemistry, and facilitating biophysical studies. In this review, we begin with a brief overview of general and versatile design techniques for 3D DNA nanostructures as well as some techniques and studies that have focused on improving the stability of DNA nanostructures in diverse environments, which is pivotal for its reliable utilization in downstream applications. Our main focus will be to compile a wide body of existing research on applications of 3D DNA nanostructures that demonstrably rely on the versatility of their mechanical design. Furthermore, we frame reviewed applications into three primary categories, namely encapsulation, surface templating, and nanomechanics, that we propose to be archetypal shape- or motion-related functions of DNA nanostructures found in nanoscience applications. Our intent is to identify core concepts that may define and motivate specific directions of progress in this field as we conclude the review with some perspectives on the future.
Collapse
|
32
|
Xu W, Huang Y, Zhao X, Jiang X, Yang T, Zhu H. Patterning of graphene for highly sensitive strain sensing on various curved surfaces. NANO SELECT 2021. [DOI: 10.1002/nano.202000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Wei Xu
- Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 China
- Microsystem and Terahertz Research Center Institute of Electronic Engineering China Academy of Engineering Physics Mianyang 621900 China
| | - Yuehua Huang
- College of Engineering and Technology Southwest University Chongqing 400715 China
| | - Xuanliang Zhao
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Xin Jiang
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Tingting Yang
- Tribology Research Institute School of Mechanical Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
33
|
Hui L, Nixon R, Tolman N, Mukai J, Bai R, Wang R, Liu H. Area-Selective Atomic Layer Deposition of Metal Oxides on DNA Nanostructures and Its Applications. ACS NANO 2020; 14:13047-13055. [PMID: 33048526 DOI: 10.1021/acsnano.0c04493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate area-selective atomic layer deposition (ALD) of oxides on DNA nanostructures. Area-selective ALD of Al2O3, TiO2, and HfO2 was successfully achieved on both 2D and 3D DNA nanostructures deposited on a polystyrene (PS) substrate. The resulting DNA-inorganic hybrid structure was used as a hard mask to achieve deep etching of a Si wafer for antireflection applications. ALD is a widely used process in coating and thin film deposition; our work points to a way to pattern oxide materials using DNA templates and to enhance the chemical/physical stability of DNA nanostructures for applications in surface engineering.
Collapse
Affiliation(s)
- Liwei Hui
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rachel Nixon
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Nathan Tolman
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jason Mukai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ruobing Bai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
34
|
Shimada T, Huang K, Van Lich L, Ozaki N, Jang B, Kitamura T. Beyond conventional nonlinear fracture mechanics in graphene nanoribbons. NANOSCALE 2020; 12:18363-18370. [PMID: 32870230 DOI: 10.1039/d0nr03836a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Owing to a finite and single-atom-thick two-dimensional structure, graphene nanostructures such as nanoribbons possess outstanding physical properties and unique size-dependent characteristics due to nanoscale defects, especially for mechanical properties. Graphene nanostructures characteristically exhibit strong nonlinearity in deformation and the defect brings about an extremely localized singular stress field of only a few nanometers, which might lead to unique fracture properties. Fundamental understanding of their fracture properties and criteria is, however, seriously underdeveloped and limited to the level of continuum mechanics and linear elasticity. Here, we demonstrate the breakdown of continuum-based fracture criteria for graphene nanoribbons due to the strong nonlinearity and discreteness of atoms emerging with decreasing size and identify the critical sizes for these conventional criteria. We further propose an energy-based criterion considering atomic discrete nature, and show that it can successfully describe the fracture beyond the critical sizes. The complete clarification of fracture criterion for nonlinear graphene with nanoscale singularity contributes not only to the reliable design of graphene-based nanodevices but also to the elucidation of the extreme dimensional limit in fracture mechanics.
