1
|
Martín-Galiano AJ, López D. Conservation of HLA Spike Protein Epitopes Supports T Cell Cross-Protection in SARS-CoV-2 Vaccinated Individuals against the Potentially Zoonotic Coronavirus Khosta-2. Int J Mol Sci 2024; 25:6087. [PMID: 38892276 PMCID: PMC11172828 DOI: 10.3390/ijms25116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Heterologous vaccines, which induce immunity against several related pathogens, can be a very useful and rapid way to deal with new pandemics. In this study, the potential impact of licensed COVID-19 vaccines on cytotoxic and helper cell immune responses against Khosta-2, a novel sarbecovirus that productively infects human cells, was analyzed for the 567 and 41 most common HLA class I and II alleles, respectively. Computational predictions indicated that most of these 608 alleles, covering more than 90% of the human population, contain sufficient fully conserved T-cell epitopes between the Khosta-2 and SARS-CoV-2 spike-in proteins. Ninety percent of these fully conserved peptides for class I and 93% for class II HLA molecules were verified as epitopes recognized by CD8+ or CD4+ T lymphocytes, respectively. These results show a very high correlation between bioinformatic prediction and experimental assays, which strongly validates this study. This immunoinformatics analysis allowed a broader assessment of the alleles that recognize these peptides, a global approach at the population level that is not possible with experimental assays. In summary, these findings suggest that both cytotoxic and helper cell immune protection elicited by currently licensed COVID-19 vaccines should be effective against Khosta-2 virus infection. Finally, by being rapidly adaptable to future coronavirus pandemics, this study has potential public health implications.
Collapse
Affiliation(s)
- Antonio J. Martín-Galiano
- Core Scientific and Technical Units, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Daniel López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
2
|
Finnigan JP, Newman JH, Patskovsky Y, Patskovska L, Ishizuka AS, Lynn GM, Seder RA, Krogsgaard M, Bhardwaj N. Structural basis for self-discrimination by neoantigen-specific TCRs. Nat Commun 2024; 15:2140. [PMID: 38459027 PMCID: PMC10924104 DOI: 10.1038/s41467-024-46367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
T cell receptors (TCR) are pivotal in mediating tumour cell cytolysis via recognition of mutation-derived tumour neoantigens (neoAgs) presented by major histocompatibility class-I (MHC-I). Understanding the factors governing the emergence of neoAg from somatic mutations is a major focus of current research. However, the structural and cellular determinants controlling TCR recognition of neoAgs remain poorly understood. This study describes the multi-level analysis of a model neoAg from the B16F10 murine melanoma, H2-Db/Hsf2 p.K72N68-76, as well as its cognate TCR 47BE7. Through cellular, molecular and structural studies we demonstrate that the p.K72N mutation enhances H2-Db binding, thereby improving cell surface presentation and stabilizing the TCR 47BE7 epitope. Furthermore, TCR 47BE7 exhibited high functional avidity and selectivity, attributable to a broad, stringent, binding interface enabling recognition of native B16F10 despite low antigen density. Our findings provide insight into the generation of anchor-residue modified neoAg, and emphasize the value of molecular and structural investigations of neoAg in diverse MHC-I contexts for advancing the understanding of neoAg immunogenicity.
Collapse
Affiliation(s)
- John P Finnigan
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY, USA
- Department of Surgery, Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital, 75 Francis St., Boston, MA, USA
| | - Jenna H Newman
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY, USA
| | - Yury Patskovsky
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Larysa Patskovska
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA
| | - Andrew S Ishizuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Barinthus Biotherapeutics, Germantown, MD, USA
| | - Geoffrey M Lynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Barinthus Biotherapeutics, Germantown, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michelle Krogsgaard
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY, USA.
| | - Nina Bhardwaj
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., New York, NY, USA.
- Department of Medicine, Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Francisco, CA, USA.
| |
Collapse
|
3
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Zheng MZ, Tan TK, Villalon-Letelier F, Lau H, Deng YM, Fritzlar S, Valkenburg SA, Gu H, Poon LL, Reading PC, Townsend AR, Wakim LM. Single-cycle influenza virus vaccine generates lung CD8 + Trm that cross-react against viral variants and subvert virus escape mutants. SCIENCE ADVANCES 2023; 9:eadg3469. [PMID: 37683004 PMCID: PMC10491285 DOI: 10.1126/sciadv.adg3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Influenza virus-specific tissue-resident memory (Trm) CD8+ T cells located along the respiratory tract provide cross-strain protection against a breadth of influenza viruses. We show that immunization with a single-cycle influenza virus vaccine candidate (S-FLU) results in the deposition of influenza virus nucleoprotein (NP)-specific CD8+ Trm along the respiratory tract that were more cross-reactive against viral variants and less likely to drive the development of cytotoxic T lymphocyte (CTL) escape mutants, as compared to the lung memory NP-specific CD8+ T cell pool established following influenza infection. This immune profile was linked to the limited inflammatory response evoked by S-FLU vaccination, which increased TCR repertoire diversity within the memory CD8+ T cell compartment. Cumulatively, this work shows that S-FLU vaccination evokes a clonally diverse, cross-reactive memory CD8+ T cell pool, which protects against severe disease without driving the virus to rapidly evolve and escape, and thus represents an attractive vaccine for use against rapidly mutating influenza viruses.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Fernando Villalon-Letelier
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hilda Lau
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Patrick C. Reading
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, OX3 7FZ Oxford, UK
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Gu H, Quadeer AA, Krishnan P, Ng DYM, Chang LDJ, Liu GYZ, Cheng SMS, Lam TTY, Peiris M, McKay MR, Poon LLM. Within-host genetic diversity of SARS-CoV-2 lineages in unvaccinated and vaccinated individuals. Nat Commun 2023; 14:1793. [PMID: 37002233 PMCID: PMC10063955 DOI: 10.1038/s41467-023-37468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Viral and host factors can shape SARS-CoV-2 evolution. However, little is known about lineage-specific and vaccination-specific mutations that occur within individuals. Here, we analysed deep sequencing data from 2,820 SARS-CoV-2 respiratory samples with different viral lineages to describe the patterns of within-host diversity under different conditions, including vaccine-breakthrough infections. In unvaccinated individuals, variant of Concern (VOC) Alpha, Delta, and Omicron respiratory samples were found to have higher within-host diversity and were under neutral to purifying selection at the full genome level compared to non-VOC SARS-CoV-2. Breakthrough infections in 2-dose or 3-dose Comirnaty and CoronaVac vaccinated individuals did not increase levels of non-synonymous mutations and did not change the direction of selection pressure. Vaccine-induced antibody or T cell responses did not appear to have significant impact on within-host SARS-CoV-2 sequence diversification. Our findings suggest that vaccination does not increase exploration of SARS-CoV-2 protein sequence space and may not facilitate emergence of viral variants.
Collapse
Affiliation(s)
- Haogao Gu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pavithra Krishnan
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Daisy Y M Ng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lydia D J Chang
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gigi Y Z Liu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Samuel M S Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tommy T Y Lam
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3000, Australia
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China.
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Bradley P. Structure-based prediction of T cell receptor:peptide-MHC interactions. eLife 2023; 12:e82813. [PMID: 36661395 PMCID: PMC9859041 DOI: 10.7554/elife.82813] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
The regulatory and effector functions of T cells are initiated by the binding of their cell-surface T cell receptor (TCR) to peptides presented by major histocompatibility complex (MHC) proteins on other cells. The specificity of TCR:peptide-MHC interactions, thus, underlies nearly all adaptive immune responses. Despite intense interest, generalizable predictive models of TCR:peptide-MHC specificity remain out of reach; two key barriers are the diversity of TCR recognition modes and the paucity of training data. Inspired by recent breakthroughs in protein structure prediction achieved by deep neural networks, we evaluated structural modeling as a potential avenue for prediction of TCR epitope specificity. We show that a specialized version of the neural network predictor AlphaFold can generate models of TCR:peptide-MHC interactions that can be used to discriminate correct from incorrect peptide epitopes with substantial accuracy. Although much work remains to be done for these predictions to have widespread practical utility, we are optimistic that deep learning-based structural modeling represents a path to generalizable prediction of TCR:peptide-MHC interaction specificity.
