1
|
Sumitomo T, Kawabata S. Respiratory tract barrier dysfunction in viral-bacterial co-infection cases. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:44-52. [PMID: 38274948 PMCID: PMC10808858 DOI: 10.1016/j.jdsr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
A preceding viral infection of the respiratory tract predisposes the host to secondary bacterial pneumonia, known as a major cause of morbidity and mortality. However, the underlying mechanism of the viral-bacterial synergy that leads to disease progression has remained elusive, thus hampering the production of effective prophylactic and therapeutic intervention options. In addition to viral-induced airway epithelial damage, which allows dissemination of bacteria to the lower respiratory tract and increases their invasiveness, dysfunction of immune defense following a viral infection has been implicated as a factor for enhanced susceptibility to secondary bacterial infections. Given the proximity of the oral cavity to the respiratory tract, where viruses enter and replicate, it is also well-established that oral health status can significantly influence the initiation, progression, and pathology of respiratory viral infections. This review was conducted to focus on the dysfunction of the respiratory barrier, which plays a crucial role in providing physical and secretory barriers as well as immune defense in the context of viral-bacterial synergy. Greater understanding of barrier response to viral-bacterial co-infections, will ultimately lead to development of effective, broad-spectrum therapeutic approaches for prevention of enhanced susceptibility to these pathogens.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770–8504, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka 565–0871, Japan
| |
Collapse
|
2
|
Ngo VN, Winski DP, Aho B, Kamath PL, King BL, Waters H, Zimmerberg J, Sodt A, Hess ST. Conserved sequence features in intracellular domains of viral spike proteins. Virology 2024; 599:110198. [PMID: 39116647 PMCID: PMC11383743 DOI: 10.1016/j.virol.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Viral spike proteins mutate frequently, but conserved features within these proteins often have functional importance and can inform development of anti-viral therapies which circumvent the effects of viral sequence mutations. Through analysis of large numbers of viral spike protein sequences from several viral families, we found highly (>99%) conserved patterns within their intracellular domains. The patterns generally consist of one or more basic amino acids (arginine or lysine) adjacent to a cysteine, many of which are known to undergo acylation. These patterns were not enriched in cellular proteins in general. Molecular dynamics simulations show direct electrostatic and hydrophobic interactions between these conserved residues in hemagglutinin (HA) from influenza A and B and the phosphoinositide PIP2. Super-resolution microscopy shows nanoscale colocalization of PIP2 and several of the same viral proteins. We propose the hypothesis that these conserved viral spike protein features can interact with phosphoinositides such as PIP2.
Collapse
Affiliation(s)
- Vinh-Nhan Ngo
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - David P Winski
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Brandon Aho
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA
| | - Pauline L Kamath
- School of Food and Agriculture, 342 Hitchner Hall, University of Maine, And Maine Center for Genetics in the Environment, Orono, ME, USA.
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME, USA.
| | - Hang Waters
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel T Hess
- Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME, 04469-5709, USA.
| |
Collapse
|
3
|
Imai T, Hashimoto H, Kanda N, Sasabuchi Y, Matsui H, Yasunaga H, Hatakeyama S. Effect of calcium channel blockers on influenza incidence: a population-based retrospective cohort study using administrative claims data in Japan. BMJ Open 2024; 14:e084092. [PMID: 39414280 PMCID: PMC11481128 DOI: 10.1136/bmjopen-2024-084092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
OBJECTIVES Laboratory experiments have indicated that calcium channel blockers (CCBs) inhibit the entry and replication of influenza A virus in cells. However, no clinical studies have assessed the incidence of influenza among patients receiving CCBs. This study aimed to investigate the association between CCB use and the incidence of influenza among patients with hypertension using administrative claims data in Japan. DESIGN Retrospective cohort study. SETTING Administrative health insurance claims database of Kumamoto Prefecture, Japan. PARTICIPANTS 360 515 patients with hypertension (10th edition of the International Classification of Diseases code I10) who were prescribed CCBs and 171 142 patients who were prescribed angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs) between 2012 and 2016. PRIMARY OUTCOME We compared the incidence of influenza between the CCB and ACEI/ARB groups using high-dimensional propensity-score (HD-PS) matching. RESULTS A total of 166 814 HD-PS matched pairs were obtained. Before HD-PS matching, the CCB group had a significantly lower influenza incidence than the ACEI/ARB group in the overall analysis (2.4% vs 2.5%, p=0.007; risk ratio 0.95, 95% CI 0.92 to 0.99). However, no significant difference was observed between the two groups after HD-PS matching (2.4% vs 2.5%, p=0.067; risk ratio 0.96, 95% CI 0.92 to 1.00); only in 2012 did the CCB group have a significantly lower likelihood of influenza than the ACEI/ARB group. CONCLUSIONS No significant difference was observed in the influenza incidence between the CCB and ACEI/ARB groups. A direct comparative study between background-matched patients with and without CCBs is warranted to confirm the effect of CCBs on reducing the incidence of influenza.
Collapse
Affiliation(s)
- Takanori Imai
- Division of General Internal Medicine, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
| | - Hideki Hashimoto
- Division of General Internal Medicine, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
- Hitachi Social Cooperation Education Research Center, University of Tsukuba Hospital, Hitachi, Ibaraki, Japan
| | - Naoki Kanda
- Division of General Internal Medicine, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
| | - Yusuke Sasabuchi
- Data Science Center, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Real-world Evidence, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Matsui
- Data Science Center, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shuji Hatakeyama
- Division of General Internal Medicine, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan
- Division of Infectious Diseases, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
4
|
Zhao C, Pan M, Chen J, Li L, Zhang Y, Liu W, Matthay MA, Wang H, Jin X, Xu JF, Su X. Vagal-α7 nicotinic acetylcholine receptor signaling exacerbates influenza severity by promoting lung epithelial cell infection. J Med Virol 2024; 96:e29768. [PMID: 38978388 DOI: 10.1002/jmv.29768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.
Collapse
Affiliation(s)
- Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Pan
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Li
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Michael A Matthay
- Department of Medicine, Department of Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York, USA
| | - Xia Jin
- Shanghai Serum Bio-Technology Co., Ltd., Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Li L, Wang J, Chen L, Ren Q, Akhtar MF, Liu W, Wang C, Cao S, Liu W, Zhao Q, Li Y, Wang T. Diltiazem HCl suppresses porcine reproductive and respiratory syndrome virus infection in susceptible cells and in swine. Vet Microbiol 2024; 292:110054. [PMID: 38507832 DOI: 10.1016/j.vetmic.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen for swine, resulting in substantial economic losses to the swine industry. However, there has been little success in developing effective vaccines or drugs for PRRSV control. In the present study, we discovered that Diltiazem HCl, an inhibitor of L-type Ca2+ channel, effectively suppresses PRRSV replication in MARC-145, PK-15CD163 and PAM cells in dose-dependent manner. Furthermore, it demonstrates a broad-spectrum activity against both PRRSV-1 and PRRSV-2 strains. Additionally, we explored the underlying mechanisms and found that Diltiazem HCl -induced inhibition of PRRSV associated with regulation of calcium ion homeostasis in susceptible cells. Moreover, we evaluated the antiviral effects of Diltiazem HCl in PRRSV-challenged piglets, assessing rectal temperature, viremia, and gross and microscopic lung lesions. Our results indicate that Diltiazem HCl treatment alleviates PRRSV-induced rectal temperature spikes, pulmonary pathological changes, and serum viral load. In conclusion, our data suggest that Diltiazem HCl could serve as a novel therapeutic drug against PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jiayu Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Li Chen
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qinghai Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | | | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Shengliang Cao
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China.
| |
Collapse
|
6
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Zhang K, Huang L, Cai Y, Zhong Y, Chen N, Gao F, Zhang L, Li Q, Liu Z, Zhang R, Zhang L, Yue J. Identification of a small chemical as a lysosomal calcium mobilizer and characterization of its ability to inhibit autophagy and viral infection. FEBS J 2023; 290:5353-5372. [PMID: 37528513 DOI: 10.1111/febs.16920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
We previously identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cyclic adenosine diphosphoribose (cADPR)'s binding proteins and found that GAPDH participates in cADPR-mediated Ca2+ release from endoplasmic reticulum via ryanodine receptors (RyRs). Here, we aimed to chemically synthesise and pharmacologically characterise novel cADPR analogues. Based on the simulated cADPR-GAPDH complex structure, we performed the structure-based drug screening, identified several small chemicals with high docking scores to cADPR's binding pocket in GAPDH and showed that two of these compounds, C244 and C346, are potential cADPR antagonists. We further synthesised several analogues of C346 and found that its analogue, G42, also mobilised Ca2+ release from lysosomes. G42 alkalised lysosomal pH and inhibited autophagosome-lysosome fusion. Moreover, G42 markedly inhibited Zika virus (ZIKV, a flavivirus) or murine hepatitis virus (MHV, a β-coronavirus) infections of host cells. These results suggest that G42 inhibits virus infection, likely by triggering lysosomal Ca2+ mobilisation and inhibiting autophagy.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natual Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yang Cai
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| |
Collapse
|
8
|
Al-Shalan HAM, Hu D, Wang P, Uddin J, Chopra A, Greene WK, Ma B. Transcriptomic Profiling of Influenza A Virus-Infected Mouse Lung at Recovery Stage Using RNA Sequencing. Viruses 2023; 15:2198. [PMID: 38005876 PMCID: PMC10675624 DOI: 10.3390/v15112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Influenza A virus (IAV) is known to cause mild to severe respiratory illness. Under some conditions, the infection can lead to pneumonia (viral or bacterial), acute respiratory distress syndrome, and other complications that can be fatal, especially in vulnerable populations such as the elderly, young children, and individuals with underlying health conditions. Despite previous studies, little is known about the host immune response and neuroimmune interactions in IAV infection. Using RNA sequencing, we performed transcriptomic analysis of murine lung tissue 21 days post infection (dpi) with IAV (H1N1) in order to find the differentially expression genes (DEGs) related to the host immune response and neuroimmune interactions inside the lung during recovery. Among 792 DEGs, 434 genes were up-regulated, whereas 358 genes were down-regulated. The most prominent molecular functions of the up-regulated genes were related to the immune response and tissue repair, whereas a large proportion of the down-regulated genes were associated with neural functions. Although further molecular/functional studies need to be performed for these DEGs, our results facilitate the understanding of the host response (from innate immunity to adaptive immunity) and neuroimmune interactions in infected lungs at the recovery stage of IAV infection. These genes might have potential uses as mechanistic/diagnostic biomarkers and represent possible targets for anti-IAV therapies.