Collapse
Affiliation(s)
- Takahiro Shimada
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan.
| | - Kai Huang
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan. and Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China.
| | - Le Van Lich
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan. and School of Materials Science and Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Naoki Ozaki
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan.
| | - Bongkyun Jang
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan. and Department of Applied Nano-mechanics, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| | - Takayuki Kitamura
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan.
| |
Collapse
|
35
|
Thomas G, Diagne CT, Baillin X, Chevolleau T, Charvolin T, Tiron R. DNA Origami for Silicon Patterning. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36799-36809. [PMID: 32678567 DOI: 10.1021/acsami.0c10211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Desoxyribonucleic acid (DNA) origami architectures are a promising tool for ultimate lithography because of their ability to generate nanostructures with a minimum feature size down to 2 nm. In this paper, we developed a method for silicon (Si) nanopatterning to face up current limitations for high-resolution patterning with standard microelectronic processes. For the first time, a 2 nm-thick 2D DNA origami mask, with specific design composed of three different square holes (with a size of 10 and 20 nm), is used for positive pattern transfer into a Si substrate using a 15 nm-thick silicon dioxide (SiO2) layer as an intermediate hard mask. First, the origami mask is transferred onto the SiO2 underlayer, by an HF vapor-etching process. Then, the Si underlayer is etched using an HBr/O2 plasma. Each hole is transferred in the SiO2 layer and the 20 nm-sized holes are transferred into the final stack (Si). The resulting patterns exhibited a lateral resolution in the range of 20 nm and a depth of 40 nm. Patterns are fully characterized by atomic force microscopy, scanning electron microscopy, focused ion beam-transmission electron microscopy, and ellipsometry measurements.
Collapse
Affiliation(s)
| | | | | | | | | | - Raluca Tiron
- CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| |
Collapse
|
36
|
Wei T, Bao L, Hauke F, Hirsch A. Recent Advances in Graphene Patterning. Chempluschem 2020; 85:1655-1668. [PMID: 32757359 DOI: 10.1002/cplu.202000419] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Indexed: 02/04/2023]
Abstract
As an emerging field of research, graphene patterning has received considerable attention because of its ability to tailor the structure of graphene and the respective properties, aiming at practical applications such as electronic devices, catalysts, and sensors. Recent efforts in this field have led to the development of a variety of different approaches to pattern graphene sheets, providing a multitude of graphene patterns with different shapes and sizes. These established patterning techniques in combination with graphene chemistry have paved the road towards highly attractive chemical patterning approaches, establishing a very promising and vigorously developing research topic. In this review, an overview of commonly used strategies is presented that are categorized into top-down and bottom-up routes for graphene patterning, focusing mainly on new advances. Other than the introduction of basic concepts of each method, the advantages/disadvantages are compared as well. In addition, for the first time, an overview of chemical patterning techniques is outlined. At the end, the challenges and future perspectives in the field are envisioned.
Collapse
Affiliation(s)
- Tao Wei
- Department of Chemistry and Pharmacy & Joint Institute of Advance Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Lipiao Bao
- Department of Chemistry and Pharmacy & Joint Institute of Advance Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Frank Hauke
- Department of Chemistry and Pharmacy & Joint Institute of Advance Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advance Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| |
Collapse
|
37
|
Sohn H, Shin WH, Seok D, Lee T, Park C, Oh JM, Kim SY, Seubsai A. Novel Hybrid Conductor of Irregularly Patterned Graphene Mesh and Silver Nanowire Networks. MICROMACHINES 2020; 11:mi11060578. [PMID: 32526961 PMCID: PMC7345882 DOI: 10.3390/mi11060578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
We prepared the hybrid conductor of the Ag nanowire (NW) network and irregularly patterned graphene (GP) mesh with enhanced optical transmittance (~98.5%) and mechano-electric stability (ΔR/Ro: ~42.4% at 200,000 (200k) cycles) under 6.7% strain. Irregularly patterned GP meshes were prepared with a bottom-side etching method using chemical etchant (HNO3). The GP mesh pattern was judiciously and easily tuned by the regulation of treatment time (0–180 min) and concentration (0–20 M) of chemical etchants. As-formed hybrid conductor of Ag NW and GP mesh exhibit enhanced/controllable electrical-optical properties and mechano-electric stabilities; hybrid conductor exhibits enhanced optical transmittance (TT = 98.5%) and improved conductivity (ΔRs: 22%) compared with that of a conventional hybrid conductor at similar TT. It is also noteworthy that our hybrid conductor shows far superior mechano-electric stability (ΔR/Ro: ~42.4% at 200k cycles; TT: ~98.5%) to that of controls (Ag NW (ΔR/Ro: ~293% at 200k cycles), Ag NW-pristine GP hybrid (ΔR/Ro: ~121% at 200k cycles)) ascribed to our unique hybrid structure.