Collapse
Affiliation(s)
- Philip Bradley
- Herbold Computational Biology Program, Division of Public Health Sciences. Fred Hutchinson Cancer CenterSeattleUnited States
- Institute for Protein Design. University of WashingtonSeattleUnited States
| |
Collapse
|
7
|
Muraduzzaman AKM, Illing PT, Mifsud NA, Purcell AW. Understanding the Role of HLA Class I Molecules in the Immune Response to Influenza Infection and Rational Design of a Peptide-Based Vaccine. Viruses 2022; 14:2578. [PMID: 36423187 PMCID: PMC9695287 DOI: 10.3390/v14112578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza A virus is a respiratory pathogen that is responsible for regular epidemics and occasional pandemics that result in substantial damage to life and the economy. The yearly reformulation of trivalent or quadrivalent flu vaccines encompassing surface glycoproteins derived from the current circulating strains of the virus does not provide sufficient cross-protection against mismatched strains. Unlike the current vaccines that elicit a predominant humoral response, vaccines that induce CD8+ T cells have demonstrated a capacity to provide cross-protection against different influenza strains, including novel influenza viruses. Immunopeptidomics, the mass spectrometric identification of human-leukocyte-antigen (HLA)-bound peptides isolated from infected cells, has recently provided key insights into viral peptides that can serve as potential T cell epitopes. The critical elements required for a strong and long-living CD8+ T cell response are related to both HLA restriction and the immunogenicity of the viral peptide. This review examines the importance of HLA and the viral immunopeptidome for the design of a universal influenza T-cell-based vaccine.
Collapse
Affiliation(s)
| | | | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
Nguyen AT, Lau HMP, Sloane H, Jayasinghe D, Mifsud NA, Chatzileontiadou DSM, Grant EJ, Szeto C, Gras S. Homologous peptides derived from influenza A, B and C viruses induce variable CD8 + T cell responses with cross-reactive potential. Clin Transl Immunology 2022; 11:e1422. [PMID: 36275878 PMCID: PMC9581725 DOI: 10.1002/cti2.1422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Objective Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally, infecting humans and causing widespread morbidity and mortality. Here, we investigate the T cell response towards an immunodominant IAV epitope, NP265‐273, and its IBV and ICV homologues, presented by HLA‐A*03:01 molecule expressed in ~ 4% of the global population (~ 300 million people). Methods We assessed the magnitude (tetramer staining) and quality of the CD8+ T cell response (intracellular cytokine staining) towards NP265‐IAV and described the T cell receptor (TCR) repertoire used to recognise this immunodominant epitope. We next assessed the immunogenicity of NP265‐IAV homologue peptides from IBV and ICV and the ability of CD8+ T cells to cross‐react towards these homologous peptides. Furthermore, we determined the structures of NP265‐IAV and NP323‐IBV peptides in complex with HLA‐A*03:01 by X‐ray crystallography. Results Our study provides a detailed characterisation of the CD8+ T cell response towards NP265‐IAV and its IBV and ICV homologues. The data revealed a diverse repertoire for NP265‐IAV that is associated with superior anti‐viral protection. Evidence of cross‐reactivity between the three different influenza virus strain‐derived epitopes was observed, indicating the discovery of a potential vaccination target that is broad enough to cover all three influenza strains. Conclusion We show that while there is a potential to cross‐protect against distinct influenza virus lineages, the T cell response was stronger against the IAV peptide than IBV or ICV, which is an important consideration when choosing targets for future vaccine design.
Collapse
Affiliation(s)
- Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Hiu Ming Peter Lau
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Nicole A Mifsud
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Demetra SM Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia,Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| |
Collapse
|
9
|
Young A. T cells in SARS-CoV-2 infection and vaccination. Ther Adv Vaccines Immunother 2022; 10:25151355221115011. [PMID: 36051003 PMCID: PMC9425900 DOI: 10.1177/25151355221115011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
While antibodies garner the lion’s share of attention in SARS-CoV-2 immunity, cellular immunity (T cells) may be equally, if not more important, in controlling infection. Both CD8+ and CD4+ T cells are elicited earlier and are associated with milder disease, than antibodies, and T-cell activation appears to be necessary for control of infection. Variants of concern (VOCs) such as Omicron have escaped the neutralizing antibody responses after two mRNA vaccine doses, but T-cell immunity is largely intact. The breadth and patient-specific nature of the latter offers a formidable line of defense that can limit the severity of illness, and are likely to be responsible for most of the protection from natural infection or vaccination against VOCs which have evaded the antibody response. Comprehensive searches for T-cell epitopes, T-cell activation from infection and vaccination of specific patient groups, and elicitation of cellular immunity by various alternative vaccine modalities are here reviewed. Development of vaccines that specifically target T cells is called for, to meet the needs of patient groups for whom cellular immunity is weaker, such as the elderly and the immunosuppressed. While VOCs have not yet fully escaped T-cell immunity elicited by natural infection and vaccines, some early reports of partial escape suggest that future VOCs may achieve the dreaded result, dislodging a substantial proportion of cellular immunity, enough to cause a grave public health burden. A proactive, rather than reactive, solution which identifies and targets immutable sequences in SARS-CoV-2, not just those which are conserved, may be the only recourse humankind has to disarm these future VOCs before they disarm us.
Collapse
Affiliation(s)
- Arthur Young
- InvVax, 2265 E. Foohill Blvd., Pasadena, CA 91107, USA
| |
Collapse
|
10
|
Prediction of Conserved HLA Class I and Class II Epitopes from SARS-CoV-2 Licensed Vaccines Supports T-Cell Cross-Protection against SARS-CoV-1. Biomedicines 2022; 10:biomedicines10071622. [PMID: 35884927 PMCID: PMC9313420 DOI: 10.3390/biomedicines10071622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Heterologous immunity-inducing vaccines against different pathogens are necessary to deal with new pandemics. In this study, the possible impact of COVID-19 licensed formulations in the cytotoxic and the helper cellular immune responses against SARS-CoV-1 is analyzed for the 567 and 41 most abundant HLA class I and II alleles, respectively. Computational prediction showed that most of these 608 alleles, which cover >90% of the human population, contain enough conserved T-cell epitopes among SARS-CoV-1 and SARS-CoV-2 spike proteins. In addition, the vast majority of these predicted peptides were defined as epitopes recognized by CD4+ or CD8+ T lymphocytes, showing a very high correlation between the bioinformatics prediction and the experimental assays. These data suggest that both cytotoxic and helper cellular immune protection elicited by the currently licensed COVID-19 vaccines should be effective against SARS-CoV-1 infection. Lastly, this study has potential implications for public health against current and future pandemics, given that the SARS-CoV-1 vaccines in pipeline since the early 20th century could generate similarly cross-protection against COVID-19.
Collapse
|
11
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
12
|
Bull MB, Gu H, Ma FNL, Perera LP, Poon LLM, Valkenburg SA. Next-generation T cell-activating vaccination increases influenza virus mutation prevalence. SCIENCE ADVANCES 2022; 8:eabl5209. [PMID: 35385318 PMCID: PMC8986104 DOI: 10.1126/sciadv.abl5209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
To determine the potential for viral adaptation to T cell responses, we probed the full influenza virus genome by next-generation sequencing directly ex vivo from infected mice, in the context of an experimental T cell-based vaccine, an H5N1-based viral vectored vaccinia vaccine Wyeth/IL-15/5Flu, versus the current standard-of-care, seasonal inactivated influenza vaccine (IIV) and unvaccinated conditions. Wyeth/IL-15/5Flu vaccination was coincident with increased mutation incidence and frequency across the influenza genome; however, mutations were not enriched within T cell epitope regions, but high allele frequency mutations within conserved hemagglutinin stem regions and PB2 mammalian adaptive mutations arose. Depletion of CD4+ and CD8+ T cell subsets led to reduced frequency of mutants in vaccinated mice; therefore, vaccine-mediated T cell responses were important drivers of virus diversification. Our findings suggest that Wyeth/IL-15/5Flu does not generate T cell escape mutants but increases stochastic events for virus adaptation by stringent bottlenecks.