Collapse
Affiliation(s)
- Huda A M Al-Shalan
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Department of Microbiology/Virology, College of Veterinary Medicine, Baghdad University, Baghdad 10071, Iraq
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Jasim Uddin
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Abha Chopra
- Genomics Core Research Facility, Health Futures Institute, Murdoch University, Murdoch, WA 6149, Australia
| | - Wayne K Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
9
|
Fani M, Moossavi M, Bakhshi H, Jahrodi AN, Khazdair MR, Zardast AH, Ghafari S. Targeting host calcium channels and viroporins: a promising strategy for SARS-CoV-2 therapy. Future Virol 2023:10.2217/fvl-2022-0203. [PMID: 37700758 PMCID: PMC10494978 DOI: 10.2217/fvl-2022-0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Despite passing the pandemic phase of the COVID-19, researchers are still investigating various drugs. Previous evidence suggests that blocking the calcium channels may be a suitable treatment option. Ca2+ is required to enhance the fusion process of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, some important inflammatory factors during SARS-CoV-2 infection are dependent on Ca2+ level. On the other hand, viroporins have emerged as attractive targets for antiviral therapy due to their essential role in viral replication and pathogenesis. By inhibiting the host calcium channels and viroporins, it is possible to limit the spread of infection. Therefore, calcium channel blockers (CCBs) and drugs targeting Viroporins can be considered an effective option in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Mona Fani
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Moossavi
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hasan Bakhshi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Mohammad Reza Khazdair
- Pharmaceutical Science & Clinical Physiology, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Shokouh Ghafari
- Cellular & Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
- Department of Microbiology & Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| |
Collapse
|
10
|
Basnet S, Mohanty C, Bochkov YA, Brockman-Schneider RA, Kendziorski C, Gern JE. Rhinovirus C causes heterogeneous infection and gene expression in airway epithelial cell subsets. Mucosal Immunol 2023; 16:386-398. [PMID: 36796588 PMCID: PMC10629931 DOI: 10.1016/j.mucimm.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Rhinoviruses infect ciliated airway epithelial cells, and rhinoviruses' nonstructural proteins quickly inhibit and divert cellular processes for viral replication. However, the epithelium can mount a robust innate antiviral immune response. Therefore, we hypothesized that uninfected cells contribute significantly to the antiviral immune response in the airway epithelium. Using single-cell RNA sequencing, we demonstrate that both infected and uninfected cells upregulate antiviral genes (e.g. MX1, IFIT2, IFIH1, and OAS3) with nearly identical kinetics, whereas uninfected non-ciliated cells are the primary source of proinflammatory chemokines. Furthermore, we identified a subset of highly infectable ciliated epithelial cells with minimal interferon responses and determined that interferon responses originate from distinct subsets of ciliated cells with moderate viral replication. These findings suggest that the composition of ciliated airway epithelial cells and coordinated responses of infected and uninfected cells could determine the risk of more severe viral respiratory illnesses in children with asthma, chronic obstructive pulmonary disease, and genetically susceptible individuals.
Collapse
Affiliation(s)
- Sarmila Basnet
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Yury A Bochkov
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
11
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
12
|
Luo Z, Zhan Z, Qin X, Pan W, Liang M, Li C, Weng S, He J, Guo C. Interaction of Teleost Fish TRPV4 with DEAD Box RNA Helicase 1 Regulates Iridovirus Replication. J Virol 2023; 97:e0049523. [PMID: 37289063 PMCID: PMC10308943 DOI: 10.1128/jvi.00495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Viral diseases are a significant risk to the aquaculture industry. Transient receptor potential vanilloid 4 (TRPV4) has been reported to be involved in regulating viral activity in mammals, but its regulatory effect on viruses in teleost fish remains unknown. Here, the role of the TRPV4-DEAD box RNA helicase 1 (DDX1) axis in viral infection was investigated in mandarin fish (Siniperca chuatsi). Our results showed that TRPV4 activation mediates Ca2+ influx and facilitates infectious spleen and kidney necrosis virus (ISKNV) replication, whereas this promotion was nearly eliminated by an M709D mutation in TRPV4, a channel Ca2+ permeability mutant. The concentration of cellular Ca2+ increased during ISKNV infection, and Ca2+ was critical for viral replication. TRPV4 interacted with DDX1, and the interaction was mediated primarily by the N-terminal domain (NTD) of TRPV4 and the C-terminal domain (CTD) of DDX1. This interaction was attenuated by TRPV4 activation, thereby enhancing ISKNV replication. DDX1 could bind to viral mRNAs and facilitate ISKNV replication, which required the ATPase/helicase activity of DDX1. Furthermore, the TRPV4-DDX1 axis was verified to regulate herpes simplex virus 1 replication in mammalian cells. These results suggested that the TRPV4-DDX1 axis plays an important role in viral replication. Our work provides a novel molecular mechanism for host involvement in viral regulation, which would be of benefit for new insights into the prevention and control of aquaculture diseases. IMPORTANCE In 2020, global aquaculture production reached a record of 122.6 million tons, with a total value of $281.5 billion. Meanwhile, frequent outbreaks of viral diseases have occurred in aquaculture, and about 10% of farmed aquatic animal production has been lost to infectious diseases, resulting in more than $10 billion in economic losses every year. Therefore, an understanding of the potential molecular mechanism of how aquatic organisms respond to and regulate viral replication is of great significance. Our study suggested that TRPV4 enables Ca2+ influx and interactions with DDX1 to collectively promote ISKNV replication, providing novel insights into the roles of the TRPV4-DDX1 axis in regulating the proviral effect of DDX1. This advances our understanding of viral disease outbreaks and would be of benefit for studies on preventing aquatic viral diseases.
Collapse
Affiliation(s)
- Zhiyong Luo
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhipeng Zhan
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaowei Qin
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mincong Liang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chuanrui Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
13
|
Guo X, Feng Y, Zhao X, Qiao S, Ma Z, Li Z, Zheng H, Xiao S. Coronavirus Porcine Epidemic Diarrhea Virus Utilizes Chemokine Interleukin-8 to Facilitate Viral Replication by Regulating Ca 2+ Flux. J Virol 2023; 97:e0029223. [PMID: 37133374 PMCID: PMC10231212 DOI: 10.1128/jvi.00292-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
Chemokine production by epithelial cells is crucial for neutrophil recruitment to sites of inflammation during viral infection. However, the effect of chemokine on epithelia and how chemokine is involved in coronavirus infection remains to be fully understood. Here, we identified an inducible chemokine interleukin-8 (CXCL8/IL-8), which could promote coronavirus porcine epidemic diarrhea virus (PEDV) infection in African green monkey kidney epithelial cells (Vero) and Lilly Laboratories cell-porcine kidney 1 epithelial cells (LLC-PK1). IL-8 deletion restrained cytosolic calcium (Ca2+), whereas IL-8 stimulation improved cytosolic Ca2+. The consumption of Ca2+ restricted PEDV infection. PEDV internalization and budding were obvious reductions when cytosolic Ca2+ was abolished in the presence of Ca2+ chelators. Further study revealed that the upregulated cytosolic Ca2+ redistributes intracellular Ca2+. Finally, we identified that G protein-coupled receptor (GPCR)-phospholipase C (PLC)-inositol trisphosphate receptor (IP3R)-store-operated Ca2+ (SOC) signaling was crucial for enhancive cytosolic Ca2+ and PEDV infection. To our knowledge, this study is the first to uncover the function of chemokine IL-8 during coronavirus PEDV infection in epithelia. PEDV induces IL-8 expression to elevate cytosolic Ca2+, promoting its infection. Our findings reveal a novel role of IL-8 in PEDV infection and suggest that targeting IL-8 could be a new approach to controlling PEDV infection. IMPORTANCE Coronavirus porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that caused severe economic losses worldwide, and more effort is needed to develop economical and efficient vaccines to control or eliminate this disease. The chemokine interleukin-8 (CXCL8/IL-8) is indispensable for the activation and trafficking of inflammatory mediators and tumor progression and metastasis. This study evaluated the effect of IL-8 on PEDV infection in epithelia. We found that IL-8 expression improved cytosolic Ca2+ in epithelia, facilitating PEDV rapid internalization and egress. G protein-coupled receptor (GPCR)-phospholipase C (PLC)-inositol trisphosphate receptor (IP3R)-SOC signaling was activated by IL-8, releasing the intracellular Ca2+ stores from endoplasmic reticulum (ER). These findings provide a better understanding of the role of IL-8 in PEDV-induced immune responses, which will help develop small-molecule drugs for coronavirus cure.