Collapse
Affiliation(s)
- Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (D.S.); (T.L.); (C.P.)
- Correspondence:
| | - Weon Ho Shin
- Department of Electronic Material Engineering, Kwangwoon University, Seoul 01897, Korea; (W.H.S.); (J.-M.O.)
| | - Dohyeong Seok
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (D.S.); (T.L.); (C.P.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (D.S.); (T.L.); (C.P.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (D.S.); (T.L.); (C.P.)
| | - Jong-Min Oh
- Department of Electronic Material Engineering, Kwangwoon University, Seoul 01897, Korea; (W.H.S.); (J.-M.O.)
| | - Se Yun Kim
- Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon 16678, Korea;
| | - Anusorn Seubsai
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
38
|
Sun W, Shen J, Zhao Z, Arellano N, Rettner C, Tang J, Cao T, Zhou Z, Ta T, Streit JK, Fagan JA, Schaus T, Zheng M, Han SJ, Shih WM, Maune HT, Yin P. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020; 368:874-877. [DOI: 10.1126/science.aaz7440] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/09/2020] [Indexed: 01/18/2023]
Abstract
Precise fabrication of semiconducting carbon nanotubes (CNTs) into densely aligned evenly spaced arrays is required for ultrascaled technology nodes. We report the precise scaling of inter-CNT pitch using a supramolecular assembly method called spatially hindered integration of nanotube electronics. Specifically, by using DNA brick crystal-based nanotrenches to align DNA-wrapped CNTs through DNA hybridization, we constructed parallel CNT arrays with a uniform pitch as small as 10.4 nanometers, at an angular deviation <2° and an assembly yield >95%.
Collapse
Affiliation(s)
- Wei Sun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhao Zhao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Noel Arellano
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | | | - Jianshi Tang
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Tianyang Cao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Zhiyu Zhou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Toan Ta
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Jason K. Streit
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Thomas Schaus
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Shu-Jen Han
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - William M. Shih
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Abstract
Recent advances in structural DNA nanotechnology, including DNA origami and DNA bricks, have enabled arbitrarily complexed nanopatterns. However, most of these DNA structures are limited with sub-100 nm dimensions because of the limits from the length of scaffold strand, as well as the sequence library. This review will focus on different strategies for scaling-up DNA self-assembly, including the hierarchical assembly of the preformed DNA building blocks both in solution and on surface, the scaffolded assembly of finite sized DNA structures, the nonhierarchical assembly of single-stranded DNA bricks, and the seed-mediated algorithmic assembly. The design criteria, the building blocks, and the key assembly conditions for each assembly strategy are described. In addition, the future challenges, as well as application potentials of large-area DNA structures, are discussed.
Collapse
Affiliation(s)
- Yahong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
| | - Chaoyong Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
40
|
Shang Y, Li N, Liu S, Wang L, Wang ZG, Zhang Z, Ding B. Site-Specific Synthesis of Silica Nanostructures on DNA Origami Templates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000294. [PMID: 32301202 DOI: 10.1002/adma.202000294] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
DNA origami has been widely investigated as a template for the organization of various functional elements, leading to potential applications in many fields such as biosensing, nanoelectronics, and nanophotonics. However, the synthesis of inorganic nonmetallic nanomaterials with predesigned patterns using DNA origami templates has seldom been explored. Here, a novel method is reported to site-specifically synthesize silica nanostructures with designed patterns on DNA origami templates. The molecular dynamic simulation confirms that the positively charged silica precursors have a stronger electrostatic affinity to protruding double-stranded DNA (dsDNA) than DNA origami surfaces. The work describes a novel strategy to fabricate silica nanostructures with nanoscale precision. Moreover, the site-specific silicification of DNA nanoarchitectures expands the scope of customized synthesis of inorganic nonmetallic nanomaterials.
Collapse
Affiliation(s)
- Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
| | - Shengbo Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
| | - Zhong Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
41
|
Abstract
Nucleic acids hold great promise for bottom-up construction of nanostructures via programmable self-assembly. Especially, the emerging of advanced sequence design principles and the maturation of chemical synthesis of nucleic acids together have led to the rapid development of structural DNA/RNA nanotechnology. Diverse nucleic acids-based nano objects and patterns have been constructed with near-atomic resolutions and with controllable sizes and geometries. The monodispersed distribution of objects, the up-to-submillimeter scalability of patterns, and the excellent feasibility of carrying other materials with spatial and temporal resolutions have made DNA/RNA assemblies extremely unique in molecular engineering. In this review, we summarize recent advances in nucleic acids-based (mainly DNA-based) near-atomic fabrication by focusing on state-of-the-art design techniques, toolkits for DNA/RNA nanoengineering, and related applications in a range of areas.