Collapse
Affiliation(s)
- Maireid B. Bull
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fionn N. L. Ma
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1374, USA
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Martins de Camargo M, Caetano AR, Ferreira de Miranda Santos IK. Evolutionary pressures rendered by animal husbandry practices for avian influenza viruses to adapt to humans. iScience 2022; 25:104005. [PMID: 35313691 PMCID: PMC8933668 DOI: 10.1016/j.isci.2022.104005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Commercial poultry operations produce and crowd billions of birds every year, which is a source of inexpensive animal protein. Commercial poultry is intensely bred for desirable production traits, and currently presents very low variability at the major histocompatibility complex. This situation dampens the advantages conferred by the MHC’s high genetic variability, and crowding generates immunosuppressive stress. We address the proteins of influenza A viruses directly and indirectly involved in host specificities. We discuss how mutants with increased virulence and/or altered host specificity may arise if few class I alleles are the sole selective pressure on avian viruses circulating in immunocompromised poultry. This hypothesis is testable with peptidomics of MHC ligands. Breeding strategies for commercial poultry can easily and inexpensively include high variability of MHC as a trait of interest, to help save billions of dollars as a disease burden caused by influenza and decrease the risk of selecting highly virulent strains.
Collapse
|
14
|
Bull MB, Cohen CA, Leung NH, Valkenburg SA. Universally Immune: How Infection Permissive Next Generation Influenza Vaccines May Affect Population Immunity and Viral Spread. Viruses 2021; 13:1779. [PMID: 34578360 PMCID: PMC8472936 DOI: 10.3390/v13091779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Next generation influenza vaccines that target conserved epitopes are becoming a clinical reality but still have challenges to overcome. Universal next generation vaccines are considered a vital tool to combat future pandemic viruses and have the potential to vastly improve long-term protection against seasonal influenza viruses. Key vaccine strategies include HA-stem and T cell activating vaccines; however, they could have unintended effects for virus adaptation as they recognise the virus after cell entry and do not directly block infection. This may lead to immune pressure on residual viruses. The potential for immune escape is already evident, for both the HA stem and T cell epitopes, and mosaic approaches for pre-emptive immune priming may be needed to circumvent key variants. Live attenuated influenza vaccines have not been immunogenic enough to boost T cells in adults with established prior immunity. Therefore, viral vectors or peptide approaches are key to harnessing T cell responses. A plethora of viral vector vaccines and routes of administration may be needed for next generation vaccine strategies that require repeated long-term administration to overcome vector immunity and increase our arsenal against diverse influenza viruses.
Collapse
Affiliation(s)
- Maireid B. Bull
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| | - Carolyn A. Cohen
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| | - Nancy H.L. Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, China;
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China; (M.B.B.); (C.A.C.)
| |
Collapse
|
15
|
Broadly Protective CD8 + T Cell Immunity to Highly Conserved Epitopes Elicited by Heat Shock Protein gp96-Adjuvanted Influenza Monovalent Split Vaccine. J Virol 2021; 95:JVI.00507-21. [PMID: 33827939 DOI: 10.1128/jvi.00507-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, immunization with inactivated influenza virus vaccines is the most prevalent method to prevent infections. However, licensed influenza vaccines provide only strain-specific protection and need to be updated and administered yearly; thus, new vaccines that provide broad protection against multiple influenza virus subtypes are required. In this study, we demonstrated that intradermal immunization with gp96-adjuvanted seasonal influenza monovalent H1N1 split vaccine could induce cross-protection against both group 1 and group 2 influenza A viruses in BALB/c mouse models. Vaccination in the presence of gp96 induced an apparently stronger antigen-specific T cell response than split vaccine alone. Immunization with the gp96-adjuvanted vaccine also elicited an apparent cross-reactive CD8+ T cell response that targeted the conserved epitopes across different influenza virus strains. These cross-reactive CD8+ T cells might be recalled from a pool of memory cells established after vaccination and recruited from extrapulmonary sites to facilitate viral clearance. Of note, six highly conserved CD8+ T epitopes from the viral structural proteins hemagglutinin (HA), M1, nucleoprotein (NP), and PB1 were identified to play a synergistic role in gp96-mediated cross-protection. Comparative analysis showed that most of conservative epitope-specific cytotoxic T lymphocytes (CTLs) apparently induced by heterologous virus infection were also activated by gp96-adjuvanted vaccine, thus resulting in broader protective CD8+ T cell responses. Our results demonstrated the advantage of adding gp96 to an existing seasonal influenza vaccine to improve its ability to provide better cross-protection.IMPORTANCE Owing to continuous mutations in hemagglutinin (HA) or neuraminidase (NA) or recombination of the gene segments between different strains, influenza viruses can escape the immune responses developed by vaccination. Thus, new strategies aimed to efficiently activate immune response that targets to conserved regions among different influenza viruses are urgently needed in designing broad-spectrum influenza vaccine. Heat shock protein gp96 is currently the only natural T cell adjuvant with special ability to cross-present coupled antigen to major histocompatibility complex class I (MHC-I) molecule and activate the downstream antigen-specific CTL response. In this study, we demonstrated the advantages of adding gp96 to monovalent split influenza virus vaccine to improve its ability to provide cross-protection in the BALB/c mouse model and proved that a gp96-activated cross-reactive CTL response is indispensable in our vaccine strategy. Due to its unique adjuvant properties, gp96 might be a promising adjuvant for designing new broad-spectrum influenza vaccines.
Collapse
|
16
|
Kedzierska K, Koutsakos M. The ABC of Major Histocompatibility Complexes and T Cell Receptors in Health and Disease. Viral Immunol 2021; 33:160-178. [PMID: 32286182 PMCID: PMC7185345 DOI: 10.1089/vim.2019.0184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A seminal discovery of major histocompatibility complex (MHC) restriction in T cell recognition by Peter Doherty and Rolf Zinkernagel has led to 45 years of exciting research on the mechanisms governing peptide MHC (pMHC) recognition by T cell receptors (TCRs) and their importance in health and disease. T cells provide a significant level of protection against viral, bacterial, and parasitic infections, as well as tumors, hence, the generation of protective T cell responses is a primary goal for cell-mediated vaccines and immunotherapies. Understanding the mechanisms underlying generation of optimal high-avidity effector T cell responses, memory development, maintenance, and recall is of major importance for the rational design of preventative and therapeutic vaccines/immunotherapies. In this review, we summarize the lessons learned over the last four decades and outline our current understanding of the basis and consequences of pMHC/TCR interactions on T cell development and function, and TCR diversity and composition, driving better clinical outcomes and prevention of viral escape. We also discuss the current models of T cell memory formation and determinants of immunodominant T cell responses in animal models and humans. As TCR composition and diversity can affect both the protective capacity of T cells and protection against viral escape, defining the spectrum of TCR selection has implications for improving the functional efficacy of effector T cell responsiveness and memory formation.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Exploring the Potential of T-Cells for a Universal Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8040598. [PMID: 33050614 PMCID: PMC7711579 DOI: 10.3390/vaccines8040598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
|
18
|
Assmus LM, Guan J, Wu T, Farenc C, Sng XYX, Zareie P, Nguyen A, Nguyen AT, Tscharke DC, Thomas PG, Rossjohn J, Gras S, Croft NP, Purcell AW, La Gruta NL. Overlapping Peptides Elicit Distinct CD8 + T Cell Responses following Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:1731-1742. [PMID: 32868409 DOI: 10.4049/jimmunol.2000689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
The presentation of pathogen-derived peptides on MHC class I molecules is essential for the initiation of adaptive CD8+ T cell immunity, which in turn is critical for effective control of many significant human infections. The identification of immunogenic pathogen-derived epitopes and a detailed understanding of how they are recognized by TCRs is essential for the design of effective T cell-based vaccines. In this study, we have characterized the T cell recognition and immune responses in mice to two naturally presented influenza A virus-derived peptides previously identified from virally infected cells via mass spectrometry. These neuraminidase-derived peptides, NA181-190 (SGPDNGAVAV) and NA181-191 (SGPDNGAVAVL), are completely overlapping with the exception of a 1 aa extension at the C terminus of the longer peptide. This minor peptidic difference results in the induction of two completely independent and non-cross-reactive T cell populations that show distinct functional characteristics after influenza A virus infection of B6 mice. We show that the unique TCR reactivity to the overlapping peptides is present in the naive repertoire prior to immune expansion in B6 mice. Moreover, we provide a structural explanation underlying the distinct CD8+ T cell reactivities, which reinforces the concept that peptide length is a key determinant of Ag specificity in CD8+ T cell responses.