Collapse
Affiliation(s)
- Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojing Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Tian WJ, Wang XJ. Broad-Spectrum Antivirals Derived from Natural Products. Viruses 2023; 15:v15051100. [PMID: 37243186 DOI: 10.3390/v15051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Scientific advances have led to the development and production of numerous vaccines and antiviral drugs, but viruses, including re-emerging and emerging viruses, such as SARS-CoV-2, remain a major threat to human health. Many antiviral agents are rarely used in clinical treatment, however, because of their inefficacy and resistance. The toxicity of natural products may be lower, and some natural products have multiple targets, which means less resistance. Therefore, natural products may be an effective means to solve virus infection in the future. New techniques and ideas are currently being developed for the design and screening of antiviral drugs thanks to recent revelations about virus replication mechanisms and the advancement of molecular docking technology. This review will summarize recently discovered antiviral drugs, mechanisms of action, and screening and design strategies for novel antiviral agents.
Collapse
Affiliation(s)
- Wen-Jun Tian
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Loh KWZ, Hu Z, Soong TW. Modulation of Ca V1.2 Channel Function by Interacting Proteins and Post-Translational Modifications: Implications in Cardiovascular Diseases and COVID-19. Handb Exp Pharmacol 2023. [PMID: 36764970 DOI: 10.1007/164_2023_636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CaV1.2 calcium channel is the primary conduit for Ca2+ influx into cardiac and smooth muscles that underscores its importance in the pathogenesis of hypertension, atherosclerosis, myocardial infarction, and heart failure. But, a few controversies still remain. Therefore, exploring new ways to modulate CaV1.2 channel activity will augment the arsenal of CaV1.2 channel-based therapeutics for treatment of cardiovascular diseases. Here, we will mainly introduce a couple of emerging CaV1.2 channel interacting proteins, such as Galectin-1 and Cereblon, and discuss their roles in hypertension and heart failure through fine-tuning CaV1.2 channel activity. Of current interest, we will also evaluate the implication of the role of CaV1.2 channel in SARS-CoV-2 infection and the potential treatments of COVID-19-related cardiovascular symptoms.
Collapse
Affiliation(s)
- Kelvin Wei Zhern Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Diseases Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cardiovascular Diseases Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Cardiovascular Diseases Translational Research Programme, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Translational Research Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Kumar PS, Radhakrishnan A, Mukherjee T, Khamaru S, Chattopadhyay S, Chattopadhyay S. Understanding the role of Ca 2+ via transient receptor potential (TRP) channel in viral infection: Implications in developing future antiviral strategies. Virus Res 2023; 323:198992. [PMID: 36309316 PMCID: PMC10194134 DOI: 10.1016/j.virusres.2022.198992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential (TRP) channels are a superfamily of cation-specific permeable channels primarily conducting Ca2+ions across various membranes of the cell. The perturbation of the Ca2+ homeostasis is the hallmark of viral infection. Viruses hijack the host cell Ca2+ signaling, employing tailored Ca2+ requirements via TRP channels to meet their own cellular demands. This review summarizes the importance of Ca2+ across diverse viruses based on the Baltimore classification and focuses on the associated role of Ca2+-conducting TRP channels in viral pathophysiology. More emphasis has been given to the role of the TRP channel in viral life-cycle events such as viral fusion, viral entry, viral replication, virion maturation, and egress. Additionally, this review highlights the TRP channel as a store-operated channel which has been discussed vividly. The TRP channels form an essential aspect of host-virus interaction by virtue of its Ca2+ permeability. These channels are directly involved in regulating the viral calcium dynamics in host cells and thereby affect the viral infection. Considering its immense potential in regulating viral infection, the TRP channels may act as a target for antiviral therapeutics.
Collapse
Affiliation(s)
- P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India; Infectious Disease Biology, Institute of Life Sciences, Autonomous Institute of Department of Biotechnology, Government of India, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anukrishna Radhakrishnan
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Tathagata Mukherjee
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Somlata Khamaru
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Autonomous Institute of Department of Biotechnology, Government of India, Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
17
|
Huang Y, Li Y, Chen Z, Chen L, Liang J, Zhang C, Zhang Z, Yang J. Nisoldipine Inhibits Influenza A Virus Infection by Interfering with Virus Internalization Process. Viruses 2022; 14:v14122738. [PMID: 36560742 PMCID: PMC9785492 DOI: 10.3390/v14122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections and the continuing spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are global public health concerns. As there are limited therapeutic options available in clinical practice, the rapid development of safe, effective and globally available antiviral drugs is crucial. Drug repurposing is a therapeutic strategy used in treatments for newly emerging and re-emerging infectious diseases. It has recently been shown that the voltage-dependent Ca2+ channel Cav1.2 is critical for influenza A virus entry, providing a potential target for antiviral strategies. Nisoldipine, a selective Ca2+ channel inhibitor, is commonly used in the treatment of hypertension. Here, we assessed the antiviral potential of nisoldipine against the influenza A virus and explored the mechanism of action of this compound. We found that nisoldipine treatment could potently inhibit infection with multiple influenza A virus strains. Mechanistic studies further revealed that nisoldipine impaired the internalization of the influenza virus into host cells. Overall, our findings demonstrate that nisoldipine exerts antiviral effects against influenza A virus infection and could serve as a lead compound in the design and development of new antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Yang
- Correspondence: ; Tel.: +86-020-6164-8590
| |
Collapse
|
18
|
Guo Y, Gao Y, Hu Y, Zhao Y, Jiang D, Wang Y, Zhang Y, Gan H, Xie C, Liu Z, Zhong B, Zhang Z, Yao J. The Transient Receptor Potential Vanilloid 2 (TRPV2) Channel Facilitates Virus Infection Through the Ca 2+ -LRMDA Axis in Myeloid Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202857. [PMID: 36261399 PMCID: PMC9731701 DOI: 10.1002/advs.202202857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The transient receptor potential vanilloid 2 (TRPV2) channel is a nonselective cation channel that has been implicated in multiple sensory processes in the nervous system. Here, it is shown that TRPV2 in myeloid cells facilitates virus penetration by promoting the tension and mobility of cell membrane through the Ca2+ -LRMDA axis. Knockout of TRPV2 in myeloid cells or inhibition of TRPV2 channel activity suppresses viral infection and protects mice from herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection. Reconstitution of TRPV2 but not the Ca2+ -impermeable mutant TRPV2E572Q into LyZ2-Cre;Trpv2fl/fl bone marrow-derived dendritic cells (BMDCs) restores viral infection. Mechanistically, knockout of TRPV2 in myeloid cells inhibits the tension and mobility of cell membrane and the penetration of viruses, which is restored by reconstitution of TRPV2 but not TRPV2E572Q . In addition, knockout of TRPV2 leads to downregulation of Lrmda in BMDCs and BMDMs, and knockdown of Lrmda significantly downregulates the mobility and tension of cell membrane and inhibits viral infections in Trpv2fl/fl but not LyZ2-Cre;Trpv2fl/fl BMDCs. Consistently, complement of LRMDA into LyZ2-Cre;Trpv2fl/fl BMDCs partially restores the tension and mobility of cell membrane and promotes viral penetration and infection. These findings characterize a previously unknown function of myeloid TRPV2 in facilitating viral infection though the Ca2+ -LRMDA axis.
Collapse
Affiliation(s)
- Yu‐Yao Guo
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Yue Gao
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Yu‐Ru Hu
- The Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Yuhan Zhao
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Dexiang Jiang
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Yulin Wang
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Youjing Zhang
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Hu Gan
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Chang Xie
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Zheng Liu
- The Institute for Advanced StudiesWuhan UniversityWuhan430072China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Zhi‐Dong Zhang
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Jing Yao
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- State Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
19
|
Russell T, Gangotia D, Barry G. Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomed Pharmacother 2022; 156:113850. [DOI: 10.1016/j.biopha.2022.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
|
20
|
Raut P, Obeng B, Waters H, Zimmerberg J, Gosse JA, Hess ST. Phosphatidylinositol 4,5-Bisphosphate Mediates the Co-Distribution of Influenza A Hemagglutinin and Matrix Protein M1 at the Plasma Membrane. Viruses 2022; 14:v14112509. [PMID: 36423118 PMCID: PMC9698905 DOI: 10.3390/v14112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The fully assembled influenza A virus (IAV) has on its surface the highest density of a single membrane protein found in nature-the glycoprotein hemagglutinin (HA) that mediates viral binding, entry, and assembly. HA clusters at the plasma membrane of infected cells, and the HA density (number of molecules per unit area) of these clusters correlates with the infectivity of the virus. Dense HA clusters are considered to mark the assembly site and ultimately lead to the budding of infectious IAV. The mechanism of spontaneous HA clustering, which occurs with or without other viral components, has not been elucidated. Using super-resolution fluorescence photoactivation localization microscopy (FPALM), we have previously shown that these HA clusters are interdependent on phosphatidylinositol 4,5-biphosphate (PIP2). Here, we show that the IAV matrix protein M1 co-clusters with PIP2, visualized using the pleckstrin homology domain. We find that cetylpyridinium chloride (CPC), which is a positively charged quaternary ammonium compound known for its antibacterial and antiviral properties at millimolar concentrations, disrupts M1 clustering and M1-PIP2 co-clustering at micromolar concentrations well below the critical micelle concentration (CMC). CPC also disrupts the co-clustering of M1 with HA at the plasma membrane, suggesting the role of host cell PIP2 clusters as scaffolds for gathering and concentrating M1 and HA to achieve their unusually high cluster densities in the IAV envelope.