Collapse
Affiliation(s)
- Kai Xia
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qian Li
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hongzhou Gu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| |
Collapse
|
42
|
Chen X, Miller A, Cao S, Gan Y, Zhang J, He Q, Wang RQ, Yong X, Qin P, Lapizco-Encinas BH, Du K. Rapid Escherichia coli Trapping and Retrieval from Bodily Fluids via a Three-Dimensional Bead-Stacked Nanodevice. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7888-7896. [PMID: 31939648 DOI: 10.1021/acsami.9b19311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel micro- and nanofluidic device stacked with magnetic beads has been developed to efficiently trap, concentrate, and retrieve Escherichia coli (E. coli) from the bacterial suspension and pig plasma. The small voids between the magnetic beads are used to physically isolate the bacteria in the device. We used computational fluid dynamics, three-dimensional (3D) tomography technology, and machine learning to probe and explain the bead stacking in a small 3D space with various flow rates. A combination of beads with different sizes is utilized to achieve a high capture efficiency (∼86%) with a flow rate of 50 μL/min. Leveraging the high deformability of this device, an E. coli sample can be retrieved from the designated bacterial suspension by applying a higher flow rate followed by rapid magnetic separation. This unique function is also utilized to concentrate E. coli cells from the original bacterial suspension. An on-chip concentration factor of ∼11× is achieved by inputting 1300 μL of the E. coli sample and then concentrating it in 100 μL of buffer. Importantly, this multiplexed, miniaturized, inexpensive, and transparent device is easy to fabricate and operate, making it ideal for pathogen separation in both laboratory and point-of-care settings.
Collapse
Affiliation(s)
- Xinye Chen
- Department of Microsystems Engineering , Rochester Institute of Technology , Rochester , New York 14623 , United States
- Department of Mechanical Engineering , Rochester Institute of Technology , Rochester , New York 14623 , United States
| | - Abbi Miller
- Department of Biomedical Engineering , Rochester Institute of Technology , Rochester , New York 14623 , United States
| | - Shengting Cao
- Department of Electrical and Computer Engineering , University of Alabama , Tuscaloosa , Alabama 35401 , United States
| | - Yu Gan
- Department of Electrical and Computer Engineering , University of Alabama , Tuscaloosa , Alabama 35401 , United States
| | - Jie Zhang
- Carollo Engineers, Inc. , Seattle , Washington 98101 , United States
| | - Qian He
- Department of Mechanical Engineering , Rochester Institute of Technology , Rochester , New York 14623 , United States
- Center of Precision Medicine and Healthcare , Tsinghua-Berkeley Shenzhen Institute , Shenzhen , Guangdong Province 518055 , China
| | - Ruo-Qian Wang
- Department of Civil and Environmental Engineering , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08854 , United States
| | - Xin Yong
- Department of Mechanical Engineering , The State University of New York , Binghamton , New York 13902 , United States
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare , Tsinghua-Berkeley Shenzhen Institute , Shenzhen , Guangdong Province 518055 , China
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering , Rochester Institute of Technology , Rochester , New York 14623 , United States
| | - Ke Du
- Department of Microsystems Engineering , Rochester Institute of Technology , Rochester , New York 14623 , United States
- Department of Mechanical Engineering , Rochester Institute of Technology , Rochester , New York 14623 , United States
| |
Collapse
|
43
|
Programming DNA origami patterning with non-canonical DNA-based metallization reactions. Nat Commun 2019; 10:5597. [PMID: 31811136 PMCID: PMC6897912 DOI: 10.1038/s41467-019-13507-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/13/2019] [Indexed: 01/15/2023] Open
Abstract
The inherent specificity of DNA sequence hybridization has been extensively exploited to develop bioengineering applications. Nevertheless, the structural potential of DNA has been far less explored for creating non-canonical DNA-based reactions. Here we develop a DNA origami-enabled highly localized metallization reaction for intrinsic metallization patterning with 10-nm resolution. Both theoretical and experimental studies reveal that low-valence metal ions (Cu2+ and Ag+) strongly coordinate with DNA bases in protruding clustered DNA (pcDNA) prescribed on two-dimensional DNA origami, which results in effective attraction within flexible pcDNA strands for site-specific pcDNA condensation. We find that the metallization reactions occur selectively on prescribed sites while not on origami substrates. This strategy is generically applicable for free-style metal painting of alphabet letters, digits and geometric shapes on all−DNA substrates with near-unity efficiency. We have further fabricated single- and double-layer nanoscale printed circuit board (nano-PCB) mimics, shedding light on bio-inspired fabrication for nanoelectronic and nanophotonic applications. DNA origami has gained great interest for the creation of precise nanostructures. Here, the authors report on the creation of metalized DNA origami structured formed by metal condensation of DNA and nucleated metal growth on the formed DNA nanostructures.