Collapse
Affiliation(s)
- Lisa M Assmus
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Institute of Experimental Immunology, University Hospital Bonn, 53105 Bonn, Germany
| | - Jing Guan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ting Wu
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Carine Farenc
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Xavier Y X Sng
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Angela Nguyen
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia;
| |
Collapse
|
19
|
Sant S, Quiñones-Parra SM, Koutsakos M, Grant EJ, Loudovaris T, Mannering SI, Crowe J, van de Sandt CE, Rimmelzwaan GF, Rossjohn J, Gras S, Loh L, Nguyen THO, Kedzierska K. HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS Pathog 2020; 16:e1008714. [PMID: 32750095 PMCID: PMC7428290 DOI: 10.1371/journal.ppat.1008714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/14/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Seasonal influenza virus infections cause 290,000–650,000 deaths annually and severe morbidity in 3–5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαβ clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαβ clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases. Annual influenza infections cause significant morbidity and morbidity globally. Established T-cell immunity directed at conserved viral regions provides some protection against influenza viruses and promotes rapid recovery, leading to better clinical outcomes. Killer CD8+ T-cells recognising viral peptides in a context of HLA-I glycoproteins, provide the broadest ever reported immunity across distinct influenza strains and subtypes. We asked whether the expression of certain HLA-I alleles affects CD8+ T cells responses. Our study clearly illustrates altered immunodominance hierarchies and immunodomination within broadly-cross-reactive influenza-specific CD8+ T-cells in individuals expressing two or more universal HLA-I alleles, key for T cell-directed vaccines and immunotherapies.
Collapse
Affiliation(s)
- Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Sergio M. Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Emma J. Grant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Guus F. Rimmelzwaan
- National Influenza Center and Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| |
Collapse
|
20
|
Editorial of Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8030376. [PMID: 32664485 PMCID: PMC7565606 DOI: 10.3390/vaccines8030376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
|
21
|
L'Huillier AG, Ferreira VH, Hirzel C, Nellimarla S, Ku T, Natori Y, Humar A, Kumar D. T-cell responses following Natural Influenza Infection or Vaccination in Solid Organ Transplant Recipients. Sci Rep 2020; 10:10104. [PMID: 32572168 PMCID: PMC7308384 DOI: 10.1038/s41598-020-67172-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/11/2020] [Indexed: 11/09/2022] Open
Abstract
Little is known about cell-mediated immune responses to natural influenza infection in solid organ transplant (SOT) patients. The aim of our study was to evaluate the CD4+ and CD8+ responses to influenza A and B infection in a cohort of SOT patients. We collected peripheral blood mononuclear cells at influenza diagnosis and four weeks later from 31 SOT patients during the 2017–2018 influenza season. Infection-elicited influenza-specific CD4+ and CD8+ T-cell responses were measured using flow cytometry and intracellular cytokine staining and compared to responses following influenza vaccine in SOT patients. Natural infection was associated with a significant increase in CD4+ T-cell responses. For example, polyfunctional cells increased from 21 to 782 and from 193 to 1436 cells per 106 CD4+ T-cells among influenza A/H3N2 and B-infected patients (p = 0.006 and 0.004 respectively). Moreover, infection-elicited CD4+ responses were superior than vaccine-elicited responses for influenza A/H1N1 (931 vs 1; p = 0.026), A/H3N2 (647 vs 1; p = 0.041) and B (619 vs 1; p = 0.004). Natural influenza infection triggers a significant increase in CD4+ T-cell responses in SOT patients. Infection elicits significantly stronger CD4+ responses compared to the influenza vaccine and thereby likely elicits better protection against reinfection.
Collapse
Affiliation(s)
- Arnaud G L'Huillier
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University Hospitals of Geneva & University of Geneva Medical School, Geneva, Switzerland.,Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Victor H Ferreira
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Cedric Hirzel
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.,Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Terrance Ku
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Yoichiro Natori
- Division of Infectious Disease, University of Miami Miller School of Medicine, Miami, Florida, USA.,Miami Transplant Institute, Miami, Florida, USA
| | - Atul Humar
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.
| | - Deepali Kumar
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Elbahesh H, Saletti G, Gerlach T, Rimmelzwaan GF. Broadly protective influenza vaccines: design and production platforms. Curr Opin Virol 2019; 34:1-9. [DOI: 10.1016/j.coviro.2018.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
|
23
|
Broad CD8 + T cell cross-recognition of distinct influenza A strains in humans. Nat Commun 2018; 9:5427. [PMID: 30575715 PMCID: PMC6303473 DOI: 10.1038/s41467-018-07815-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/23/2018] [Indexed: 11/29/2022] Open
Abstract
Newly-emerged and vaccine-mismatched influenza A viruses (IAVs) result in a rapid global spread of the virus due to minimal antibody-mediated immunity. In that case, established CD8+ T-cells can reduce disease severity. However, as mutations occur sporadically within immunogenic IAV-derived T-cell peptides, understanding of T-cell receptor (TCRαβ) cross-reactivity towards IAV variants is needed for a vaccine design. Here, we investigate TCRαβ cross-strain recognition across IAV variants within two immunodominant human IAV-specific CD8+ T-cell epitopes, HLA-B*37:01-restricted NP338-346 (B37-NP338) and HLA-A*01:01-restricted NP44-52 (A1-NP44). We find high abundance of cross-reactive TCRαβ clonotypes recognizing distinct IAV variants. Structures of the wild-type and variant peptides revealed preserved conformation of the bound peptides. Structures of a cross-reactive TCR-HLA-B37-NP338 complex suggest that the conserved conformation of the variants underpins TCR cross-reactivity. Overall, cross-reactive CD8+ T-cell responses, underpinned by conserved epitope structure, facilitates recognition of distinct IAV variants, thus CD8+ T-cell-targeted vaccines could provide protection across different IAV strains. Mutations within immunological epitope containing regions of influenza A virus can impair the established immune response between influenza strains and could impact rational vaccine design. Here Grant et al. examine the presence, structural impact and cross reactivity of two human immunodominant influenza epitope variants.
Collapse
|
24
|
Epstein SL. Universal Influenza Vaccines: Progress in Achieving Broad Cross-Protection In Vivo. Am J Epidemiol 2018; 187:2603-2614. [PMID: 30084906 DOI: 10.1093/aje/kwy145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Despite all we have learned since 1918 about influenza virus and immunity, available influenza vaccines remain inadequate to control outbreaks of unexpected strains. Universal vaccines not requiring strain matching would be a major improvement. Their composition would be independent of predicting circulating viruses and thus potentially effective against unexpected drift or pandemic strains. This commentary explores progress with candidate universal vaccines based on various target antigens. Candidates include vaccines based on conserved viral proteins such as nucleoprotein and matrix, on the conserved hemagglutinin (HA) stem, and various combinations. Discussion covers the differing evidence for each candidate vaccine demonstrating protection in animals against influenza viruses of widely divergent HA subtypes and groups; durability of protection; routes of administration, including mucosal, providing local immunity; and reduction of transmission. Human trials of some candidate universal vaccines have been completed or are underway. Interestingly, the HA stem, like nucleoprotein and matrix, induces immunity that permits some virus replication and emergence of escape mutants fit enough to cause disease. Vaccination with multiple target antigens will thus have advantages over use of single antigens. Ultimately, a universal vaccine providing long-term protection against all influenza virus strains might contribute to pandemic control and routine vaccination.
Collapse
Affiliation(s)
- Suzanne L Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
25
|
Korenkov D, Isakova-Sivak I, Rudenko L. Basics of CD8 T-cell immune responses after influenza infection and vaccination with inactivated or live attenuated influenza vaccine. Expert Rev Vaccines 2018; 17:977-987. [DOI: 10.1080/14760584.2018.1541407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniil Korenkov
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russia
| |
Collapse
|
26
|
Heterosubtypic Protections against Human-Infecting Avian Influenza Viruses Correlate to Biased Cross-T-Cell Responses. mBio 2018; 9:mBio.01408-18. [PMID: 30087171 PMCID: PMC6083907 DOI: 10.1128/mbio.01408-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Against a backdrop of seasonal influenza virus epidemics, emerging avian influenza viruses (AIVs) occasionally jump from birds to humans, posing a public health risk, especially with the recent sharp increase in H7N9 infections. Evaluations of cross-reactive T-cell immunity to seasonal influenza viruses and human-infecting AIVs have been reported previously. However, the roles of influenza A virus-derived epitopes in the cross-reactive T-cell responses and heterosubtypic protections are not well understood; understanding those roles is important for preventing and controlling new emerging AIVs. Here, among the members of a healthy population presumed to have previously been infected by pandemic H1N1 (pH1N1), we found that pH1N1-specific T cells showed cross- but biased reactivity to human-infecting AIVs, i.e., H5N1, H6N1, H7N9, and H9N2, which correlates with distinct protections. Through a T-cell epitope-based phylogenetic analysis, the cellular immunogenic clustering expanded the relevant conclusions to a broader range of virus strains. We defined the potential key conserved epitopes required for cross-protection and revealed the molecular basis for the immunogenic variations. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development. We revealed preexisting but biased T-cell reactivity of pH1N1 influenza virus to human-infecting AIVs, which provided distinct protections. The cross-reactive T-cell recognition had a regular pattern that depended on the T-cell epitope matrix revealed via bioinformatics analysis. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development.