Collapse
Affiliation(s)
- Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469-5709, USA
| | - Bright Obeng
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469-5735, USA
| | - Hang Waters
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | - Joshua Zimmerberg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | - Julie A. Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469-5735, USA
| | - Samuel T. Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469-5709, USA
- Correspondence:
| |
Collapse
|
21
|
Qu Y, Sun Y, Yang Z, Ding C. Calcium Ions Signaling: Targets for Attack and Utilization by Viruses. Front Microbiol 2022; 13:889374. [PMID: 35859744 PMCID: PMC9289559 DOI: 10.3389/fmicb.2022.889374] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022] Open
Abstract
Calcium, as a second intracellular messenger, participate in various physiological and biochemical processes, including cell growth and proliferation, energy metabolism, information transfer, cell death, and immune response. Ca2+ channels or pumps in plasma and organelle membranes and Ca2+-related proteins maintain Ca2+ homeostasis by regulating Ca2+ inflow, outflow and buffering to avoid any adverse effects caused by Ca2+ overload or depletion. Thus, Ca2+ signaling also provides a target for virus invasion, replication, proliferation and release. After hijacking the host cell, viruses exploit Ca2+ signaling to regulate apoptosis and resist host immunity to establish persistent infection. In this review, we discuss cellular Ca2+ signaling and channels, interaction of calcium-associated proteins with viruses, and host cell fate, as well as the role of Ca2+ in cell death and antiviral response during viral infection.
Collapse
Affiliation(s)
- Yang Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Zengqi Yang,
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- *Correspondence: Chan Ding,
| |
Collapse
|
22
|
Zhang C, Meng X, Zhao H. Comparison of Cell Fusions Induced by Influenza Virus and SARS-CoV-2. Int J Mol Sci 2022; 23:ijms23137365. [PMID: 35806369 PMCID: PMC9266613 DOI: 10.3390/ijms23137365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Virus–cell fusion is the key step for viral infection in host cells. Studies on virus binding and fusion with host cells are important for understanding the virus–host interaction and viral pathogenesis for the discovery of antiviral drugs. In this review, we focus on the virus–cell fusions induced by the two major pandemic viruses, including the influenza virus and SARS-CoV-2. We further compare the cell fusions induced by the influenza virus and SARS-CoV-2, especially the pH-dependent fusion of the influenza virus and the fusion of SARS-CoV-2 in the type-II transmembrane serine protease 2 negative (TMPRSS2-) cells with syncytia formation. Finally, we present the development of drugs used against SARA-CoV-2 and the influenza virus through the discovery of anti-fusion drugs and the prevention of pandemic respiratory viruses.
Collapse
Affiliation(s)
- Chuyuan Zhang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
| | - Xinjie Meng
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Hanjun Zhao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (C.Z.); (X.M.)
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence: or ; Tel.: +852-2255-4892
| |
Collapse
|
23
|
Kumar A, Mishra S, Kumar A, Raut AA, Sato S, Takaoka A, Kumar H. Essential role of Rnd1 in innate immunity during viral and bacterial infections. Cell Death Dis 2022; 13:520. [PMID: 35654795 PMCID: PMC9161769 DOI: 10.1038/s41419-022-04954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023]
Abstract
Intracellular and cell surface pattern-recognition receptors (PRRs) are an essential part of innate immune recognition and host defense. Here, we have compared the innate immune responses between humans and bats to identify a novel membrane-associated protein, Rnd1, which defends against viral and bacterial infection in an interferon-independent manner. Rnd1 belongs to the Rho GTPase family, but unlike other small GTPase members, it is constitutively active. We show that Rnd1 is induced by pro-inflammatory cytokines during viral and bacterial infections and provides protection against these pathogens through two distinct mechanisms. Rnd1 counteracts intracellular calcium fluctuations by inhibiting RhoA activation, thereby inhibiting virus internalisation. On the other hand, Rnd1 also facilitates pro-inflammatory cytokines IL-6 and TNF-α through Plxnb1, which are highly effective against intracellular bacterial infections. These data provide a novel Rnd1-mediated innate defense against viral and bacterial infections.
Collapse
Affiliation(s)
- Akhilesh Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shalabh Mishra
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ashish Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India ,grid.27860.3b0000 0004 1936 9684Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA USA
| | - Ashwin Ashok Raut
- grid.506025.40000 0004 5997 407XPathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Seiichi Sato
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Takaoka
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Himanshu Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India ,grid.136593.b0000 0004 0373 3971WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Chen CC, Krogsaeter E, Kuo CY, Huang MC, Chang SY, Biel M. Endolysosomal cation channels point the way towards precision medicine of cancer and infectious diseases. Biomed Pharmacother 2022; 148:112751. [PMID: 35240524 DOI: 10.1016/j.biopha.2022.112751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/02/2022] Open
Abstract
Infectious diseases and cancer are among the key medical challenges that humankind is facing today. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of both groups of diseases. The development of advanced patch-clamp technologies has allowed us to directly characterize ion fluxes through endolysosomal ion channels in their native environments. Endolysosomes are essential organelles for intracellular transport, digestion and metabolism, and maintenance of homeostasis. The endolysosomal ion channels regulate the function of the endolysosomal system through four basic mechanisms: calcium release, control of membrane potential, pH change, and osmolarity regulation. In this review, we put particular emphasis on the endolysosomal cation channels, including TPC2 and TRPML2, which are particularly important in monocyte function. We discuss existing endogenous and synthetic ligands of these channels and summarize current knowledge of their impact on channel activity and function in different cell types. Moreover, we summarize recent findings on the importance of TPC2 and TRPML2 channels as potential drug targets for the prevention and treatment of the emerging infectious diseases and cancer.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
25
|
Gunaratne GS, Marchant JS. The ins and outs of virus trafficking through acidic Ca 2+ stores. Cell Calcium 2022; 102:102528. [PMID: 35033909 PMCID: PMC8860173 DOI: 10.1016/j.ceca.2022.102528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Many viruses exploit host-cell Ca2+ signaling processes throughout their life cycle. This is especially relevant for viruses that translocate through the endolysosomal system, where cellular infection is keyed to the microenvironment of these acidic Ca2+ stores and Ca2+-dependent trafficking pathways. As regulators of the endolysosomal ionic milieu and trafficking dynamics, two families of endolysosomal Ca2+-permeable cation channels - two pore channels (TPCs) and transient receptor potential mucolipins (TRPMLs) - have emerged as important host-cell factors in viral entry. Here, we review: (i) current evidence implicating Ca2+ signaling in viral translocation through the endolysosomal system, (ii) the roles of these ion channels in supporting cellular infection by different viruses, and (iii) areas for future research that will help define the potential of TPC and TRPML ligands as progressible antiviral agents.
Collapse
Affiliation(s)
- Gihan S Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA.
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| |
Collapse
|
26
|
Network Meta-Analysis of Chicken Microarray Data Following Avian Influenza Challenge—A Comparison of Highly and Lowly Pathogenic Strains. Genes (Basel) 2022; 13:genes13030435. [PMID: 35327988 PMCID: PMC8953847 DOI: 10.3390/genes13030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
The current bioinformatics study was undertaken to analyze the transcriptome of chicken (Gallus gallus) after influenza A virus challenge. A meta-analysis was carried out to explore the host expression response after challenge with lowly pathogenic avian influenza (LPAI) (H1N1, H2N3, H5N2, H5N3 and H9N2) and with highly pathogenic avian influenza (HPAI) H5N1 strains. To do so, ten microarray datasets obtained from the Gene Expression Omnibus (GEO) database were normalized and meta-analyzed for the LPAI and HPAI host response individually. Different undirected networks were constructed and their metrics determined e.g., degree centrality, closeness centrality, harmonic centrality, subgraph centrality and eigenvector centrality. The results showed that, based on criteria of centrality, the CMTR1, EPSTI1, RNF213, HERC4L, IFIT5 and LY96 genes were the most significant during HPAI challenge, with PARD6G, HMG20A, PEX14, RNF151 and TLK1L having the lowest values. However, for LPAI challenge, ZDHHC9, IMMP2L, COX7C, RBM18, DCTN3, and NDUFB1 genes had the largest values for aforementioned criteria, with GTF3C5, DROSHA, ATRX, RFWD2, MED23 and SEC23B genes having the lowest values. The results of this study can be used as a basis for future development of treatments/preventions of the effects of avian influenza in chicken.
Collapse
|
27
|
Could Lower Testosterone in Older Men Explain Higher COVID-19 Morbidity and Mortalities? Int J Mol Sci 2022; 23:ijms23020935. [PMID: 35055119 PMCID: PMC8781054 DOI: 10.3390/ijms23020935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection’s outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.