Collapse
|
44
|
|
45
|
Zhang Y, Wang F, Chao J, Xie M, Liu H, Pan M, Kopperger E, Liu X, Li Q, Shi J, Wang L, Hu J, Wang L, Simmel FC, Fan C. DNA origami cryptography for secure communication. Nat Commun 2019; 10:5469. [PMID: 31784537 PMCID: PMC6884444 DOI: 10.1038/s41467-019-13517-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/29/2019] [Indexed: 11/15/2022] Open
Abstract
Biomolecular cryptography exploiting specific biomolecular interactions for data encryption represents a unique approach for information security. However, constructing protocols based on biomolecular reactions to guarantee confidentiality, integrity and availability (CIA) of information remains a challenge. Here we develop DNA origami cryptography (DOC) that exploits folding of a M13 viral scaffold into nanometer-scale self-assembled braille-like patterns for secure communication, which can create a key with a size of over 700 bits. The intrinsic nanoscale addressability of DNA origami additionally allows for protein binding-based steganography, which further protects message confidentiality in DOC. The integrity of a transmitted message can be ensured by establishing specific linkages between several DNA origamis carrying parts of the message. The versatility of DOC is further demonstrated by transmitting various data formats including text, musical notes and images, supporting its great potential for meeting the rapidly increasing CIA demands of next-generation cryptography. Biomolecular cyptography that exploits specific interactions could be used for data encryption. Here the authors use the folding of M13 DNA to encrypt information for secure communication.
Collapse
Affiliation(s)
- Yinan Zhang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210046, China
| | - Mo Xie
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Muchen Pan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Enzo Kopperger
- Physics of Synthetic Biological Systems (E14), Physics Department, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jun Hu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210046, China
| | - Friedrich C Simmel
- Physics of Synthetic Biological Systems (E14), Physics Department, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
46
|
Jun H, Wang X, Bricker WP, Bathe M. Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nat Commun 2019; 10:5419. [PMID: 31780654 PMCID: PMC6882874 DOI: 10.1038/s41467-019-13457-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Wireframe DNA origami has emerged as a powerful approach to fabricating nearly arbitrary 2D and 3D geometries at the nanometer-scale. Complex scaffold and staple routing needed to design wireframe DNA origami objects, however, render fully automated, geometry-based sequence design approaches essential for their synthesis. And wireframe DNA origami structural fidelity can be limited by wireframe edges that are composed only of one or two duplexes. Here we introduce a fully automated computational approach that programs 2D wireframe origami assemblies using honeycomb edges composed of six parallel duplexes. These wireframe assemblies show enhanced structural fidelity from electron microscopy-based measurement of programmed angles compared with identical geometries programmed using dual-duplex edges. Molecular dynamics provides additional theoretical support for the enhanced structural fidelity observed. Application of our top-down sequence design procedure to a variety of complex objects demonstrates its broad utility for programmable 2D nanoscale materials. Wireframe DNA origami is a powerful approach to creating 2D and 3D geometries. Here the authors introduce an automated computational design approach that programs structures with high structural fidelity.