Collapse
|
27
|
Intrahost Selection Pressures Drive Rapid Dengue Virus Microevolution in Acute Human Infections. Cell Host Microbe 2018; 22:400-410.e5. [PMID: 28910637 PMCID: PMC5616187 DOI: 10.1016/j.chom.2017.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 11/24/2022]
Abstract
Dengue, caused by four dengue virus serotypes (DENV-1 to DENV-4), is a highly prevalent mosquito-borne viral disease in humans. Yet, selection pressures driving DENV microevolution within human hosts (intrahost) remain unknown. We employed a whole-genome segmented amplification approach coupled with deep sequencing to profile DENV-3 intrahost diversity in peripheral blood mononuclear cell (PBMC) and plasma samples from 77 dengue patients. DENV-3 intrahost diversity appears to be driven by immune pressures as well as replicative success in PBMCs and potentially other replication sites. Hotspots for intrahost variation were detected in 59%-78% of patients in the viral Envelope and pre-Membrane/Membrane proteins, which together form the virion surface. Dominant variants at the hotspots arose via convergent microevolution, appear to be immune-escape variants, and were evolutionarily constrained at the macro level due to viral replication defects. Dengue is thus an example of an acute infection in which selection pressures within infected individuals drive rapid intrahost virus microevolution.
Collapse
|
28
|
Sant S, Grzelak L, Wang Z, Pizzolla A, Koutsakos M, Crowe J, Loudovaris T, Mannering SI, Westall GP, Wakim LM, Rossjohn J, Gras S, Richards M, Xu J, Thomas PG, Loh L, Nguyen THO, Kedzierska K. Single-Cell Approach to Influenza-Specific CD8 + T Cell Receptor Repertoires Across Different Age Groups, Tissues, and Following Influenza Virus Infection. Front Immunol 2018; 9:1453. [PMID: 29997621 PMCID: PMC6030351 DOI: 10.3389/fimmu.2018.01453] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells recognizing antigenic peptides derived from conserved internal viral proteins confer broad protection against distinct influenza viruses. As memory CD8+ T cells change throughout the human lifetime and across tissue compartments, we investigated how T cell receptor (TCR) composition and diversity relate to memory CD8+ T cells across anatomical sites and immunological phases of human life. We used ex vivo peptide-HLA tetramer magnetic enrichment, single-cell multiplex RT-PCR for both the TCR-alpha (TCRα) and TCR-beta (TCRβ) chains, and new TCRdist and grouping of lymphocyte interactions by paratope hotspots (GLIPH) algorithms to compare TCRs directed against the most prominent human influenza epitope, HLA-A*02:01-M158–66 (A2+M158). We dissected memory TCR repertoires directed toward A2+M158 CD8+ T cells within human tissues and compared them to human peripheral blood of young and elderly adults. Furthermore, we compared these memory CD8+ T cell repertoires to A2+M158 CD8+ TCRs during acute influenza disease in patients hospitalized with avian A/H7N9 virus. Our study provides the first ex vivo comparative analysis of paired antigen-specific TCR-α/β clonotypes across different tissues and peripheral blood across different age groups. We show that human A2+M158 CD8+ T cells can be readily detected in human lungs, spleens, and lymph nodes, and that tissue A2+M158 TCRαβ repertoires reflect A2+M158 TCRαβ clonotypes derived from peripheral blood in healthy adults and influenza-infected patients. A2+M158 TCRαβ repertoires displayed distinct features only in elderly adults, with large private TCRαβ clonotypes replacing the prominent and public TRBV19/TRAV27 TCRs. Our study provides novel findings on influenza-specific TCRαβ repertoires within human tissues, raises the question of how we can prevent the loss of optimal TCRαβ signatures with aging, and provides important insights into the rational design of T cell-mediated vaccines and immunotherapies.
Collapse
Affiliation(s)
- Sneha Sant
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ludivine Grzelak
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Zhongfang Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Angela Pizzolla
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Glen P Westall
- Lung Transplant Unit, Alfred Hospital, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,School of Medicine, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Michael Richards
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Rowntree LC, Nguyen THO, Halim H, Purcell AW, Rossjohn J, Gras S, Kotsimbos TC, Mifsud NA. Inability To Detect Cross-Reactive Memory T Cells Challenges the Frequency of Heterologous Immunity among Common Viruses. THE JOURNAL OF IMMUNOLOGY 2018; 200:3993-4003. [DOI: 10.4049/jimmunol.1800010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023]
|
30
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
31
|
Korenkov D, Nguyen THO, Isakova-Sivak I, Smolonogina T, Brown LE, Kedzierska K, Rudenko L. Live Attenuated Influenza Vaccines engineered to express the nucleoprotein of a recent isolate stimulate human influenza CD8 + T cells more relevant to current infections. Hum Vaccin Immunother 2018; 14:941-946. [PMID: 29252117 DOI: 10.1080/21645515.2017.1417713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Live attenuated influenza vaccines (LAIV) induce CD8+ T lymphocyte responses that play an important role in killing virus-infected cells. Despite the relative conservation of internal influenza A proteins, the epitopes recognized by T cells can undergo drift under immune pressure. The internal proteins of Russian LAIVs are derived from the master donor virus A/Leningrad/134/17/57 (Len/17) isolated 60 years ago and as such, some CD8+ T cell epitopes may vary between the vaccine and circulating wild-type strains. To partially overcome this issue, the nucleoprotein (NP) gene of wild-type virus can be incorporated into LAIV reassortant virus, along with the HA and NA genes. The present study compares the human CD8+ T cell memory responses to H3N2 LAIVs with the Len/17 or the wild-type NP using an in vitro model.
Collapse
Affiliation(s)
- D Korenkov
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia.,b Department of Microbiology & Immunology , University of Melbourne, at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - T H O Nguyen
- b Department of Microbiology & Immunology , University of Melbourne, at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - I Isakova-Sivak
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - T Smolonogina
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| | - L E Brown
- b Department of Microbiology & Immunology , University of Melbourne, at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - K Kedzierska
- b Department of Microbiology & Immunology , University of Melbourne, at The Peter Doherty Institute for Infection & Immunity , Melbourne , VIC , Australia
| | - L Rudenko
- a Department of Virology , Institute of Experimental Medicine , Saint Petersburg , Russia
| |
Collapse
|
32
|
Innate and adaptive T cells in influenza disease. Front Med 2018; 12:34-47. [DOI: 10.1007/s11684-017-0606-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
|
33
|
Hafstrand I, Badia-Martinez D, Josey BJ, Norström M, Buratto J, Pellegrino S, Duru AD, Sandalova T, Achour A. Crystal structures of H-2Db in complex with the LCMV-derived peptides GP92 and GP392 explain pleiotropic effects of glycosylation on antigen presentation and immunogenicity. PLoS One 2017; 12:e0189584. [PMID: 29253009 PMCID: PMC5734757 DOI: 10.1371/journal.pone.0189584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 01/16/2023] Open
Abstract
Post-translational modifications significantly broaden the epitope repertoire for major histocompatibility class I complexes (MHC-I) and may allow viruses to escape immune recognition. Lymphocytic choriomeningitis virus (LCMV) infection of H-2b mice generates CD8+ CTL responses directed towards several MHC-I-restricted epitopes including the peptides GP92 (CSANNSHHYI) and GP392 (WLVTNGSYL), both with a N-glycosylation site. Interestingly, glycosylation has different effects on the immunogenicity and association capacity of these two epitopes to H-2Db. To assess the structural bases underlying these functional results, we determined the crystal structures of H-2Db in complex with GP92 (CSANNSHHYI) and GP392 (WLVTNGSYL) to 2.4 and 2.5 Å resolution, respectively. The structures reveal that while glycosylation of GP392 most probably impairs binding, the glycosylation of the asparagine residue in GP92, which protrudes towards the solvent, possibly allows for immune escape and/or forms a neo-epitope that may select for a different set of CD8 T cells. Altogether, the presented results provide a structural platform underlying the effects of post-translational modifications on epitope binding and/or immunogenicity, resulting in viral immune escape.