Collapse
|
28
|
Sriwilaijaroen N, Suzuki Y. Roles of Glycans and Non-glycans on the Epithelium and in the Immune System in H1-H18 Influenza A Virus Infections. Methods Mol Biol 2022; 2556:205-242. [PMID: 36175637 DOI: 10.1007/978-1-0716-2635-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The large variation of influenza A viruses (IAVs) in various susceptible hosts and their rapid evolution, which allows host/tissue switching, host immune escape, vaccine escape, and drug resistance, are difficult challenges for influenza control in all countries worldwide. Access and binding of the IAV to actual receptors at endocytic sites is critical for the establishment of influenza infection. In this chapter, the progress in identification of and roles of glycans and non-glycans on the epithelium and in the immune system in H1-H18 IAV infections are reviewed. The first part of the review is on current knowledge of H1-H16 IAV receptors on the epithelium including sialyl glycans, other negatively charged glycans, and annexins. The second part of the review focuses on H1-H16 IAV receptors in the immune system including acidic surfactant phospholipids, Sia on surfactant proteins, the carbohydrate recognition domain (CRD) of surfactant proteins, Sia on mucins, Sia and C-type lectins on macrophages and dendritic cells, and Sia on NK cells. The third part of the review is about a possible H17-H18 IAV receptor. Binding of these receptors to IAVs may result in inhibition or enhancement of IAV infection depending on their location, host cell type, and IAV strain. Among these receptors, host sialyl glycans are key determinants of viral hemagglutinin (HA) lectins for H1-H16 infections. HA must acquire mutations to bind to sialyl glycans that are dominant on a new target tissue when switching to a new host for efficient transmission and to bind to long sialyl glycans found in the case of seasonal HAs with multiple glycosylation sites as a consequence of immune evasion. Although sialyl receptors/C-type lectins on immune cells are decoy receptors/pathogen recognition receptors for capturing viral HA lectin/glycans protecting HA antigenic sites, some IAV strains do not escape, such as by release with neuraminidase, but hijack these molecules to gain entry and replication in immune cells. An understanding of the virus-host battle tactics at the receptor level might lead to the establishment of novel strategies for effective control of influenza.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
29
|
Raut P, Waters H, Zimmberberg J, Obeng B, Gosse J, Hess ST. Localization-Based Super-Resolution Microscopy Reveals Relationship between SARS-CoV2 Spike and Phosphatidylinositol (4,5)-bisphosphate. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11965:1196503. [PMID: 36051945 PMCID: PMC9432428 DOI: 10.1117/12.2613460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Localization microscopy circumvents the diffraction limit by identifying and measuring the positions of numerous subsets of individual fluorescent molecules, ultimately producing an image whose resolution depends on the uncertainty and density of localization, and whose capabilities are compatible with imaging living specimens. Spectral resolution can be improved by incorporating a dichroic or dispersive element in the detection path of a localization microscope, which can be useful for separation of multiple probes imaged simultaneously and for detection of changes in emission spectra of fluorophores resulting from changes in their environment. These methodological advances enable new biological applications, which in turn motivate new questions and technical innovations. As examples, we present fixed-cell imaging of the spike protein SARS-CoV2 (S) and its interactions with host cell components. Results show a relationship between S and the lipid phosphatidylinositol (4,5)-bisphosphate (PIP2). These findings have ramifications for several existing models of plasma membrane organization.
Collapse
Affiliation(s)
- Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469-5709
| | - Hang Waters
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855
| | - Joshua Zimmberberg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855
| | - Bright Obeng
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Julie Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469
| | - Samuel T. Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469-5709
- corresponding author: ; phone 207 581-1036; fax 207 581-3410
| |
Collapse
|
30
|
Zhou L, Bao L, Wang Y, Chen M, Zhang Y, Geng Z, Zhao R, Sun J, Bao Y, Shi Y, Yao R, Guo S, Cui X. An Integrated Analysis Reveals Geniposide Extracted From Gardenia jasminoides J.Ellis Regulates Calcium Signaling Pathway Essential for Influenza A Virus Replication. Front Pharmacol 2021; 12:755796. [PMID: 34867371 PMCID: PMC8640456 DOI: 10.3389/fphar.2021.755796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Geniposide, an iridoid glycoside purified from the fruit of Gardenia jasminoides J.Ellis, has been reported to possess pleiotropic activity against different diseases. In particular, geniposide possesses a variety of biological activities and exerts good therapeutic effects in the treatment of several strains of the influenza virus. However, the molecular mechanism for the therapeutic effect has not been well defined. This study aimed to investigate the mechanism of geniposide on influenza A virus (IAV). The potential targets and signaling pathways of geniposide in the IAV infection were predicted using network pharmacology analysis. According to the result of network pharmacology analysis, we validated the calcium signaling pathway induced by IAV and investigated the effect of geniposide extracted from Gardenia jasminoides J.Ellis on this pathway. The primary Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways KEGG enrichment analysis indicated that geniposide has a multi-target and multi-pathway inhibitory effect against influenza, and one of the mechanisms involves calcium signaling pathway. In the current study, geniposide treatment greatly decreased the levels of RNA polymerase in HEK-293T cells infected with IAV. Knocking down CAMKII in IAV-infected HEK-293T cells enhanced virus RNA (vRNA) production. Geniposide treatment increased CAMKII expression after IAV infection. Meanwhile, the CREB and c-Fos expressions were inhibited by geniposide after IAV infection. The experimental validation data showed that the geniposide was able to alleviate extracellular Ca2+ influx, dramatically decreased neuraminidase activity, and suppressed IAV replication in vitro via regulating the calcium signaling pathway. These anti-IAV effects might be related to the disrupted interplay between IAV RNA polymerase and CAMKII and the regulation of the downstream calcium signaling pathway essential for IAV replication. Taken together, the findings reveal a new facet of the mechanism by which geniposide fights IAV in a way that depends on CAMKII replication.
Collapse
Affiliation(s)
- Lirun Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongmei Yao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Straus MR, Bidon MK, Tang T, Jaimes JA, Whittaker GR, Daniel S. Inhibitors of L-Type Calcium Channels Show Therapeutic Potential for Treating SARS-CoV-2 Infections by Preventing Virus Entry and Spread. ACS Infect Dis 2021; 7:2807-2815. [PMID: 34498840 PMCID: PMC8442615 DOI: 10.1021/acsinfecdis.1c00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 01/06/2023]
Abstract
COVID-19 is caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2). The virus is responsible for an ongoing pandemic and concomitant public health crisis around the world. While vaccine development is proving to be highly successful, parallel drug development approaches are also critical in the response to SARS-CoV-2 and other emerging viruses. Coronaviruses require Ca2+ ions for host cell entry, and we have previously shown that Ca2+ modulates the interaction of the viral fusion peptide with host cell membranes. In an attempt to accelerate drug repurposing, we tested a panel of L-type calcium channel blocker (CCB) drugs currently developed for other conditions to determine whether they would inhibit SARS-CoV-2 infection in cell culture. All the CCBs tested showed varying degrees of inhibition, with felodipine and nifedipine strongly limiting SARS-CoV-2 entry and infection in epithelial lung cells at concentrations where cell toxicity was minimal. Further studies with pseudotyped particles displaying the SARS-CoV-2 spike protein suggested that inhibition occurs at the level of virus entry. Overall, our data suggest that certain CCBs have the potential to treat SARS-CoV-2 infections and are worthy of further examination for possible treatment of COVID-19.
Collapse
Affiliation(s)
- Marco R. Straus
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Miya K. Bidon
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Javier A. Jaimes
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Gary R. Whittaker
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
- Master of Public Health Program, Cornell
University, Ithaca, New York 14853, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| |
Collapse
|
32
|
Saurav S, Tanwar J, Ahuja K, Motiani RK. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol Aspects Med 2021; 81:101004. [PMID: 34304899 PMCID: PMC8299155 DOI: 10.1016/j.mam.2021.101004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.
Collapse
Affiliation(s)
- Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
33
|
Zhang C, Li W, Lei X, Xie Z, Qi L, Wang H, Xiao X, Xiao J, Zheng Y, Dong C, Zheng X, Chen S, Chen J, Sun B, Qin J, Zhai Q, Li J, Wei B, Wang J, Wang H. Targeting lysophospholipid acid receptor 1 and ROCK kinases promotes antiviral innate immunity. SCIENCE ADVANCES 2021; 7:eabb5933. [PMID: 34533996 PMCID: PMC8448453 DOI: 10.1126/sciadv.abb5933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence indicates the vital role of lipid metabolites in innate immunity. The lipid lysophosphatidic acid (LPA) concentrations are enhanced in patients upon HCV or SARS-CoV-2 infection, but the function of LPA and its receptors in innate immunity is largely unknown. Here, we found that viral infection promoted the G protein–coupled receptor LPA1 expression, and LPA restrained type I/III interferon production through LPA1. Mechanistically, LPA1 signaling activated ROCK1/2, which phosphorylated IRF3 Ser97 to suppress IRF3 activation. Targeting LPA1 or ROCK in macrophages, fibroblasts, epithelial cells, and LPA1 conditional KO mice promoted interferon-induced clearance of multiple viruses. LPA1 was colocalized with the receptor ACE2 in lung and intestine. Together with previous findings that LPA1 and ROCK1/2 promoted vascular leaking or lung fibrosis, we propose that the current available preclinical drugs targeting the LPA1-ROCK module might protect from SARS-CoV-2 or various virus infections in the intestine or lung.