Collapse
Affiliation(s)
- Hyungmin Jun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiao Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - William P Bricker
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
47
|
Partovi-Azar P, Sarap CS, Fyta M. In silico Complexes of Amino Acids and Diamondoids. Chemphyschem 2019; 20:2166-2170. [PMID: 31287610 DOI: 10.1002/cphc.201900394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Indexed: 11/11/2022]
Abstract
We report on the specific interaction of a small diamond-like molecule, known as diamondoid, with single amino-acids forming nano/bio molecular complexes. Using time-dependent density-functional theory calculations we have studied two different relative configurations of three prototypical amino acids, phenylalanine, tyrosine, and tryptophan, with the diamondoid. The optical and charge-transfer properties of these complexes exhibit amino acid and topology specific features which can be directly utilized for in the direction of novel biomolecule detection schemes.
Collapse
Affiliation(s)
- Pouya Partovi-Azar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle (Saale), Germany
| | - Chandra Shekar Sarap
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569, Stuttgart, Germany
| | - Maria Fyta
- Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569, Stuttgart, Germany
| |
Collapse
|
48
|
Shankla M, Aksimentiev A. Step-defect guided delivery of DNA to a graphene nanopore. NATURE NANOTECHNOLOGY 2019; 14:858-865. [PMID: 31384038 PMCID: PMC6863603 DOI: 10.1038/s41565-019-0514-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 06/21/2019] [Indexed: 05/22/2023]
Abstract
Precision placement and transport of biomolecules are critical to many single-molecule manipulation and detection methods. One such method is nanopore sequencing, in which the delivery of biomolecules towards a nanopore controls the method's throughput. Using all-atom molecular dynamics, here we show that the precision transport of biomolecules can be realized by utilizing ubiquitous features of graphene surface-step defects that separate multilayer domains. Subject to an external force, we found that adsorbed DNA moved much faster down a step defect than up, and even faster along the defect edge, regardless of whether the motion was produced by a mechanical force or a solvent flow. We utilized this direction dependency to demonstrate a mechanical analogue of an electric diode and a system for delivering DNA molecules to a nanopore. The defect-guided delivery principle can be used for the separation, concentration and storage of scarce biomolecular species, on-demand chemical reactions and nanopore sensing.
Collapse
Affiliation(s)
- Manish Shankla
- Department of Physics, University of Illinois, Urbana, IL, USA
| | - Aleksei Aksimentiev
- Department of Physics, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
49
|
Kaminska I, Bohlen J, Rocchetti S, Selbach F, Acuna GP, Tinnefeld P. Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners. NANO LETTERS 2019; 19:4257-4262. [PMID: 31251640 DOI: 10.1021/acs.nanolett.9b00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite the thorough investigation of graphene since 2004, altering its surface chemistry and reproducible functionalization remain challenging. This hinders fabrication of more complex hybrid materials with controlled architectures, and as a consequence the development of sensitive and reliable sensors and biological assays. In this contribution, we introduce DNA origami structures as nanopositioners for placing single dye molecules at controlled distances from graphene. The measurements of fluorescence intensity and lifetime of single emitters carried out for distances ranging from 3 to 58 nm confirmed the d-4 dependence of the excitation energy transfer to graphene. Moreover, we determined the characteristic distance for 50% efficiency of the energy transfer from single dyes to graphene to be 17.7 nm. Using pyrene molecules as a glue to immobilize DNA origami nanostructures of various shape on graphene opens new possibilities to develop graphene-based biophysics and biosensing.
Collapse
Affiliation(s)
- I Kaminska
- Institute of Physical Chemistry of the Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - J Bohlen
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - S Rocchetti
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - F Selbach
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - G P Acuna
- Department of Physics , Université de Fribourg , Ch. du Musée 3 , CH-1700 Fribourg , Switzerland
| | - P Tinnefeld
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| |
Collapse
|
50
|
Hui L, Zhang Q, Deng W, Liu H. DNA-Based Nanofabrication: Pathway to Applications in Surface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805428. [PMID: 30811832 DOI: 10.1002/smll.201805428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Indexed: 05/28/2023]
Abstract
This Concept provides an overview of recent developments of DNA-based nanofabrication and discusses its potential applications in the area of surface engineering. The first part of the paper discusses the strength and limitations of existing DNA-based nanofabrication methods. The second part highlights several examples of surface engineering applications involving nano- and microscale surface textures. It finishes with a discussion of the opportunities and remaining challenges of applying DNA-based nanofabrication in surface engineering applications.
Collapse
Affiliation(s)
- Liwei Hui
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Qinmei Zhang
- College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Wei Deng
- College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Haitao Liu
- College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|