Collapse
Affiliation(s)
- Ida Hafstrand
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Daniel Badia-Martinez
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Benjamin John Josey
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United State of America
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United State of America
| | - Melissa Norström
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jérémie Buratto
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Sara Pellegrino
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Adil Doganay Duru
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, United State of America
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United State of America
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
34
|
Van Braeckel-Budimir N, Gras S, Ladell K, Josephs TM, Pewe L, Urban SL, Miners KL, Farenc C, Price DA, Rossjohn J, Harty JT. A T Cell Receptor Locus Harbors a Malaria-Specific Immune Response Gene. Immunity 2017; 47:835-847.e4. [PMID: 29150238 DOI: 10.1016/j.immuni.2017.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/02/2017] [Accepted: 10/26/2017] [Indexed: 01/05/2023]
Abstract
Immune response (Ir) genes, originally proposed by Baruj Benacerraf to explain differential antigen-specific responses in animal models, have become synonymous with the major histocompatibility complex (MHC). We discovered a non-MHC-linked Ir gene in a T cell receptor (TCR) locus that was required for CD8+ T cell responses to the Plasmodium berghei GAP5040-48 epitope in mice expressing the MHC class I allele H-2Db. GAP5040-48-specific CD8+ T cell responses emerged from a very large pool of naive Vβ8.1+ precursors, which dictated susceptibility to cerebral malaria and conferred protection against recombinant Listeria monocytogenes infection. Structural analysis of a prototypical Vβ8.1+ TCR-H-2Db-GAP5040-48 ternary complex revealed that germline-encoded complementarity-determining region 1β residues present exclusively in the Vβ8.1 segment mediated essential interactions with the GAP5040-48 peptide. Collectively, these findings demonstrated that Vβ8.1 functioned as an Ir gene that was indispensable for immune reactivity against the malaria GAP5040-48 epitope.
Collapse
Affiliation(s)
| | - Stephanie Gras
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Tracy M Josephs
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lecia Pewe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Stina L Urban
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
35
|
Ernst JD. Antigenic Variation and Immune Escape in the MTBC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:171-190. [PMID: 29116635 DOI: 10.1007/978-3-319-64371-7_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbes that infect other organisms encounter host immune responses, and must overcome or evade innate and adaptive immune responses to successfully establish infection. Highly successful microbial pathogens, including M. tuberculosis, are able to evade adaptive immune responses (mediated by antibodies and/or T lymphocytes) and thereby establish long-term chronic infection. One mechanism that diverse pathogens use to evade adaptive immunity is antigenic variation, in which structural variants emerge that alter recognition by established immune responses and allow those pathogens to persist and/or to infect previously-immune hosts. Despite the wide use of antigenic variation by diverse pathogens, this mechanism appears to be infrequent in M. tuberculosis, as indicated by findings that known and predicted human T cell epitopes in this organism are highly conserved, although there are exceptions. These findings have implications for diagnostic tests that are based on measuring host immune responses, and for vaccine design and development.
Collapse
Affiliation(s)
- Joel D Ernst
- Division of Infectious Diseases and Immunology, Departments of Medicine, Microbiology, and Pathology, New York University School of Medicine, Smilow Building, 9th floor, Rooms 901-907, 522 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
36
|
Kossyvakis A, Mentis AFA, Tryfinopoulou K, Pogka V, Kalliaropoulos A, Antalis E, Lytras T, Meijer A, Tsiodras S, Karakitsos P, Mentis AF. Antiviral susceptibility profile of influenza A viruses; keep an eye on immunocompromised patients under prolonged treatment. Eur J Clin Microbiol Infect Dis 2016; 36:361-371. [PMID: 27848039 DOI: 10.1007/s10096-016-2809-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/03/2016] [Indexed: 11/24/2022]
Abstract
There was an increase in severe and fatal influenza cases in Greece during the 2011-2015 post-pandemic period. To investigate causality, we determined neuraminidase (NA) inhibitor susceptibility and resistance-conferring NA and hemagglutinin (HA) mutations in circulating influenza type A viruses during the pandemic (2009-2010) and post-pandemic periods in Greece. One hundred thirty-four influenza A(H1N1)pdm09 and 95 influenza A(H3N2) viruses submitted to the National Influenza Reference Laboratory of Southern Greece were tested for susceptibility to oseltamivir and zanamivir. Antiviral resistance was assessed by neuraminidase sequence analysis, as well as the fluorescence-based 50 % inhibitory concentration (IC50) method. Five influenza A(H1N1)pdm09 viruses (2.2 %) showed significantly reduced inhibition by oseltamivir (average IC50 300.60nM vs. 1.19nM) by Gaussian kernel density plot analysis. These viruses were isolated from immunocompromised patients and harbored the H275Y oseltamivir resistance-conferring NA substitution. All A(H1N1)pdm09 viruses were zanamivir-susceptible, and all A(H3N2) viruses were susceptible to both drugs. Oseltamivir-resistant viruses did not form a distinct cluster by phylogenetic analysis. Permissive mutations were detected in immunogenic and non immunogenic NA regions of both oseltamivir- resistant and susceptible viruses in the post-pandemic seasons. Several amino acid substitutions in the HA1 domain of the HA gene of post-pandemic viruses were identified. This study indicated low resistance to NAIs among tested influenza viruses. Antiviral resistance emerged only in immunocompromised patients under long-term oseltamivir treatment. Sequential sample testing in this vulnerable group of patients is recommended to characterise resistance or reinfection and viral evolution.
Collapse
Affiliation(s)
- A Kossyvakis
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece
| | - A-F A Mentis
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece.,Johns Hopkins University, AAP, Baltimore, MD, USA
| | - K Tryfinopoulou
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden.,Antimicrobial Resistance and Healthcare-associated Infections Laboratory, National School of Public Health, Athens, Greece.,Hellenic Central Public Health Laboratory, Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | - V Pogka
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece
| | - A Kalliaropoulos
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece
| | - E Antalis
- 4th Academic Department of Internal Medicine and Infectious Diseases, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - T Lytras
- Department of Epidemiological Surveillance and Intervention, Hellenic Centre for Disease Control and Prevention, Athens, Greece.,Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A Meijer
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, Netherlands
| | - S Tsiodras
- 4th Academic Department of Internal Medicine and Infectious Diseases, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - P Karakitsos
- Department of Cytopathology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - A F Mentis
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece.
| |
Collapse
|
37
|
Isakova-Sivak I, Korenkov D, Smolonogina T, Tretiak T, Donina S, Rekstin A, Naykhin A, Shcherbik S, Pearce N, Chen LM, Bousse T, Rudenko L. Comparative studies of infectivity, immunogenicity and cross-protective efficacy of live attenuated influenza vaccines containing nucleoprotein from cold-adapted or wild-type influenza virus in a mouse model. Virology 2016; 500:209-217. [PMID: 27829176 DOI: 10.1016/j.virol.2016.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Abstract
This study sought to improve an existing live attenuated influenza vaccine (LAIV) by including nucleoprotein (NP) from wild-type virus rather than master donor virus (MDV). H7N9 LAIV reassortants with 6:2 (NP from MDV) and 5:3 (NP from wild-type virus) genome compositions were compared with regard to their growth characteristics, induction of humoral and cellular immune responses in mice, and ability to protect mice against homologous and heterologous challenge viruses. Although, in general, the 6:2 reassortant induced greater cell-mediated immunity in C57BL6 mice than the 5:3 vaccine, mice immunized with the 5:3 LAIV were better protected against heterologous challenge. The 5:3 LAIV-induced CTLs also had better in vivo killing activity against target cells loaded with the NP366 epitope of recent influenza viruses. Modification of the genome of reassortant vaccine viruses by incorporating the NP gene from wild-type viruses represents a simple strategy to improve the immunogenicity and cross-protection of influenza vaccines.
Collapse
Affiliation(s)
| | - Daniil Korenkov
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | | | - Tatiana Tretiak
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Svetlana Donina
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Andrey Rekstin
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anatoly Naykhin
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | | | - Nicholas Pearce
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Li-Mei Chen
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tatiana Bousse
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
38
|
Influenza and Memory T Cells: How to Awake the Force. Vaccines (Basel) 2016; 4:vaccines4040033. [PMID: 27754364 PMCID: PMC5192353 DOI: 10.3390/vaccines4040033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.