Collapse
Affiliation(s)
- Chi Zhang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaobo Lei
- National Health Commission of the People’s Republic of China, Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenfei Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Linlin Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China
| | - Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xia Xiao
- National Health Commission of the People’s Republic of China, Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuxiao Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiyang Chen
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Qin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China
- College of Life Sciences, Shanghai University, Shanghai 200444, China
- Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianwei Wang
- National Health Commission of the People’s Republic of China, Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Bio-Research Innovation Center Suzhou, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou, Jiangsu 215121, China
| |
Collapse
|
34
|
Cummings TH, Magagnoli J, Hardin JW, Sutton SS. Drug repurposing of dextromethorphan as a cellular target for the management of influenza. Pharmacotherapy 2021; 41:796-803. [PMID: 34428315 DOI: 10.1002/phar.2618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Influenza viruses are responsible for seasonal epidemics and sporadic pandemics of varying severity in humans, and additional treatment options are needed. High-throughput siRNA screens and a pre-clinical research model demonstrated that dextromethorphan (DM) has anti-viral activity as a cellular target for treatment of influenza. This study examined DM usage and hospitalization rates among patients with laboratory-confirmed influenza in a national cohort of United States veterans. We aimed to evaluate the potential drug repurposing of DM as a cellular target for the management of influenza utilizing a large, national claims and electronic health record database. METHODS This retrospective drug-disease association cohort study was conducted using data from the Veterans Affairs Informatics and Computing Infrastructure (VINCI). We used a cohort with laboratory-confirmed diagnosis of influenza and international classification of disease (ICD)-9/10 diagnosis codes of fever, cough, influenza, or acute upper respiratory infection in an outpatient setting. The study outcome is inpatient hospitalization (all-cause and respiratory) within 30 days of influenza diagnosis. We estimated the relative risk for all-cause and respiratory hospitalizations using Poisson generalized linear model (GLM) and a greedy nearest neighbor propensity score 1:1 matched sub-analysis for both hospitalization models. FINDINGS A total of 18,677 patients met the inclusion and exclusion criteria and were evaluated in our study. The cohorts consisted of 2801 patients dispensed DM and 15,876 untreated patients (no DM). The Poisson GLM adjusted for covariates demonstrated a relative risk reduction of 34% for all-cause hospitalizations (Relative Risk (RR) 0.66, 95% Confidence Interval (CI) 0.525-0.832) and 40% for respiratory hospitalizations (RR 0.597, 95% CI 0.423-0.843) in patients with influenza treated with DM. CONCLUSION Influenza viruses continue to emerge and cause infection (including pandemics) in humans, so there remains a critical need to advance the understanding of influenza treatment. Our results demonstrated reduced hospitalization rates for influenza patients treated with DM. Further research on cellular targets and/or DM is warranted for the treatment of influenza.
Collapse
Affiliation(s)
- Tammy H Cummings
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.,Columbia VA Health Care System, Dorn Research Institute, Columbia, South Carolina, USA
| | - Joseph Magagnoli
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.,Columbia VA Health Care System, Dorn Research Institute, Columbia, South Carolina, USA
| | - James W Hardin
- Columbia VA Health Care System, Dorn Research Institute, Columbia, South Carolina, USA.,Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - S Scott Sutton
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.,Columbia VA Health Care System, Dorn Research Institute, Columbia, South Carolina, USA
| |
Collapse
|
35
|
Abstract
Influenza A virus (IAV) infection predisposes the host to secondary bacterial pneumonia, known as a major cause of morbidity and mortality during influenza virus epidemics. Analysis of interactions between IAV-infected human epithelial cells and Streptococcus pneumoniae revealed that infected cells ectopically exhibited the endoplasmic reticulum chaperone glycoprotein 96 (GP96) on the surface. Importantly, efficient pneumococcal adherence to epithelial cells was imparted by interactions with extracellular GP96 and integrin αV, with the surface expression mediated by GP96 chaperone activity. Furthermore, abrogation of adherence was gained by chemical inhibition or genetic knockout of GP96 as well as addition of RGD peptide, an inhibitor of integrin-ligand interactions. Direct binding of extracellular GP96 and pneumococci was shown to be mediated by pneumococcal oligopeptide permease components. Additionally, IAV infection induced activation of calpains and Snail1, which are responsible for degradation and transcriptional repression of junctional proteins in the host, respectively, indicating increased bacterial translocation across the epithelial barrier. Notably, treatment of IAV-infected mice with the GP96 inhibitor enhanced pneumococcal clearance from lung tissues and ameliorated lung pathology. Taken together, the present findings indicate a viral-bacterial synergy in relation to disease progression and suggest a paradigm for developing novel therapeutic strategies tailored to inhibit pneumococcal colonization in an IAV-infected respiratory tract.
Collapse
|
36
|
Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA. G-Protein-Coupled Receptor and Ion Channel Genes Used by Influenza Virus for Replication. J Virol 2021; 95:e02410-20. [PMID: 33536179 PMCID: PMC8104092 DOI: 10.1128/jvi.02410-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza virus causes epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses. Influenza viruses require host genes to replicate. RNA interference (RNAi) screens can identify host genes coopted by influenza virus for replication. Targeting these proinfluenza genes can provide therapeutic strategies to reduce virus replication. Nineteen proinfluenza G-protein-coupled receptor (GPCR) and 13 proinfluenza ion channel genes were identified in human lung (A549) cells by use of small interfering RNAs (siRNAs). These proinfluenza genes were authenticated by testing influenza virus A/WSN/33-, A/CA/04/09-, and B/Yamagata/16/1988-infected A549 cells, resulting in the validation of 16 proinfluenza GPCR and 5 proinfluenza ion channel genes. These findings showed that several GPCR and ion channel genes are needed for the production of infectious influenza virus. These data provide potential targets for the development of host-directed therapeutic strategies to impede the influenza virus productive cycle so as to limit infection.IMPORTANCE Influenza epidemics result in morbidity and mortality each year. Vaccines are the most effective preventive measure but require annual reformulation, since a mismatch of vaccine strains can result in vaccine failure. Antiviral measures are desirable particularly when vaccines fail. In this study, we used RNAi screening to identify several GPCR and ion channel genes needed for influenza virus replication. Understanding the host genes usurped by influenza virus during viral replication can help identify host genes that can be targeted for drug repurposing or for the development of antiviral drugs. The targeting of host genes is refractory to drug resistance generated by viral mutations, as well as providing a platform for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kyle V Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
37
|
Overeem NJ, van der Vries E, Huskens J. A Dynamic, Supramolecular View on the Multivalent Interaction between Influenza Virus and Host Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007214. [PMID: 33682339 DOI: 10.1002/smll.202007214] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Understanding how influenza viruses traverse the mucus and recognize host cells is critical for evaluating their zoonotic potential, and for prevention and treatment of the disease. The surface of the influenza A virus is covered with the receptor-binding protein hemagglutinin and the receptor-cleaving enzyme neuraminidase, which jointly control the interactions between the virus and the host cell. These proteins are organized in closely spaced trimers and tetramers to facilitate multivalent interactions with sialic acid-terminated glycans. This review shows that the individually weak multivalent interactions of influenza viruses allow superselective binding, virus-induced recruitment of receptors, and the formation of dynamic complexes that facilitate molecular walking. Techniques to measure the avidity and receptor specificity of influenza viruses are reviewed, and the pivotal role of multivalent interactions with their emergent properties in crossing the mucus and entering host cells is discussed. A model is proposed for the initiation of cell entry through virus-induced receptor clustering. The multivalent interactions of influenza viruses are maintained in a dynamic regime by a functional balance between binding and cleaving.
Collapse
Affiliation(s)
- Nico J Overeem
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Erhard van der Vries
- Royal GD, Arnsbergstraat 7, Deventer, 7418 EZ, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Jurriaan Huskens
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
38
|
Megalocytivirus Induces Complicated Fish Immune Response at Multiple RNA Levels Involving mRNA, miRNA, and circRNA. Int J Mol Sci 2021; 22:ijms22063156. [PMID: 33808870 PMCID: PMC8003733 DOI: 10.3390/ijms22063156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
Megalocytivirus is an important viral pathogen to many farmed fishes, including Japanese flounder (Paralichthys olivaceus). In this study, we examined megalocytivirus-induced RNA responses in the spleen of flounder by high-throughput sequencing and integrative analysis of various RNA-seq data. A total of 1327 microRNAs (miRNAs), including 368 novel miRNAs, were identified, among which, 171 (named DEmiRs) exhibited significantly differential expressions during viral infection in a time-dependent manner. For these DEmiRs, 805 differentially expressed target mRNAs (DETmRs) were predicted, whose expressions not only significantly changed after megalocytivirus infection but were also negatively correlated with their paired DEmiRs. Integrative analysis of immune-related DETmRs and their target DEmiRs identified 12 hub DEmiRs, which, together with their corresponding DETmRs, formed an interaction network containing 84 pairs of DEmiR and DETmR. In addition to DETmRs, 19 DEmiRs were also found to regulate six key immune genes (mRNAs) differentially expressed during megalocytivirus infection, and together they formed a network consisting of 21 interactive miRNA-messenger RNA (mRNA) pairs. Further analysis identified 9434 circular RNAs (circRNAs), 169 of which (named DEcircRs) showed time-specific and significantly altered expressions during megalocytivirus infection. Integrated analysis of the DETmR-DEmiR and DEcircR-DEmiR interactions led to the identification of a group of competing endogenous RNAs (ceRNAs) constituted by interacting triplets of circRNA, miRNA, and mRNA involved in antiviral immunity. Together these results indicate that complicated regulatory networks of different types of non-coding RNAs and coding RNAs are involved in megalocytivirus infection.
Collapse
|
39
|
8- O-( E- p-methoxycinnamoyl)harpagide Inhibits Influenza A Virus Infection by Suppressing Intracellular Calcium. Molecules 2021; 26:molecules26041029. [PMID: 33672072 PMCID: PMC7919648 DOI: 10.3390/molecules26041029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
Calcium (Ca2+) dependent signaling circuit plays a critical role in influenza A virus (IAV) infection. The 8-O-(E-p-methoxycinnamoyl)harpagide (MCH) exhibits pharmacological activities that exert neuroprotective, hepatoprotective, anti-inflammatory and other biological effects. However, not have reports of antiviral effects. To investigate the antiviral activity of MCH on IAV-infected human lung cells mediated by calcium regulation. We examined the inhibitory effect of MCH on IAV infections and measured the level of viral proteins upon MCH treatment using Western blotting. We also performed molecular docking simulation with MCH and IAV M2 protein. Finally, we analyzed MCH’s suppression of intracellular calcium and ROS (reactive oxygen species) in IAV-infected human lung cells using a flow cytometer. The results shown that MCH inhibited the infection of IAV and increased the survival of the infected human lung cells. The levels of IAV protein M1, M2, NS1 and PA were inhibited in MCH-treated human lung cells compared to that in infected and untreated cells. Also, docking simulation suggest that MCH interacted with M2 on its hydrophobic wall (L40 and I42) and polar amino acids (D44 and R45), which formed intermolecular contacts and were a crucial part of the channel gate along with W41. Lastly, MCH inhibited IAV infection by reducing intracellular calcium and mitochondrial Ca2+/ROS levels in infected human lung cells. Taken together, these data suggest that MCH inhibits IAV infection and increases the survival of infected human lung cells by suppressing calcium levels. These results indicate that MCH is useful for developing IAV treatments.
Collapse
|
40
|
Bao MN, Zhang LJ, Tang B, Fu DD, Li J, Du L, Hou YN, Zhang ZL, Tang HW, Pang DW. Influenza A Viruses Enter Host Cells via Extracellular Ca2+ Influx-Involved Clathrin-Mediated Endocytosis. ACS APPLIED BIO MATERIALS 2021; 4:2044-2051. [DOI: 10.1021/acsabm.0c00968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng-Ni Bao
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Ning Hou
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
41
|
Crespi B, Alcock J. Conflicts over calcium and the treatment of COVID-19. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 9:149-156. [PMID: 33732462 PMCID: PMC7717197 DOI: 10.1093/emph/eoaa046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Several recent studies have provided evidence that use of calcium channel blockers (CCBs), especially amlodipine and nifedipine, can reduce mortality from coronavirus disease 2019 (COVID-19). Moreover, hypocalcemia (a reduced level of serum ionized calcium) has been shown to be strongly positively associated with COVID-19 severity. Both effectiveness of CCBs as antiviral therapy, and positive associations of hypocalcemia with mortality, have been demonstrated for many other viruses as well. We evaluate these findings in the contexts of virus–host evolutionary conflicts over calcium metabolism, and hypocalcemia as either pathology, viral manipulation or host defence against pathogens. Considerable evidence supports the hypothesis that hypocalcemia represents a host defence. Indeed, hypocalcemia may exert antiviral effects in a similar manner as do CCBs, through interference with calcium metabolism in virus-infected cells. Prospective clinical studies that address the efficacy of CCBs and hypocalcemia should provide novel insights into the pathogenicity and treatment of COVID-19 and other viruses.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
42
|
Yang C, Ma X, Wu J, Han J, Zheng Z, Duan H, Liu Q, Wu C, Dong Y, Dong L. Low serum calcium and phosphorus and their clinical performance in detecting COVID-19 patients. J Med Virol 2020; 93:1639-1651. [PMID: 32926424 DOI: 10.1002/jmv.26515] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND This study aimed to evaluate the clinical performance of low serum calcium and phosphorus in discriminative diagnosis of the severity of patients with coronavirus disease 2019 (COVID-19). We conducted a single-center hospital-based study and consecutively recruited 122 suspected and 104 confirmed patients with COVID-19 during January 24 to April 25, 2020. Clinical risk factors of COVID-19 were identified. The discriminative power of low calcium and phosphorus regarding the disease severity was evaluated. Low calcium and low phosphorus are more prevalent in severe or critical COVID-19 patients than moderate COVID-19 patients (odds ratio [OR], 15.07; 95% confidence interval [CI], 1.59-143.18 for calcium; OR, 6.90; 95% CI, 2.43-19.64 for phosphorus). The specificity in detecting the severe or critical patients among COVID-19 patients reached 98.5% (95% CI, 92.0%-99.7%) and 84.8% (95% CI, 74.3%-91.6%) by low calcium and low phosphorus, respectively, albeit with suboptimal sensitivity. Calcium and phosphorus combined with lymphocyte count could obtain the best discriminative performance for the severe COVID-19 patients (area under the curve [AUC] = 0.80), and combined with oxygenation index was promising (AUC = 0.71). Similar discriminative performances of low calcium and low phosphorus were found between suspected and confirmed COVID-19 patient. Low calcium and low phosphorus could indicate the severity of COVID-19 patients, and may be utilized as promising clinical biomarkers for discriminative diagnosis.
Collapse
Affiliation(s)
- Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Xiaoxia Ma
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jili Wu
- Administrative Office, The Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Jie Han
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Zhe Zheng
- Administrative Office, The Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Huiping Duan
- Administrative Office, The Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Qun Liu
- Administrative Office, The Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yongkang Dong
- Administrative Office, The Fourth People's Hospital of Taiyuan, Taiyuan, China
| | - Li Dong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
43
|
Kolyvushko O, Kelch MA, Osterrieder N, Azab W. Equine Alphaherpesviruses Require Activation of the Small GTPases Rac1 and Cdc42 for Intracellular Transport. Microorganisms 2020; 8:microorganisms8071013. [PMID: 32645930 PMCID: PMC7409331 DOI: 10.3390/microorganisms8071013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Viruses utilize host cell signaling to facilitate productive infection. Equine herpesvirus type 1 (EHV-1) has been shown to activate Ca2+ release and phospholipase C upon contact with α4β1 integrins on the cell surface. Signaling molecules, including small GTPases, have been shown to be activated downstream of Ca2+ release, and modulate virus entry, membrane remodeling and intracellular transport. In this study, we show that EHV-1 activates the small GTPases Rac1 and Cdc42 during infection. The activation of Rac1 and Cdc42 is necessary for virus-induced acetylation of tubulin, effective viral transport to the nucleus, and cell-to-cell spread. We also show that inhibitors of Rac1 and Cdc42 did not block virus entry, but inhibited overall virus infection. The Rac1 and Cdc42 signaling is presumably orthogonal to Ca2+ release, since Rac1 and Cdc42 inhibitors affected the infection of both EHV-1 and EHV-4, which do not bind to integrins.
Collapse
Affiliation(s)
| | | | | | - Walid Azab
- Correspondence: ; Tel.: +49-30-838-50087
| |
Collapse
|
44
|
Pang Y, Yan L, Ren M, Jia X, Liu T, Du W, Wang B, Li Z, Lu Q. Environmental complex exposure and the risk of influenza-like illness among housewives: A case study in Shanxi Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110405. [PMID: 32163773 DOI: 10.1016/j.ecoenv.2020.110405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The association between environmental pollution and risk of influenza-like illness (ILI) among general population has been reported. However, the relationships between the individual pollutants and ILI risk are still under discussion. Our study aimed to explore the associations of the typical environmental polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s with ILI risk among women population. We carried out a cross-sectional study and included a total of 396 housewives in Shanxi Province, China. The information on their general characteristics and ILI frequency was collected by questionnaire. We collected their hair samples and analyzed the concentrations of PAHs and various metal(loid)s. The results indicated that only acenaphthylene concentration of the nine detected PAH congeners in the hair was significantly associated with ILI risk with adjusted odds ratio (AOR) and 95% confidence interval (95% CI) of 0.58 (0.38 - 0.91). Among the concerned 4 toxic metal(loid)s and 15 rare earth elements, only the hair concentration of arsenic had a positive dose-response relationship with ILI risk. In addition, we found that there were negative dose-response associations of the three essential trace elements (i.e. chromium, cobalt, and nickel), and four essential alkaline earth elements (i.e. magnesium, calcium, strontium, barium) with ILI risk. It was concluded that the environmental exposure to certain compounds of housewives may contribute to their ILI development.