Collapse
|
39
|
Sedegah M, Peters B, Hollingdale MR, Ganeshan HD, Huang J, Farooq F, Belmonte MN, Belmonte AD, Limbach KJ, Diggs C, Soisson L, Chuang I, Villasante ED. Vaccine Strain-Specificity of Protective HLA-Restricted Class 1 P. falciparum Epitopes. PLoS One 2016; 11:e0163026. [PMID: 27695088 PMCID: PMC5047630 DOI: 10.1371/journal.pone.0163026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
A DNA prime/adenovirus boost malaria vaccine encoding Plasmodium falciparum strain 3D7 CSP and AMA1 elicited sterile clinical protection associated with CD8+ T cell interferon-gamma (IFN-γ) cells responses directed to HLA class 1-restricted AMA1 epitopes of the vaccine strain 3D7. Since a highly effective malaria vaccine must be broadly protective against multiple P. falciparum strains, we compared these AMA1 epitopes of two P. falciparum strains (7G8 and 3D7), which differ by single amino acid substitutions, in their ability to recall CD8+ T cell activities using ELISpot and flow cytometry/intracellular staining assays. The 7G8 variant peptides did not recall 3D7 vaccine-induced CD8+ T IFN-γ cell responses in these assays, suggesting that protection may be limited to the vaccine strain. The predicted MHC binding affinities of the 7G8 variant epitopes were similar to the 3D7 epitopes, suggesting that the amino acid substitutions of the 7G8 variants may have interfered with TCR recognition of the MHC:peptide complex or that the 7G8 variant may have acted as an altered peptide ligand. These results stress the importance of functional assays in defining protective epitopes. Clinical Trials Registrations: NCT00870987, NCT00392015
Collapse
Affiliation(s)
- Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
- * E-mail:
| | - Harini D. Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Fouzia Farooq
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Maria N. Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Arnel D. Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Keith J. Limbach
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, 20817, United States of America
| | - Carter Diggs
- USAID, Washington, DC, 20523, United States of America
| | | | - Ilin Chuang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| | - Eileen D. Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, 20910, United States of America
| |
Collapse
|
40
|
Long-term adaptation of the influenza A virus by escaping cytotoxic T-cell recognition. Sci Rep 2016; 6:33334. [PMID: 27629812 PMCID: PMC5024124 DOI: 10.1038/srep33334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022] Open
Abstract
The evolutionary adaptation of the influenza A virus (IAV) to human antibodies is well characterised. Much less is known about the long-term evolution of cytotoxic T lymphocyte (CTL) epitopes, which are important antigens for clearance of infection. We construct an antigenic map of IAVs of all human subtypes using a compendium of 142 confirmed CTL epitopes, and show that IAV evolved gradually in the period 1932–2015, with infrequent antigenic jumps in the H3N2 subtype. Intriguingly, the number of CTL epitopes per virus decreases with more than one epitope per three years in the H3N2 subtype (from 84 epitopes per virus in 1968 to 64 in 2015), mostly attributed to the loss of HLA-B epitopes. We confirm these observations with epitope predictions. Our findings indicate that selection pressures imposed by CTL immunity shape the long-term evolution of IAV.
Collapse
|
41
|
A Role of Influenza Virus Exposure History in Determining Pandemic Susceptibility and CD8+ T Cell Responses. J Virol 2016; 90:6936-6947. [PMID: 27226365 DOI: 10.1128/jvi.00349-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Novel influenza viruses often cause differential infection patterns across different age groups, an effect that is defined as heterogeneous demographic susceptibility. This occurred during the A/H2N2 pandemic, when children experienced higher influenza attack rates than adults. Since the recognition of conserved epitopes across influenza subtypes by CD8(+) cytotoxic T lymphocytes (CTLs) limit influenza disease, we hypothesized that conservation of CTL antigenic peptides (Ag-p) in viruses circulating before the pH2N2-1957 may have resulted in differential CTL immunity. We compared viruses isolated in the years preceding the pandemic (1941 to 1957) to which children and adults were exposed to viruses circulating decades earlier (1918 to 1940), which could infect adults only. Consistent with phylogenetic models, influenza viruses circulating from 1941 to 1957, which infected children, shared with pH2N2 the majority (∼89%) of the CTL peptides within the most immunogenic nucleoprotein, matrix 1, and polymerase basic 1, thus providing evidence for minimal pH2N2 CTL escape in children. Our study, however, identified potential CTL immune evasion from pH2N2 irrespective of age, within HLA-A*03:01(+) individuals for PB1471-L473V/N476I variants and HLA-B*15:01(+) population for NP404-414-V408I mutant. Further experiments using the murine model of B-cell-deficient mice showed that multiple influenza infections resulted in superior protection from influenza-induced morbidity, coinciding with accumulation of tissue-resident memory CD8(+) T cells in the lung. Our study suggests that protection against H2N2-1957 pandemic influenza was most likely linked to the number of influenza virus infections prior to the pandemic challenge rather than differential preexisting CTL immunity. Thus, the regimen of a CTL-based vaccine/vaccine-component may benefit from periodic boosting to achieve fully protective, asymptomatic influenza infection. IMPORTANCE Due to a lack of cross-reactive neutralizing antibodies, children are particularly susceptible to influenza infections caused by novel viral strains. Preexisting T cell immunity directed at conserved viral regions, however, can provide protection against influenza viruses, promote rapid recovery and better clinical outcomes. When we asked whether high susceptibility of children (compared to adults) to the pandemic H2N2 influenza strain was associated with immune evasion from T-cell immunity, we found high conservation within T-cell antigenic regions in pandemic H2N2. However, the number of influenza infections prior to the challenge was linked to protective, asymptomatic infections and establishment of tissue-resident memory T cells. Our study supports development of vaccines that prime and boost T cells to elicit cross-strain protective T cells, especially tissue-resident memory T cells, for lifelong immunity against distinct influenza viruses.
Collapse
|
42
|
Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses. Proc Natl Acad Sci U S A 2016; 113:4440-5. [PMID: 27036003 DOI: 10.1073/pnas.1603106113] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Memory CD8(+)T lymphocytes (CTLs) specific for antigenic peptides derived from internal viral proteins confer broad protection against distinct strains of influenza A virus (IAV). However, immune efficacy can be undermined by the emergence of escape mutants. To determine how T-cell receptor (TCR) composition relates to IAV epitope variability, we used ex vivo peptide-HLA tetramer enrichment and single-cell multiplex analysis to compare TCRs targeted to the largely conserved HLA-A*0201-M158and the hypervariable HLA-B*3501-NP418antigens. The TCRαβs for HLA-B*3501-NP418 (+)CTLs varied among individuals and across IAV strains, indicating that a range of mutated peptides will prime different NP418-specific CTL sets. Conversely, a dominant public TRAV27/TRBV19(+)TCRαβ was selected in HLA-A*0201(+)donors responding to M158 This public TCR cross-recognized naturally occurring M158variants complexed with HLA-A*0201. Ternary structures showed that induced-fit molecular mimicry underpins TRAV27/TRBV19(+)TCR specificity for the WT and mutant M158peptides, suggesting the possibility of universal CTL immunity in HLA-A*0201(+)individuals. Combined with the high population frequency of HLA-A*0201, these data potentially explain the relative conservation of M158 Moreover, our results suggest that vaccination strategies aimed at generating broad protection should incorporate variant peptides to elicit cross-reactive responses against other specificities, especially those that may be relatively infrequent among IAV-primed memory CTLs.