Collapse
Affiliation(s)
- Yiming Pang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Mengyuan Ren
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Tanxin Liu
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China.
| | - Qun Lu
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, PR China.
| |
Collapse
|
45
|
Cao M, Zhang D, Wang Y, Lu Y, Zhu X, Li Y, Xue H, Lin Y, Zhang M, Sun Y, Yang Z, Shi J, Wang Y, Zhou C, Dong Y, Liu P, Dudek SM, Xiao Z, Lu H, Peng L. Clinical Features of Patients Infected with the 2019 Novel Coronavirus (COVID-19) in Shanghai, China. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.03.04.20030395. [PMID: 32511465 PMCID: PMC7255784 DOI: 10.1101/2020.03.04.20030395] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Since mid-December 2019, a cluster of pneumonia-like diseases caused by a novel coronavirus, now designated COVID-19 by the WHO, emerged in Wuhan city and rapidly spread throughout China. Here we identify the clinical characteristics of COVID-19 in a cohort of patients in Shanghai. METHODS Cases were confirmed by real-time RT-PCR and were analysed for demographic, clinical, laboratory and radiological features. RESULTS Of 198 patients, the median duration from disease onset to hospital admission was 4 days. The mean age of the patients was 50.1 years, and 51.0% patients were male. The most common symptom was fever. Less than half of the patients presented with respiratory systems including cough, sputum production, itchy or sore throat, shortness of breath, and chest congestion. 5.6% patients had diarrhoea. On admission, T lymphocytes were decreased in 45.8% patients. Ground glass opacity was the most common radiological finding on chest computed tomography. 9.6% were admitted to the ICU because of the development of organ dysfunction. Compared with patients not treated in ICU, patients treated in the ICU were older, had longer waiting time to admission, fever over 38.5o C, dyspnoea, reduced T lymphocytes, elevated neutrophils and organ failure. CONCLUSIONS In this single centre cohort of COVID-19 patients, the most common symptom was fever, and the most common laboratory abnormality was decreased blood T cell counts. Older age, male, fever over 38.5oC, symptoms of dyspnoea, and underlying comorbidity, were the risk factors most associated with severity of disease. KEY WORDS 2019 novel coronavirus; acute respiratory infection; risk factors for disease severity.
Collapse
|
46
|
Abstract
Influenza A virus (IAV) is an enveloped virus of the Orthomyxoviridae with a negative-sense single-stranded RNA genome. During virus cell entry, viral and cellular cues are delivered in a stepwise manner within two distinct cellular compartments-the endosomes and the cytosol. Endosome maturation primes the viral core for uncoating by cytosolic host proteins and host-mediated virus disaggregation is essential for genome import and replication in the nucleus. Recent evidence shows that two well-known cellular proteins-histone deacetylase 6 (HDAC6) and karyopherin-β2 (kapβ2)-uncoat influenza virus. HDAC6 is 1 of 11 HDACs and an X-linked, cytosolic lysine deacetylase. Under normal cellular conditions HDAC6 is the tubulin deacetylase. Under proteasomal stress HDAC6 binds unanchored ubiquitin, dynein and myosin II to sequester misfolded protein aggregates for autophagy. Kapβ2 is a member of the importin β family that transports RNA-binding proteins into the nucleus by binding to disordered nuclear localization signals (NLSs) known as PY-NLS. Kapβ2 is emerging as a universal uncoating factor for IAV and human immunodeficiency virus type 1 (HIV-1). Kapβ2 can also reverse liquid-liquid phase separation (LLPS) of RNA-binding proteins by promoting their disaggregation. Thus, it is becoming evident that key players in the management of cellular condensates and membraneless organelles are potent virus uncoating factors. This emerging concept reveals implications in viral pathogenesis, as well as, the promise for cell-targeted therapeutic strategies to block universal virus uncoating pathways hijacked by enveloped RNA viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
47
|
Breaking the Convention: Sialoglycan Variants, Coreceptors, and Alternative Receptors for Influenza A Virus Entry. J Virol 2020; 94:JVI.01357-19. [PMID: 31776280 DOI: 10.1128/jvi.01357-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
The influenza A virus (IAV) envelope protein hemagglutinin binds α2,6- or α2,3-linked sialic acid as a host cell receptor. Bat IAV subtypes H17N10 and H18N11 form an exception to this rule and do not bind sialic acid but enter cells via major histocompatibility complex (MHC) class II. Here, we review current knowledge on IAV receptors with a focus on sialoglycan variants, protein coreceptors, and alternative receptors that impact IAV attachment and internalization beyond the well-described sialic acid binding.
Collapse
|
48
|
Host Calcium Channels and Pumps in Viral Infections. Cells 2019; 9:cells9010094. [PMID: 31905994 PMCID: PMC7016755 DOI: 10.3390/cells9010094] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022] Open
Abstract
Ca2+ is essential for virus entry, viral gene replication, virion maturation, and release. The alteration of host cells Ca2+ homeostasis is one of the strategies that viruses use to modulate host cells signal transduction mechanisms in their favor. Host calcium-permeable channels and pumps (including voltage-gated calcium channels, store-operated channels, receptor-operated channels, transient receptor potential ion channels, and Ca2+-ATPase) mediate Ca2+ across the plasma membrane or subcellular organelles, modulating intracellular free Ca2+. Therefore, these Ca2+ channels or pumps present important aspects of viral pathogenesis and virus–host interaction. It has been reported that viruses hijack host calcium channels or pumps, disturbing the cellular homeostatic balance of Ca2+. Such a disturbance benefits virus lifecycles while inducing host cells’ morbidity. Evidence has emerged that pharmacologically targeting the calcium channel or calcium release from the endoplasmic reticulum (ER) can obstruct virus lifecycles. Impeding virus-induced abnormal intracellular Ca2+ homeostasis is becoming a useful strategy in the development of potent antiviral drugs. In this present review, the recent identified cellular calcium channels and pumps as targets for virus attack are emphasized.
Collapse
|
49
|
Bauer DLV, Tellier M, Martínez-Alonso M, Nojima T, Proudfoot NJ, Murphy S, Fodor E. Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription. Cell Rep 2019; 23:2119-2129.e3. [PMID: 29768209 PMCID: PMC5972227 DOI: 10.1016/j.celrep.2018.04.047] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
Influenza virus intimately associates with host RNA polymerase II (Pol II) and mRNA processing machinery. Here, we use mammalian native elongating transcript sequencing (mNET-seq) to examine Pol II behavior during viral infection. We show that influenza virus executes a two-pronged attack on host transcription. First, viral infection causes decreased Pol II gene occupancy downstream of transcription start sites. Second, virus-induced cellular stress leads to a catastrophic failure of Pol II termination at poly(A) sites, with transcription often continuing for tens of kilobases. Defective Pol II termination occurs independently of the ability of the viral NS1 protein to interfere with host mRNA processing. Instead, this termination defect is a common effect of diverse cellular stresses and underlies the production of previously reported downstream-of-gene transcripts (DoGs). Our work has implications for understanding not only host-virus interactions but also fundamental aspects of mammalian transcription. Influenza virus infection dysregulates host transcription Viral infection depletes Pol II from gene bodies downstream of the TSS Virus-induced stress leads to a catastrophic failure of Pol II termination Defective termination does not require viral NS1: host CPSF30 interaction
Collapse
Affiliation(s)
- David L V Bauer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Mónica Martínez-Alonso
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
50
|
The Interferon-Inducible Proteoglycan Testican-2/SPOCK2 Functions as a Protective Barrier against Virus Infection of Lung Epithelial Cells. J Virol 2019; 93:JVI.00662-19. [PMID: 31341044 DOI: 10.1128/jvi.00662-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Proteoglycans function not only as structural components of the extracellular compartment but also as regulators of various cellular events, including cell migration, inflammation, and infection. Many microbial pathogens utilize proteoglycans to facilitate adhesion and invasion into host cells. Here we report a secreted form of a novel heparan sulfate proteoglycan that functions against virus infection. The expression of SPOCK2/testican-2 was significantly induced in virus-infected lungs or in interferon (IFN)-treated alveolar lung epithelial cells. Overexpression from a SPOCK2 expression plasmid alone or the treatment of cells with recombinant SPOCK2 protein efficiently blocked influenza virus infection at the step of viral attachment to the host cell and entry. Moreover, mice treated with purified SPOCK2 were protected against virus infection. Sialylated glycans and heparan sulfate chains covalently attached to the SPOCK2 core protein were critical for its antiviral activity. Neuraminidase (NA) of influenza virus cleaves the sialylated moiety of SPOCK2, thereby blocking its binding to the virus. Our data suggest that IFN-induced SPOCK2 functions as a decoy receptor to bind and block influenza virus infection, thereby restricting entry of the infecting virus into neighboring cells.IMPORTANCE Here we report a novel proteoglycan protein, testican-2/SPOCK2, that prevents influenza virus infection. Testican-2/SPOCK2 is a complex type of secreted proteoglycan with heparan sulfate GAG chains attached to the core protein. SPOCK2 expression is induced upon virus infection or by interferons, and the protein is secreted to an extracellular compartment, where it acts directly to block virus-cell attachment and entry. Treatment with purified testican-2/SPOCK2 protein can efficiently block influenza virus infection in vitro and in vivo We also identified the heparan sulfate moiety as a key regulatory module for this inhibitory effect. Based on its mode of action (cell attachment/entry blocker) and site of action (extracellular compartment), we propose testican-2/SPOCK2 as a potential antiviral agent that can efficiently control influenza virus infection.
Collapse
|