Collapse
|
43
|
Grant EJ, Quiñones-Parra SM, Clemens EB, Kedzierska K. Human influenza viruses and CD8(+) T cell responses. Curr Opin Virol 2016; 16:132-142. [PMID: 26974887 DOI: 10.1016/j.coviro.2016.01.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
Influenza A viruses (IAVs) cause significant morbidity and mortality worldwide, despite new strain-specific vaccines being available annually. As IAV-specific CD8(+) T cells promote viral control in the absence of neutralizing antibodies, and can mediate cross-reactive immunity toward distinct IAVs to drive rapid recovery from both mild and severe influenza disease, there is great interest in developing a universal T cell vaccine. However, despite detailed studies in mouse models of influenza virus infection, there is still a paucity of data on human epitope-specific CD8(+) T cell responses to IAVs. This review focuses on our current understanding of human CD8(+) T cell immunity against distinct IAVs and discusses the possibility of achieving a CD8(+) T cell mediated-vaccine that protects against multiple, distinct IAV strains across diverse human populations. We also review the importance of CD8(+) T cell immunity in individuals highly susceptible to severe influenza infection, including those hospitalised with influenza, the elderly and Indigenous populations.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
44
|
Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L, Maosheng S. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2016; 11:1209-22. [PMID: 25876176 DOI: 10.1080/21645515.2015.1016674] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- APC, antigen-presenting cell
- Ad: adenovirus
- CAR, Coxsackie-Adenovirus Receptor
- CTLs, cytotoxic T lymphocytes
- DC, lung dendritic cells
- DVD, drug–vaccine duo
- FcγRs, Fc receptors for IgG
- HA, hemagglutinin
- HDAd, helper-dependent adenoviral
- HEK293, human embryonic kidney 293 cell
- HI, hemagglutination inhibition
- HLA, human leukocyte antigen
- IF-γ, interferon-γ
- IFV, Influenza virus
- IIVV, inactivated influenza virus vaccine
- IL-2, interleukin-2
- ITRs, inverted terminal repeats
- LAIV, live attenuated influenza vaccine
- M1, matrix protein 1
- M2, matrix protein 2
- MHC-I, major histocompatibility complex class I
- NA, neuraminidase
- NP, nucleoprotein
- RCA, replication competent adenovirus
- VAERD, vaccine-associated enhanced respiratory disease
- adenovirus vector
- broadly neutralizing antibodies
- cellular immunity
- flu, influenza
- hemagglutinin
- humoral immunity
- influenza
- mAbs, monoclonal antibodies
- mucosal immunity
- rAd, recombinant adenovirus
- universal vaccine
Collapse
Affiliation(s)
- Kui Xiang
- a Department of Molecular Biology; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming , Yunnan , PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages. J Virol 2015; 89:11275-83. [PMID: 26311880 DOI: 10.1128/jvi.01571-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/23/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. IMPORTANCE There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal models and are associated with decreased symptoms in humans, no studies have proven with statistical significance that influenza virus evolves under positive selection to escape T cells. Here we use comparisons of human and swine influenza viruses to rigorously demonstrate that human influenza virus evolves under pressure to fix mutations in the nucleoprotein that promote escape from T cells. We further show that viruses with these mutations have a selective advantage since they are preferentially located on the "trunk" of the phylogenetic tree. Overall, our results show that CD8(+) T cells targeting nucleoprotein play an important role in shaping influenza virus evolution.
Collapse
|
46
|
Cukalac T, Kan WT, Dash P, Guan J, Quinn KM, Gras S, Thomas PG, La Gruta NL. Paired TCRαβ analysis of virus-specific CD8(+) T cells exposes diversity in a previously defined 'narrow' repertoire. Immunol Cell Biol 2015; 93:804-14. [PMID: 25804828 DOI: 10.1038/icb.2015.44] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
Abstract
T-cell receptor (TCR) usage has an important role in determining the outcome of CD8(+) cytotoxic T-lymphocyte responses to viruses and other pathogens. However, the characterization of TCR usage from which such conclusions are drawn is based on exclusive analysis of either the TCRα chain or, more commonly, the TCRβ chain. Here, we have used a multiplexed reverse transcription-PCR protocol to analyse the CDR3 regions of both TCRα and β chains from single naive or immune epitope-specific cells to provide a comprehensive picture of epitope-specific TCR usage and selection into the immune response. Analysis of TCR repertoires specific for three influenza-derived epitopes (D(b)NP(366), D(b)PA(224) and D(b)PB1-F2(62)) showed preferential usage of particular TCRαβ proteins in the immune repertoire relative to the naive repertoire, in some cases, resulting in a complete shift in TRBV preference or CDR3 length, and restricted repertoire diversity. The NP(366)-specific TCRαβ repertoire, previously defined as clonally restricted based on TCRβ analysis, was similarly diverse as the PA(224)- and PB1-F2(62)-specific repertoires. Intriguingly, preferred TCR characteristics (variable gene usage, CDR3 length and junctional gene usage) appeared to be able to confer specificity either independently or in concert with one another, depending on the epitope specificity. These data have implications for established correlations between the nature of the TCR repertoire and response outcomes after infection, and suggest that analysis of a subset of cells or a single TCR chain does not accurately depict the nature of the antigen-specific TCRαβ repertoire.
Collapse
Affiliation(s)
- Tania Cukalac
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Wan-Ting Kan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Pradyot Dash
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Guan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Kylie M Quinn
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Abstract
To test the hypothesis that RNA interference (RNAi) imposes diversifying selection on RNA virus genomes, we quantified West Nile virus (WNV) quasispecies diversity after passage in Drosophila cells in which RNAi was left intact, depleted, or stimulated against WNV. As predicted, WNV diversity was significantly lower in RNAi-depleted cells and significantly greater in RNAi-stimulated cells relative to that in controls. These findings reveal that an innate immune defense can shape viral population structure.
Collapse
|
48
|
Jegaskanda S, Reading PC, Kent SJ. Influenza-specific antibody-dependent cellular cytotoxicity: toward a universal influenza vaccine. THE JOURNAL OF IMMUNOLOGY 2014; 193:469-75. [PMID: 24994909 DOI: 10.4049/jimmunol.1400432] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is an urgent need for universal influenza vaccines that can control emerging pandemic influenza virus threats without the need to generate new vaccines for each strain. Neutralizing Abs to the influenza virus hemagglutinin glycoprotein are effective at controlling influenza infection but generally target highly variable regions. Abs that can mediate other functions, such as killing influenza-infected cells and activating innate immune responses (termed "Ab-dependent cellular cytotoxicity [ADCC]-mediating Abs"), may assist in protective immunity to influenza. ADCC-mediating Abs can target more conserved regions of influenza virus proteins and recognize a broader array of influenza strains. We review recent research on influenza-specific ADCC Abs and their potential role in improved influenza-vaccination strategies.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Patrick C Reading
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; and World Health Organization Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3010, Australia; and
| |
Collapse
|
49
|
Thyagarajan B, Bloom JD. The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin. eLife 2014; 3. [PMID: 25006036 PMCID: PMC4109307 DOI: 10.7554/elife.03300] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/03/2014] [Indexed: 12/14/2022] Open
Abstract
Influenza is notable for its evolutionary capacity to escape immunity targeting the viral hemagglutinin. We used deep mutational scanning to examine the extent to which a high inherent mutational tolerance contributes to this antigenic evolvability. We created mutant viruses that incorporate most of the ≈10(4) amino-acid mutations to hemagglutinin from A/WSN/1933 (H1N1) influenza. After passaging these viruses in tissue culture to select for functional variants, we used deep sequencing to quantify mutation frequencies before and after selection. These data enable us to infer the preference for each amino acid at each site in hemagglutinin. These inferences are consistent with existing knowledge about the protein's structure and function, and can be used to create a model that describes hemagglutinin's evolution far better than existing phylogenetic models. We show that hemagglutinin has a high inherent tolerance for mutations at antigenic sites, suggesting that this is one factor contributing to influenza's antigenic evolution.
Collapse
Affiliation(s)
- Bargavi Thyagarajan
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jesse D Bloom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
50
|
Quiñones-Parra S, Loh L, Brown LE, Kedzierska K, Valkenburg SA. Universal immunity to influenza must outwit immune evasion. Front Microbiol 2014; 5:285. [PMID: 24971078 PMCID: PMC4054793 DOI: 10.3389/fmicb.2014.00285] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/23/2022] Open
Abstract
Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody (Ab) responses to the surface haemagglutinin (HA) and neuraminidase (NA) proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a great need for cross-protective or "universal" influenza vaccines to overcome the necessity for annual immunization against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1, and H7N9. The key to generating universal influenza immunity through vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive Ab responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies (bnAbs) have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been recently examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8(+) T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and Abs, the mechanisms of immune evasion in influenza, and propose how to counteract commonly occurring immune-escape variants.
Collapse
Affiliation(s)
- Sergio Quiñones-Parra
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Sophie A Valkenburg
- Centre for Influenza Research and School of Public Health, The University of Hong Kong Hong Kong, China
| |
Collapse
|